Системa очистки воды , Химикаты для металла и буровой системы

Maleic Acid Anhydride
2-Propenoic Acid; Ethyl ester; Polymer with Ethenyl Acetate and 2,5-Furandione Hydrolyzed CAS NO:113221-69-5
Maleic Acid Copolymer
MALIC ACID; D-Apple Acid; (+-)-Hydroxysuccinic acid; (+-)-Malic acid; Deoxytetraric Acid; Malic acid; 2-Hydroxyethane-1,2-dicarboxylic acid; Deoxytetraric acid; Hydroxybutandisaeure; Hydroxybutanedioic acid; (+-)-Hydroxybutanedioic acid; Hydroxysuccinic acid; Kyselina hydroxybutandiova; Monohydroxybernsteinsaeure; Pomalus acid; R,S(+-)-Malic acid; alpha-Hydroxysuccinic acid; (+-)-1-Hydroxy-1,2-ethanedicarboxylic acid; cas no: 6915-15-7
MALIC ACID
Malic Acid Malic acid is an organic compound with the molecular formula C4H6O5. It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms (L- and D-enantiomers), though only the L-isomer exists naturally. The salts and esters of malic acid are known as malates. The malate anion is an intermediate in the citric acid cycle. Etymology The word 'malic' is derived from Latin 'mālum', meaning 'apple'. It is also the name of the genus Malus, which includes all apples and crabapples; and the origin of other taxonomic classifications such as Maloideae, Malinae, and Maleae. This derivation is also seen in the traditional German name for malic acid, 'Äpfelsäure' meaning 'apple acid' as well as in modern Greek, 'mēlicon oxy' (Μηλικόν οξύ), after the original European discovery of apples in modern-day Kazakhstan 2350 years ago by Alexander the Great's expeditionary foray into Asia.[citation needed] Biochemistry L-Malic acid is the naturally occurring form, whereas a mixture of L- and D-malic acid is produced synthetically. D-Malic acid Malate plays an important role in biochemistry. In the C4 carbon fixation process, malate is a source of CO2 in the Calvin cycle. In the citric acid cycle, (S)-malate is an intermediate, formed by the addition of an -OH group on the si face of fumarate. It can also be formed from pyruvate via anaplerotic reactions. Malate is also synthesized by the carboxylation of phosphoenolpyruvate in the guard cells of plant leaves. Malate, as a double anion, often accompanies potassium cations during the uptake of solutes into the guard cells in order to maintain electrical balance in the cell. The accumulation of these solutes within the guard cell decreases the solute potential, allowing water to enter the cell and promote aperture of the stomata. In food Malic acid was first isolated from apple juice by Carl Wilhelm Scheele in 1785.[4] Antoine Lavoisier in 1787 proposed the name acide malique, which is derived from the Latin word for apple, mālum—as is its genus name Malus.[5][6] In German it is named Äpfelsäure (or Apfelsäure) after plural or singular of the fruit apple, but the salt(s) Malat(e). Malic acid is the main acid in many fruits, including apricots, blackberries, blueberries, cherries, grapes, mirabelles, peaches, pears, plums, and quince[7] and is present in lower concentrations in other fruits, such as citrus.[8] It contributes to the sourness of unripe apples. Sour apples contain high proportions of the acid. It is present in grapes and in most wines with concentrations sometimes as high as 5 g/l.[9] It confers a tart taste to wine; the amount decreases with increasing fruit ripeness. The taste of malic acid is very clear and pure in rhubarb, a plant for which it is the primary flavor. It is also a component of some artificial vinegar flavors, such as "salt and vinegar" flavored potato chips. In citrus, fruits produced in organic farming contain higher levels of malic acid than fruits produced in conventional agriculture.[8] The process of malolactic fermentation converts malic acid to much milder lactic acid. Malic acid occurs naturally in all fruits and many vegetables, and is generated in fruit metabolism. Malic acid is a chemical found in certain fruits and wines. It is sometimes used as medicine. Malic acid is used most commonly for dry mouth. It is also used for fibromyalgia, fatigue, and skin conditions, but there is no good scientific evidence to support these other uses. In foods, malic acid is used as a flavoring agent to give food a tart taste. In manufacturing, malic acid is used to adjust the acidity of cosmetics. How does it work? Malic acid is involved in the Krebs cycle. This is a process the body uses to make energy. Malic acid is sour and acidic. This helps to clear away dead skin cells when applied to the skin. Its sourness also helps to make more saliva to help with dry mouth. Uses & Effectiveness? Possibly Effective for Dry mouth. Using a mouth spray containing a malic acid seems to improve symptoms of dry mouth better than using a saline mouth spray. Insufficient Evidence for Acne. Early research shows that applying an alpha hydroxy acid cream containing malic acid helps reduce signs of acne in some people. Fibromyalgia. Taking malic acid in combination with magnesium seems to reduce pain and tenderness caused by fibromyalgia. Fatigue. Warts. Scaly, itchy skin (psoriasis). Aging skin. Other conditions. More evidence is needed to rate the effectiveness of malic acid for these uses. Malic acid is a substance found naturally in apples and pears. It's considered an alpha-hydroxy acid, a class of natural acids commonly used in skin-care products. Also sold in dietary supplement form, malic acid is said to offer a variety of benefits. Health Benefits Malic acid is found in fruits and vegetables and is produced naturally in the body when carbohydrates are converted into energy. While some research suggests that malic acid supplements may help people with certain conditions, high-quality clinical trials are needed. There's some evidence that malic acid supplements may offer these benefits: Skin-Care Benefits When applied to the skin, malic acid is said to reduce signs of aging, remove dead skin cells, aid in the treatment of acne, and promote skin hydration. A number of early studies published in the 1990s and early 2000s indicate that malic acid may be beneficial when applied to the skin. In tests on animals and human cells, the studies' authors found that malic acid may help increase collagen production and reverse sun-induced signs of skin aging. More recent research on topically applied malic acid includes a small study published in the Journal of Drugs in Dermatology in 2013.1 For the study, researchers assigned people with melasma (a common disorder marked by patches of abnormally dark skin) to a skin-care regimen that included the use of topical vitamin C and malic acid. At an average follow-up of 26 months, the regimen was found to be an effective short-term treatment for melasma. Physical Performance Malic acid is also used to boost sports performance when taken in supplement form. It is sometimes combined with creatine supplements in order to improve the body's absorption of creatine. Proponents claim that malic acid can promote energy production, increase exercise endurance, and help fight off muscle fatigue. For a study published in Acta Physiologica Hungarica in 2015, researchers investigated the effectiveness of a creatine-malate supplement in sprinters and long-distance runners.2 After six weeks of supplementation combined with physical training, there was a significant increase in the physical performance in sprinters, measured by peak power, total work, body composition, and elevated growth hormone levels. In long-distance runners, there was a significant increase in distance covered. Kidney Stones Malic acid is a precursor to citrate, a substance believed to prevent calcium from binding with other substances in urine that form kidney stones. Citrate may also prevent crystals from getting bigger by preventing them from sticking together. According to a preliminary laboratory study published in 2014, malic acid consumption may increase urine pH and citrate levels, making stone formation less likely. The study authors concluded that malic acid supplementation may be useful for the conservative treatment of calcium kidney stones. In a 2016 review, scientists suggested that given the high malic acid content in pears, future research should explore whether a diet supplemented with pears and low in meat and sodium may reduce stone formation.4 Fibromyalgia A pilot study published in the Journal of Rheumatology in 1995 found that taking malic acid in combination with magnesium helped alleviate pain and tenderness in people with fibromyalgia.5 For the study, researchers assigned 24 people with fibromyalgia to treatment with either a placebo or a combination of malic acid and magnesium. After six months, those treated with the malic acid/magnesium combination showed a significant improvement in pain and tenderness. However, there's a lack of more recent research on malic acid's effectiveness as a fibromyalgia treatment. Dry Mouth The use of a one percent oral malic acid spray has been explored as a treatment for dry mouth. A study published in Depression and Anxiety, for instance, evaluated a one percent malic acid spray compared to a placebo in people with dry mouth resulting from antidepressant use.6 After two weeks of using the sprays when needed, those using the malic acid spray had improved dry mouth symptoms and increased saliva flow rates. Possible Side Effects Due to a lack of research, little is known about the safety of long-term or regular use of malic acid supplements. However, there's some concern that intake of malic acid may trigger certain side effects such as headaches, diarrhea, nausea, and allergic reactions. Although malic acid is generally considered safe when applied to the skin in the recommended amount, some people may experience irritation, itching, redness, and other side effects. It's a good idea to patch test new products. In addition, alpha-hydroxy acids are known to increase your skin's sensitivity to sunlight.7 Therefore, it's important to use sunscreen in combination with skin-care products containing any type of alpha-hydroxy acid. Keep in mind that malic acid shouldn't be used as a substitute for standard care. Self-treating a condition and avoiding or delaying standard care may have serious consequences. Dosage and Preparation There is no standard dose of malic acid that is recommended. Various doses have been used with adults in studies to investigate the treatment of different conditions. For example, for fibromyalgia, a product called Super Malic (malic acid 1200 mg and magnesium hydroxide 300 mg) was taken twice daily for six months. For acne, a cream containing malic acid and arginine glycolate was applied twice daily for 60 days. And lastly, for dry mouth, a mouth spray containing 1 percent malic acid, 10 percent xylitol, and 0.05 percent fluoride was used up to eight times daily for two weeks. The appropriate dose for you may depend on how you are using the supplement, your age, gender, and medical history. Speak to your healthcare provider for personalized advice. What to Look For Malic acid is found naturally in fruits including apricots, blackberries, blueberries, cherries, grapes, peaches, pears, and plums. Malic acid is also found in some citrus fruits. In food, malic acid may be used to acidify or flavor foods or prevent food discoloration. It may also be used with other ingredients in cosmetics. Using malic acid as part of your skin care routine may help with concerns such as pigmentation, acne, or skin aging. But keep in mind that it's a good idea to patch test when using new products and to avoid the eye area. If you choose to take a malic acid supplement, the National Institutes of Health (NIH) offers tips to consumers. The organization recommends that you look for a Supplement Facts label on the product. This label will contain vital information including the amount of active ingredients per serving, and other added ingredients. Lastly, the organization suggests that you look for a product that contains a seal of approval from a third party organization that provides quality testing. These organizations include U.S. Pharmacopeia, ConsumerLab.com, and NSF International. A seal of approval from one of these organizations does not guarantee the product's safety or effectiveness but it does provide assurance that the product was properly manufactured, contains the ingredients listed on the label, and does not contain harmful levels of contaminants. Malic acid, when added to food products, is denoted by E number E296. It is sometimes used with or in place of the less sour citric acid in sour sweets. These sweets are sometimes labeled with a warning stating that excessive consumption can cause irritation of the mouth. It is approved for use as a food additive in the EU,[12] US[13] and Australia and New Zealand[14] (where it is listed by its INS number 296). Malic acid provides 10 kJ (2.39 kilocalories) of energy per gram during digestion. Production and main reactions Racemic malic acid is produced industrially by the double hydration of maleic anhydride. In 2000, American production capacity was 5000 tons per year. Both enantiomers may be separated by chiral resolution of the racemic mixture, and the (S)- enantiomer may be specifically obtained by fermentation of fumaric acid. Self-condensation of malic acid with fuming sulfuric acid gives the pyrone coumalic acid Coumalic Acid Synthesis Malic acid was important in the discovery of the Walden inversion and the Walden cycle, in which (−)-malic acid first is converted into (+)-chlorosuccinic acid by action of phosphorus pentachloride. Wet silver oxide then converts the chlorine compound to (+)-malic acid, which then reacts with PCl5 to the (−)-chlorosuccinic acid. The cycle is completed when silver oxide takes this compound back to (−)-malic acid. Malic acid or cis-butenedioic acid is an organic compound that is a dicarboxylic acid, a molecule with two carboxyl groups. Its chemical formula is HO2CCH=CHCO2H orC4H4O4. Malic acid is the cis-isomer of butenedioic acid, whereas fumaric acid is the trans-isomer. It is mainly used as a precursor to fumaric acid, and relative to its parent maleic anhydride, Malic acid has few applications. Physical properties Malic acid has a heat of combustion of -1,355 kJ/mol.,[4] 22.7 kJ/mol higher than that of fumaric acid. Malic acid is more soluble in water than fumaric acid. The melting point of Malic acid (135 °C) is also much lower than that of fumaric acid (287 °C). Both properties of Malic acid can be explained on account of the intramolecular hydrogen bonding[5] that takes place in Malic acid at the expense of intermolecular interactions, and that are not possible in fumaric acid for geometric reasons. Production and industrial applications In industry, Malic acid is derived by hydrolysis of maleic anhydride, the latter being produced by oxidation of benzene or butane. Malic acid is an industrial raw material for the production of glyoxylic acid by ozonolysis.[7] Malic acid may be used to form acid addition salts with drugs to make them more stable, such as indacaterol maleate. Malic acid is also used as an adhesion promoter for different substrates, such as nylon and zinc coated metals e.g galvanized steel, in methyl methacrylate based adhesives. Isomerization to fumaric acid The major industrial use of Malic acid is its conversion to fumaric acid. This conversion, an isomerization, is catalysed by a variety of reagents, such as mineral acids and thiourea. Again, the large difference in water solubility makes fumaric acid purification easy. The isomerization is a popular topic in schools. Malic acid and fumaric acid do not spontaneously interconvert because rotation around a carbon carbon double bond is not energetically favourable. However, conversion of the cis isomer into the trans isomer is possible by photolysis in the presence of a small amount of bromine.[8] Light converts elemental bromine into a bromine radical, which attacks the alkene in a radical addition reaction to a bromo-alkane radical; and now single bond rotation is possible. The bromine radicals recombine and fumaric acid is formed. In another method (used as a classroom demonstration), Malic acid is transformed into fumaric acid through the process of heating the Malic acid in hydrochloric acid solution. Reversible addition (of H+) leads to free rotation about the central C-C bond and formation of the more stable and less soluble fumaric acid. Some bacteria produce the enzyme maleate isomerase, which is used by bacteria in nicotinate metabolism. This enzyme catalyses isomerization between fumarate and maleate. Other reactions Although not practised commercially, Malic acid can be converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation (ethanol / palladium on carbon).[9] It reacts with thionyl chloride or phosphorus pentachloride to give the Malic acid chloride (it is not possible to isolate the mono acid chloride). Malic acid, being electrophilic, participates as a dienophile in many Diels-Alder reactions. Maleates The maleate ion is the ionized form of Malic acid. The maleate ion is useful in biochemistry as an inhibitor of transaminase reactions. Malic acid esters are also called maleates, for instance dimethyl maleate. Use in pharmaceutical drugs Many drugs that contain amines are provided as the maleate acid salt, e.g. carfenazine, chlorpheniramine, pyrilamine, methylergonovine, and thiethylperazine. Malic acid (IUPAC systematic name: propanedioic acid) is a dicarboxylic acid with structure CH2(COOH)2. The ionized form of Malic acid, as well as its esters and salts, are known as malonates. For example, diethyl malonate is Malic acid's diethyl ester. The name originates from the Greek word μᾶλον (malon) meaning 'apple'. History Malic acid[2] is a naturally occurring substance found in many fruits and vegetables.[3] There is a suggestion that citrus fruits produced in organic farming contain higher levels of Malic acid than fruits produced in conventional agriculture.[4] Malic acid was first prepared in 1858 by the French chemist Victor Dessaignes via the oxidation of malic acid.[2][5] Structure and preparation The structure has been determined by X-ray crystallography[6] and extensive property data including for condensed phase thermochemistry are available from the National Institute of Standards and Technology.[7] A classical preparation of Malic acid starts from chloroacetic acid:[8] Preparation of Malic acid from chloroacetic acid. Sodium carbonate generates the sodium salt, which is then reacted with sodium cyanide to provide the sodium salt of cyanoacetic acid via a nucleophilic substitution. The nitrile group can be hydrolyzed with sodium hydroxide to sodium malonate, and acidification affords Malic acid. Industrially, however, Malic acid is produced by hydrolysis of dimethyl malonate or diethyl malonate.[9] It has also been produced through fermentation of glucose. Organic reactions Malic acid reacts as a typical carboxylic acid: forming amide, ester, anhydride, and chloride derivatives.[11] Malonic anhydride can be used as an intermediate to mono-ester or amide derivatives, while malonyl chloride is most useful to obtain diesters or diamides. In a well-known reaction, Malic acid condenses with urea to form barbituric acid. Malic acid may also condensed be with acetone to form Meldrum's acid, a versatile intermedate in further transformations. The esters of Malic acid are also used as a −CH2COOH synthon in the malonic ester synthesis. Additionally, the coenzyme A derivative of malonate, malonyl-CoA, is an important precursor in fatty acid biosynthesis along with acetyl CoA. Malonyl CoA is formed from acetyl CoA by the action of acetyl-CoA carboxylase, and the malonate is transferred to an acyl carrier protein to be added to a fatty acid chain. Briggs–Rauscher reaction Malic acid is a key component in the Briggs–Rauscher reaction, the classic example of an oscillating chemical reaction.[12] Knoevenagel condensation In Knoevenagel condensation, Malic acid or its diesters are reacted with the carbonyl group of an aldehyde or ketone, followed by a dehydration reaction. Z=COOH (Malic acid) or Z=COOR' (malonate ester) When Malic acid itself is used, it is normally because the desired product is one in which a second step has occurred, with loss of carbon dioxide, in the so-called Doebner modification. The Doebner modification of the Knoevenagel condensation. Thus, for example, the reaction product of acrolein and Malic acid in pyridine is trans-2,4-Pentadienoic acid with one carboxylic acid group and not two. Preparation of carbon suboxide Carbon suboxide is prepared by warming a dry mixture of phosphorus pentoxide (P4O10) and Malic acid.[15] It reacts in a similar way to malonic anhydride, forming malonates.[16] Applications Malic acid is a precursor to specialty polyesters. It can be converted into 1,3-propanediol for use in polyesters and polymers and a projected market size of $621.2 million by 2021.[citation needed] It can also be a component in alkyd resins, which are used in a number of coatings applications for protecting against damage caused by UV light, oxidation, and corrosion. One application of Malic acid is in the coatings industry as a crosslinker for low-temperature cure powder coatings, which are becoming increasingly valuable for heat sensitive substrates and a desire to speed up the coatings process.[17] The global coatings market for automobiles was estimated to be $18.59 billion in 2014 with projected combined annual growth rate of 5.1% through 2022.[18] It is used in a number of manufacturing processes as a high value specialty chemical including the electronics industry, flavors and fragrances industry,[3] specialty solvents, polymer crosslinking, and pharmaceutical industry. In 2004, annual global production of Malic acid and related diesters was over 20,000 metric tons.[19] Potential growth of these markets could result from advances in industrial biotechnology that seeks to displace petroleum-based chemicals in industrial applications. Malic acid was listed as one of the top 30 chemicals to be produced from biomass by the US Department of Energy. In food and drug applications, Malic acid can be used to control acidity, either as an excipient in pharmaceutical formulation or natural preservative additive for foods. Malic acid is used as a building block chemical to produce numerous valuable compounds,[21] including the flavor and fragrance compounds gamma-nonalactone, cinnamic acid, and the pharmaceutical compound valproate. Malic acid (up to 37.5% w/w) has been used to cross-link corn and potato starches to produce a biodegradable thermoplastic; the process is performed in water using non-toxic catalysts. Starch-based polymers comprised 38% of the global biodegradable polymers market in 2014 with food packaging, foam packaging, and compost bags as the largest end-use segments. Biochemistry Malic acid is the classic example of a competitive inhibitor of the enzyme succinate dehydrogenase (complex II), in the respiratory electron transport chain.[26] It binds to the active site of the enzyme without reacting, competing with the usual substrate succinate but lacking the −CH2CH2− group required for dehydrogenation. This observation was used to deduce the structure of the active site in succinate dehydrogenase. Inhibition of this enzyme decreases cellular respiration.[27][28] Since Malic acid is a natural components of many foods, it is present in mammals including humans. An efficcacy and safety test of a tablet containing 200 mg malic acid (and 50 mg magnesium) was conducted using patients with primary fibromyalgia syndrome. In the first part of the test, 24 patients were given three tablets twice daily (bid) for 4 weeks. In the second part, 16 patients started with three tablets bid and increased the dosage every 3 to 5 days as necessary; at month 6, the average dose was 8.8 tablets per day. (For a 50-kg person, ingestion of six tablets would be equivalent to 24 mg of malate/kg of body weight). In the first part of the study, one test patient reported diarrhea, one reported nausea, and one reported dyspepsia. (In the placebo group, two patients reported diarrhea and one reported dyspepsia.) In the second part of the study, five test patients reported diarrhea, one reported nausea, one reported dyspepsia, one reported panic attacks, and one reported dizziness. Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components of Fructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. In in vivo rat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-alpha, and platelet aggregation. In vitro experiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient of Fructus Choerospondiatis responsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease. Objectives: Assessing the clinical effectiveness of a topical sialogogue on spray (malic acid, 1%) in the treatment of xerostomia induced by antihypertensive drugs. Study Design: This research has been carried out through a randomized double-blind clinical trial. 45 patients suffering from hypertensive drugs-induced xerostomia were divided into 2 groups: the first group (25 patients) received a topical sialogogue on spray (malic acid, 1%) whereas the second group (20 patients) received a placebo. Both of them were administered on demand for 2 weeks. Dry Mouth Questionnaire (DMQ) was used in order to evaluate xerostomia levels before and after product/placebo application. Unstimulated and stimulated salivary flows rates, before and after application, were measured. All the statistical analyses were performed by using SPSS software v17.0. Different DMQ scores at the earliest and final stage of the trial were analysed by using Mann-Whitney U test, whereas Student's T-test was used to analyse salivary flows. Critical p-value was established at p<0.05. Results: DMQ scores increased significantly (clinical recovery) from 1.21 to 3.36 points (p<0.05) after malic acid (1%) application whereas DMQ scores increased from 1.18 to 1.34 points (p>0.05) after placebo application. After two weeks of treatment with malic acid, unstimulated salivary flow increased from 0.17 to 0.242 mL/min whereas the stimulated one increased from 0.66 to 0.92 mL/min (p<0.05). After placebo application unstimulated flow ranged from 0.152 to 0.146 mL/min and stimulated flow increased from 0.67 to 0.70 mL/min (p>0.05). Conclusions: Malic acid 1% spray improved antihypertensive-induced xerostomia and stimulated the production of saliva. Fourteen patients, 11 males and 3 females, with various forms of ichthyosiformdermatoses were used to evaluate the therapeutic potential of more than 60 chemicals, including malic acid. Malic acid was dissolved in either water or ethanol and incorporated into a hydrophilic ointment of plain petrolatum. The ointment, containing 5% malic acid (pH not specified), was applied twice daily to the appropriate test site for 2 weeks. Daily to weekly observations were made. Malic acid provided 3+ (disappearance of scales from lesions) or 4+ (restoration to normal looking skin) improvement in all patients except one with epidermolytic Malic acid is an intermediate in the citric acid cycle. It is formed from fumaric acid and is oxidized to oxaloacetic acid. It is also metabolized to pyruvic acid by malic enzyme which is present in many biologic systems, including bacteria and plants. L-Malic and dl-malic acid are both rapidly metabolized in the rat. Orally or ip administered l- or dl-malic acid was extensively eliminated as carbon dioxide (83 to 92%). No differences between the two forms were found in the rates (90 to 95% in 24 hr) or routes of excretion. Malate occurs in all living organisms as an intermediate in the citric acid cycle. It occurs in relatively high amounts in many fruits and vegetables. Malic acid has two stereoisomeric forms (L- and D-enantiomers), although only the L-isomer exists naturally. Upon oral and IP administration of radioactive malic acid to rats, most of the radioactivity was excreted as carbon dioxide. Malic acid is an intermediate in the citric acid cycle. It is formed from fumaric acid and is oxidized to oxaloacetic acid. It is also metabolized to pyruvic acid by malic enzyme which is present in many biologic systems, including bacteria and plants. L-Malic and dl-malic acid are both rapidly metabolized in the rat. Orally or ip administered l- or dl-malic acid was extensively eliminated as carbon dioxide (83 to 92%). No differences between the two forms were found in the rates (90 to 95% in 24 hr) or routes of excretion. Malic acid is a colorless to white, crystalline solid. It has a sour taste. It is very soluble in water. Malic acid is present naturally in many plants, including flowers, fruits and vegetables, spices, and wine grapes. It is a component in tobacco. It may be formed in the air by reaction of other chemicals with light. Malic acid is formed naturally in animals and humans and used in the process of breaking down sugar into energy in the body. USE: Malic acid is an important commercial chemical used in canning fruits and vegetables to prevent them from spoiling. It is used in various other foods, dry beverage powders, carbonated beverages, and food packaging materials to control acidity. Malic acid is an ingredient in some household cleaners, hair coloring, nail enamels, human and specialty pet shampoos. EXPOSURE: Workers in the food, cleaning and personal care industries may be exposed to malic acid through skin contact and breathing in mists or malic acid salt dusts. The general population is exposed to malic acid from eating foods consumed in a normal diet that contain malic acid. People may breathe in mists or have skin contact while household and personal care products that contain malic acid. If malic acid is released to air, it can be broken down by reaction with other chemicals and some may be in or on particles that eventually fall to the ground. If released to water or soil, it is not expected to bind sediments. It is expected to move easily through soil. Malic acid is not expected to move into air from wet soils or water surfaces. Malic acid is expected to be broken down by microorganisms and is not expected to build up in tissues of aquatic organisms. RISK: Severe skin and eye irritation can occur with direct contact to malic acid or its salts. Allergic skin reactions have been reported in some individuals after eating foods containing malic acid. Erosion of tooth enamel may occur from drinking acidic soft drinks containing malic acid. Weakness, incoordination, convulsions, and breathing difficulties occurred in laboratory animals given very high oral doses of malic acid. Death occurred in some animals. No health problems occurred in laboratory animals, dogs, or cattle fed low-to-moderate doses over time. Malic acid did not cause birth defects or reproductive effects in laboratory animals. The potential for malic acid to cause cancer has not been assessed in laboratory animals. The potential for malic acid to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, the U.S. National Toxicology Program 13th Report on Carcinogens, or the California Office of Environmental Health Hazard Assessment. Malic acid is prepared commercially in the United States and Canada by hydration of maleic anhydride. ... In this process maleic acid is heated at ca 180 °C (under a pressure of ca 1 MPa), malic acid is yielded as the main product. Byproducts are maleic and fumaric acids. The latter can be separated by filtration and returned to the process stream because of its low water solubility.
MALT EXTRACT
titoL;maltit;malbit;maltimr;MALTITOL;maltisorb;D-MALTITOL;amaltisyrup;amaltymr100;Maltitol,97% CAS No.585-88-6
MALTITOL
Maltodextrin CAS Number: 9050-36-6
MALTODEXTRIN
Synonyms: MALTODEXTRIN;DEXTRIN ON SEPHAROSE;DEXTRIN TYPE I;DEXTRIN TYPE II;DEXTRIN TYPE III;DEXTRIN TYPE IV;DEXTRIN (WHITE);DEXTRIN 10 CAS: 9050-36-6
Maltodextrin
MALTODEXTRIN, N° CAS : 9050-36-6 - Maltodextrine, Origine(s) : Végétale. Autres langues : Maltodestrina, Maltodextrina. Nom INCI : MALTODEXTRIN. N° EINECS/ELINCS : 232-940-4. La maltodextrine est un sucre obtenu par l'hydrolyse de l'amidon de maïs, de l'amidon de riz ou de fécule de pomme de terre. Elle le plus souvent utilisée en alimentaire, pour apporter des suppléments en glucide aux aliments. On en trouve dans les boissons énergisantes dédiées les athlètes. En cosmétique, elle est utilisée comme stabilisateur de formule ou encore comme agent filmogène. Ses fonctions (INCI) Agent Absorbant : Absorbe l'eau (ou l'huile) sous forme dissoute ou en fines particules Agent fixant : Permet la cohésion de différents ingrédients cosmétiques Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Agent d'entretien de la peau : Maintient la peau en bon état
mangane sulfate
MANGANE SULPHATE MONOHYDRATE; manganous(II)sulfate monohydrate; Sulfuric Acid Manganese Salt (1:1) Monohydrate cas no: 10034-96-5
MANGANE SULPHATE MONOHYDRATE
MANGANE SULPHATE MONOHYDRATE Manganese sulphate monohydrate A widely used nutrient that finds a major application as a soil supplement and also as a feed additive for animals. Industry: Agriculture, Animal Feed Application: Feed additives, Fertilisers, Micronutrients, Premixes Synonyms: Manganese(II) sulfate monohydrate; Manganous sulfate monohydrate CAS number: 10034-96-5 Molecular Weight of Mangane sulfate monohydrate :169.02 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Mangane sulfate monohydrate : 1 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Mangane sulfate monohydrate : 5 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Mangane sulfate monohydrate : 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of Mangane sulfate monohydrate : 168.900338 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Mangane sulfate monohydrate : 168.900338 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Mangane sulfate monohydrate : 89.6 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Mangane sulfate monohydrate : 7 Computed by PubChem Formal Charge of Mangane sulfate monohydrate : 0 Computed by PubChem Complexity of Mangane sulfate monohydrate : 62.2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Mangane sulfate monohydrate : 0 Computed by PubChem Defined Atom Stereocenter Count of Mangane sulfate monohydrate : 0 Computed by PubChem Undefined Atom Stereocenter Count of Mangane sulfate monohydrate : 0 Computed by PubChem Defined Bond Stereocenter Count of Mangane sulfate monohydrate : 0 Computed by PubChem Undefined Bond Stereocenter Count of Mangane sulfate monohydrate : 0 Computed by PubChem Covalently-Bonded Unit Count of Mangane sulfate monohydrate : 3 Computed by PubChem Compound of Mangane sulfate monohydrate Is Canonicalized Yes Manganese sulfate monohydrate appears as odorless pale red slightly efflorescent crystals or light pink powder. pH (5% solution) 3.7. (NTP, 1992) Manganese sulfate monohydrate is a hydrate that is the monohydrate form of manganese(II) sulfate. It has a role as a nutraceutical. It is a hydrate, a manganese molecular entity and a metal sulfate. It contains a manganese(II) sulfate. Manganese(II) sulfate From Wikipedia, the free encyclopedia Jump to navigationJump to search Manganese(II) sulfate Manganese(II) sulfate close-up.jpg Manganese sulfate monohydrate Manganese(II)-sulfate-tetrahydrate-sample.jpg Manganese(II) sulfate tetrahydrate Names IUPAC name Manganese(II) sulfate Identifiers CAS Number 7785-87-7 check 10034-96-5 (monohydrate) ☒ 10101-68-5 (tetrahydrate) ☒ 3D model (JSmol) Interactive image ChEMBL ChEMBL1200557 ☒ ChemSpider 22984 check ECHA InfoCard 100.029.172 Edit this at Wikidata EC Number 232-089-9 PubChem CID 24580 RTECS number OP1050000 (anhydrous) OP0893500 (tetrahydrate) UNII IGA15S9H40 Properties Chemical formula MnSO4 Molar mass 151.001 g/mol (anhydrous) 169.02 g/mol (monohydrate) 223.07 g/mol (tetrahydrate) 277.11 g/mol (heptahydrate) Appearance white crystals (anhydrous) pale pink solid (hydrates) Density 3.25 g/cm3 (anhydrous) 2.95 g/cm3 (monohydrate) 2.107 g/cm3 (tetrahydrate) Melting point 710 °C (1,310 °F; 983 K) (anhydrous) 27 °C (tetrahydrate) Boiling point 850 °C (1,560 °F; 1,120 K) (anhydrous) Solubility in water 52 g/100 mL (5 °C) 70 g/100 mL (70 °C) Solubility Very slightly soluble in methanol insoluble in ether and ethanol. Magnetic susceptibility (χ) 1.3660×10−2 cm3/mol Structure Crystal structure orthogonal (anhydrous) monoclinic (monohydrate) monoclinic (tetrahydrate) Hazards Safety data sheet ICSC 0290 EU classification (DSD) (outdated) Harmful (Xn) Dangerous for the environment (N) R-phrases (outdated) R48/20/22, R51/53 S-phrases (outdated) (S2), S22, S61 NFPA 704 (fire diamond) NFPA 704 four-colored diamond 011 Related compounds Other cations Chromium(III) sulfate Iron(II) sulfate Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Manganese sulfate usually refers to the inorganic compound with the formula MnSO4·H2O. This pale pink deliquescent solid is a commercially significant manganese(II) salt. Approximately 260,000 tonnes of manganese sulfate were produced worldwide in 2005. It is the precursor to manganese metal and many other chemical compounds. Manganese-deficient soil is remediated with this salt.[1] Structure Coordination sphere for Mn and S in the monohydrate. The O6 coordination sphere is provided by four separate sulfate groups and a pair of mutually trans bridging aquo ligands.[2] The structure of MnSO4·H2O has been determined by X-ray crystallography. Like many metal sulfates, manganese sulfate forms a variety of hydrates: monohydrate, tetrahydrate, pentahydrate, and heptahydrate. All of these salts dissolve in water to give faintly pink solutions of the aquo complex [Mn(H2O)6]2+. Applications and production Typically, manganese ores are purified by their conversion to manganese(II) sulfate. Treatment of aqueous solutions of the sulfate with sodium carbonate leads to precipitation of manganese carbonate, which can be calcined to give the oxides MnOx. In the laboratory, manganese sulfate can be made by treating manganese dioxide with sulfur dioxide:[3] MnO2 + SO2 + H2O → MnSO4(H2O) It can also be made by mixing potassium permanganate with sodium bisulfate and hydrogen peroxide. Manganese sulfate is a by-product of various industrially significant oxidations that use manganese dioxide, including the manufacture of hydroquinone and anisaldehyde.[1] Electrolysis of manganese sulfate yields manganese dioxide, which is called EMD for electrolytic manganese dioxide. Alternatively oxidation of manganese sulfate with potassium permanganate yields the so-called chemical manganese dioxide (CMD). These materials, especially EMD, are used in dry-cell batteries.[1] Natural occurrence Manganese sulfate minerals are very rare in nature and always occur as hydrates. The monohydrate is called szmikite; tetrahydrate = ilesite; hexahydrate (the most rare) = chvaleticeite; pentahydrate = jōkokuite; heptahydrate = mallardite. Product Information CAS number 10034-96-5 EC index number 025-003-00-4 EC number 232-089-9 Grade Ph Eur,USP,FCC Hill Formula MnO₄S * H₂O Chemical formula MnSO₄ * H₂O Molar Mass 169.02 g/mol HS Code 2833 29 80 PHYSICAL & CHEMICAL INFORMATION Physical State; Appearance PINK HYGROSCOPIC CRYSTALS. Physical dangers Chemical dangers Decomposes on heating. This produces sulfur oxides and manganese oxides. This generates toxic hazard. Formula: MnSO4.H2O Molecular mass: 169.0 Relative density (water = 1): 2.95 Solubility in water, g/100ml: 76.2 (freely soluble) Melting point: 400-450°C EXPOSURE & HEALTH EFFECTS Routes of exposure The substance can be absorbed into the body by inhalation of its aerosol and by ingestion. Effects of short-term exposure The substance is irritating to the eyes. Inhalation risk Evaporation at 20°C is negligible; a harmful concentration of airborne particles can, however, be reached quickly when dispersed, especially if powdered. Effects of long-term or repeated exposure The substance may have effects on the central nervous system. Animal tests show that this substance possibly causes toxicity to human reproduction or development. Manganese Sulfate Monohydrate is a moderately water and acid soluble Manganese source for uses compatible with sulfates. Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles and deposited utilizing sputtering targets and evaporation materials for uses such as solar cells and fuel cells. Manganese Sulfate is generally immediately available in most volumes. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. We produce to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.
MANGANESE DIOXIDE
MANGANESE DIOXIDE Manganese dioxide Manganese dioxide Manganese(IV) oxideMn4O2 Rutile-unit-cell-3D-balls.png Names IUPAC names Manganese oxide Manganese(IV) oxide Other names Pyrolusite, hyperoxide of manganese, black oxide of manganese, manganic oxide Identifiers CAS Number 1313-13-9 check 3D model (JSmol) Interactive image ChEBI CHEBI:136511 ☒ ChemSpider 14117 check ECHA InfoCard 100.013.821 Edit this at Wikidata EC Number 215-202-6 PubChem CID 14801 RTECS number OP0350000 UNII TF219GU161 check CompTox Dashboard (EPA) DTXSID6042109 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula MnO 2 Molar mass 86.9368 g/mol Appearance Brown-black solid Density 5.026 g/cm3 Melting point 535 °C (995 °F; 808 K) (decomposes) Solubility in water insoluble Magnetic susceptibility (χ) +2280.0·10−6 cm3/mol[1] Structure[2] Crystal structure Tetragonal, tP6, No. 136 Space group P42/mnm Lattice constant a = 0.44008 nm, b = 0.44008 nm, c = 0.28745 nm Formula units (Z) 2 Thermochemistry[3] Heat capacity (C) 54.1 J·mol−1·K−1 Std molar entropy (So298) 53.1 J·mol−1·K−1 Std enthalpy of formation (ΔfH⦵298) −520.0 kJ·mol−1 Gibbs free energy (ΔfG˚) −465.1 kJ·mol−1 Hazards Safety data sheet ICSC 0175 EU classification (DSD) (outdated) Harmful (Xn) Oxidizer (O) R-phrases (outdated) R20/22 S-phrases (outdated) (S2), S25 NFPA 704 (fire diamond) NFPA 704 four-colored diamond 112OX Flash point 535 °C (995 °F; 808 K) Related compounds Other anions Manganese disulfide Other cations Technetium dioxide Rhenium dioxide Related manganese oxides Manganese(II) oxide Manganese(II,III) oxide Manganese(III) oxide Manganese heptoxide Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Manganese(IV) oxide is the inorganic compound with the formula MnO 2. This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese and a component of manganese nodules. The principal use for MnO2 is for dry-cell batteries, such as the alkaline battery and the zinc-carbon battery.[4] MnO2 is also used as a pigment and as a precursor to other manganese compounds, such as KMnO4. It is used as a reagent in organic synthesis, for example, for the oxidation of allylic alcohols. MnO2 in the α polymorph can incorporate a variety of atoms (as well as water molecules) in the "tunnels" or "channels" between the manganese oxide octahedra. There is considerable interest in α-MnO2 as a possible cathode for lithium ion batteries.[5][6] Structure Several polymorphs of MnO 2 are claimed, as well as a hydrated form. Like many other dioxides, MnO 2 crystallizes in the rutile crystal structure (this polymorph is called pyrolusite or β-MnO 2), with three-coordinate oxide and octahedral metal centres.[4] MnO 2 is characteristically nonstoichiometric, being deficient in oxygen. The complicated solid-state chemistry of this material is relevant to the lore of "freshly prepared" MnO 2 in organic synthesis.[citation needed] The α-polymorph of MnO 2 has a very open structure with "channels" which can accommodate metal atoms such as silver or barium. α-MnO 2 is often called hollandite, after a closely related mineral. Production Naturally occurring manganese dioxide contains impurities and a considerable amount of manganese(III) oxide. Only a limited number of deposits contain the γ modification in purity sufficient for the battery industry. Production of batteries and ferrite (two of the primary uses of manganese dioxide) requires high purity manganese dioxide. Batteries require "electrolytic manganese dioxide" while ferrites require "chemical manganese dioxide".[7] Chemical manganese dioxide One method starts with natural manganese dioxide and converts it using dinitrogen tetroxide and water to a manganese(II) nitrate solution. Evaporation of the water leaves the crystalline nitrate salt. At temperatures of 400 °C, the salt decomposes, releasing N 2O 4 and leaving a residue of purified manganese dioxide.[7] These two steps can be summarized as: MnO 2 + N 2O 4 ⇌ Mn(NO 3) 2 In another process manganese dioxide is carbothermically reduced to manganese(II) oxide which is dissolved in sulfuric acid. The filtered solution is treated with ammonium carbonate to precipitate MnCO 3. The carbonate is calcined in air to give a mixture of manganese(II) and manganese(IV) oxides. To complete the process, a suspension of this material in sulfuric acid is treated with sodium chlorate. Chloric acid, which forms in situ, converts any Mn(III) and Mn(II) oxides to the dioxide, releasing chlorine as a by-product.[7] A third process involves manganese heptoxide and manganese monoxide. The two reagents combine with a 1:3 ratio to form manganese dioxide: Mn 2O 7 + 3 MnO → 5 MnO 2 Lastly, the action of potassium permanganate over manganese sulfate crystals produces the desired oxide.[8] 2 KMnO 4 + 3 MnSO 4 + 2 H 2O→ 5 MnO 2 + K 2SO 4 + 2 H 2SO 4 Electrolytic manganese dioxide Electrolytic manganese dioxide (EMD) is used in zinc–carbon batteries together with zinc chloride and ammonium chloride. EMD is commonly used in zinc manganese dioxide rechargeable alkaline (Zn RAM) cells also. For these applications, purity is extremely important. EMD is produced in a similar fashion as electrolytic tough pitch (ETP) copper: The manganese dioxide is dissolved in sulfuric acid (sometimes mixed with manganese sulfate) and subjected to a current between two electrodes. The MnO2 dissolves, enters solution as the sulfate, and is deposited on the anode. Reactions The important reactions of MnO 2 are associated with its redox, both oxidation and reduction. Reduction MnO 2 is the principal precursor to ferromanganese and related alloys, which are widely used in the steel industry. The conversions involve carbothermal reduction using coke:[citation needed] MnO 2 + 2 C → Mn + 2 CO The key reactions of MnO 2 in batteries is the one-electron reduction: MnO 2 + e− + H+ → MnO(OH) MnO 2 catalyses several reactions that form O 2. In a classical laboratory demonstration, heating a mixture of potassium chlorate and manganese dioxide produces oxygen gas. Manganese dioxide also catalyses the decomposition of hydrogen peroxide to oxygen and water: 2 H 2O 2 → 2 H 2O + O 2 Manganese dioxide decomposes above about 530 °C to manganese(III) oxide and oxygen. At temperatures close to 1000 °C, the mixed-valence compound Mn 3O 4 forms. Higher temperatures give MnO. Hot concentrated sulfuric acid reduces the MnO 2 to manganese(II) sulfate:[4] 2 MnO 2 + 2 H 2SO 4 → 2 MnSO 4 + O 2 + 2 H 2O The reaction of hydrogen chloride with MnO 2 was used by Carl Wilhelm Scheele in the original isolation of chlorine gas in 1774: MnO 2 + 4 HCl → MnCl 2 + Cl 2 + 2 H 2O As a source of hydrogen chloride, Scheele treated sodium chloride with concentrated sulfuric acid.[4] Eo (MnO 2(s) + 4 H+ + 2 e− ⇌ Mn2+ + 2 H 2O) = +1.23 V Eo (Cl 2(g) + 2 e− ⇌ 2 Cl−) = +1.36 V The standard electrode potentials for the half reactions indicate that the reaction is endothermic at pH = 0 (1 M [H+ ]), but it is favoured by the lower pH as well as the evolution (and removal) of gaseous chlorine. This reaction is also a convenient way to remove the manganese dioxide precipitate from the ground glass joints after running a reaction (i. e., an oxidation with potassium permanganate). Oxidation Heating a mixture of KOH and MnO 2 in air gives green potassium manganate: 2 MnO 2 + 4 KOH + O 2 → 2 K 2MnO 4 + 2 H 2O Potassium manganate is the precursor to potassium permanganate, a common oxidant. Applications The predominant application of MnO 2 is as a component of dry cell batteries: alkaline batteries and so called Leclanché cell, or zinc–carbon batteries. Approximately 500,000 tonnes are consumed for this application annually.[9] Other industrial applications include the use of MnO 2 as an inorganic pigment in ceramics and in glassmaking. Organic synthesis A specialized use of manganese dioxide is as oxidant in organic synthesis.[10] The effectiveness of the reagent depends on the method of preparation, a problem that is typical for other heterogeneous reagents where surface area, among other variables, is a significant factor.[11] The mineral pyrolusite makes a poor reagent. Usually, however, the reagent is generated in situ by treatment of an aqueous solution KMnO 4 with a Mn(II) salt, typically the sulfate. MnO 2 oxidizes allylic alcohols to the corresponding aldehydes or ketones:[12] cis-RCH=CHCH 2OH + MnO 2 → cis-RCH=CHCHO + MnO + H 2O The configuration of the double bond is conserved in the reaction. The corresponding acetylenic alcohols are also suitable substrates, although the resulting propargylic aldehydes can be quite reactive. Benzylic and even unactivated alcohols are also good substrates. 1,2-Diols are cleaved by MnO 2 to dialdehydes or diketones. Otherwise, the applications of MnO 2 are numerous, being applicable to many kinds of reactions including amine oxidation, aromatization, oxidative coupling, and thiol oxidation. See also List of inorganic pigments Manganese dioxide is a manganese molecular entity with formula MnO2. It is a manganese molecular entity and a metal oxide. Molecular Weight of Manganese dioxide: 86.937 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Manganese dioxide: 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Manganese dioxide: 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Manganese dioxide: 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of Manganese dioxide: 86.927872 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Manganese dioxide: 86.927872 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Manganese dioxide: 34.1 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Manganese dioxide: 3 Computed by PubChem Formal Charge of Manganese dioxide: 0 Computed by PubChem Complexity of Manganese dioxide: 18.3 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Manganese dioxide: 0 Computed by PubChem Defined Atom Stereocenter Count of Manganese dioxide: 0 Computed by PubChem Undefined Atom Stereocenter Count of Manganese dioxide: 0 Computed by PubChem Defined Bond Stereocenter Count of Manganese dioxide: 0 Computed by PubChem Undefined Bond Stereocenter Count of Manganese dioxide: 0 Computed by PubChem Covalently-Bonded Unit Count of Manganese dioxide: 1 Computed by PubChem Compound of Manganese dioxide is Canonicalized : Yes sites in France have yielded large numbers of small black blocs. The usual interpretation is that these ‘manganese oxides’ were collected for their colouring properties and used in body decoration, potentially for symbolic expression. Neanderthals habitually used fire and if they needed black material for decoration, soot and charcoal were readily available, whereas obtaining manganese oxides would have incurred considerably higher costs. Compositional analyses lead us to infer that late Neanderthals at Pech-de-l’Azé I were deliberately selecting manganese dioxide. Combustion experiments and thermo-gravimetric measurements demonstrate that manganese dioxide reduces wood’s auto-ignition temperature and substantially increases the rate of char combustion, leading us to conclude that the most beneficial use for manganese dioxide was in fire-making. With archaeological evidence for fire places and the conversion of the manganese dioxide to powder, we argue that Neanderthals at Pech-de-l’Azé I used manganese dioxide in fire-making and produced fire on demand. Combustion Experiments Starting from the chemical properties of manganese dioxide, a series of statistically-designed combustion experiments were used to assess whether fire making could be facilitated using wood and either commercial manganese dioxides (coded MD4 to MD6) or powdered material from the Pech-de-l’Azé I blocs (coded MD1 to MD3). Mixtures of wood ‘turnings’ and either manganese dioxide or powdered material from Pech-de-l’Azé I blocs were either heated or contacted with spark-lit tinder; the effects were monitored on video; thermal imaging camera temperature monitoring and XRD of the residues were used in selected cases (Methods). When heated on their own, the wood turnings released volatiles and produced a small amount of char but neither the volatiles nor the char ignited and no fire resulted (Supplementary Information 3). Similarly, spark-lit tinder did not ignite the wood. By contrast, mixtures of manganese dioxide with wood ignited, both when heated and when in contact with spark-lit tinder. Ignition produced glowing combustion and, in some cases, small red flames; the volatiles did not ignite and no yellow flames were produced (Fig. 2 and Supplementary Information 3). As little as 6% by weight of manganese dioxide MD6 was sufficient to facilitate combustion. Infrared thermal imaging data showed that whilst the wood turnings did not ignite at 350 oC, the mixtures of wood turnings with manganese dioxide could ignite at temperatures from around 250��oC and sustain combustion over a surprisingly wide range of temperatures (Supplementary Information 4). In identical experiments, powdered material from the Pech-de-l’Azé I blocs (MD1, MD2 and MD3) all facilitated the ignition of wood, although one bloc (MD1) was somewhat less effective. he composition of the black blocs at Pech-de-l’Azé I potentially provides evidence for their probable use. The blocs are predominantly manganese dioxide, not romanèchite and the combustion experiments and TGA have shown that only compositions predominantly containing manganese dioxide would be useful in fire-making. Both manganese dioxide and romanèchite would be useful in decoration32, although whether either would be preferred for decoration over the less ‘costly’ soot or charcoal is debatable. Whether Neanderthals at Pech-de-l’Azé were simply collecting black blocs from one source location or were selecting manganese dioxide in preference to other black materials and from multiple sources is important to our hypothesis that they were deliberately selecting and using manganese dioxide in fire making. Although the quantities and availabilities of different manganese oxides in the Middle Palaeolithic Dordogne region are unknown, there is evidence from both modern sources and from materials collected in the Palaeolithic, for a range of ‘manganese oxide’ materials that were available within reach of Pech-de-l’Azé. Manganese ore outcrops are numerous on the edges of the Massif Central38 and whilst most of the regional manganese ores had been extracted by the early twentieth century32, an original manganese ore source exists in the limestone within a few kilometres of Pech-de-l’Azé. The source contains traces of both manganese dioxide and romanèchite32. Discovery of pyrolusite and romanèchite in a Châtelperronian context at Roc-de-Combe7, thirteen kilometres from Pech-de-l’Azé, also indicates that both materials were available to late Middle Palaeolithic Neanderthals. Pyrolusite, romanèchite, todorokite, hollandite and other black manganese oxide ores were all used in the production of Upper Palaeolithic cave wall images in the vicinity, for example at Lascaux, approximately thirty kilometres from Pech-de-l’Azé19,32,33,34, implying their availability to Palaeolithic foragers. Without appropriate data on the variation of ‘manganese oxide’ compositions within and between geological sources in the region, the full implications of the Pech-de-l’Azé I bloc compositions for provenance are unknown. Whilst it might be argued that paragenesis might have produced a very variable single source, the relative uniformity of the manganese dioxide content of the blocs contrasts with the between-sample variation in arsenic, barium, cobalt and manganite contents and suggests that the blocs were not collected from one location. Equally, the availability of a range of ‘manganese oxides’ in the region suggests that the blocs were preferentially selected, implying both a capability to recognize the characteristics of these materials - although how this was accomplished is not clear - and an end-use that required the specific properties of manganese dioxide. Pech-de-l’Azé I is not unique and active selection rather than simple collection is supported by the presence of manganese dioxide apparently associated with fire places in the Châtelperronian layers at the Grotte-du-Renne, Arcy-sur-Cure15. The black materials said to be of manganese ores at other Mousterian sites (Supplementary Information 1, Table S1) may provide further evidence when the compositions are published. Our combustion experiments have shown that manganese dioxide promotes the ignition and combustion of wood and that this is not the case with romanèchite. The Pech-de-l’Azé I blocs would have had to have been ground to powder for use in facilitating fire lighting and there is archaeological evidence for grinding in the form of a grindstone and abraded blocs at Pech-de-l’Azé I27 and at Grotte-du-Renne, Arcy-sur-Cure15. Spark-lit tinder with manganese dioxide powder is one simple yet effective means of starting wood fires with substantially lower wood auto-ignition temperatures and high rate of combustion. Other methods may be envisaged. The clear benefits for fire-promotion and the presence of manganese dioxide at Neanderthal sites are not evidence that Neanderthals sourced and used manganese dioxide for fire making purposes nor that they did not use the black material for decorative purposes. However, if different ores have similar decorative properties and Neanderthals selected black manganese oxides that have pronounced oxidizing properties compared to others, we might infer that the choices reflect a fire-related end-use and vice-versa. Chalmin32 has shown that specifically for wall ‘painting’, romanèchite produces a more consistent streak than pyrolusite and both are considerably better than manganite; if powdered and dispersed in water, these particular materials are equally effective in decoration. There is apparently no decorative reason for Neanderthals to have favoured manganese oxides over soot and charcoal, or manganese dioxide over other manganese oxides. In contrast to the “low cost” fire residues, manganese dioxides would have had to have been sourced and transported, at considerably higher costs, which calls for an explanation of such investments outside of body decoration. Our preferred hypothesis is that Neanderthals sourced, selected and transported manganese dioxide for fire making at Pech-de-l’Azé I. Whilst the emphasis here has been on the benefits in fire making, the properties of manganese dioxide could have been exploited in other ways, including improved hafting adhesives16. It is not suggested that manganese dioxide was necessary for fire making or used by Neanderthals all over their geographical range. How Neanderthals developed the innovation is unclear. In fact, the methods of fire production in the Middle Palaeolithic have not been identified39 and Neanderthals may only have collected fire from wild fires. However, the fact that fire was used as a tool to produce birch-bark pitch already from the early Middle Palaeolithic onward40,41,42 shows that Neanderthals had the capability to control fire from minimally 200,000 years ago. Such a considerable time depth of fire use would be important to a later recognition of the value of manganese dioxide in fire making. In reviewing the significance of the Female Cosmetic Coalitions (FCC) model in the context of the European Middle Palaeolithic archaeological record, Power, Sommer and Watts8 argue that black “manganese” materials were first present at Pech-de-l’Azé IV and Combe Grenal in the glacial conditions of Marine Isotope Stage (MIS) 4. If analyses shows they are indeed manganese dioxide, these black materials would lend support to an origin in the use of manganese dioxide for fire making in the subsistence challenges of the prolonged cold conditions of MIS 4. Whilst we can envisage substantial subsistence benefits in the ability to better start, promote and control fire, fire use also comes with a wide range of social benefits and implications43. If Neanderthal engagement with materials and processes held subsistence advantages, it may also have been important in the development of complexity in social relationships. Representing fire promotion by manganese dioxide exclusively as a subsistence benefit, no matter how important, risks understating its possible social and symbolic implications43,44, even though these are notoriously difficult to study in the deep past. The selection and use of manganese dioxide for fire making is unknown from the ethnographic record of recent hunter gatherers. This unusual behaviour holds potential significance for our understanding of Neanderthal cognitive capabilities through the extent of their knowledge and insights. The actions involved in the preferential selection of a specific, non-combustible material and its use to make fire are not obvious, not intuitive and unlikely to be discovered by repetitive simple trials as might be expected for lithic fracturing, tool forming and tool use. The knowledge and insights suggested by Neanderthal selection of manganese dioxide and use in fire-making are surprising and qualitatively different from the expertise we associate with Neanderthal subsistence patterns from the archaeological record. We conclude, based on the compositions of the Pech-de-l’Azé I blocs and the availability of different black manganese oxides in the Dordogne region, that Neanderthals were preferentially selecting specifically manganese dioxide blocs. However manganese dioxide does not have clearly evident advantages in decoration over the carbon-rich materials or the other manganese oxides available to Neanderthals. From the combustion and TGA experiments, it is clear that manganese dioxide is an effective facilitator in fire making, reducing the auto-ignition temperature of wood and substantially increasing the rate of combustion. The archaeological evidence of bloc abrasion and grinding stone is consistent with the conversion to powder necessary for use in fire-starting. The intimate association of fire places and manganese dioxide blocs at Pech-de-l’Azé I suggest a use in fire making. We hypothesise that fire-making was manganese dioxide’s most beneficial distinguishing attribute available to Neanderthals. Although we should not exclude the possibility that manganese dioxide was used for decoration and social communication, the combustion, compositional and archaeological strands of evidence lead us to the conclusion that late Neanderthals at Pech-de-l’Azé I were using manganese dioxide in fire-making and by implication were producing fire on demand. Methods Materials Three commercially available manganese dioxide materials were used in the combustion experiments; two reagent grades from Sigma-Aldrich (product reference 310700, coded MD4 and product reference 217646, coded MD6) and a less pure material supplied by Minerals Water Ltd. (coded MD5). A romanèchite, hydrated barium manganese oxide material (coded MD7) from the Schneeberg mine in Saxony, Germany was also used. Its elemental composition is not inconsistent with romanèchite and the XRD-determined structure has close similarities with a romanèchite XRD reference (Supplementary Information 2). This material may not have had precisely the same properties and behaviour as romanèchite material from the Dordogne region. Three metal oxides were chosen for comparative experiments, all thermally stable oxides, aluminium oxide, zinc oxide and titanium dioxide. All the oxide materials were reagent-grade materials from the Gorlaeus Laboratorium, University of Leiden. Elemental compositions and crystal structures of the manganese oxides are given in Supplementary Information 2. Three small blackish coloured blocs from the ‘spoil’ of early twentieth century excavations at Pech-de-l’Azé I were studied (coded MD1, MD2 and MD3). These blocs were recovered during the 2004–5 fieldwork season led by M. Soressi; they were in the excavation spoil at the entrance of the cave along with artefacts left by previous excavators, mostly in L. Capitan and D. Peyrony’s 1912 excavation. Two were grey-black pebble-like materials and the third (MD3) had a more slab-like appearance with a reddish colour overlying the grey-black material on one side. Each bloc was examined by optical and scanning electron microscopy (SEM) with EDX and analyzed by XRD and XRF; approximately two grams in total were used in the combustion experiments. Ten blocs from recorded archaeological contexts in Bordes’ 1970–1 excavations and eleven from Soressi’s 2004–5 excavations were non-destructively analyzed for their XRF compositions and XRD structures. The measured sample set constitutes approximately 5% of the population of blocs when MD1 to MD3 are included. The Bordes’ blocs appeared to have facets or striations suggesting that they had been deliberately abraded. There were no clearly abraded facets on the eleven blocs selected from Soressi’s excavation contexts but there were striations on one bloc. The differences confound two variables, recovery location and apparent use, rendering the interpretation of differences more difficult. The combustible material was untreated beech wood free from bark, converted into turnings using a hand-held electric drill and 22 mm steel bit. Cotton wool and Ulmus sp. seed were used as tinder materials. Combustion Experiments In the combustion experiments, small amounts of the beech wood turnings (1.5 g) or mixtures of beech (1.5 g) with manganese dioxide (0.1 g to 0.5 g) or powdered materials from the Pech-de-l’Azé I blocs or other oxides were placed on a fine steel gauze on a stand within a fume cupboard in a gentle air stream (see Fig. 2). The mixture was heated from below by the flame of a 9.5 cm Sakerhets Tandstickor for fifteen seconds; in some cases the heating time was extended to thirty seconds with a second match. The flame was unable to penetrate the gauze and served to heat the wood via the gauze. For some experiments a Swedish Firesteel 2.0 was used as a source of sparks to light a 0.1 g piece of tinder placed on the surface of the beech turnings. Wherever possible, multiple replication runs were used to validate the outcomes, control runs of beech alone or beech mixed with MD4 or MD6 were used in each phase. In total 120 experimental runs were completed. The effects were recorded on high definition video. In some experiments the whole combustion process of approximately ten minutes was monitored using either a FLIR A35 or a FLIR T450 thermal imaging camera and combustion temperatures recorded. The temperature data were analyzed using FLIR ResearchIR version 3.4 software (Supplementary Information 4). Thermo-gravimetric Analysis Methodology Thermo-gravimetric differential thermal analysis was performed in nitrogen or air atmospheres using a TA-Instruments SDTQ600. A typical sample mass of 12–15 mg was heated to the desired temperature at a ramp rate of 5 °C/min in a total flow rate of 100 ml/min. Beech wood used for the impregnations was ground and sieved to 90 μm. The ground wood (200 mg) was mixed with manganese dioxide to yield 1% by weight, 9% by weight and 23% by weight of manganese dioxide and wood samples. After addition of manganese dioxide the sample was moistened by 1 ml of de-ionized water mixed and oven dried at 60 °C for five hours.
Manganese(II) oxalate dihydrate (MnOx)
mango butter, Mangifera indica seed butter, Cas : 90063-86-8 , EC : 290-045-4
mango butter ( Beurre de mangue)
MANNITOL; D-(+)-Mannitol; Isotol; 1,2,3,4,5,6-Hexanehexol; Diosmol; Cordycepic acid; D-mannite; Osmosal; Hexitol; Mannazucker (German); D-mannitol; Manicol; Manita; Manna sugar; Mannidex; Mannite; Osmitrol; cas no: 87-78-5, 69-65-8
MANNITOL
MANNITOL, N° CAS : 69-65-8. Nom INCI : MANNITOL. Nom chimique : D-Mannitol, N° EINECS/ELINCS : 200-711-8. Additif alimentaire : E421.Compatible Bio (Référentiel COSMOS), Ses fonctions (INCI) : Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Hydratant : Augmente la teneur en eau de la peau et aide à la maintenir douce et lisse. Agent d'entretien de la peau : Maintient la peau en bon état
MAP (MONO AMONNIUM PHOSPHATE)
SYNONYMS Dodecyl sodium sulfate; SLS;Sulfuric Acid Monododecyl Ester Sodium Salt; Sodium Dodecanesulfate; Dodecyl Alcohol,Hydrogen Sulfate,Sodium Salt; Akyposal SDS; CAS NO:151-21-3
MASESTER GMS 40
MASESTER GMS 40 — универсальный ингредиент, используемый в качестве кондиционирующего, смягчающего, эмульгирующего, стабилизатора эмульсии и кондиционирующего средства для кожи в различных областях применения.
Ощутите ключевые преимущества, включая последовательность и стабильность формулы.
Универсальность MASESTER GMS 402s проявляется в сфере красоты и ухода, ухода за кожей и ухода за солнцем.

КАС: 22610-63-5
МФ: C21H42O4
МВт: 358,56
ЕИНЭКС: 245-121-1

MASESTER GMS 40 представляет собой 1-моноглицерид, содержащий стеароил в качестве ацильной группы.
MASESTER GMS 40 играет роль метаболита водорослей и метаболита Caenorhabditis elegans.
MASESTER GMS 40 – это натуральный воск, получаемый из жиров и масел растений, животных и насекомых.
MASESTER GMS 40 представляет собой белое воскообразное твердое вещество, состоящее из длинноцепочечных жирных кислот.
MASESTER GMS 40 широко используется во многих отраслях промышленности, включая пищевую, косметическую и фармацевтическую.
MASESTER GMS 40 также используется при производстве свечей и мыла.
MASESTER GMS 40 является важным химическим веществом благодаря своим многочисленным полезным свойствам, включая способность действовать как эмульгатор, смазка и консервант.

Химические свойства MASESTER GMS 40
Температура плавления: 78-81 °С.
Температура кипения: 410,96°C (грубая оценка)
Плотность: 0,9841
показатель преломления: 1,4400 (оценка)
температура хранения: −20°C
Желтое, воскообразное твердое вещество. Растворим в спирте, горячем эфире и ацетоне; нерастворим в воде. Горючий.

Метод синтеза
MASESTER GMS 40 обычно производится путем гидрогенизации растительных масел, таких как соевое, хлопковое и пальмовое масло.
Этот процесс включает добавление водорода к молекулам масла для образования твердого воска.
Этот процесс известен как гидрирование и обычно проводится в присутствии катализатора, такого как никель.
MASESTER GMS 40 представляет собой белое воскообразное твердое вещество, состоящее из длинноцепочечных жирных кислот.

Использование
Стеарин используется в различных научных исследованиях, включая биохимию, фармакологию и токсикологию.
В биохимии стеарин используется для изучения структуры и функций белков и липидов.
В фармакологии MASESTER GMS 40 используется для изучения действия лекарственных средств на организм.
В токсикологии MASESTER GMS 40 используется для изучения воздействия токсинов на организм.

Биохимические и физиологические эффекты
MASESTER GMS 40 оказывает разнообразное биохимическое и физиологическое воздействие на организм.
MASESTER GMS 40 может действовать как эмульгатор, то есть помогает смешивать два вещества, которые в противном случае не смешивались бы друг с другом.
MASESTER GMS 40 также может действовать как смазка, что означает, что оно помогает уменьшить трение между двумя поверхностями.
Кроме того, MASESTER GMS 40 может действовать как консервант, а это значит, что он помогает предотвратить рост бактерий и других микроорганизмов.

Синонимы
Глицерилмоностеарат
123-94-4
Моностеарин
ГЛИЦЕРИНА МОНОСТЕАРАТ
31566-31-1
Глицерил стеарат
Тегин
1-стеароил-рац-глицерин
1-МОНОСТЕАРИН
Глицерин 1-моностеарат
Стеарин, 1-моно-
1-моноглицерид стеариновой кислоты
2,3-дигидроксипропилоктадеканоат
Глицерин 1-моностеарат
1-глицерил стеарат
Глицерин 1-стеарат
Сандин ЕС
1-моностеароилглицерин
Октадекановая кислота, 2,3-дигидроксипропиловый эфир
Альдо МСД
Альдо МСЛГ
Глицерил-1-моностеарат
Стеароилглицерин
Глицерин 1-стеарат
альфа-моностеарин
Тегин 55Г
Эмерест 2407
Альдо 33
Альдо 75
Глицерин моностеарат
Арласель 165
3-Стеароилокси-1,2-пропандиол
Церасинт СД
Стеарин моно-
2,3-дигидроксипропилстеарат
.альфа.-моностеарин
Моноглицерил стеарат
Глицерин альфа-моностеарат
Цефатин
Дермажин
Монельгин
Седетин
Адмуль
Орбон
Цитомулган М
Дрюмулс V
Церасинт С
Дрюмулс ТП
Тегин 515
Церасинт SE
Церасинт WM
Циклохем ГМС
Друмульсе А.А.
Протачем ГМС
Витконол МС
Витконол МСТ
Федеральное агентство по чрезвычайным ситуациям № 2527
Глицерилстеараты
Моностеарат (глицерид)
Унимат ГМС
Глицерилмонооктадеканоат
Огин М
Эмкол Калифорния
Эмкол МСК
Ходаг ГМС
Огин GRB
Огин МАВ
Альдо М.С.
Альдо HMS
Армостат 801
Кесско 40
Стеариновый моноглицерид
Абракол С.Л.Г.
Арласель 161
Арласель 169
Имвитор 191
Имвитор 900К
НСК 3875
11099-07-3
Атмуль 67
Атмуль 84
Старфол GMS 450
Старфол GMS 600
Старфол GMS 900
Церасинт 1000-Д
Эмерест 2401
Альдо-28
Альдо-72
Атмос 150
Атмуль 124
Эстол 603
Огин 515
Тегин 503
Грокор 5500
Грокор 6000
Глицерин стеарат, чистый
Альфа-моноглицерид стеариновой кислоты
Кремофор гмск
Глицерил 1-октадеканоат
Церасинт-сд
Самый длинный gms
Кутина ГМС
Липо ГМС 410
Липо ГМС 450
Липо ГМС 600
стеарат глицерина
1-МОНОСТЕАРОЙЛ-РАЦ-ГЛИЦЕРИН
Никколь мгс-а
Глицерилмонопальмитостеарат
ВВС США КЕ-7
1-октадеканоил-рац-глицерин
ЭМУЛ стр.7
ЭИНЭКС 204-664-4
ЭИНЭКС 245-121-1
UNII-230OU9XXE4
Стеариновая кислота, моноэфир с глицерином
Глицерин-альфа-моностеарат
Глицерол моностеарас
Глицерин моностеарат очищенный
Имвитор 491
MCT – СРЕДНЕЦЕПОЧНЫЙ ТРИГЛИЦЕРИД (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД)
MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) — нежирное натуральное смягчающее средство, придающее коже ощущение шелковистости.
MCT – Триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) – это триглицериды с двумя или тремя жирными кислотами, имеющими алифатический хвост из 6–12 атомов углерода, то есть жирные кислоты со средней длиной цепи (MCFA).


Номер CAS: 65381-09-1 [каприловые/каприновые триглицериды];
73398-61-5 [смесь глицеридов – деканоил и октаноил]
Номер ЕС: 265-724-3 (каприловые/каприновые триглицериды);
277-452-2 (смесь глицеридов – деканоил и октаноил)
ХИМИЧЕСКОЕ НАЗВАНИЕ: Триглицерид октановой/декановой кислоты.


MCT – триглицерид средней цепи (каприлик/каприк триглицерид) быстро сохнет и является отличным смачивающим агентом и связующим веществом в декоративной косметике.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) также служит диспергирующим агентом для неорганических УФ-фильтров и помогает формировать окклюзионный барьер в средствах по уходу за кожей и солнцезащитных средствах.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) очень универсален и подходит для всех типов кожи и широкого спектра продуктов.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), также известный как каприловый/каприновый триглицерид, фракционированное кокосовое масло.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) получают из дистиллированных фракций жирных кислот пальмоядрового масла.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), этерифицированный глицерином высокой чистоты согласно Фармакопее США.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) рафинированный, отбеленный и дезодорированный.
Из-за большого количества короткоцепочечных жирных кислот (C8 и C10) MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) является жидким при низких температурах.


Триглицерид средней цепи (каприловый/каприновый триглицерид), обычно изготавливаемый из сочетания кокосового масла и глицерина, является успокаивающим ингредиентом, богатым жирными кислотами, который нейтрализует токсины в коже, вызванные вредным воздействием окружающей среды.
Используемый для связующих и консервирующих свойств MCT - триглицерида средней цепи (каприловый / каприновый триглицерид) в косметических продуктах, MCT - триглицерид средней цепи (каприловый / каприновый триглицерид) способствует заживлению кожи, удерживая влагу и придавая легкий блеск.


Несмотря на слово «масло» в названии, MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) на самом деле представляет собой сложный эфир, а не настоящее масло.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) в основном содержит каприловую кислоту и каприновую кислоту, триглицериды со средней длиной цепи, которые являются жидкими при комнатной температуре.


Триглицериды со средней длиной цепи (МСТ) представляют собой триглицериды, состоящие из глицериновой основной цепи и трех жирных кислот с алифатическим хвостом, содержащим от шести до 12 атомов углерода.
MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) содержатся в натуральных продуктах, таких как кокосовое масло, пальмоядровое масло и сырое кокосовое мясо.
В организме MCT – триглицериды средней цепи (каприловый/каприновый триглицерид) расщепляются на глицерин и свободные жирные кислоты, которые непосредственно всасываются в кровоток и транспортируются к органам-мишеням, оказывая ряд биологических и метаболических эффектов.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) в сочетании с другими соединениями, такими как рыбий жир, соевое масло и оливковое масло, показан взрослым и детям, включая доношенных и недоношенных новорожденных, в качестве источника калорий и незаменимых жирных кислот. кислоты для парентерального питания, когда пероральное или энтеральное питание невозможно, недостаточно или противопоказано.


MCT – Среднецепочечные триглицериды (каприловый/каприновый триглицерид) используются в терапии парентерального питания: они служат источником калорий и незаменимых жирных кислот при состояниях, связанных с нарушением питания и мальабсорбцией.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) также доступны в виде безрецептурных натуральных продуктов и пищевых добавок.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) представляет собой смесь изолированных каприловых и каприновых триглицеридов.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) обычно выделяют из кокосового масла.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) действует в наших продуктах как масло-носитель.


MCT – Триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) – это триглицериды с двумя или тремя жирными кислотами, имеющими алифатический хвост из 6–12 атомов углерода, то есть жирные кислоты со средней длиной цепи (MCFA).
Богатые пищевые источники для коммерческого извлечения триглицеридов со средней длиной цепи (каприловый/каприновый триглицерид) включают пальмоядровое масло и кокосовое масло.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) – широко используемый компонент в мыле, а также в косметике.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), обычно изготавливаемый из смеси кокосового масла и глицерина.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) иногда называют каприновым триглицеридом, а также часто неточно называют фракционированным кокосовым маслом.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), также известный как триглицерид октановой/декановой кислоты или кокосовое масло MCT, представляет собой специализированную этерификацию кокосового масла, экстрагированную из ядра созревших кокосов.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) получают в результате фракционирования масла лауринового типа.


MCT — полученный среднецепочечный триглицерид (каприлик/каприновый триглицерид) имеет температуру плавления около 7°С.
В жидкой форме MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) практически бесцветен и имеет характерный запах.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), также известный как MCT (триглицерид со средней длиной цепи).


MCT – Триглицерид со средней длиной цепи (Каприлик/Каприк Триглицерид) имеет практически равный состав каприловой и каприновой кислот.
MCT – триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) – это натуральный продукт, полученный из овощей (кокосовых или пальмовых косточек).
Это натуральное нейтральное масло, также называемое MCT — триглицерид со средней цепью (каприловый/каприновый триглицерид).


MCT - Триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) представляет собой смесь жирных кислот со средней длиной цепи (триглицеридов) природного происхождения.
Нейтральное масло, MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид), не вызывает раздражения, легко наносится и быстро впитывается.
В составе косметических продуктов MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) улучшает их эксплуатационные свойства и предотвращает чрезмерное восполнение липидов.


Таким образом, любой дисбаланс, присутствующий в раздраженной и чрезмерно защищенной коже, можно быстро восстановить.
Косметические свойства MCT – триглицерида средней цепи (каприловый/каприновый триглицерид): абсолютно не раздражает, идеально подходит для раздраженной кожи, легко наносится и быстро впитывается, способствует применению других ингредиентов, предотвращает чрезмерное пополнение липидов.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), или каприновый триглицерид, представляет собой соединение, которое сочетает в себе жирные кислоты из натуральных масел, таких как кокосовое масло, с глицерином.
Мыло и косметика иногда включают в качестве ингредиента MCT — триглицерид средней цепи (каприловый/каприновый триглицерид).


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) – это соединение, получаемое в результате соединения жирных кислот с глицерином.
Жирные кислоты в MCT – триглицеридах со средней длиной цепи (каприловый/каприновый триглицерид) представляют собой триглицериды со средней длиной цепи (MCT).
В Обзоре косметических ингредиентов (CIR) отмечается, что эти жирные кислоты происходят из богатых масел, таких как кокосовое или пальмовое масло.


Производители удаляют и выделяют из масла жирные кислоты в виде каприловой кислоты.
Они объединяют эти чистые жирные кислоты с глицерином, чтобы получить MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид).
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), также известный как масло MCT, — это классический смягчающий компонент, полученный из возобновляемого природного сырья.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) производится из растительного глицерина и фракционированных растительных жирных кислот, в основном каприловой и каприновой кислот.
MCT - Триглицерид со средней длиной цепи (каприлик/каприк триглицерид) представляет собой прозрачную и бесцветную жидкость с нейтральным запахом и вкусом.


MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) полностью насыщен и поэтому обладает высокой устойчивостью к окислению.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) представляет собой триглицерид, полученный из глицерина и трех жирных кислот со средней длиной цепи (C8 – C10).
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — это жидкое масло, получаемое путем этерификации глицерина с ис��ользованием жирных кислот со средней длиной цепи, выделенных из природных источников (кокосовое масло, пальмовое масло или их комбинация).


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — легкое и питательное масло, обладающее уникальными сенсорными и химическими характеристиками.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) бесцветен (или очень бледно-желтого цвета) с мягким характерным запахом и остается в жидком состоянии при комнатной температуре, что делает его очень удобным в использовании.


MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) также демонстрирует высокую устойчивость к окислению.
MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) — это тип масла, синтезируемого из чистого кокосового масла (а иногда и пальмового масла).
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) состоит преимущественно из триглицеридов со средней длиной цепи (MCT).


Это заставляет MCT - триглицерид со средней длиной цепи (каприловый / каприновый триглицерид) проявлять особые качества и свойства, включая высокую стабильность, легкую текстуру, быстрое впитывание, бесцветный или очень бледный внешний вид и чрезвычайно легкий запах, сохраняя при этом восстанавливающие и увлажняющие кожу свойства. преимущества исходных жирных кислот.


Термин «триглицерид» относится к типу липидов, которые состоят из элементов углерода (С), водорода (Н) и кислорода (О).
Эти элементы расположены в форме глицериновой единицы (структурной «основы» триглицеридного соединения) рядом с присоединенными к ней тремя цепями жирных кислот.


Из-за разного химического состава жирных кислот они бывают разных размеров и могут быть классифицированы по количеству содержащихся в них атомов углерода.
Жирные кислоты с короткой цепью содержат менее 6 атомов углерода, жирные кислоты со средней длиной цепи — 6–12 атомов углерода, а жирные кислоты с длинной цепью — 13–21 атомом углерода.


MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) — это встречающиеся в природе триглицеридные соединения, которые состоят из глицеринового компонента с цепями жирных кислот средней длины; другими словами, они состоят из жирных кислот со средней длиной цепи.


Это может быть что-то из следующего:
C6 (имеет 6 атомов углерода) – капроновая кислота.
C8 (имеет 8 атомов углерода) – каприловая кислота.
C10 (имеет 10 атомов углерода) – каприновая кислота.
C12 (имеет 12 атомов углерода) – лауриновая кислота.


МСТ можно найти в растительных маслах и молочных продуктах животного происхождения, таких как молоко, сливочное масло, топленое масло и сыр.
Кокосовое и пальмовое масло являются богатыми источниками СЦТ, и поэтому СЦТ – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) производится из этих натуральных масел.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), также известный как каприлово-каприновый триглицерид, привлекает широкое внимание в индустрии красоты, косметики и средств личной гигиены благодаря своей впечатляющей шелковистой, не содержащей масла текстуре и окислительной стабильности.
Несмотря на слово «масло» в названии, MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) на самом деле представляет собой сложный эфир, а не настоящее масло.


В основном он содержит каприловую кислоту и каприновую кислоту, триглицериды со средней длиной цепи, которые являются жидкими при комнатной температуре.
Не все коммерчески доступные триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) производятся исключительно из кокосов.
Некоторые продукты MCT - триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) могут быть произведены с использованием неэкологичных рапсовых и/или пальмовых масел.


Для производства MCT – триглицерида со средней длиной цепи (каприловый/каприновый триглицерид) используется процесс, называемый этерификацией.
Кокосовое масло сначала гидролизуется с получением жирных кислот со средней длиной цепи и глицерина.
Глицерин резервируется, а жирные кислоты подвергаются перегонке, чтобы разделить их на фракции с разной длиной цепи.


Фракции каприловой кислоты C8 и каприновой кислоты C10 затем повторно этерифицируются глицерином с образованием MCT — триглицерида со средней длиной цепи (каприловый/каприновый триглицерид).
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) затем фильтруют и дезодорируют.


В отличие от чистого кокосового масла первого отжима, которое имеет характерный кокосовый аромат и которое является твердым и непрозрачным при комнатной температуре, MCT - триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) представляет собой прозрачную, бесцветную жидкость практически без запаха, которая легко течет при комнатной температуре.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) представляет собой фракцию кокосового масла, из которой удалены почти все триглицериды с длинной цепью, в результате чего остаются в основном триглицериды со средней длиной цепи и что делает его абсолютно насыщенным маслом.


Такое насыщение придает MCT — триглицериду средней цепи (каприловый/каприновый триглицерид) большую стабильность и устойчивость к окислению, что фактически обеспечивает практически неограниченный срок хранения.
Кроме того, фракционирование повышает сравнительную концентрацию MCT - триглицерида средней цепи (каприловый/каприновый триглицерид), тем самым придавая ему больший антиоксидантный и дезинфицирующий эффект, отсюда и название INCI: MCT - триглицерид средней цепи (каприловый/каприновый триглицерид).


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), также известный как каприлово-каприновый триглицерид (CCTG), привлекает широкое внимание в индустрии красоты, косметики и средств личной гигиены благодаря своей впечатляющей шелковистой, не содержащей масла текстуре и окислительной стабильности.
Несмотря на слово «масло» в названии, MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) на самом деле представляет собой сложный эфир, а не настоящее масло.


Применение триглицерида средней цепи (каприловый/каприновый триглицерид): все виды средств личной гигиены (например, мыло, масла для лица/тела, кремы, лосьоны, очищающие средства, шампуни, гели для душа, кондиционеры, бомбочки для ванн, соли для ванн).
MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) добавляется в формулу в масляную фазу.


Типичный уровень использования MCT - триглицерида средней цепи (каприловый/каприновый триглицерид) составляет 1-100%.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) используется только для наружного применения.
MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) одновременно похож на фракционированное кокосовое масло и отличается от него.


В то время как фракционированное кокосовое масло использует цельное кокосовое масло и отделяет легкие жидкие триглицериды (C8-C10), MCT - триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) получают, начиная с глицерина, а затем создавая триглицериды C8 и C10 в упорядоченном виде. и контролируемым способом.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) растворим в минеральном, растительном масле и спирте.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) нерастворим в воде.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), представляет собой жидкую форму масла, полученную путем отделения каприновой и каприловой жирных кислот (триглицеридов со средней длиной цепи) от твердого масла.


В отличие от твердых масел, MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) остается жидким при комнатной температуре.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) придает коже ощущение гладкости и шелковистости и легко впитывается в кожу.
MCT — триглицерид со средней длиной цепи (каприлик/каприк триглицерид) придает продуктам более легкий и роскошный вид.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — это жиры, содержащиеся в таких продуктах, как кокосовое масло.
Они метаболизируются иначе, чем длинноцепочечные триглицериды (LCT), содержащиеся в большинстве других продуктов.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — это добавка, которая содержит много этих жиров и, как утверждается, имеет много преимуществ для здоровья.


Триглицерид — это просто технический термин, обозначающий жир.
Триглицериды имеют дв�� основные цели.
Они либо сжигаются для получения энергии, либо откладываются в виде жира.


Триглицериды названы в честь их химической структуры, в частности, длины цепей жирных кислот.
Все триглицериды состоят из молекулы глицерина и трех жирных кислот.
Большая часть жиров в вашем рационе состоит из длинноцепочечных жирных кислот, содержащих 13–21 атом углерода.
Короткоцепочечные жирные кислоты содержат менее 6 атомов углерода.


Напротив, MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) имеют 6–12 атомов углерода.
Ниже приведены основные MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид):
*C6: капроновая кислота или гексановая кислота.
*C8: каприловая кислота или октановая кислота.
*C10: каприновая кислота или декановая кислота.
*C12: лауриновая кислота или додекановая кислота.


Некоторые эксперты утверждают, что C6, C8 и C10, называемые «капра-жирными кислотами», более точно отражают определение MCT — триглицеридов средней цепи (каприловый/каприновый триглицерид), чем C12 (лауриновая кислота).
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — это маслянистое соединение, которое предотвращает слипание ингредиентов.


Благодаря этому свойству MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может улучшить текстуру продуктов, содержащих это соединение.
MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) — диспергирующий агент, стабилизирующий и связывающий ингредиенты в продукте.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может помочь равномерно распределить ингредиенты продукта, такие как твердые пигменты, ароматизаторы или другие соединения.


Такое равномерное распределение может создать более однородную текстуру и стабильную смесь.
MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) — это жиры, которые естественным образом содержатся в кокосовом масле.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) усваиваются легче и быстрее, чем другие типы жиров, обеспечивают энергию, поддерживают обмен веществ и сжигаются организмом для получения энергии и топлива.


В сочетании со сбалансированной диетой и физическими упражнениями употребление триглицеридов со средней длиной цепи (каприловый/каприновый триглицерид) может помочь контролировать вес.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), чаще называемый MCT, произвел настоящий фурор в мире питания, и не без оснований — это довольно удивительные жиры.


Чтобы понять, что такое триглицерид со средней длиной цепи, полезно сначала понять химическую структуру жиров.
Жиры, которые мы встречаем в природе, обычно представляют собой триглицериды, которые состоят из трех жирных кислот, прикрепленных к глицериновой основе.
Сами жирные кислоты представляют собой цепочки атомов углерода, длина которых варьируется от 4 до 26 и более атомов углерода, обычно классифицируемых как короткоцепочечные, среднецепочечные и длинноцепочечные.

В природе жирные кислоты, составляющие триглицерид, обычно представляют собой комбинацию жирных кислот разной длины, а не трех жирных кислот одинаковой длины.
Таким образом, природный триглицерид представляет собой комбинацию жирных кислот с короткой, средней и длинной цепью.
Когда мы говорим о преимуществах MCT, мы в основном говорим о преимуществах отдельных хвостов жирных кислот со средней длиной цепи, или MCFA, определяемых как жирные кислоты с длиной 6-12 атомов углерода.


Этими жирными кислотами являются каприновая кислота (6 атомов углерода), каприловая кислота (8 атомов углерода), каприновая кислота (10 атомов углерода) и лауриновая кислота (12 атомов углерода).
Есть некоторые споры о том, является ли лауриновая кислота настоящей жирной кислотой со средней длиной цепи, но мы поговорим об этом подробнее через минуту.
СЦЖК уникальны, поскольку они усваиваются организмом иначе, чем жирные кислоты другой длины (такие как жирные кислоты омега-3 и -6 и олеиновая кислота из оливкового масла).


Их более короткая структура облегчает расщепление в кишечнике и практически не требует желчи.
После абсорбции MCFA транспортируются непосредственно в печень, где они преимущественно метаболизируются для производства энергии.
MCFA также могут легко проникать в клетки, где они способствуют выработке энергии.


Поскольку жирные кислоты со средней длиной цепи легко используются для получения энергии, их нелегко сохранить в виде жира.
Хотя СЦЖК содержатся во многих продуктах питания, включая кокосовое, пальмовое масло, сливочное масло и жирные молочные продукты (в частности, козье молоко), их количество, как правило, довольно низкое.


Поэтому, чтобы сконцентрировать полезные MCFA, производители используют процесс, называемый фракционированием, чтобы отделить жирные кислоты от основной цепи глицерина, а затем рекомбинировать их в триглицериды, которые состоят только из MCFA.
Это MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), который вы найдете на наших полках.


Обычно первоначальными источниками СЦЖК являются кокосовое и/или пальмовое масла.
Каприловая и каприновая кислоты обычно являются основными MCFA, содержащимися в MCT — триглицериде средней цепи (каприловый/каприновый триглицерид), и их пропорции варьируются от производителя к производителю.


Капроновую кислоту обычно не принимают в расчет, поскольку она имеет резкий вкус и может вызывать жжение в горле и желудке.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) представляет собой смешанный эфир, состоящий из каприловой и каприновой жирных кислот, присоединенных к глицериновой основной цепи.


MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) иногда ошибочно называют фракционированным кокосовым маслом, которое похоже по составу, но обычно относится к кокосовому маслу, из которого удалены триглицериды с более длинной цепью.
С химической точки зрения жиры и масла состоят в основном из триглицеридов, жирные кислоты которых представляют собой цепи из 6–12 атомов углерода, в этом случае сложный эфир состоит из каприновой кислоты (10 атомов углерода) и каприловой кислоты (8 атомов углерода).


MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) представляют собой специальную этерификацию кокосового масла с использованием только каприловой и каприновой жирных кислот, тогда как фракционированное кокосовое масло представляет собой стандартную дистилляцию кокосового масла, в результате которой образуется комбинация всех жирных кислот. , прошедший процесс дистилляции.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) нежирный и легкий.
MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) выпускается в форме маслянистой жидкости и в основном действует как смягчающее средство, диспергирующий агент и растворитель.


MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) частично представляют собой искусственные жиры.
Название MCT — триглицерид со средней длиной цепи (каприлик/каприк триглицерид) относится к тому, как атомы углерода расположены в их химической структуре.
MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид), как правило, производятся путем обработки кокосового и пальмоядрового масел в лаборатории.


MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) — это жиры, которые естественным образом содержатся в кокосовом и пальмоядровом масле.
MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) перевариваются легче и быстрее, чем другие типы жиров, поскольку для всасывания в кишечнике им требуется меньшее количество ферментов и желчных кислот.


MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) очень быстро метаболизируются в печени и, как сообщается, способствуют увеличению расхода энергии, одновременно уменьшая отложение жира. Многочисленные исследования показывают, что замена MCT - триглицерида со средней длиной цепи (каприлового / капринового триглицерида) на другие жиры в здоровом рационе может помочь поддерживать здоровый вес и состав тела.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — прозрачный материал, обладающий высокой стабильностью и устойчивостью к окислению, предназначенный для использования в кремах, лосьонах и многих других косметических препаратах для кожи и волос.
Поскольку триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) химически индифферентен к другим косметическим ингредиентам, он действует как регулятор вязкости и способств��ет диспергированию пигментов и других добавок.


Кроме того, MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) легко проникает в кожу, действуя таким образом в качестве носителя для трансдермальных терапевтических ингредиентов.
Эта способность транспортировать эфирные масла и активные вещества делает MCT - триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) маслом, предпочтительным среди практикующих врачей и массажистов.


MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) представляют собой особую фракцию жирных кислот кокосового/пальмового масла, в результате чего получается только более стабильное и приятное для кожи масло.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), также известный как MCT OIL.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — это массажное масло, парфюмерный носитель, масло общего назначения, легкий вес и увлажняющий крем для всех типов кожи.
MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид), также известный как фракционированное кокосовое масло.


MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) — это жиры, которые естественным образом содержатся в кокосовом и пальмоядровом маслах.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид), включая каприловую кислоту и каприновую кислоту.
При нормальном использовании масло MCT – триглицеридов средней цепи (каприловый/каприновый триглицерид) не превращается в жировые отложения.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) состоит из природных жирных кислот, содержащихся в кокосовом масле и глицерине.
MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид). Гладкая текстура и суперувлажняющие свойства делают его чрезвычайно полезным при изготовлении мыла и множества косметических продуктов.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) ценится как естественная альтернатива синтетическим химическим веществам, содержащимся в средствах для местного применения.
Компании, которые заявляют, что их продукция «полностью натуральна» или «органична», обычно содержат CCTG (также известный как MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид)).


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) создает барьер на поверхности кожи, который помогает уменьшить сухость кожи за счет уменьшения потери влаги.
Маслянистая текстура способствует загустению и обеспечивает скользкость, что позволяет легко наносить лосьоны и дезодоранты натуральной силы и оставляет нежирное послеприкосновение.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) действует как смягчающее средство, диспергирующий агент, носитель или основа, а также обладает антиоксидантными свойствами.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ MCT – ТРИГЛИЦЕРИД СРЕДНЕЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
Благодаря своей способности быстро усваиваться организмом, MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) нашел применение при лечении различных заболеваний, связанных с нарушением всасывания.
Прием MCT – среднецепочечных триглицеридов (каприловых/каприновых триглицеридов) в сочетании с диетой с низким содержанием жиров считается краеугольным камнем лечения болезни Вальдмана.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) является ингредиентом некоторых специализированных парентеральных питательных эмульсий в некоторых странах.
Исследования также показали многообещающие результаты при эпилепсии благодаря использованию кетогенной диеты.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) очень универсален и подходит для всех типов кожи.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) достаточно мягок для чувствительной кожи.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) особенно привлекателен для включения в безмасляные косметические средства и средства личной гигиены, предназначенные для жирной, комбинированной или проблемной кожи.


MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) также является исключительным заменителем минерального масла. В ароматерапии и ароматизации MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) служит практически без запаха носителем для эфирных масел и других ароматических веществ.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) быстро впитывается и придает ощущение шелковистости и пудры. MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) можно включать в состав массажных составов или использовать отдельно в качестве очень легкого, нежирного массажного масла.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) особенно привлекателен для включения в безмасляные косметические средства и средства личной гигиены, предназначенные для жирной, комбинированной или проблемной кожи.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) быстро впитывается и придает ощущение шелковистости и пудры.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) можно включать в состав массажных составов или использовать отдельно в качестве очень легкого, нежирного массажного масла.


MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) также является исключительным заменителем минерального масла.
В ароматерапии и ароматизации MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) служит фактически
носитель без запаха для эфирных масел и других ароматических веществ.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), также известный как каприловый каприновый триглицерид, привлекает широкое внимание в индустрии красоты, косметики и средств личной гигиены благодаря своей впечатляющей шелковистой, не содержащей масла текстуре и окислительной стабильности.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) очень универсален и подходит для всех типов кожи.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) достаточно мягок для чувствительной кожи.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) считается экологически безопасным, веганским, без лактозы, без глютена, без глютамата, без BSE, без гидрогенизированных или частично гидрогенизированных масел, без консервантов.


Полученный из кокосового масла (и обычно используемый в косметических продуктах для связывания ингредиентов вместе), MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) создает на коже воздухопроницаемый слой, удерживая влагу.
Обычное использование триглицерида со средней длиной цепи (каприловый/каприновый триглицерид): кремы, лосьоны, мыло и увлажняющие средства.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) означает триглицериды со средней длиной цепи и также широко известен под названием INCI каприновый каприловый триглицерид (CCT).
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может быть получен из пальмового или кокосового масла (когда его обычно называют фракционированным кокосовым маслом).


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) широко используется в косметике в качестве диспергатора, но также действует как растворитель жирорастворимых витаминов и других активных питательных веществ.
MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) является отличным смягчающим средством и быстро проникает в кожу.


Как только MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) проникает в кожу, он замедляет потерю воды из кожи, образуя барьер на поверхности кожи.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) также используется для изменения густоты жидких продуктов, улучшения распределения и обеспечения шелковистого и равномерного нанесения, что способствует диспергированию других ингредиентов в готовых продуктах.


Это обеспечивает и поддерживает красивое гладкое и блестящее послеприкосновение к коже.
Производители косметики высоко ценят MCT - триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), поскольку он обладает высокой стабильностью и устойчивостью к окислению, отсюда и его длительный естественный срок хранения.


Кожа: Смягчающее средство: MCT – триглицерид со сред��ей длиной цепи (каприловый/каприновый триглицерид) улучшает ощущение кожи от составов.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) предназначен только для наружного применения.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) содержится в средствах местного ухода за кожей, включая увлажняющие кремы для лица, антивозрастные лосьоны, солнцезащитные кремы, кремы для глаз и так далее.


MCT – триглицерид со средней цепью (каприлик/каприк триглицерид) способен продлить срок службы косметики, сделать кожу более качественной и при этом не жирной, а также усилить антиоксидантное воздействие средств.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) также является распространенным компонентом косметики и других эстетических изделий.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) равномерно распределяет ингредиенты в эстетических растворах, не оставляя на коже ощущения жирности.
Вы часто встретите MCT – триглицерид средней цепи (каприлик/каприновый триглицерид) в составе косметических продуктов: губной помады, бальзама для губ, карандаша для губ, праймера, текстуры.


MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) используется уже более 50 лет.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид)
оказывает разглаживающее действие на кожу, а также обладает высокой антиоксидантной активностью.


Кроме того, MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) связывает различные другие компоненты друг с другом и действует как химическое вещество, помогая энергетическим компонентам косметики сохраняться намного дольше.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) считается естественным дополнением к различным другим синтетическим химическим веществам, содержащимся в продуктах для местного применения.


MCT - триглицерид со средней длиной цепи (каприловый / каприновый триглицерид) используется в шахтах, сложных эфирах, жирных спиртах, пероксидах, ароматизаторах, ароматизаторах, отделке поверхностей, смазочных материалах, металлическом мыле, косметике, кормах для животных, химикатах, бумаге, пластмассах, моющих средствах, химикатах, смолах. и покрытия.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) обычно используется в качестве смягчающего средства и усилителя действия косметических активных веществ, добавок и других косметических продуктов.


Кроме того, MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) полезен для предотвращения потери влаги в рецептурах.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) применяются в различных отраслях промышленности.
MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) шелковистый и легкий на ощупь, легко впитывается в кожу.


Это означает, что когда MCT - триглицерид средней цепи (каприловый / каприновый триглицерид) используется в косметических продуктах и средствах по уходу за кожей, органическое масло MCT - триглицерид средней цепи (каприловый / каприновый триглицерид) не оставляет ощущения жирности на коже.
Благодаря длительному сроку хранения, слабому цвету, минимальному запаху и практически полному отсутствию опасности это масло-носитель является идеальным выбором для чувствительной кожи и безмасляных продуктов.


В этом масле используются только триглицериды со средней длиной цепи (MCT) (каприловый/каприновый триглицерид), а именно каприловая кислота и каприновая жирная кислота, содержащиеся в сыром кокосовом масле.
В результате получается идеальное базовое масло, которое можно использовать в самых разных областях.


Acme-Hardesty предлагает качественные триглицериды средней цепи MCT (каприловый/каприновый триглицерид), произведенные с использованием материалов, полученных из этических источников.
Использование в аэрозолях триглицерида средней цепи (каприловый/каприновый триглицерид): антиперспиранты, дезодоранты, парфюмерия.
Использование триглицерида средней цепи (каприловый/каприновый триглицерид) в уходе за волосами: масла, маски


Использование триглицерида средней цепи (каприловый/каприновый триглицерид) для ухода за кожей: кремы и маски для лица, лосьоны и масла для тела, уход за ногтями, уход за руками и ногами.
Применение масел MCT — триглицеридов со средней длиной цепи (каприловый/каприновый триглицерид): для массажа, ванны и душа, а также для бритья.


Использование триглицерида средней цепи (каприловый/каприновый триглицерид) в солнцезащитных средствах: солнцезащитные кремы, средства после загара и автозагар.
Цветная косметика использует триглицерид средней цепи (каприлик/каприновый триглицерид): тени для век, румяна, праймеры, губные помады и средства для снятия макияжа.
Использование триглицерида средней цепи (каприловый/каприновый триглицерид) в уходе за губами: бальзамы, кремы и палочки.


Использование триглицерида средней цепи (каприловый/каприновый триглицерид) в уходе за детьми: кремы, лосьоны, очищающие средства и влажные салфетки.
Использование триглицерида средней цепи (каприловый/каприновый триглицерид) для ухода за мужчинами: кремы и масла для бритья, масла и лосьоны после бритья, а также масла и бальзамы для бороды.
Обычные пищевые жиры, напротив, представляют собой длинноцепочечные триглицериды.


Люди используют MCT – триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) в качестве лекарства.
MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) используются вместе с обычными лекарствами для лечения нарушений всасывания пищи, включая диарею, стеаторею (нарушение пищеварения), целиакию, заболевания печени и проблемы с пищеварением из-за частичного хирургического удаления желудка (гастрэктомия). ) или кишечнике (синдром короткой кишки).


MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) также используются при «молочной моче» (хилурии) и редком заболевании легких, называемом хилотораксом.
Другие области применения триглицерида со средней длиной цепи (каприлик/каприновый триглицерид) включают лечение заболеваний желчного пузыря, СПИДа, муковисцидоза, болезни Альцгеймера и судорог у детей.


Спортсмены иногда используют MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) для питательной поддержки во время тренировок, а также для уменьшения жировых отложений и увеличения мышечной массы.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) иногда используются в качестве источника жира при полном парентеральном питании (TPN).
При ППП вся пища вводится внутривенно (в/в).


Этот тип питания необходим людям, у которых желудочно-кишечный тракт больше не работает.
Внутривенные триглицериды средней цепи (каприловый/каприновый триглицерид) также назначаются для предотвращения разрушения мышц у пациентов в критическом состоянии.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) популярен в ароматерапии и массажной терапии в качестве масла-носителя, поскольку он не мешает запаху ароматических смесей, быстро впитывается, не оставляет пятен на одежде и оставляет после себя шелковистую, но невредную текстуру. ощущение жирности кожи.


В косметических рецептурах MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) идеален в эмульсиях или когда требуется успокаивающее и нежирное смягчающее средство с нейтральными сенсорными характеристиками и длительным сроком хранения.
Помимо ароматерапии и косметики, MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) широко используется в пищевой промышленности, а также в пищевой, фармацевтической, пищевой промышленности, в целях снижения веса и в других медицинских целях.


MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) в целом широко используются в широком спектре секторов, включая косметику, средства личной гигиены, ароматерапию, питание, фармацевтику и медицину.
Применение триглицерида средней цепи (каприловый/каприновый триглицерид): уход за кожей, губами, волосами, ногтями, косметика, ароматерапия и массаж.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) считается превосходным смягчающим и восстанавливающим кожу ингредиентом.
В качестве смягчающего средства MCT - триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) быстро проникает в поверхность, кондиционируя кожу/волосы, и обеспечивает легкий и нежирный смазочный барьер.


В качестве диспергатора MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) помогает улучшить доставку витаминов, пигменто�� и других активных ингредиентов, содержащихся в растворе, так что они равномерно распределяются и полностью впитываются эпидермисом.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид). Масляная текстура помогает загущать косметические составы и является скользкой, что, в свою очередь, обеспечивает легкое нанесение растворов и гладкое послеприкосновение.


MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) включен в косметику благодаря смеси жирных кислот, которую кожа может использовать для восстановления своей поверхности и предотвращения потери влаги.
Также считается, что MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) оказывает противовоспалительное действие на кожу.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) используется для улучшения эффективности вкусовых, ароматических и/или красящих добавок, помогая повысить их растворимость и эффективность посредством формулы.
Кроме того, MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) придает смягчающие свойства препаратам и может помочь улучшить эффективность активных веществ по уходу за кожей.


MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) используется в качестве природного растворителя во многих рецептурах, а также может помочь предотвратить потерю влаги в рецептуре.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) можно использовать во всех составах для кожи и волос.


MCT - Триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) представляют собой сложные эфиры жирных кислот и глицерина со средней длиной цепи (от 6 до 12 атомов углерода), наиболее часто используемые в нутрицевтических продуктах и напитках, а также в космецевтических продуктах личной гигиены.
В организме человека MCT - триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) пассивно диффундирует из желудочно-кишечного тракта в воротную вену без необходимости модификации, которую требуют жирные кислоты с длинной цепью или жирные кислоты с очень длинной цепью.


Поскольку MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) являются более мягкими по сравнению с другими жирами и не создают неприятных вкусовых или ароматических нот, они также используются в продуктах личной гигиены и фармацевтических препаратах.
В пищевых продуктах, напитках и нутрицевтиках ингредиенты MCT - триглицеридов со средней длиной цепи (каприловый/каприновый триглицерид) быстро впитываются в организм и являются потенциально хорошими источниками энергии для любителей ежедневных физических упражнений, а также спортсменов и бодибилдеров.


MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) часто включаются в напитки, смеси, питательные батончики или энергетические продукты.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) также используются в качестве высококачественных носителей и смягчающих средств в рецептурах косметических средств, сертифицированных в соответствии со стандартами Natural и Organic Ecocert.


MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) часто встречаются в аэрозолях, пенах, кремах, мазях и лосьонах для местного применения и регулярно используются в ароматизаторах и ароматизаторах из-за их мягкого вкуса и слабого естественного запаха.
Органический MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) действует как превосходное смягчающее средство. Используется в уходе за телом, лицом, волосами и солнцем.


MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) имеет растительное происхождение и состоит из смеси растительных жирных кислот, преимущественно каприловой и каприновой кислот, и глицерина.
MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) особенно бережен к коже и не оставляет жирного блеска.


MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) используется в качестве смягчающего, увлажняющего агента на нежирной масляной основе.
Благодаря своей замечательной универсальности и привлекательным сенсорным характеристикам, MCT - триглицерид средней цепи (каприловый/каприновый триглицерид) находит широкое применение в секторах личной гигиены, косметики и ароматерапии.


Сам по себе MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) можно использовать в качестве косметического, массажного и базового масла, а также включать в производство кремов, лосьонов, очищающих масел, мазей, масел для тела, средств для ванн. скрабы, макияж и многие другие питательные продукты.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) особенно популярен среди массажистов, поскольку он прост в использовании, легкий и быстро сохнет, не образуя жирного блеска.


В отличие от других масел, MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) также обычно не оставляет пятен на одежде. MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), известные антимикробные и противовоспалительные свойства, дополнительно помогают улучшить цвет лица и облегчить массажную терапию за счет улучшения поглощения эфирных масел и других терапевтических компонентов.


-Уход за кожей:
MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) — стабильное соединение, имеющее маслянистую текстуру.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может создавать барьер на поверхности кожи, удерживая влагу.
Некоторые продукты по уходу за кожей содержат MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), например:
*кремы для лица
*увлажняющие крема для тела
*солнцезащитные кремы
*кремы для глаз
*антивозрастные сыворотки
*Составить


-MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) также является стабильной альтернативой другим маслам.
В косметике и макияже, содержащих жирные соединения, может использоваться MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид).
Эти продукты включают в себя:
*бальзам для губ
*карандаш для губ
*помада
*Подводка для глаз
*жидкая тональная основа или румяна


-Продукты:
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) также может присутствовать в готовых пищевых продуктах, таких как:
*выпечка
*мягкие конфеты
*сыры
*замороженные молочные продукты
*желатины и пудинги
*мясные продукты


-Техническое использование MCT - триглицерида средней цепи (каприловый/каприновый триглицерид):
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) мягче по сравнению с другими жирами и не вызывает неприятных нот (диссонансный вкус) так быстро, как LCT.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) также более полярен, чем LCT.
Благодаря этим свойствам MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) широко используется в качестве масел-носителей или растворителей для ароматизаторов, пероральных лекарств и витаминов.


-Фармацевтическая актуальность:
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может использоваться в растворах, жидких суспензиях и системах доставки лекарств на липидной основе для эмульсий, самоэмульгирующихся системах доставки лекарств, кремах, мазях, гелях и пенах, а также в суппозиториях.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) также подходят для использования в качестве растворителя и жидкой маслянистой смазки в мягких гелях.


-Медицинская значимость:
MCT - триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) пассивно диффундируют из желудочно-кишечного тракта в портальную систему (более длинные жирные кислоты всасываются в лимфатическую систему) без необходимости модификации, как жирные кислоты с длинной цепью или жирные кислоты с очень длинной цепью. .
Кроме того, MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) не требуют для переваривания солей желчных кислот.

Пациентов с недостаточным питанием, мальабсорбцией или особыми нарушениями метаболизма жирных кислот лечат MCT - триглицеридами со средней длиной цепи (каприловый / каприновый триглицерид), поскольку MCT не требуют энергии для поглощения, использования или хранения.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) обычно считаются хорошим биологически инертным источником энергии, который человеческий организм достаточно легко метаболизирует.

MCT – триглицериды со средней длиной цепи (каприловы��/каприновый триглицерид) обладают потенциально полезными свойствами в белковом обмене, но могут быть противопоказаны в некоторых ситуациях из-за имеющейся тенденции индуцировать кетогенез и метаболический ацидоз.
Однако есть и другие данные, демонстрирующие отсутствие риска кетоацидоза или кетонемии при приеме триглицерида средней цепи (каприловый/каприновый триглицерид) на уровнях, связанных с нормальным потреблением, и что умеренно повышенные кетоны в крови могут быть эффективным средством лечения эпилепсии.


-Ограничение калорий:
Систематический обзор и метаанализ, проведенный в 2020 году Critical Reviews in Food Science and Nutrition, подтвердил доказательства того, что MCT - триглицерид со средней длиной цепи (каприловый / каприновый триглицерид) снижает последующее потребление энергии.
Несмотря на это, MCT – триглицерид со средней длиной цепи (каприлик/каприновый триглицерид), по-видимому, не влияет на аппетит, и поэтому авторы заявили, что необходимы дальнейшие исследования для выяснения механизма, посредством которого это происходит.


- Диетическая значимость:
Анализ молекулярной массы молока разных видов показал, что, хотя жиры молока всех изученных видов в основном состоят из длинноцепочечных жирных кислот (с длиной 16 и 18 атомов углерода), примерно 10–20% жирных кислот в молоке лошадей, коров, овцы и козы представляли собой жирные кислоты со средней длиной цепи.
Некоторые исследования показали, что МСТ могут помочь в процессе сжигания лишних калорий и, следовательно, в потере веса.

MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) также способствуют окислению жиров и снижению потребления пищи.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) рекомендуются некоторыми спортсменами, занимающимися выносливостью, и сообществом бодибилдеров.
Хотя польза для здоровья от MCT - триглицеридов средней цепи (каприловый/каприновый триглицерид), по-видимому, имеет место, связь с улучшением спортивных результатов неубедительна.

Ряд исследований подтверждает использование масла MCT - триглицерида со средней длиной цепи (каприлового / капринового триглицерида) в качестве добавки для снижения веса, но эти утверждения не лишены противоречий, поскольку примерно в равном количестве были получены неубедительные результаты.


- Использование триглицерида средней цепи (каприловый/каприновый триглицерид) для личной гигиены:
Обычно используемый в качестве смягчающего средства триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) служит заменой белым маслам и вазелину в косметике, увлажняющих средствах, средствах по уходу за кожей, солнцезащитных кремах и парфюмерии.
В рамках этого применения MCT - триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) служит отличным выбором для продуктов для чувствительной кожи благодаря своей легкой природе и совместимости с большинством типов кожи.


- Использование в кормах для домашних животных триглицерида средней цепи (каприловый/каприновый триглицерид):
Кокосовое масло MCT – триглицерид средней цепи (каприловый/каприновый триглицерид) можно использовать в качестве ингредиента в кормах для домашних животных, и исследования показывают, что включение масла MCT – триглицерида средней цепи (каприловый/каприновый триглицерид) оказывает положительное влияние на метаболизм кошек и собак. когнитивные функции.


-Фармацевтика:
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — эффективный растворитель и превосходный наполнитель, что означает, что он может выступать в качестве носителя или суспензионной среды для маслорастворимых антибиотиков, лекарств и витаминов.


- Использование в пищевых продуктах и напитках MCT - триглицерида со средней длиной цепи (каприловый/каприновый триглицерид):
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) пропагандируется в пищевой промышленности как энергетическая добавка и пищеварительный агент.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), обычно используемый в качестве пищевого эмульгатора.


-Вкус и аромат:
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) является отличным носителем как ароматизаторов, так и вкусовых добавок, поскольку это масло со слабым запахом.


-Нутрицевтики:
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) сам по себе является энергетической добавкой и пищеварительным агентом, способствующим ускорению метаболизма.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) также является отличным эмульгатором и растворителем и может выступать в качестве носителя или суспензионной среды для жирорастворимых витаминов и минералов.


-Фармакодинамика:
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид), содержащиеся в инъекционных липидных эмульсиях, служат источником калорий и незаменимых жирных кислот, которые являются важным субстратом для производства энергии.

MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) оказывают несколько метаболических эффектов: в исследованиях на животных было показано, что они снижают вес, метаболический синдром, абдоминальное ожирение и воспаление.
Предполагается, что MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) вызывает потерю веса за счет увеличения расхода энергии и окисления жиров, а также изменения состава тела.4

Однако неизвестно, является ли влияние триглицерида средней цепи (каприловый/каприновый триглицерид) на расход энергии и вес тела длительным и устойчивым.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) также может играть роль в потреблении пищи и повышении насыщения, поскольку некоторые исследования показали, что потребление MCT приводит к снижению потребления пищи.

Хотя было показано, что MCT - триглицерид со средней длиной цепи (каприловый / каприновый триглицерид) снижает потребление энергии, не было показано, что он влияет на аппетит.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может способствовать усвоению кальция.


-Применение MCT - триглицерида средней цепи (каприловый/каприновый триглицерид):
*Все кремы и лосьоны для ухода за кожей — как очищающие, так и увлажняющие.
особенно для чувствительной кожи и жирной кожи
*Кремы и лосьоны для ухода за телом и ваннами: специально для чувствительной и жирной кожи.
*Масла для ванны и тела
*Макияж: особенно помады и бальзамы.
*Натуральные духи
*Шампуни и очищающие средства



ФУНКЦИИ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) в основном действует как смягчающее средство, диспергирующий агент и растворитель.
Производители косметики высоко ценят MCT - триглицерид со средней длиной цепи (каприлик/каприк триглицерид) за отсутствие цвета и запаха, а также за его стабильность.



ПРЕИМУЩЕСТВА И ПРИМЕНЕНИЕ MCT – ТРИГЛИЦЕРИД СРЕДНЕЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
*Это самый эффективный смягчающий кожу ингредиент, MCT — триглицерид средней цепи (каприловый/каприновый триглицерид), который используется во всем мире.
*MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) создает барьер на поверхности кожи, который помогает уменьшить сухость кожи за счет уменьшения потери влаги. *MCT — маслянистая текстура триглицерида средней цепи (каприловый/каприновый триглицерид) способствует загустению и обеспечивает скользкость, что помогает легко наносить наши лосьоны и дезодоранты естественной силы и оставляет нежирное послеприкосновение.

*MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — это великолепный кладезь антиоксидантов, которые обогатят вашу кожу и сделают ее здоровой.
*MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) используется для увеличения срока годности ваших продуктов.
*MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) помогает смягчить омертвевшую кожу и восстановить потрескавшуюся и поврежденную кожу.

*При использовании в подводках для глаз или карандашах MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) делает их гладкими и облегчает их нанесение.
*Носитель для ароматизаторов, ароматизаторов (включая эфирные масла) или красителей, легкий смягчающий компонент, высокая стабильность, кристально чистый.



ИСПОЛЬЗОВАНИЕ И ЭФФЕКТИВНОСТЬ MCT – ТРИГЛИЦЕРИД СРЕДНЕЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
-Возможно, эффективен для...
*Некоторые виды судорог у детей.
* Предотвращение разрушения мышц у пациентов в критическом состоянии при внутри��енном введении (в/в).
*MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может обеспечить калорийность пациентов в критическом состоянии, но, по-видимому, не дает никаких преимуществ по сравнению с обычными пищевыми жирами (триглицеридами с длинной цепью).

-Возможно, неэффективно для...
Потеря веса, связанная со СПИДом.
Некоторые исследования показывают, что прием МСТ не более эффективен, чем прием только поливитаминов и минералов для предотвращения потери веса, связанной со СПИДом.

Недостаточно доказательств для оценки эффективности...
*Болезнь Альцгеймера.
Существует интерес к использованию MCT - триглицеридов со средней длиной цепи (каприловый/каприновый триглицерид) для лечения болезни Альцгеймера, поскольку MCT могут обеспечить мозг дополнительной энергией, а также могут защитить мозг от повреждения бляшками бета-амилоидного белка.

Эти бляшки представляют собой структуры, которые образуются при болезни Альцгеймера и вызывают симптомы.
Некоторые исследования показывают, что конкретный продукт MCT - среднецепочечный триглицерид (каприловый/каприновый триглицерид) (AC-1202) не оказывает значительного улучшения обучения, памяти и обработки информации (когнитивного мышления) у людей с легкой и умеренной болезнью Альцгеймера, за исключением людей с болезнью Альцгеймера легкой и средней степени тяжести. особая генетическая структура (изменение гена APOE4).

У людей с изменением гена APEO4 однократная доза продукта MCT - среднецепочечного триглицерида (каприловый / каприновый триглицерид), по-видимому, улучшает навыки когнитивного мышления.

*Хилоторакс (редкое заболевание легких). Прием МСТ перорально или внутривенно (в/в) может предотвратить недостаточность питания и ослабление способности бороться с инфекцией у детей и взрослых с хилотораксом.
*Питательная поддержка спортивных тренировок.

* Уменьшение жировых отложений и увеличение мышечной массы.
*Улучшение усвоения кальция и магния.



СВОЙСТВА MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
• Без использования пальм
• Без масла
• Высокая стабильность
• Свет
• Прозрачный, от бесцветного до желтого цвета
• Практически без запаха
• Жидкость комнатной температуры
• Быстрое всасывание
• Нежирный
• Гладкая, шелковистая текстура при нанесении на кожу
• Минимальный блеск или отсутствие блеска при нанесении
• Подходит для всех типов кожи.
• Легко эмульгируется
• См. спецификацию состава жирных кислот.



КАК РАБОТАЕТ MCT – СРЕДНЕЦЕПОЧНЫЙ ТРИГЛИЦЕРИД (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) помогает связывать влагу с кожей и предотвращает ее потерю кожей.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) действует за счет улучшения дисперсии в рецептурах.



КОНЦЕНТРАЦИЯ И РАСТВОРИМОСТЬ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
Рекомендуемая концентрация триглицерида средней цепи (каприловый/каприновый триглицерид) MCT для использования составляет от 2% до 100%.
MCT — триглицерид со средней длиной цепи (каприлик/каприк триглицерид) растворим во всех пропорциях в ацетоне, бензоле, хлороформе и нерастворим в воде.



КАК ИСПОЛЬЗОВАТЬ MCT – ТРИГЛИЦЕРИД СРЕДНЕЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
Нагрейте фазу триглицерида средней цепи (каприловый/каприновый триглицерид) до 70°.
Добавьте MCT — триглицерид средней цепи (каприлик/каприновый триглицерид) в масляную фазу, постоянно помешивая.
Добавьте фазу MCT — триглицерида средней цепи (каприловый/каприновый триглицерид) к водной фазе.
Перемешать до образования однородного раствора.



ПРЕИМУЩЕСТВА MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
*Эффективное смягчающее средство, быстро впитывается.
*Минимальный блеск или отсутствие блеска при нанесении
* Легко эмульгируется
*Подходит для всех типов кожи



ФУНКЦИИ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
*Диспергатор
* Смягчающий увлажняющий крем
*Заменитель масла
*Солюбилизатор
*Растворитель
*Распространяющий агент
*Модификатор вязкости



ПРЕИМУЩЕСТВА MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) происходит из натуральных жиров.
MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) – это прозрачные жидкости с прекрасным вкусом.
MCT — триглицерид средней цепи (каприловый / каприновый триглицерид) с высоким содержанием жира, внешним видом и антиоксидантной способностью делают их широко используемыми в средствах по уходу за кожей, а также в мыле.

- Смягчающие средства:
Увлажняющие средства делают кожу мягче.
Увлажняющие средства обеспечивают влажность кожи, а также создают защитный слой, гарантирующий, что влага не сможет ускользнуть.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — широко используемый смягчающий активный ингредиент в косметике.

-Диспергаторы удерживают активные ингредиенты в составе друг с другом.
Смешивание активных ингредиентов, красителей или ароматизаторов в отличном диспергаторе предотвращает слипание ингредиентов и их опускание на дно смеси.

-Растворители:
Растворитель — это компонент, который растворяет или повреждает какой-либо другой активный ингредиент или связь в веществе.
Ингредиент считается растворителем на основе его молекулярной структуры и формы, а также того, как именно он взаимодействует с другими материалами.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) разжижает соединения, позволяя им смешиваться друг с другом. Хотя некоторые растворители содержат опасные ингредиенты, каприловый триглицерид относительно безопасен.

-Антиоксиданты:
Антиоксиданты — это вещества, которые противодействуют свободным радикалам или вредным веществам, которым вы подвергаетесь ежедневно.
Антиоксиданты помогают предотвратить окисление, которое старит кожу и вызывает проблемы с организмом.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) богат антиоксидантами, поэтому они играют жизненно важную роль в защите вашей кожи и помогают вам чувствовать себя моложе.



ПРЕИМУЩЕСТВА MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
Преимущества фракционированного кокосового масла:
* Защищает потрескавшиеся губы от дальнейшего повреждения.
*Увлажняет и очищает кожу благодаря легкой маслянистой консистенции.
*Обеспечивает антибактериальную поддержку кожи и лица на основе антиоксидантов.



СВОЙСТВА MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД) ДЕЛАЮТ ЕГО ПОДХОДНЫМ ДЛЯ ИСПОЛЬЗОВАНИЯ В РАЗЛИЧНЫХ ПРИМЕНЕНИЯХ:
*Быстрое распределение, ощущение легкости на коже – ингредиент средств личной гигиены.
*Окислительная стабильность, низкая вязкость, чистые органолептические качества – растворитель для ароматизаторов, фармацевтическая продукция, смазочные материалы.
*Низкая калорийность, быстрый доступный источник энергии – управление здоровьем



ИСТОЧНИКИ MCT – СРЕДНЕЦЕПОЧНЫХ ТРИГЛИЦЕРИДОВ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT — триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) содержатся в пальмоядровом и кокосовом масле и могут быть разделены фракционированием.
Их также можно получить переэтерификацией.
Розничный порошок MCT - триглицерида средней цепи (каприловый / каприновый триглицерид) представляет собой масло MCT - триглицерида средней цепи (каприловый / каприновый триглицерид), встроенное в крахмал и, таким образом, в дополнение к жирам содержит углеводы.
MCT – триглицерид со средней длиной цепи (каприлик/каприк триглицерид) производится методом распылительной сушки.



ПРЕИМУЩЕСТВА MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) представляет собой соединение глицерина и встречающихся в природе жирных кислот из кокосового или пальмового масла.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может иметь некоторые преимущества для кожи или продуктов, которые его содержат.
* Смягчающее средство:
MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид) — смягчающее средство, ингредиент, смягчающий кожу.
Смягчающие средства образуют на коже защитный слой, удерживая влагу и предотвращая высыхание кожи.
Маслянистая текстура MCT — триглицерида средней цепи (каприловый/каприновый триглицерид) делает его полезным смягчителем кожи.



ПРЕИМУЩЕСТВА И СОСТАВ MCT – ТРИГЛИЦЕРИД СРЕДНЕЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
Благодаря своему уникальному химическому составу, MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) демонстрирует широкий спектр преимуществ, связанных с его привлекательными сенсорными и физико-химическими характеристиками.

Основными химическими компонентами, отвечающими за эти характеристики, являются каприловая кислота (C8) и каприновая кислота (C10), которые составляют примерно 60% и 40% масла соответственно.
Эти жирные кислоты также способствуют питательному косметическому и оздоровительному эффекту, наблюдаемому с MCT – триглицеридом со средней длиной цепи (каприловый/каприновый триглицерид).

Полезные физико-химические свойства MCT – триглицерида средней цепи (каприловый/каприновый триглицерид) включают:
* Бесцветный или очень бледно-желтый на вид.
*Издает легкий характерный запах.
*Остается в жидком состоянии при комнатной температуре.
* Низкая вязкость и легкая текстура.
* Быстро впитывается в кожу.
* Нежирный и не оставляет пятен.
*Отличная термостабильность (можно нагревать или замораживать)
*Отличная окислительная стабильность, способствующая продлению срока службы продуктов.
*Действует как универсальный растворитель, поскольку растворяется не только в кислотах и спиртах, но и в липидах и маслах.


В дополнение к этим характеристикам считается, что жирные кислоты каприловая кислота (C8) и каприновая кислота (C10) обладают обширными преимуществами для ухода за кожей и здоровья:
*Известные антибактериальные, противовирусные и противогрибковые свойства.
*Мощные противовоспалительные свойства.
*Мощные антиоксидантные свойства.
* Обеспечивает быстровысвобождающийся источник энергии.
*Используется в качестве естественного средства для лечения прыщей и воспалительных заболеваний кожи, таких как экзема.
* Помогает регулировать уровень холестерина.
*Помогает контролировать вес



В СЛЕДУЮЩЕМ ОБЗОРЕ ОСОБЕННЫ ТЕРАПЕВТИЧЕСКИЕ СВОЙСТВА И АКТИВНОСТЬ, КОТОРЫЕ ПРЕДПОЛАГАЮТСЯ MCT – ТРИГЛИЦЕРИД СРЕДНЕЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРОВЫЙ ТРИГЛИЦЕРИД):
*КОСМЕТИКА: смягчающее средство (успокаивающее/смягчающее), кондиционирующее, увлажняющее, восстанавливающее, укрепляющее, защитное, осветляющее, омолаживающее, против прыщей, против раздражения.

*МЕДИЦИНСКИЕ: антимикробные, противовоспалительные, антиоксидантные, регулирующие, профилактические, энергетические, пищеварительные, снижение веса.
Используемый в ароматерапии и массаже, MCT - триглицерид средней цепи (каприловый/каприновый триглицерид) действует как идеальное масло-носитель для эфирных масел благодаря своему простому в использовании жидкому состоянию и мягкому запаху.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) популярен среди массажистов благодаря своим быстро впитывающимся, нежирным и не оставляющим пятен свойствам.

Используемый в средствах по уходу за кожей, волосами и косметических продуктах, триглицерид средней цепи (каприловый/каприновый триглицерид) MCT обеспечивает легкую и высокостабильную увлажняющую основу, которая имеет нейтральные сенсорные характеристики (запах и цвет), тем самым способствуя положительному потребительскому опыту.
Разработчики рецептур, которые хотят избежать «тяжелых» или «ореховых» запахов, связанных с натуральными или необработанными растительными маслами, найдут очень желательным очень легкий характерный запах MCT - триглицерида средней цепи (каприловый / каприновый триглицерид), который также является хорошей альтернативой. для минерального масла.

Кроме того, благодаря своей немаслянистой, более порошкообразной текстуре MCT - триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может улучшить консистенцию эмульсии, что может улучшить восприятие ее эффективности потребителем, а также идеально подходит для смывания. продукты.
Аналогичным образом, MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) превосходно подходит для придания объема составам по уходу за волосами, поскольку использование «более тяжелых» масел часто имеет тенденцию утяжелять волосы и противодействовать эффекту придания объема.

В отличие от кокосового масла, MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) также некомедогенен, подходит для всех типов кожи и может использоваться, например, для очищения маслом.
Используемый в медицине и питании триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) заработал репутацию более мощного, легко усваиваемого и быстро перевариваемого диетического продукта, который может быть полезен людям с нарушениями питания или липидного обмена.

В отличие от других жиров, MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) имеют нетрадиционный метаболический путь. Через воротную вену они попадают непосредственно в печень и подвергаются окислению с образованием кетонов.
Этот быстро происходящий процесс, минующий естественный и более трудоемкий процесс пищеварения, MCT - триглицерид со средней длиной цепи (каприловый / каприновый триглицерид) считается очень полезным для энергии, физической формы и снижения веса.



КАК ПРОИЗВОДИТСЯ MCT – СРЕДНЕЦЕПОЧНЫЙ ТРИГЛИЦЕРИД (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД)?
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может быть получен как из кокосового, так и из пальмового масла, поскольку оба они являются богатыми источниками необходимых жирных кислот со средней длиной цепи.
Сырое кокосовое или пальмовое масло сначала подвергается гидролизу, который по существу отделяет жирные кислоты от глицериновой «основы» в их жировых соединениях.

Затем жирные кислоты можно разделить по точкам их кипения посредством фракционной перегонки.
Поскольку жирные кислоты со средней длиной цепи имеют более низкие температуры кипения, чем жирные кислоты с длинной цепью, их можно собирать путем нагревания и охлаждения при соответствующих температурах.

После выделения жирных кислот со средней длиной цепи они снова объединяются с глицерином с образованием MCT — триглицеридов со средней длиной цепи (каприловый/каприновый триглицерид) в процессе, известном как этерификация.
Это реакция синтеза дегидратации, в которой два соединения сливаются вместе с образованием воды в качестве побочного продукта.

Катализатор можно использовать, хотя это и не обязательно.
Поскольку это узконаправленный процесс, при этерификации можно использовать желаемые соотношения C8 и C10.

Таким образом, в масле MCT 60/40 60% используемых жирных кислот будет составлять каприловая кислота (C8), а 40% — каприновая кислота (C10).
Наконец, происходит фильтрация и дезодорация для очистки и улучшения сенсорных характеристик полученного MCT – триглицерида со средней длиной цепи (каприлового/капринового триглицерида).



ПОЧЕМУ МЫ ИСПОЛЬЗУЕМ MCT – ТРИГЛИЦЕРИД СРЕДНЕЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД) В СОСТАВАХ?
Почему мы используем его в рецептурах?
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) недорогие и легкие, практически не имеют запаха.
Мне нравится MCT – триглицерид средней цепи (каприлик/каприк триглицерид) в таких продуктах, как очищающие масла и бальзамы, которые смываются.
MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) также может быть хорошей основой для массажных продуктов и хорошо работает в качестве простой основы для смесей более дорогих масел в сыворотках для лица.



НУЖЕН ЛИ ВАМ MCT – СРЕДНЕЦЕПОЧНЫЙ ТРИГЛИЦЕРИД (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД)?
Нет, но мне это очень нравится: MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) — универсальный и недорогой препарат.



MCT – СРЕДНЕЦЕПОЧНЫЙ ТРИГЛИЦЕРИД (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД), РАФИНИРОВАННЫЙ ИЛИ НЕРАФИНИРОВАННЫЙ?
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) существует только в виде очищенного продукта.



СИЛЬНЫЕ СТОРОНЫ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT - Триглицерид со средней длиной цепи (каприлик/каприк триглицерид) недорогой, легкий.



СЛАБЫЕ СТОРОНЫ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид), возможно, не считается полностью «натуральным».



АЛЬТЕРНАТИВЫ И ЗАМЕНЫ MCT – СРЕДНЕЦЕПОЧНЫЙ ТРИГЛИЦЕРИД (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
Хорошим выбором будут другие легкие и недорогие масла, такие как фракционированное кокосовое масло, масло виноградных косточек, сафлоровое масло или подсолнечное масло.



КАК РАБОТАТЬ С MCT – СРЕДНЕЦЕПОЧНЫМ ТРИГЛИЦЕРИДОМ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
Включите в масляную фазу своих продуктов; при необходимости можно подвергать гор��чей или холодной обработке.



ХРАНЕНИЕ И СРОК ГОДНОСТИ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВОГО/КАПРИКОВОГО ТРИГЛИЦЕРИДА):
Хранить в прохладном, темном и сухом месте триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) следует в течение не менее двух лет.



СОВЕТЫ, ХИТРОСТИ И ОСОБЕННОСТИ MCT – ТРИГЛИЦЕРИДА СРЕДНЕЦЕПОЧНОЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
Фракционированное кокосовое масло и MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) – это не одно и то же.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) – это всего лишь триглицериды со средней длиной цепи, содержащиеся в кокосовом масле (каприловый/каприновый триглицерид, тогда как фракционированное кокосовое масло представляет собой кокосовое масло без триглицеридов с длинной цепью, но все же содержащее триглицериды с короткой и средней цепью.

Это различие редко бывает важным, хотя оно очень важно для тех, кто страдает грибковыми прыщами.
Несмотря на то, что это «не одно и то же», вы очень часто обнаружите, что они продаются так, как будто они есть.
Обычно это принимает форму MCT — триглицерида со средней длиной цепи (каприловый/каприновый триглицерид), который продается как фракционированное кокосовое масло (они часто оба указаны на этикетке, как если бы они были синонимами).



МЕХАНИЗМ ДЕЙСТВИЯ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) расщепляются на глицерин и жирные кислоты со средней длиной цепи, которые непосредственно всасываются в кровоток и транспортируются к органам-мишеням, где подвергаются β-окислению с образованием ацетил-КоА.
β-окисление является наиболее распространенным механизмом действия для производства энергии, получаемой в результате метаболизма жирных кислот.

Поскольку жирные кислоты со средней длиной цепи быстро окисляются, это приводит к большим затратам энергии.
Жирные кислоты являются важными субстратами для производства энергии, а также играют решающую роль в структуре и функционировании мембран.
Кроме того, жирные кислоты действуют как предшественники биоактивных молекул (таких как простагландины) и как регуляторы экспрессии генов.

Жирные кислоты могут опосредовать свое влияние на расход энергии, потребление пищи и отложение жира путем повышения экспрессии и уровня белка генов, участвующих в митохондриальном биогенезе и метаболизме, путем активации сигнальных путей Akt и AMPK и ингибирования сигнального пути TGF-β.
Предполагается, что содействие снижению веса с помощью триглицеридов со средней длиной цепи (каприловый/каприновый триглицерид) может быть обусловлено симпатической активацией термогенеза бурого жира.



АБСОРБЦИЯ, MCT – СРЕДНЕЦЕПОЧНЫЙ ТРИГЛИЦЕРИД (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) быстро всасываются.
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) пассивно и напрямую диффундируют через желудочно-кишечный тракт в портальную систему, а затем в печень, где они окисляются.



ОБЪЕМ РАСПРЕДЕЛЕНИЯ, MCT – СРЕДНЕЦЕПОЧНЫЙ ТРИГЛИЦЕРИД (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
Согласно исследованиям, кажущиеся объемы распределения составляют примерно 4,5 л для триглицеридов со средней длиной цепи (каприловый/каприновый триглицерид) и 19 л для жирных кислот со средней длиной цепи у типичного субъекта массой 70 кг.



СВЯЗЫВАНИЕ БЕЛКА, MCT – СРЕДНЕЦЕПОЧНЫЙ ТРИГЛИЦЕРИД (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) слабо связываются с сывороточным альбумином.
MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) может легко преодолевать гематоэнцефалический барьер.



МЕТАБОЛИЗМ MCT – СРЕДНЕЦЕПОЧНЫХ ТРИГЛИЦЕРИДОВ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) гидролизуются липопротеинлипазой до глицерина и свободных жирных кислот со средней длиной цепи, таких как альфа-линоленовая кислота и линолевая кислота.
Свободные жирные кислоты затем подвергаются β-окислению в таких органах, как печень, почки и сердце.

Альфа-линоленовая кислота и линолевая кислота метаболизируются по общему биохимическому пути через ряд стадий десатурации и удлинения.
Последующими продуктами альфа-линоленовой кислоты являются эйкозапентаеновая кислота (ЭПК) и докозагексаеновая кислота (ДГК), а линолевая кислота превращается в арахидоновую кислоту.



ЕСТЬ РАЗНИЦА МЕЖДУ MCT – ТРИГЛИЦЕРИДОМ СРЕДНЕЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД) И ФРАКЦИОНИРОВАННЫМ КОКОСОВЫМ МАСЛОМ?
MCT — триглицерид со средней длиной цепи (каприлик/каприновый триглицерид), полученный из кокосового масла, можно назвать фракционированным кокосовым маслом.
Тем не менее, MCT - триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) важно отметить, что термин «фракционированное кокосовое масло» может также относиться к продукту, в котором кокосовое масло подверглось простому фракционированию для удаления его длинноцепочечных жирных кислот; другими словами, этерификация не требуется.

Таким образом, в этом случае фракционированное кокосовое масло можно определить как просто фракцию нелетучих масел, но MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) на самом деле является сложным эфиром и больше не имеет «маслянистого» ощущения.
Эта разница отражена в их названиях INCI: фракционированное кокосовое масло остается «Cocos Nucifera (кокосовое) масло», тогда как MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) (полученный как из пальмы, так и из кокоса) становится «каприловым/каприковым триглицеридом».

Поскольку фракционированное кокосовое масло (Cocos Nucifera Oil) также богато MCT, его физические и химические характеристики могут быть очень похожи на MCT — триглицерид со средней длиной цепи (каприловый/каприновый триглицерид).
Однако, поскольку MCT – триглицерид со средней длиной цепи (каприловый/каприновый триглицерид) представляет собой сложный эфир, он имеет еще более легкую, более порошкообразную, немаслянистую текстуру и имеет более высокую скорость впитывания по сравнению с фракционированным кокосовым маслом.



ПОЛЬЗА ДЛЯ ЗДОРОВЬЯ MCT – ТРИГЛИЦЕРИД СРЕДНЕЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
Поскольку MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) очень легко всасываются, они используются в клинической практике с 1950-х годов в случаях недостаточности поджелудочной железы, мальабсорбции жиров и при полном парентеральном питании.
Позже MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) были добавлены в смеси для недоношенных детей.
Совсем недавно MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) привлекли внимание спортсменов и тех, кто хочет увеличить выработку кетонов.



КАК РАБОТАЕТ MCT – ТРИГЛИЦЕРИД СРЕДНЕЙ ЦЕПИ (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД)?
MCT – триглицериды со средней длиной цепи (каприловый/каприновый триглицерид) являются источником жира для пациентов, которые не переносят другие типы жиров.
Исследователи также считают, что эти жиры производят в организме химические вещества, которые могут помочь в борьбе с болезнью Альцгеймера.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
плотность: 0,94-0,96
давление пара: 0-0Па при 20 ℃
Растворимость: Растворим во всех пропорциях при 20°C в ацетоне, бензоле, 2-бутаноне, четыреххлористом углероде, хлороформе, дихлорметане, этаноле, этаноле (95%), эфире, этилацетате, петролейном эфире, специальном петролейном спирте (предел кипения 80–80–80–95 %). 110°С), пропан-2-ол, толуол и ксилол. Смешивается с длинноцепочечными углеводородами и триглицеридами; практически нерастворим в воде.
форма: Жидкость
Анализ: от 95,00 до 100,00.
Внесен в Кодекс пищевых химикатов: Нет
Точка кипения: от 269,00 до 270,00 °C. @ 760,00 мм рт.ст. (расчетное значение)
Давление пара: 0,003550 мм рт. ст. при 25,00 °C. (стандартное восточное время)
Температура вспышки: 251,00 °F. TCC (121,80 ° C) (оценка)
logP (в/в): 3,965 (расчетное значение)
Растворим в: воде, 0,06951 мг/л при 25 °C (расчетное значение).
Нерастворим в: воде



МЕРЫ ПЕРВОЙ ПОМОЩИ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
-Описание мер первой помощи:
*Общие советы:
Покажите этот паспорт безопасности материала лечащему врачу.
*При вдыхании:
После ингаляции:
Свежий воздух.
*При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промойте кожу водой/душем.
*В случае зрительного контакта:
После зрительного контакта:
Промойте большим количеством воды.
Вызовите офтальмолога.
Снимите контактные линзы.
*При проглатывании:
После глотания:
Немедленно дайте пострадавшему выпить воды (максимум два стакана).
Проконсультируйтесь с врачом.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВОГО/КАПРИКОВОГО ТРИГЛИЦЕРИДА):
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Возьмите в сухом виде.
Утилизируйте должным образом.



МЕРЫ ПОЖАРОТУШЕНИЯ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Вода
Мыло
Углекислый газ (CO2)
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дальнейшая информация:
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте защитные очки.
*Защита кожи:
Полный контакт:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Всплеск контакта:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
*Защита тела:
защитная одежда
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВОГО/КАПРОВОГО ТРИГЛИЦЕРИДА):
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
Сухой.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ MCT – СРЕДНЕЦЕПОЧНОГО ТРИГЛИЦЕРИДА (КАПРИЛОВЫЙ/КАПРИКОВЫЙ ТРИГЛИЦЕРИД):
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура).
-Несовместимые материалы:
Данные недоступны



СИНОНИМЫ:
1,2,3-пропантриол триоктаноат
АС-1202
Кислота Каприк
Кислота каприловая
Кислота Лаурик
Каприновая кислота
Капроновая кислота
Каприловая кислота
Каприловые триглицериды
Лауриновая кислота
МСТ
МСТ
МСТ
Среднецепочечные триацилглицерины
Среднецепочечные триглицериды, TCM
Трикаприлин
Триоктаноин
Порошок триглицеридов средней цепи
порошок МСТ



MEA LAURYL SULFATE
MEA-LAURYL SULFATE, N° CAS : 4722-98-9, Nom INCI : MEA-LAURYL SULFATE, Nom chimique : (2-Hydroxyethyl)ammonium dodecylsulphate, N° EINECS/ELINCS : 225-214-3, Classification : ,Sulfate, Règlementé, MEA. Restriction en Europe : III/61. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
MEDIALAN LD
Anionic surfactant for the cosmetic industry MEDIALAN LD Composition Lauroyl sarcoside sodium salt MEDIALAN LD INCI name Sodium Lauroyl Sarcosinate MEDIALAN LD PRODUCT PROPERTIES1 MEDIALAN LD Appearance (20 °C) clear, liquid MEDIALAN LD Iodine colour number max. 1.0 MEDIALAN LD pH-value (1 % water solution) 7.0 – 8.5 MEDIALAN LD solid content 29.0 – 31.0 % MEDIALAN LD Average molecular weight 293 g/mol MEDIALAN LD Manufacture Reaction of coconut fatty acid chloride with sarcosin (Schotten Baumann). Neutralisation with NaOH. MEDIALAN LD Profile Because of its excellent physiological properties and neutral taste MEDIALAN LD is widely used as a foaming agent in dental care preparations, especially in toothpastes. The concentration of MEDIALAN LD in toothpastes is usually in the range of 1 % to 6 %. As a liquid, MEDIALAN LD does not cause troublesome dusting in processing. MEDIALAN LD combines a good cleansing action with relatively weak degreasing. Thus for the manufacture of hair shampoos and body cleansing products MEDIALAN LD is often best combined as mild co-surfactant with alkyl ether sulphates. MEDIALAN LD Foaming behaviour MEDIALAN LD has very good foaming properties especially in soft water and displays interesting synergistic and foam-stabilising properties when combined with other surfactants, e.g. alkyl ether sulphates. The foaming behaviour of MEDIALAN LD also depends on the pH of the finished product. It is usually worthwhile to adjust the formulations to a slightly acid pH of between 5.5 and 6.5, for instance with citric acid. Foam stability in relation to time is also considerably better in the weakly acid than in the alkaline pH range. Compared with some other surfactants, MEDIALAN LD has excellent foaming power in electrolyte-containing solutions.
MEDIALAN LD PF10
ОПИСАНИЕ:
Medialan LD PF 10 — идеальный выбор для очистки продуктов без резкой маркировки и высокой эффективности очистки.
Medialan LD PF 10 мягко воздействует как на кожу, так и на окружающую среду.
Medialan LD PF 10 — анионное поверхностно-активное вещество для косметической промышленности.


Номер CAS: 137-16-6, 7732-18-5, 55965-84-9
EINECS/ELINCS №: 205-281-5, 231-791-2, 611-341-5


ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА MEDIALAN LD PF10:
Химическое название: Лауроилсаркозинат натрия.
Претензии:
Поверхностно-активные вещества / Очищающие агенты > Анионы > Алкилсаркозинаты
пенообразователь
Имена ИНКИ:
НАТРИЯ ЛАУРОИЛСАРКОЗИНАТ
АКВА
МЕТИЛХЛОРОИЗОТИАЗОЛИНОН
Химический состав: Натриевая соль саркозида жирной кислоты
Номер CAS: 137-16-6, 7732-18-5, 55965-84-9
Уровень использования: 1-6%
EINECS/ELINCS №: 205-281-5, 231-791-2, 611-341-5
Внешний вид: жидкость, прозрачная
Запах : Характерный
Цвет: желтый
Статус продукта: КОММЕРЧЕСКИЙ


ПРИМЕНЕНИЕ MEDIALAN LD PF10:
Medialan LD PF 10 широко используется в качестве пенообразователя в препаратах для ухода за зубами, особенно в зубных пастах.
Medialan LD PF 10 сочетает в себе хорошее очищающее действие с относительно слабым обезжириванием.
Поэтому при производстве шампуней для волос и продуктов для очищения тела Medialan LD PF 10 лучше всего сочетать в качестве мягкого со-ПАВ с сульфатами алкиловых эфиров.

Medialan LD PF 10 представляет собой лауроилсаркозинат натрия (и) аква (и) метилхлоризотиазолинон.
Medialan LD PF 10 – мягкое анионогенное поверхностно-активное вещество растительного происхождения.
Medialan LD PF 10 Обладает хорошим очищающим действием при относительно слабом обезжиривании.

Medialan LD PF 10 лучше всего сочетается в качестве мягкого со-ПАВ с сульфатами алкиловых эфиров.
Medialan LD PF 10 используется в качестве пенообразователя в препаратах по уходу за зубами, особенно в зубных пастах.
Medialan LD PF 10 также обладает хорошей совместимостью с кожей и слизистыми оболочками, хорошим запахом, нейтральным вкусом и интересными синергетическими свойствами.

Medialan LD PF 10 зависит от рН готового продукта, пригоден для холодной обработки, прост в использовании, устойчив к электролитам и пенообразователю.
Medialan LD PF 10 подходит для прозрачных составов.
Medialan LD PF 10 также используется в средствах для душа, жидком мыле, шампунях, влажных салфетках и средствах для укладки волос.

Medialan LD PF 10 используется для очистки твердых поверхностей.
Medialan LD PF 10 используется для ручного мытья посуды.
Medialan LD PF 10 используется для предварительной обработки белья.
Medialan LD PF 10 используется в качестве жидких моющих средств для стирки.


ПРЕТЕНЗИИ ПО ЭКСПЛУАТАЦИИ:
Усилитель моющих средств
Высокая биоразлагаемость
Превосходный экологический профиль
Мягкий для кожи


ИНФОРМАЦИЯ ПО БЕЗОПАСНОСТИ О MEDIALAN LD PF10:

Меры первой помощи:
Описание мер первой помощи:
Общий совет:
Проконсультируйтесь с врачом.
Покажите этот паспорт безопасности лечащему врачу.
Выйти из опасной зоны:

При вдыхании:
При вдыхании вывести пострадавшего на свежий воздух.
Если нет дыхания проведите искусственную вентиляцию легких.
Проконсультируйтесь с врачом.
При попадании на кожу:
Немедленно снять загрязненную одежду и обувь.
Смыть большим количеством воды с мылом.
Проконсультируйтесь с врачом.

При попадании в глаза:
Тщательно промойте большим количеством воды в течение не менее 15 минут и обратитесь к врачу.
Продолжайте промывать глаза во время транспортировки в больницу.

При проглатывании:
Не вызывает рвоту.
Никогда не давайте ничего в рот человеку, находящемуся без сознания.
Прополоскать рот водой.
Проконсу��ьтируйтесь с врачом.

Противопожарные меры:
Средства пожаротушения:
Подходящие средства пожаротушения:
Используйте водяной спрей, спиртостойкую пену, сухой химикат или двуокись углерода.
Особые опасности, исходящие от вещества или смеси
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород

Совет пожарным:
При необходимости наденьте автономный дыхательный аппарат для тушения пожара.
Меры по случайному выбросу:
Индивидуальные меры предосторожности, защитное снаряжение и порядок действий в чрезвычайных ситуациях
Используйте средства индивидуальной защиты.

Избегайте вдыхания паров, тумана или газа.
Эвакуируйте персонал в безопасные зоны.

Меры предосторожности в отношении окружающей среды:
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Следует избегать выброса в окружающую среду.

Методы и материалы для локализации и очистки:
Впитать инертным абсорбирующим материалом и утилизировать как опасные отходы.
Хранить в подходящих закрытых контейнерах для утилизации.

Обращение и хранение:
Меры предосторожности для безопасного обращения:
Избегайте вдыхания паров или тумана.

Условия для безопасного хранения, включая любые несовместимости:
Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.
Контейнеры, которые открываются, должны быть тщательно запечатаны и храниться в вертикальном положении, чтобы предотвратить утечку.
Класс хранения (TRGS 510): 8A: Горючие, коррозионно-опасные материалы

Контроль воздействия / личная защита:
Параметры управления:
Компоненты с параметрами контроля рабочего места
Не содержит веществ с ПДК на рабочем месте.
Средства контроля воздействия:
Соответствующие инженерные средства контроля:
Обращайтесь в соответствии с правилами промышленной гигиены и техники безопасности.
Мойте руки перед перерывами и в конце рабочего дня.

Средства индивидуальной защиты:
Защита глаз/лица:
Плотно прилегающие защитные очки.
Маска для лица (минимум 8 дюймов).
Используйте средства защиты глаз, проверенные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или EN 166 (ЕС).

Защита кожи:
Обращайтесь в перчатках.
Перчатки должны быть проверены перед использованием.
Используйте подходящую перчатку
метод удаления (не касаясь внешней поверхности перчатки), чтобы избежать контакта с кожей с этим продуктом.
Утилизируйте загрязненные перчатки после использования в соответствии с применимыми законами и передовой лабораторной практикой.
Вымойте и высушите руки.

Полный контакт:
Материал: Нитриловый каучук
Минимальная толщина слоя: 0,11 мм
Время прорыва: 480 мин.
Испытанный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Заставка контакта
Материал: Нитриловый каучук
Минимальная толщина слоя: 0,11 мм
Время прорыва: 480 мин.
Испытанный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Его не следует рассматривать как предложение одобрения для какого-либо конкретного сценария использования.

Защита тела:
Полный костюм, защищающий от химических веществ. Тип средств защиты необходимо выбирать в зависимости от концентрации и количества опасного вещества на конкретном рабочем месте.
Защита органов дыхания:
Там, где оценка риска показывает, что воздухоочистительные респираторы уместны, используйте полнолицевые респираторы с многоцелевыми комбинированными (США) или респираторными картриджами типа ABEK (EN 14387) в качестве резерва средств технического контроля.

Если респиратор является единственным средством защиты, используйте полнолицевой респиратор с подачей воздуха.
Используйте респираторы и компоненты, проверенные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или CEN (ЕС).
Контроль воздействия окружающей среды
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Следует избегать выброса в окружающую среду.

Стабильность и химическая активность:
Химическая стабильность:
Стабилен при соблюдении рекомендуемых условий хранения.
Несовместимые материалы:
Сильные окислители:
Опасные продукты разложения:
Опасные продукты разложения, образующиеся в условиях пожара.
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород.

Утилизация отходов:
Методы обработки отходов:
Продукт:
Предложите излишки и неперерабатываемые решения лицензированной компании по утилизации.
Обратитесь в лицензированную профессиональную службу по утилизации отходов, чтобы утилизировать этот материал.
Загрязненная упаковка:
Утилизируйте как неиспользованный продукт.
MEKO
MELAMINE; Cymel; 1,3,5-Triazine-2,4,6-triamine; cyanuramide; cyanuric triamide; triaminotriazine; 2,4,6-triamino-1,3,5-triazine; cyanurotriamide; Teoharn; Theoharn; Virset 656-4; cyanurotriamine; 2,4,6-triamino-s-triazine; s-triaminotriazine; 2,4,6-triamino sym-triazine; 1,3,5-triazine-2,4,6(1H,3H,5H)triimine; cas no: 108-78-1
MELAMINE
MELANIN, melanine, N° CAS : 8049-97-6. Nom INCI : MELANIN. N° EINECS/ELINCS : 232-473-6. Ses fonctions (INCI) : Agent de protection de la peau : Aide à éviter les effets néfastes des facteurs externes sur la peauLe mot mélanine est un mot générique qui désigne de nombreux pigments biologiques foncés qui sont notamment responsables de la coloration des téguments dans le règne animal. Chez l'être humain, la couleur de la peau, des cheveux et des yeux dépendent principalement de son type et de sa concentration. De nombreux animaux en produisent également, dont les oiseaux (coloration des plumes) et certains protozoaires.
Mélanine
MENTHOL, N° CAS : 1490-04-6 / 2216-51-5 / 89-78-1 / 15356-70-4 - Menthol. Autres langues : Mentol, Mentolo. Nom INCI : MENTHOL. Nom chimique : Cyclohexanol, 5-methyl-2-(1-methylethyl)-, N° EINECS/ELINCS : 216-074-4 / 218-690-9 / 201-939-0 / 239-388-3, Le menthol fait partie de la famille des alcools, il est obtenu à partir des huiles de menthe ou menthe poivrée. Il a une odeur de menthe poivrée. Il est connu pour ses effets tonifiants et rafraîchissants pour la peau. Ses fonctions (INCI). Dénaturant : Rend les cosmétiques désagréables. Principalement ajouté aux cosmétiques contenant de l'alcool éthylique. Le menthol est un composé organique covalent obtenu soit par synthèse, soit par extraction à partir de l'huile essentielle de menthe poivrée ou d'autres huiles essentielles de menthe. Le stéréoisomère le plus courant du menthol est le (–)-menthol, de configuration (1R,2S,5R). Il appartient à la famille des monoterpénols. À température ambiante (20 à 25 °C), il se trouve sous forme de cristaux, d'une couleur blanc cireux. Il fond si l'on augmente légèrement la température. Le menthol a des propriétés anti-inflammatoires et antivirales. Il est d'ailleurs utilisé pour soulager les irritations mineures de la gorge. C'est également un anesthésique local.Nom UICPA (1R,2S,5R)-5-méthyl-2-(propan-2-yl)cyclohexanol. Synonymes : 5-méthyl-2-(1-méthyléthyl)-cyclohexan-1-ol, (1R,2S,5R)-2-isopropyl-5-méthylcyclohexanol. No CAS 89-78-1, racémique, 2216-51-5, (−)-isomère, 15356-60-2(+)-isomère, Le menthol est inclus dans nombre de produits différents pour plusieurs raisons comme : soulagement à court terme de la gorge endolorie et de l'irritation mineure de la bouche ou de la gorge (bains de bouche par exemple) ; antipruritique, pour réduire les démangeaisons ; anesthésique local pour soulager des maux et douleurs mineures telles que des crampes musculaires, entorses, migraines. Il peut être utilisé seul ou combiné à du piment ou du camphre. En Europe, il est plutôt utilisé en gel ou en crème ; décongestionnant pour les voies respiratoires et les sinus ; pesticide contre les acariens (acaricide) ; dans certains médicaments traitant les brûlures mineures, il produit une sensation de froid (souvent utilisés en application locale, en association avec l'aloès) ; additif dans certaines cigarettes, comme saveur, pour réduire l'âcreté, favoriser l'inhalation profonde de la fumée et augmenter l'addiction9 ; additif dans certaines saveurs de liquides pour cigarettes électroniques ; comme désinfectant pour l'hygiène orale, ou remède contre la mauvaise haleine, comme collutoire, dans les pâtes dentifrices, et plus généralement comme agent de saveur pour les chewing-gums et les sucreries ; dans les sodas, aussi bien mélangé avec de l'eau pour obtenir une boisson à très faible teneur en alcool, comme dans le Ricqlès (on fait ici référence à la boisson, et non à l'alcool de menthe de la même marque) ;en versant quelques gouttes d'alcool de menthe sur un morceau de sucre pour soulager la nausée ; pour préparer des esters menthylés afin d'agrémenter des notes florales en parfumerie ; en patchs pour faire tomber la fièvre ou obtenir une sensation de froid (très développé au Japon) ; additif à certains produits de beauté (produits coiffants par exemple). Les défenseurs de l'homéopathie pensent que le menthol interfère avec les produits homéopathiques. Son utilisation est fortement déconseillée en association avec ceux-ci, au point de proscrire les dentifrices à base de menthol. Le menthol peut être utilisé en aromathérapie sous forme d'huile essentielle de menthe poivrée (médecine naturelle), l'indigestion, la nausée, les maux de gorge, la diarrhée, les maux de tête et les refroidissements (médecine orientale). Le menthol a une toxicité relativement basse : DL50 de 3 300 mg·kg-1 pour le rat, oral ; DL50 de 15 800 mg kg−1 pour le lapin, peau.En chimie organique, le menthol est utilisé comme auxiliaire chiral dans la synthèse de centres asymétriques. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Agent rafraîchissant : Procure une fraîcheur agréable à la peau. Agent apaisant : Aide à alléger l'inconfort de la peau ou du cuir chevelu. L-(-)-Menthol (1R,2S,5R)-5-Methyl-2-(1-methylethyl)cyclohexanol (-)-(1R,2S,5R)-Menthol (-)-(1R,3R,4S)-Menthol (−)-menthol (-)-Menthol (-)-MENTHYL ALCOHOL (-)-p-Menthan-3-ol (-)-trans-p-Methan-cis-3-ol (1R)-(-)-Menthol (1R,2S,5R)-(-)-Menthol (1R,2S,5R)-(−)-Menthol (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol [ACD/IUPAC Name] (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol [German] [ACD/IUPAC Name] (1R,2S,5R)-2-Isopropyl-5-méthylcyclohexanol [French] [ACD/IUPAC Name] (1R,2S,5R)-5-methyl-2-propan-2-yl-cyclohexan-1-ol (R)-(-)-Menthol [1R-(1a,2b,5a)]-5-Methyl-2-(1-methylethyl)cyclohexanol 201-939-0 [EINECS] 218-690-9 [EINECS] 2216-51-5 [RN] 89-78-1 [RN] Cyclohexanol, 5-methyl-2-(1-methylethyl)-, (1R,2S,5R)- [ACD/Index Name] levo-menthol Levomenthol [BAN] Levomentholum [Latin] L-Menthol [JP15] Menthol Menthol, l- (-)-trans-p-Menthan-cis-ol (±)-Menthol (±)-Menthol (l)-Menthol 1490-04-6 [RN] 15356-20-4 [RN] 239-388-3 [EINECS] 5-methyl-2-propan-2-ylcyclohexan-1-ol 63975-60-0 [RN] 6515-58-8 [RN] 98167-53-4 [RN] dl-mentho hexahydrothymol L(-)-Menthol Laevo-Menthol Leavo-menthol Levomentholum levomentol Menthacamphor MENTHOL (L) Menthol racemic Menthol, (1R,3R,4S)-(-)- Menthol, cis-1,3,trans-1,4- MFCD00001484 [MDL number] MFCD00062983 [MDL number] MFCD00064814 [MDL number] Peppermint camphor;Menthol WLN: L6TJ AY1&1 BQ D1 WLN: L6TJ AY1&1 DQ D1 -L 薄荷醇 [Chinese]
MELAPUR 200/70
Melapur 200/70 – безгалогенный антипирен на основе полифосфата меламина.
При воздействии сильного огня Melapur 200/70 образует устойчивый обуглившийся материал, который защищает полимер и предотвращает дальнейшее распространение пламени.
Melapur 200/70 соответствует UL 94 V0 (0,8 мм) при 25% по весу.

КАС: 218768-84-4
МФ: C3H6N6.(H3PO4)n
ЭИНЭКС: 239-590-1

МЕЛАПУР 200/70 – соль меламина и полифосфорной кислоты.
подходит в качестве антипирена для полиамида 66, армированного стекловолокном.
MELAPUR 200/70 — безгалогенный антипирен на основе меламина для армированных стекловолокном материалов.
полиамид 66.
MELAPUR 200/70, полифосфат меламина, представляет собой специально разработанный безгалогеновый антипирен.
для полиамида 66, армированного стекловолокном.
В виде белого порошка Melapur 200/70 открывает новый, более широкий цвет.
схемы для огнестойкого стекловолокна PA 66.
Механизм основан на вспучивании.
При воздействии огня образуется прочный и устойчивый обугл, который защищает полимер и предотвращает его образование.
Хороший баланс между вспучиваемостью и термической стабильностью MELAPUR 200/70 обеспечивает
окно обработки до 320 o C.
Отличные данные по здоровью и безопасности дают дополнительные преимущества при обращении и переработке.

Синонимы
Мелапур 200
Мелапур М 200
Меламин полифосфат (FR-NP)
ФР-НП
Fr-Np меламин полифосфат
Меламин фосфат
20208-95-1
1,3,5-Триазин-2,4,6-триамин, фосфат
41583-09-9
1,3,5-триазин-2,4,6-триаминфосфат
Триазинтриаминфосфат
монофосфат меламина
ЭИНЭКС 255-449-7
218768-84-4
фосфорная кислота;1,3,5-триазин-2,4,6-триамин
ДОС5Q2BU94
1,3,5-Триазин-2,4,6-триамин, фосфат (1:1)
1,3,5-триазин-2,4,6-триаминмонофосфат
ЭИНЭКС 243-601-5
1,3,5-Триазин-2,4,6-триамин, фосфат (1:?)
ЭК 255-449-7
ненавидеть
ВТУМЕСЦЕНТНОЕ СОЕДИНЕНИЕKE8000
Меламин Полифосп
ЭИНЭКС 260-493-5
UNII-DOS5Q2BU94
C3H6N6.xH3O4P
СХЕМБЛ73239
C3H6N6.H3O4P
DTXSID80872787
XFZRQAZGUOTJCS-UHFFFAOYSA-N
C3-H6-N6.H3-O4-P
C3-H6-N6.x-H3-O4-P
МЕЛАМИН, ФОСФАТ (1:1)
MFCD00060248
АКОС028108538
АС-15268
CS-0449429
FT-0628188
FT-0742330
F71215
Ди(1,3,5-триазин-2,4,6-триамин)фосфат
1,3,5-Триазин-2,4,6-триамин, фосфат (2:1)
MELMENT F 10
Melment F 10 Description Melamine Superplasticizer Melment F 10 Technical Data Sheet Chemical Nature Melment F 10 is free-flowing spray dried powder of a sulphonated polycondensation product based on melamine. Superplasticizer for cement and calcium sulphate based materials. Properties Typical Properties Physical shape powder Appearance characteristic, white to slightly colored Drying loss max. 4.0% Bulk density 500 – 800 kg/m³ Dosage recommendation 0.20 – 2.00% by weight of cementitious materials pH value at 20 ˚C, 20% solution 9.0 – 11.4 Applications Fields of application Melment® F 10 is especially optimized for plastification and water reduction of cement and calcium sulphate based materials; including the following: • Self-leveling underlayments (SLU) • Feather edge products • Cementitious floor screeds • Dry-mix concrete • Repair mortars • Non-shrink grouts • Cementitious self leveling floor screeds • Tile adhesives and joint fillers Safety General The usual safety precautions when handling chemicals must be observed. These include the measures described in Federal, State and Local health and safety regulations, thorough ventilation of the workplace, good skin care and wearing of protective goggles. Material Safety Data Sheet All safety information is provided in the Material Safety Data Sheet for Melment F 10. Transport Regulation Not known as a dangerous good according to transport regulations. Product Description Leveraging on our vast industrial experience, we offer an extensive range of Melamine Powder. This product is processed in conformity with international standards using certified chemical compounds with the help of highly advanced techniques. This product is meticulously tested by our vendors on well defined parameters to ensure its optimum quality, precise pH value and purity. Apart from this, we offer this product at industry leading rates within promised time-frame. Features: Precise pH value Optimum quality Purity Fields of Application: MELMENT F 10 is especially optimized for plastification and water reduction of cement based materials. Self-levelling underlayments (SLU) Feather-edge products Non-shrink grouts Cementitious floor screeds Cementitious self-levelling floor screeds Tiles adhesives and joint fillers Repair mortars Dry-mix concrete Packaging: 25 kg paper bag 100 kg big bag Melamine Superplasticizer melment f10 similared superplasticizer SMF Melamine Sulphonate Superplasticizer is a high range water reducing admixture. We are one of the best superplasticizer manufacturers in China. SMF Melamine Sulphonate Superplasticizer is a free flowing, spray dried powder of polycarboxylate resin. It's environment-friendly and widely applied to high performance concrete. It's dispersiveness is good, water reducing rate is high and adaptability to various cement. Fluidity of ixtures is excellent when used in concrete and mortar. It's also an excellent dispersion plasticizer suitable for gypsum, ceramic and other mineral materials Specification for Melamine Sulphonate Superplasticizer Appearance Light yellow powder Solid content(%) 95Min Density(Kg/m3) 500-600 Moisture (%) 5.0Max Alkali content (%) 5.0Max Cl content (%) 0.2Max PH Value (1%Sol.) 8.0-9.5 3. Advantage for Melamine Sulphonate Superplasticizer Advantage:of Polycarboxylate based superplasticizer Lower dosage: high water reducing (25-40%), and cement save 15-30%. Low slump loss: less than 20% during two hours. Good compatibility: mix with many kinds of cements and admixtures. Lower shrinkage: improve compression of fresh mixed concrete. Low chloride and alkali content, no corrosion to rebar. High stability: no precipitation at low temperature Application 4. Application for Melamine Sulphonate Superplasticizer a. Long-distance transportation pump concrete b. Compounding high durable concrete required impermeability, high ability of keeping collapse and frost-resistance c. Compounding high flowing concrete, self-leveling grounds, fair-faced concrete and grouts materials, gypsum products d. Compounding concrete with high dosage of flyash and mineral powder MELMENT F10 is a melamine sulphonate based, powder form superplasticizer used in bagged manufacturing of powder products such as cement and gypsum. Usage places ■ In construction chemicals industry, cement-based powder manufacturing, ■ In the construction chemicals industry, gypsum-based powder manufacturing, ■ Where liquid superplasticizer is difficult to transport, ■ It is used in the production of mold plaster in the industry. Advantages ■ It increases the strength of powder products by reducing the mixing water. ■ Although it reduces the mixing water of powder products, it increases the processability. ■ It does not change the colors of powder-form products. Liquid superplasticizer is obtained easily by mixing with water on site ■ In order to increase the workability and strength of the mixture, at the rate of 0.5 - 0.9 kg, ■ For leveling screeds and precast gypsum elements at a rate of 0.6 -1.5 kg, ■ It is used at the rate of 0.5-1.5 kg for plaster molds. The dosage of use is determined based on laboratory experiments. BASF - YKS Technical Service should be consulted for detailed information. Packaging 25 kg polletllen reinforced kraft bag Shelf Life It is 24 months from the production date under appropriate storage conditions, in its original packaging. Opened packages must be used within one week under appropriate storage conditions. Dosage MELMENT F10 in 100 kg binder: ■ In the ratio of 0.2 - 0.4 kg to increase the processability of the mixture, ■ In order to increase the strength of the mixture, at the rate of 0.3 - 0.6 kg Product description MELMENT F10 is a powder form superplasticizer based on melamine sulphonate which is used in bagged manufacturing of powder products such as cement and plaster. MELMENT® F 10 MELMENT F10 is a melamine sulphonate based, powder form superplasticizer used in bagged manufacturing of powder products such as cement and gypsum. Usage places In the construction chemicals industry, in cement-based powder manufacturing, Construction chemicals industry, gypsum-based powder manufacturing, Where liquid superplasticizer is difficult to transport, It is used in the production of mold plaster in the industry. Advantages It increases the strength of powder products by reducing the mixing water. Although it reduces the mixing water of powder products, it increases the processability. It does not change the color of powder products. A liquid superplasticizer is obtained easily mixed with water on site. 0.5 - 0.9 kg in order to increase the workability and strength of the mixture, 0.6 -1.5 kg for leveling screeds and precast gypsum elements, It is used at the rate of 0.5-1.5 kg for plaster molds. The dosage of use is determined based on laboratory experiments. Packaging 25 kg polletllen reinforced kraft bag Shelf life It is 24 months from the production date under appropriate storage conditions, in its original packaging. Opened packages must be used within one week under appropriate storage conditions. MELMENT F 10 MELMENT F 10 is a melamine sulphonate based, powder form superplasticizer that is used in the bagged manufacturing of powder products such as cement and plaster. Placeholder BASF-YKS MELMENT F 10 MELMENT F 10 is a melamine sulphonate based, powder form superplasticizer that is used in the bagged manufacturing of powder products such as cement and plaster. Categories: Concrete Additives. Tags: BASF-YKS, concrete. Explanation Product description Usage places In the construction chemicals industry, cement-based powder manufacturing, Construction chemicals industry, gypsum-based powder manufacturing, Where liquid superplasticizer is difficult to transport, It is used in the production of mold plaster in the industry. Advantages It increases the strength of powder products by reducing the mixing water. Although it reduces the mixing water of powder products, it increases the workability. It does not change the colors of powder-form products. A liquid superplasticizer is obtained easily mixed with water on site. Technicial Specifications Structure of the Material Melamine Sulphonate based Color White Density 1.8 - 1.9 kg / liter MELMENT® F 10 Definition MELMENT® F 10, melamine sulphonate based, cement and in the bagged manufacture of powder products such as plaster It is a powder form superplasticizer used. Usage places Cement based in the construction chemicals industry in powder manufacturing, Gypsum-based powder in the construction chemicals industry in manufacturing, Liquid superplasticizer is difficult to transport places, It is used in the production of mold plaster in the industry. Advantages Powder products' strength by reducing the mixing water increases. Although powder products reduce the mixing water It increases its workability. It does not change the colors of powder productions. Liquid can be easily mixed with water at the site. superplasticizer is obtained. Dosage MELMENT® F 10 in 100 kg binder: 0.2 - 0.4 to increase the workability of the mixture at the rate of kg, 0.3 - 0.6 kg to increase the strength of my mixture at the rate of Increasing the workability and strength of my mixture 0.5 - 0.9 kg for For leveling flaps and precast plaster elements At the rate of 0.6 - 1.5 kg, It is used at the rate of 0.5 - 1.5 kg for plaster molds. Usage depending on laboratory experiments waist dosage
Menthol
SYNONYMS (+-)-Menthol; 5-Methyl-2-(1-methylethyl)cyclohexanol; (1R,2S,5R)-Menthol; 2-isopropyl-5-methyl-cyclohexanol; Menthyl alcohol; (1 alpha, 2 beta, 5alpha)-5-Methyl-2-(1-methylethyl)cyclohexanol; Hexahydrothymol; Menthol; cis-1,3,trans-1,4-menthol; Menthomenthol; p-Menthan-3-ol; Peppermint Camphor; Racementhol; Racemic menthol; Hexahydrothymol; Menthol racemique; Racementholum; rac-Menthol; (1R,2S,5R)-rel- 5-Methyl-2-(1-methylethyl)cyclohexanol; dl-Menthol; CAS NO. 89-78-1; 15356-70-4(racementhol), 2216-51-5; 98167-53-4(Levomenthol)
Menthol ( D,L-MENTHOL )
Menthol, Cas : 2216-51-5, EC : 218-690-9, Noms français : (-)-MENTHOL; (1R,3R,4S)-(-)-MENTHOL; (L)-MENTHOL; CYCLOHEXANOL, 5-METHYL-2-(1-METHYLETHYL)-, (1R-(1.ALPHA.,2.BETA.,5.ALPHA.))-; CYCLOHEXANOL, 5-METHYL-2-(1-METHYLETHYL)-, (1R-(1ALPHA,2BETA,5ALPHA))-; L-MENTHOL MENTHOL, (1R,3R,4S)-(-)-. Le menthol est un composé organique covalent obtenu soit par synthèse, soit par extraction à partir de l'huile essentielle de menthe poivrée ou d'autres huiles essentielles de menthe. Le stéréoisomère le plus courant du menthol est le (–)-menthol, de configuration (1R,2S,5R). Il appartient à la famille des monoterpénols. À température ambiante (20 à 25 °C), il se trouve sous forme de cristaux, d'une couleur blanc cireux. Il fond si l'on augmente légèrement la température. Le menthol a des propriétés anti-inflammatoires et antivirales. Il est d'ailleurs utilisé pour soulager les irritations mineures de la gorge. C'est également un anesthésique local.Le menthol est inclus dans nombre de produits différents pour plusieurs raisons comme : soulagement à court terme de la gorge endolorie et de l'irritation mineure de la bouche ou de la gorge (bains de bouche par exemple) ; antipruritique, pour réduire les démangeaisons ; anesthésique local pour soulager des maux et douleurs mineures telles que des crampes musculaires, entorses, migraines. Il peut être utilisé seul ou combiné à du piment ou du camphre. En Europe, il est plutôt utilisé en gel ou en crème ; décongestionnant pour les voies respiratoires et les sinus ; pesticide contre les acariens (acaricide) ; dans certains médicaments traitant les brûlures mineures, il produit une sensation de froid (souvent utilisés en application locale, en association avec l'aloès) ; additif dans certaines cigarettes, comme saveur, pour réduire l'âcreté, favoriser l'inhalation profonde de la fumée et augmenter l'addiction9 ; additif dans certaines saveurs de liquides pour cigarettes électroniques ; comme désinfectant pour l'hygiène orale, ou remède contre la mauvaise haleine, comme collutoire, dans les pâtes dentifrices, et plus généralement comme agent de saveur pour les chewing-gums et les sucreries ; dans les sodas, aussi bien mélangé avec de l'eau pour obtenir une boisson à très faible teneur en alcool, comme dans le Ricqlès (on fait ici référence à la boisson, et non à l'alcool de menthe de la même marque) ; en versant quelques gouttes d'alcool de menthe sur un morceau de sucre pour soulager la nausée ; pour préparer des esters menthylés afin d'agrémenter des notes florales en parfumerie ; en patchs pour faire tomber la fièvre ou obtenir une sensation de froid (très développé au Japon) ; additif à certains produits de beauté (produits coiffants par exemple). Les défenseurs de l'homéopathie pensent que le menthol interfère avec les produits homéopathiques. Son utilisation est fortement déconseillée en association avec ceux-ci, au point de proscrire les dentifrices à base de menthol. Le menthol peut être utilisé en aromathérapie sous forme d'huile essentielle de menthe poivrée (médecine naturelle), l'indigestion, la nausée, les maux de gorge, la diarrhée, les maux de tête et les refroidissements (médecine orientale).
Menthol crystal
Cyclohexanol, 2-isopropyl-5-methyl; Cyclohexanol, 5-methyl-2-(1-methylethyl)-, (1R,2S,5R)-rel-; 3-p-Menthanol; (1R, 2S, 5R)-rel-5-methyl-2-(1-methylethyl)-cyclohexan ol; [1alpha,2beta,5alpha]-5-Methyl-2-isopropylcyc lohexanol; Hexahydrothymol; menthol racemic cas:89-78-1
MERGAL BIT 20
MERGAL BIT 20 is an effective broad-spectrum liquid preservative designed to inhibit the growth of micro-organisms such as bacteria, yeast, and fungi in aqueous based formulations Mergal BIT 20 by Troy Corporation acts as a biocide. Based on BIT chemistry and compatible over a wide pH range. Mergal BIT 20 is heat stable and formaldehyde-free. Mergal BIT 20 offers high pH formulations and is compatible with amines as well as amine containing additives. Mergal BIT 20 is designed to inhibit the growth of microorganisms such as bacteria, yeast, and fungi in aqueous based formulations. MERGAL BIT20 For Industrial Use Only As A Microbiostat Preservative Intended To Protect Adhesives, Building And Construction Compositions, Emulsion Paint And Coatings, Inks, Lattices, Leather Processing Solutions, Metalworking Fluids, Mineral Slurries And Dispersions, Oil Recovery Systems, Paper Coatings, Pesticide Formulations, Polymer Emulsions, Textile Spin-Finish And Coatings, Car Care Products Including Car Washes, Car Waxes And Silicone Emulsions, Home Care Cleaning Products Including Floor Cleaners, Floor Waxes, Floor Polishes And Surface Cleaners, Laundry Additives Including Liquid Laundry Detergents, Fabric Softeners And Stain Removers. ACTIVE INGREDIENT: ....................................... % Weight 1,2-Benzisothiazolin-3(2H)-one ............................. 19.18% INERT INGREDIENTS ............................................. 80.82% TOTAL ................................................................... 100.00% GENERAL INFORMATION APPLICATION RATE: Mergal BIT20 is an effective preservative for most aqueous applications. Mergal BIT20 is used in aqueous or water-containing products and systems to control growth of bacteria and fungi. Use rates are in percentage by weight and refer to the product Mergal BIT20. In order to determine the most cost effective use level for Mergal BIT20 in a given use, field trials are suggested. GENERAL RECOMMENDATIONS: For protection against bacterial attack, a concentration within the range of 0.02 – 0.35% of this product is almost invariably sufficient. The control of mold growth, particularly on paste products of high solids content, may occasionally demand dosages above 0.25%. In dilute fluid systems, spoilage is usually controlled with dosages not greater than 0.09%. The use rate is 0.05 – 0.25% wt/wt in the following products: Adhesives, Building and Construction Compositions, Emulsion Paint and Coatings, Inks, Lattices, Leather Processing Solutions, Metalworking Fluids, Mineral Slurries and Dispersions, Paper Coatings, Pesticide Formulations, Polymer Emulsions, Textile Spin-Finish and Coatings. Mergal BIT20 is approved for adhesives used in food packaging and food contact paper and paperboard coatings. Use of Mergal BIT 20 must not exceed 0.21 mg/in2 (0.0326 mg/cm2) of finished paper and paperboard intended for contact with dry foods and 0.11 mg/in2 (0.0168 mg/cm2) of finished paper and paperboard intended for contact with aqueous and fatty foods. Oil Recovery Systems: Drilling fluids, packer fluids, completion fluids: Polysaccharide fluid loss control agents and thickeners such as starch, guar, and xanthan gum at a use rate of 0.05 – 0.15% on fluid weight or 1.5 – 4.5% on the dry polysaccharide eight. Subsurface injection waters such as polymer and micellar/polymer waterfloods: Thickeners such as polysaccharides and xanthan gum at a use rate of 0.05 – 0.15% on the solution weight. . GENERAL INFORMATION APPLICATION RATE: Mergal BIT20 is an effective preservative for most aqueous applications. Mergal BIT20 is used in aqueous or water-containing products and systems to control growth of bacteria and fungi. Use rates are in percentage by weight and refer to the product Mergal BIT20. In order to determine the most cost effective use level for Mergal BIT20 in a given use, field trials are suggested. The use rate is 0.05 – 0.3% wt/wt in the following products: Car Washes, Car Waxes And Silicone Emulsions, Home Care Cleaning Products Including Floor Cleaners, Floor Waxes, Floor Polishes And Surface Cleaners, Laundry Additives Including Liquid Laundry Detergents, Fabric Softeners And Stain Removers. Mergal BIT20 is an effective broad-spectrum, liquid preservative designed to inhibit the growth of microorganisms such as bacteria, yeast, and fungi in aqueous based formulations. GENERAL INFORMATION APPLICATION RATE: Mergal BIT20 is an effective preservative for most aqueous applications. Mergal BIT20 is suggested for use in aqueous or water-containing products and systems to control growth of bacteria and fungi. In order to determine the most cost effective use level for Mergal BIT20 in a given use, field trials are suggested. GENERAL RECOMMENDATIONS: For protection against bacterial attack, a concentration within the range of 0.02 – 0.35% of this product is almost invariably sufficient. The control of mold growth,particularly on paste products of high solids content, may occasionally demand dosages above 0.25%. In dilute fluid systems, spoilage is usually controlled with dosages not greater than 0.09%. The use rate is 0.05-0.35% wt/wt of Mergal BIT20 in the following products: Adhesives, Building and Construction Compositions, Emulsion Paint and Coatings, Inks, Latices, Leather Processing Solutions, Metalworking Fluids, Mineral Slurries and Dispersions, Paper Coatings, Pesticide Formulations, Polymer Emulsions, Textile Spin-Finish And Coatings. Mergal BIT20 is approved for adhesives used in food packaging and food contact paper and paperboard coating. Use of Mergal BIT20 must not exceed 0.21 mg/in2(0.0326 mg/cm2) offinished paper and paperboard intended for contact with dry foods and 0.11 mg/in2(0.0168mg/cm2) of finished paper and paperboard intended for contact with aqueous and fatty foods. OIL RECOVERY SYSTEMS: Drilling fluids, packer fluids, completion fluids. Polysaccharide fluid loss control agents and thickeners such as starch, guar, and xanthan gum-0.05-0.15% on fluid weight or 1.5-4.5 on the dry polysaccharide weight. Subsurface injection waters such as polymer and micellar/polymer waterfloods: Thickeners such as xanthan gum and polysaccharides-0.05-0.15% on solution weight. SUPPLEMENTAL DOSING: Depending on the nature/severity of the contamination, if analysis indicates a loss of active ingredient and further microbial control is necessary, product may be dosed with additional microbiocide at a level to ensure that the final use-dilution product will not exceed the maximum concentration indicated METALWORKING FLUID ADDITIVES DIVISION MERGAL BIT 20 EPA Registration No. 5383-121 Description Application/ Use Highlights Physical Properties Antimicrobial Activity Water dilutable soluble oil, semi-synthetic and synthetic metalworking fluid systems are highly susceptible to the growth of microorganisms. Microbial contamination can result in slime generation, gas formation, malodors and the reduction or drift of pH in the fluid concentrate and the working dilution. This contamination can diminish fluid performance and system efficiency, which can increase costs, decrease tool life, reduce productivity and cause machine shut-down. The use of Mergal BIT20, a proven high quality preservative to control biodeterioration, will help maintain product functionality and increase the life of the metalworking fluid. For use in concentrates during manufacturing and in post addition applications. • Cost effective • Excellent pH stability • Formaldehyde free • Broad spectrum of activity • Outstanding stability in the presence of amines or high heat • Ease of incorporation • Excellent freeze-thaw stability, low freezing point • Long-term efficacy The following are typical properties of Mergal BIT 20; they are not to be considered product specifications. Active Ingredient, 1,2-Benzisothiazolin-3-one: 19.3% Appearance: Clear liquid Specific Gravity, 25°C: 1.13 Lbs/Gal: 9.42 (approx.) Viscosity (Brookfield), 25°C: 400 pH (10% aqueous room temperature solution): ~12 Flash Point (ASTM D3278-96) >94°C (>200°F) Solubility: Soluble in water at use dilutions Gram Negative Bacteria Gram Positive Bacteria Proteus vulgaris Bacillus subtilis Desulfovibrio desulfuricans Staphylococcus aureus Enterobacter aerogenes Streptococcus faecalis Escherichia coli Pseudomonas aeruginosa Function/ Activity Formulating Considerations Regulatory Considerations Environmental Effects Mergal BIT20 is a liquid, organic broad spectrum preservative designed for use in both the concentrate and working dilutions of soluble oil, semi-synthetic and synthetic metalworking fluid systems which may be subject to microbial degradation. Mergal BIT20, at appropriate use levels in both laboratory and field evaluations, inhibits the growth of microorganisms. Products protected with Mergal BIT20 can generally resist the long-term, repeated challenge of microorganisms. When used in metalworking fluid concentrates and working dilutions at application use levels of up to 0.15% (max.), based on the weight of the working dilution, Mergal BIT20 will protect against a broad range of gram positive and gram negative bacteria and other microorganisms. The level of Mergal BIT20 required for optimum effectiveness is dependant on the composition and end use application of your specific product formulation. Mergal BIT20 may be used in systems with commonly used fungicides such as Troyshield LA33, Troyshield FX20 and Troyshield FX40. Customers are encouraged to check for compatibility and stability in their formulated systems. Acute Oral Effects: LD50 (oral, rat, female) – 1020 mg/kg Acute Skin Effects: LD50 (dermal, rabbit) > 2000 mg/kg. Moderate irritation (rabbit). This product is not a skin sensitizer. Acute Eye Effects: Severe irritation and corrosive (rabbit). Corneal damage may be irreversible if not washed from eyes promptly. Acute Inhalation Effects: LD50 (rate, 4 hr.) – 0.57 mg/l. Subchronic Effects and Other Studies Additional data is available on request from the Troy Chemical Corporation on active ingredient and other hazardous components. Ecotoxicity This product is moderately toxic to fish. Do not apply directly to water or wetlands. Do not contaminate water when disposing of equipment washwaters. Data on the active ingredient, 1,2,-Benzisothiazolin-3-one (BIT), is as follows: LC50 (rainbow trout, 96 hr flow-through): 1.3-1.6 mg/kg. LC50 (water flea, 48 hr flow-through): 1.5-3.3 mg/kg. Environmental Fate 1,2,-Benzisothiazolin-3-one (BIT) is hydrolytically stable (half-life >30 days), but breaks down fairly quickly in aerobic soils (half-life <24 hours in sandy loam soil). Its low Kow (20 at 25°C) indicates that it is unlikely to bioaccumulate in aquatic organisms. Chemical Inventories Labeling Handling, Storage, Health And Safety Shipping And This product, or its components, are listed on, or are exempt from: Country Agency CAS or Other Identification Number United States TSCA 2634-33-5 (CAS No.) United States EPA 5383-121 Canada DSL 2634-33-5 (CAS No.) Europe EINECS 220-120-9 Switzerland SWISS G-6729 Australia AICS 2634-33-5 (CAS No.) Korea ECL 2634-33-5 (CAS No.) Korea ECL Serial No. KE-02680 Japan ENCS 2634-33-5 (CAS No.) Japan MITI No. 9-1845 Philippines PICCS 2634-33-5 (CAS No.) China IECSC 2634-33-5 (CAS No.) HAZARDS TO HUMANS AND DOMESTIC ANIMALS. DANGER: Corrosive. Causes irreversible eye damage. Harmful if swallowed, inhaled, or, absorbed through skin. Do not get in eyes, on skin or on clothing. Avoid breathing vapor or spray mist. Wear goggles, face shield, or safety glasses. Wash thoroughly with soap and water after handling and before eating, drinking, chewing gum, or using tobacco. Remove and wash contaminated clothing before reuse. Avoid contact with skin, eyes, or clothing. Avoid breathing vapor or mist. Wash thoroughly after handling. Keep container tightly closed. Use only with adequate ventilation. Store away from incompatible substances in a cool dry, ventilated area. Do not store near food or feed. Observe all Federal, State and Local regulations when storing or disposing of this substance. Shelf Life: 24 Months Emergency Overview: Mergal BIT20 is a clear liquid with a slight odor. Corrosive liquid. May cause irreversible damage to the eyes. May cause moderate skin and respiratory irritation. This material is moderately toxic to fish. Avoid contamination of streams and sewers. Mergal BIT 20 is packaged in: Packaging Shipping Container Net Weight Pail 45 lbs/20.5 kg Drums 100 lbs/45.4 kg Drums 441 lbs/200.5 kg DOT Shipping Name UN3266, Corrosive liquid, inorganic, basic, n.o.s. (Sodium hydroxide) 8 PG lll, ERG# 154 Labels Required Corrosive IATA Shipping Name UN3266, Corrosive liquid, inorganic, basic, n.o.s. (Sodium hydroxide) 8 PG lll, ERG# 8L Labels Required Corrosive IMDG Shipping Name UN3266, Corrosive liquid, inorganic, basic, n.o.s. (Sodium hydroxide) 8 PG lll, EMS# F-A, S-B Labels Required Corrosive
MERGAL K 14
Mergal K 14 Mergal K 14 by Troy Corporation is a fast acting, water-soluble liquid bactericide and fungicide. It is a formulated isothiazolinone (CMIT/MIT) in-can preservative. Provides control of bacteria, yeast and fungi. Mergal K 14 is used in waterborne paints, and other coating products where water is a component. The product is suited for systems with a pH of 3 up to approximately 8 or 9. Mergal K 14 by Troy Corporation is s stabilized CMIT/MIT-based bactericide. Acts as a water-soluble, liquid preservative for control of bacteria, yeast, mold, and algae in adhesives, caulks and sealants. Mergal K 14 offers improved stability and speed of sanitation. MERGAL K14 is an effective, broad-spectrum liquid preservative designed to inhibit the growth of bacteria, yeast and fungi in aqueous systems. Mergal K14 is a water-soluble liquid preservative for control of bacteria, yeast, mold, and algae in adhesives, emulsions, dispersion paints and coatings, metalworking fluids, and building material. Intended for use in aqueous products with a range of pH 3-9. (EPA Registration Number 5383-104) Used In Recommended for waterborne adhesives, paints and coatings, emulsions and sealants. Typical Properties of Mergal K 14 Appearance Clear amber liquid pH value 4.0 Density 8.53 lbs/gal Specific Gravity 1.025 Mergal K 14 (sometimes isothiazolone) is a heterocyclic chemical compound related to isothiazole. Compared to many other simple heterocycles its discovery is fairly recent, with reports first appearing in the 1960s.[1] The compound itself has no applications, however its derivatives are widely used as biocides. Synthesis of Mergal K 14 Various synthetic routes have been reported.[2] Mergal K 14s are typically prepared on an industrial scale by the ring-closure of 3-sulfanylpropanamide derivatives. These in turn are produced from acrylic acid via the 3-mercaptopropionic acid. Ring-closure involves conversion of the thiol group into a reactive species which undergoes nucleophilic attack by the nitrogen center. This typically involves chlorination,[1] or oxidation of the 3-sulfanylpropanamide to the corresponding disulfide species. These reaction conditions also oxidize the intermediate isothiazolidine ring to give the desire product. Applications of Mergal K 14 Mergal K 14s are antimicrobials used to control bacteria, fungi, and algae in cooling water systems, fuel storage tanks, pulp and paper mill water systems, oil extraction systems, wood preservation and antifouling agents. They are frequently used in personal care products such as shampoos and other hair care products, as well as certain paint formulations. Often, combinations of MIT and CMIT (known as Kathon CG) or MIT and BIT are used. Biological implications Together with their wanted function, controlling or killing microorganisms, Mergal K 14s also have undesirable effects: They have a high aquatic toxicity and some derivatives can cause hypersensitivity by direct contact or via the air. Mergal K 14 is an Isothiazolone biocide having a 3:1 ratio of CMIT and MIT, widely used for its broad-spectrum action against microbes, algae, and fungi. Mergal K 14 is one of the active ingredients of humidifier disinfectants and a commonly used preservative in industrial products such as cosmetics, paints, adhesives and detergents. Mergal K 14 is a 1,2-thiazole that is 4-isothiazolin-3-one bearing a methyl group on the nitrogen atom and a chlorine at C-5. It is a powerful biocide and preservative and is the major active ingredient in the commercial product Exocide. It has a role as an antimicrobial agent, a xenobiotic and an environmental contaminant. Mergal K 14 is a member of 1,2-thiazoles and an organochlorine compound. Mergal K 14 derives from a Isothiazolone. Mergal K 14 (MCI) is an isothiazolinone commonly used as a preservative with antibacterial and antifungal properties. Mergal K 14 is found within many commercially available cosmetics, lotions, and makeup removers. Mergal K 14 is also a known dermatological sensitizer and allergen; some of its side effects include flaky or scaly skin, breakouts, redness or itchiness, and moderate to severe swelling in the eye area. The American Contact Dermatitis Society named Mergal K 14 the Contact Allergen of the Year for 2013. Sensitivity to Mergal K 14 may be identified with a clinical patch test. Mergal K 14 is a 1,2-thazole that is 4-isothiazolin-3-one bearing a methyl group on the nitrogen atom. Mergal K 14 is a powerful biocide and preservative and is the minor active ingredient in the commercial product Exocide. Mergal K 14 has a role as an antifouling biocide, an antimicrobial agent and an antifungal agent. Features & Benefits of Mergal K 14 Broad-spectrum of activity Low level of metal salt Protection against bacteria and fungi Wide range of pH stability up to 8.5 Effective at a low level of use 0.05 - 0.15% No color or odor imparted into end products Excellent compatibility with surfactants Safe at recommended use levels Rapidly biodegradable Active Ingredient in this product is listed by EPA in the Safer Chemical Ingredients List (SCIL) Applications of Mergal K 14 Cleaners and polishes, such as all-purpose cleaners, cleaning and industrial use wipes, floor and furniture polishes/waxes, automotive washes, polishes and waxes Laundry products, such as liquid laundry detergents, fabric softeners and pre-spotters Liquid detergents, such as dish wash detergents and general liquid cleaning solution Other applications, such as moist towelettes, air fresheners, moist sponges, gel air fresheners Raw materials and surfactants preservation Chloromethyl-methylMergal K 14 (Mergal K 14) is a broad spectrum biocide which has been used successfully for microbial control and preventing biofouling in industrial water treatment. ATAMAN CHEMICALS reports over the past 20 years on the efficacy of Mergal K 14 biocide versus Legionella bacteria and the protozoa associated with their growth. The studies included a wide range of conditions, including single organisms in cooling water and complex model systems with bacteria, biofilms, and protozoa. Overall, low levels of Mergal K 14 (1-10 ppm active) provided significant reduction in viable counts of various strains and species of Legionella bacteria in planktonic and biofilm studies and also against the amoebae and ciliated protozoa associated with their growth. Mergal K 14 BIOCIDES IN WATER TREATMENT Mergal K 14 biocides are widely used for microbial control in industrial water treatment. The most frequently used product is a 3:1 ratio of 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT) and 2-methyl- 4-isothiazolin-3-one (MIT) at a final concentration of 1.5% total active ingredient. Mergal K 14 has broad spectrum efficacy versus bacteria, algae, and fungi. Exocide product is a blend of Isothiazolinones and is composed of 5-chloro-2-methyl-4-thiazoline-3-ketone (CMIT) and 2-methyl-4-thiazoline-3-ketone (MIT). The bactericidal effect of Isothiazolinones is carried out through breaking the bond between the bacteria and algae protein. The product can be used in many industrial applications to inhibit microbes’ growth, and it has inhibition and biocidal effects on ordinary bacteria, fungi and algae. Isothiazolinones (also Mergal K 14) is a blended biocide with Mergal K 14 and Isothiazolinone which carry out the bactericidal effect through breaking the bond of bacteria and algae cell protein. When isothiazolinones contact with microbes, it can quickly break cell protein bond and inhibit their growth, and then lead to the apoptosis of these microbes. Isothiazolinone products can be effective in controlling both the planktonic and surface growth at very low concentrations and have been produced specifically for oilfield water treatment and paper mill applications. Mergal K 14 has strong biocidal effects on ordinary bacteria, algae and fungi which has many advantages such as no residue, good compatibleness, high stabilization, good degradation, safety and low cost in operation. Isothiazolinone products can mix with other chlorine biocides and most cation, anion, and non-ionic surfactants. It can be an excellent eco-friendly sludge remover when used at high dosage. Mergal K 14 and Isothiazolinone are fungicidal with properties of high efficiency, broad spectrum, non-oxidative and low toxicity. Mergal K 14 is the most suitable biocide in industrial circulating cool water systems and in wastewater treatment for oilfield, papermaking, pesticide and other industries. Bichain is one of reliable isothiazolinones manufacturers and suppliers of Mergal K 14, CMIT and MIT for oilfield water treatment. We supply high quality isothiazolinone products with CAS 55965-84-9. Area of use Mergal K 14 is often not stable under certain conditions such as high temperatures or high pH values. Normally it is stabilised with Mg, Cu or Na salts. However, some applications are sensitive to salts or electrolyte. In this case Exocide 1012 AG is an excellent alternative. This broadband biocide is used to preserve water-based and water-dilutable chemical/technical products, and can be used as an in-can preservative in technical applications such as paints, adhesives, and household and industrial cleaners. Mergal K 14 is especially suitable for preserving fuels such as diesel, or for use in secondary oil production. This Exocide is also suitable as a slimicide, protective media for liquids in cooling and production systems, and as a protective medium for fluids used in metalworking. This biocide formulation has a broad antimicrobial spectrum of activity against bacteria, fungi and yeasts and can be used in many cases where other products fail. Product properties of Mergal K 14 Exocide 1012 AG is free of formaldehyde, formaldehyde releasers, phenols and heavy metals, and exhibits excellent chemical stability. It is not volatile, exhibits outstanding long-term effectiveness, and is one of the best examined broadband biocides. CMIT and CMI Mergal K 14 (MIT or MI) and Isothiazolinone (CMIT or CMI) are two preservatives from the family of substances called isothiazolinones, used in some cosmetic products and other household products. MIT can be used alone to help preserve the product or it may be used together with CMIT as a blend. Preservatives are an essential element in cosmetic products, protecting products, and so the consumer, against contamination by microorganisms during storage and continued use. MIT and CMIT are two of the very limited number of ‘broad spectrum’ preservatives, which means they are effective against a variety of bacteria, yeasts and moulds, across a wide range of product types. MIT and CMIT have been positively approved for use as preservatives for many years under the strict European cosmetics legislation. The primary purpose of these laws is to protect human safety. One of the ways it does this is by banning certain ingredients and controlling others by limiting their concentration or restricting them to particular product types. Preservatives may only be used if they are specifically listed in the legislation. MIT Mergal K 14 can be used on its own to help preserve cosmetic products. Following discussions with dermatologists, who reported an increase in cases of allergy to Mergal K 14 in their clinics, the European cosmetics industry assessed the available information regarding the risk of allergic reactions to Mergal K 14, and in December 2013, the European Personal Care Association, Cosmetics Europe, issued a Recommendation for companies to discontinue the use of MIT in leave-on skincare products. The European Commission’s independent expert scientific panel (the Scientific Committee on Consumer Safety, SCCS), which advises on safety matters, reviewed the use of MIT in cosmetic products. In 2013, the SCCS also recommended that MIT be removed from leave-on cosmetic products and that the amount of Mergal K 14 used in rinse-off cosmetic products should be reduced. As a result, the European Commission changed the cosmetic law to ban the use of MIT in leave-on cosmetic products. Since 12 February 2017, it is no longer permitted to make these products available to consumers. In addition, the maximum amount of MIT present in rinse-off products has been reduced and since 27 April 2018, all products made available to consumers must comply with the new limit. If consumers have been diagnosed as allergic to Mergal K 14 it is important to check the ingredient list of rinse-off cosmetic products. The name ‘Mergal K 14’ will always be listed as ‘Mergal K 14’ regardless of where in Europe a product is purchased. MIT/CMIT Blend Mergal K 14 may also be used in a blend with CMIT. If the Mergal K 14 and CMIT blend is used to preserve a cosmetic product, then the names Mergal K 14 and Mergal K 14 will both be present in the ingredients list, which every cosmetic product must have either on its carton, pack or label, card etc. at point of sale. In its review of the MIT/CMIT blend, the SCCS has stated that the MIT/CMIT blend should only be allowed to be used in rinse-off cosmetic products. As a result, the European cosmetic law was changed to restrict the use of this blend to rinse-off products only from April 2016. CMIT: Mergal K 14, also referred to as CMIT, is a preservative with antibacterial and antifungal effects within the group of isothiazolinones. These compounds have an active sulphur moiety that is able to oxidize thiol-containing residues, thereby effectively killing most aerobic and anaerobic bacteria. Mergal K 14 is effective against gram-positive and gram-negative bacteria, yeast, and fungi. Mergal K 14 is found in many water-based personal care products and cosmetics. Mergal K 14 was first used in cosmetics in the 1970s. It is also used in glue production, detergents, paints, fuels, and other industrial processes. Mergal K 14 is known by the registered tradename Kathon CG when used in combination with Mergal K 14. Mergal K 14 may be used in combination with other preservatives including ethylparaben, benzalkonium chloride, and bronopol. In pure form or in high concentrations, Mergal K 14 is a skin and membrane irritant and causes chemical burns. In the United States, maximum authorized concentrations are 15 ppm in rinse-offs (of a mixture in the ratio 3:1 of 5-chloro-2-methylisothiazol 3(2H)-one and 2-methylisothiazol-3 (2H)-one). In Canada, Mergal K 14 may only be used in rinse-off products in combination with Mergal K 14, the total concentration of the combination may not exceed 15 ppm. MIT: Mergal K 14, MIT, or MI, (sometimes erroneously called methylisothiazoline), is a powerful synthetic biocide and preservative within the group of isothiazolinones, which is used in numerous personal care products and a wide range of industrial applications. It is a cytotoxin that may affect different types of cells. Its use for a wide range of personal products for humans, such as cosmetics, lotions, moisturizers, sanitary wipes, shampoos, and sunscreens, more than doubled during the first decade of the twenty-first century and has been reported as a contact sensitizing agent by the European Commission’s Scientific Committee on Consumer Safety. Industrial applications also are quite wide ranging, from preservative and sanitizing uses to antimicrobial agents, energy production, metalworking fluids, mining, paint manufacturing, and paper manufacturing, many of which increase potential exposure to it by humans as well as organisms, both terrestrial and marine. Industrial applications in marine environments are proving to be toxic to marine life, for instance, when the effect of its now almost-universal use in boat hull paint was examined. Applications of Mergal K 14 Mergal K 14 and other isothiazolinone-derived biocides are used for controlling microbial growth in water-containing solutions. Two of the most widely used isothiazolinone biocides are 5-chloro-2-methyl-4-isothiazolin-3-one (chloroMergal K 14 or CMIT) and 2-methyl-4-isothiazolin-3-one (Mergal K 14 or MIT), which are the active ingredients in a 3:1 mixture (CMIT:MIT) sold commercially as Exocide. Exocide is supplied to manufacturers as a concentrated stock solution containing from 1.5-15% of Mergal K 14. For applications the recommended use level is from 6 ppm to 75 ppm active Mergal K 14s. Biocidal applications range from industrial water storage tanks to cooling units, in processes as varied as mining, paper manufacturing, metalworking fluids and energy production. Mergal K 14 also has been used to control slime in the manufacture of paper products that contact food. In addition, this product serves as an antimicrobial agent in latex adhesives and in paper coatings that also contact food. Other isothiazolinones One Mergal K 14, Sea-Nine 211 (4,5-dichloro-2-n-octyl-4-isothiazolino-3-one, DCOI), has quickly replaced tributyltin as the antifouling agent of choice in ship hull paint. A recent study reported the presence of DCOI in both port water and sediment samples in Osaka, Japan, especially in weakly circulating mooring areas. Of environmental concern, DCOI levels predicted in marinas now are considered a threat to various marine invertebrate species. Isothiazolinones also are extremely toxic to fish. In industrial use, the greatest occupational inhalation exposure occurs during open pouring. Non-occupational exposure to Mergal K 14 by the general population also occurs, albeit at much lower concentrations. These compounds are present in a very large number of commonly used cosmetics. Human health Mergal K 14 is allergenic and cytotoxic, and this has led to some concern over its use. A report released by the European Scientific Committee on Cosmetic Products and Non-food Products Intended for Consumers (SCCNFP) in 2003 also concluded that insufficient information was available to allow for an adequate risk assessment analysis of MIT. Rising reports of consumer impact led to new research, including a report released in 2014 by the European Commission Scientific Committee on Consumer Safety which reported: "The dramatic rise in the rates of reported cases of contact allergy to MI, as detected by diagnostic patch tests, is unprecedented in Europe; there have been repeated warnings about the rise (Gonçalo M, Goossens A. 2013). The increase is primarily caused by increasing consumer exposure to MI from cosmetic products; exposures to MI in household products, paints and in the occupational setting also need to be considered. The delay in re-evaluation of the safety of MI in cosmetic products is of concern to the SCCS; it has adversely affected consumer safety." "It is unknown what proportion of the general population is now sensitized to MI and has not been confirmed as sensitized." In 2014, the European Commission Scientific Committee on Consumer Safety further issued a voluntary ban on "the mixture of Mergal K 14 (MCI/MI) from leave-on products such as body creams. The measure is aimed at reducing the risk from and the incidence of skin allergies. The preservative can still be used in rinse-off products such as shampoos and shower gels at a maximum concentration of 0.0015 % of a mixture in the ratio 3:1 of MCI/MI. The measure will apply for products placed on the market after 16 July 2015." Shortly thereafter, Canada moved to adopt similar measures in its Cosmetic Ingredients Hotlist. Additionally, new research into cross reactivity of MI-sensitized patients to variants benzisothiazolinone and octylisothiazolinone have found that reactions may occur if present in sufficient amounts. Allergic contact dermatitis Mergal K 14 is used commonly in products in conjunction with Mergal K 14, a mixture sold under the registered trade name Kathon CG. A common indication of sensitivity to Kathon CG is allergic contact dermatitis. Sensitization to this family of preservatives was observed as early as the late 1980s. Due to increased use of isothiazolinone-based preservatives in recent years, an increase in reported incidences of contact allergy to this product has been reported. In 2013 the substance was declared the 2013 Contact Allergen of the Year by the American Contact Dermatitis Society. In 2016 the Dermatitis Academy launched a call to action for patients to report their isothiazolinone allergy to the FDA. On December 13, 2013 the trade group, Cosmetics Europe,following discussions with the European Society of Contact Dermatitis (ESCD),recommended to its members "that the use of Mergal K 14 (MIT) in leave-on skin products including cosmetic wet wipes is discontinued. This action is recommended in the interests of consumer safety in relation to adverse skin reactions. It is recommended that companies do not wait for regulatory intervention under the Cosmetics Regulation but implement this recommendation as soon as feasible." On March 27, 2014, the European Commission’s Scientific Committee on Consumer Safety issued an opinion on the safety of Mergal K 14. This report only considered the issue of contact sensitization. The committee concluded: “Current clinical data indicate that 100 ppm MI in cosmetic products is not safe for the consumer. "For leave-on cosmetic products (including ‘wet wipes’), no safe concentrations of MI for induction of contact allergy or elicitation have been adequately demonstrated. "For rinse-off cosmetic products, a concentration of 15 ppm (0.0015%) Mergal K 14 is considered safe for the consumer from the view of induction of contact allergy. However, no information is available on elicitation
MERGAL K6N
MERGAL K6N Hızlı etkili, geniş spektrumlu kutu içi koruyucu Açıklama Mergal K6N, sulu sistemlerde bakteri, maya ve mantarların büyümesini engellemek için tasarlanmış etkili, geniş spektrumlu bir sıvı koruyucudur. Uygulama ve Kullanım Mergal K6N, su bazlı sistemlere kolayca dahil edilen sıvı bir üründür. Mergal K6N, su bazlı boyalar ve sıvalar, yapıştırıcılar, pigment bulamaçları, nişasta solüsyonları ve sızdırmazlık malzemeleri için önerilir. Mergal K6N ayrıca mürekkeplerde, fıskiye solüsyonlarında, polimer emülsiyonlarında, reoloji değiştiricilerde ve mum emülsiyonlarında da kullanışlıdır. Mergal K6N ayrıca deterjanları, ev temizlik malzemelerini ve benzeri ürünleri korumak için de kullanılabilir. Ürün hızlı hareket ediyor. Mergal K6N şu sistemlere uygulanabilir: pH 3 ila 9, ve Soğutma aşamasında 60 ° C'ye kadar olan sıcaklıklarda işlenmiş malzemelere dahil edilebilir. Ürün Özellikleri Geniş Spektrum koruması Headspace koruması Hızlı etkili İyi sterilizasyon özellikleri Düşük kullanım seviyesi Uygun maliyetli Fiziksel özellikler Aşağıdakiler, Mergal K6N'nin tipik özellikleridir; ürün özellikleri olarak kabul edilmemelidir. Görünüş: şeffaf, neredeyse renksiz sıvı Özgül Ağırlık, 25 ° C: yakl. 1.05 pH (olduğu gibi) tipik olarak 3 ila 6 Çözünürlük: Su ile her oranda karışabilir Antimikrobiyal etkinlik Mergal K6N, çok çeşitli mikroorganizmalara karşı geniş bir etkinlik yelpazesine sahiptir. Mergal K6N tarafından kontrol edilen organizma örnekleri: Bakteriler MIC Mantarlar MIC Bacillus subtilis 0,05 Aspergillus niger 0,02 Enterobacter aerogenes 0,05 Chaetomium globosum 0,02 Escherichia coli 0,02 Penicillium funiculosum 0,02 Proteus vulgaris 0.05 Ulocladium consortiale 0.01 Pseudomonas aeruginosa 0.02 Pseudomonas flurescence 0.01 Maya MIC Yosun MIC Candida albicans 0,02 Chlorella fusca 0,002 Saccharomyces cerevisiae 0.01 Anabaena cylindrica 0.001 İşlev / Etkinlik Mergal K6N tipik olarak boya uygulamalarında nihai ürünün ağırlıkça% 0,1 ila% 0,3'ü oranında kullanılır. Herhangi bir sistemi korumak için gereken seviye, çeşitli faktörlere bağlıdır: başlangıçtaki mikrobiyolojik kontaminasyon seviyesi, sistemin bileşenleri, tekrar mikrobiyolojik müdahalelere maruz kalma olasılığı, artık indirgeyici ve oksitleyici ajanlar ve sistemin sıcaklığı ve pH'ı . Önerilen kullanım seviyeleri saha denemeleri ile doğrulanmalı ve son kullanım ürününün yüzdesi olarak rapor edilmelidir. % Ağırlık / Ağırlık Boya: 0.10 - 0.30 Su bazlı ahşap kaplamalar: 0,05 - 0,20 Yapıştırıcılar, macunlar ve sızdırmazlık malzemeleri: 0,05 - 0,20 Polimer Emülsiyonu: 0.10 - 0.20 Baskı Mürekkepleri: 0.10 - 0.30 Formülasyonla İlgili Hususlar Mergal K6N, su bazlı sistemlere kolayca dahil edilen sıvı bir üründür. En iyi sonuçlar için Mergal K6N, üretim sürecine mümkün olduğunca erken eklenmelidir. Üretim sırasında yüksek sıcaklıklar veya yüksek alkali pH değerleri bekleniyorsa, ürün bu şartlar kontrol edildikten sonra veya işlemin başında 1/3 Mergal K6N ve sonunda 2/3 ilave edilerek ilave edilmelidir. Mergal K6N, en bilinen sistemlerle uyumludur. Güçlü indirgeme ajanlarının varlığı, aktiflerin bozunmasına neden olabilir. Protein bazlı yapıştırıcılar gibi çapraz bağlanabilen malzemelerle uyumsuzluklar meydana gelebilir. Çeşitli uygulama olanakları ve farklı işleme yöntemleri nedeniyle, yeni ürünlerin geliştirilmesinde uyumluluğun kontrol edilmesi önerilir. Lütfen yardım için ATAMAN CHEMICALS temsilcinizle iletişime geçin. Mergal K6N ile çalışırken koruyucu için olağan önlemler alınmalıdır. Konsantre ile temastan kaçınılmalıdır. Mergal K6N ile çalışırken koruyucu giysi ve koruyucu gözlük takılmalıdır. Cilde sıçraması durumunda derhal bol su ve sabunla yıkayın. Göze sıçraması halinde bol su ile yıkayınız ve bir hekime başvurunuz. Kirlenmiş giysiler derhal çıkarılmalıdır. Raf Ömrü: Üretim tarihinden itibaren 24 ay. Kabı sıkıca kapalı tutun. Yalnızca yeterli havalandırmayla kullanın. Daima doğrudan güneş ışığından ve ısı kaynaklarından koruyun. 40 ° C'den yüksek sıcaklıklardan kaçının. 5 - 25 ° C arasında saklandığında en uzun raf ömrü elde edilir. Donmamaya dikkat edin. Uyumsuz maddelerden uzakta, kuru ve havalandırılmış bir yerde saklayın. Yiyecek veya yem yakınında saklamayın.
MESAMOLL® / MESAMOLL® II

Mesamoll® и Mesamoll® II — это высокоэффективные пластификаторы, используемые в различных полимерных применениях благодаря их отличной совместимости и универсальности.
Mesamoll® и Mesamoll® II характеризуются своей способностью улучшать гибкость и долговечность полимерных изделий.
Химические формулы Mesamoll® и Mesamoll® II являются конфиденциальной информацией, и они широко используются в различных промышленных применениях благодаря своим превосходным свойствам.

Номер CAS: 91-20-3 (Mesamoll®), 1241-94-7 (Mesamoll® II) Номер EC: 202-049-5 (Mesamoll®), 214-999-2 (Mesamoll® II)

Синонимы: Пластификатор, Mesamoll® I, Mesamoll® II, Пластификатор для полимеров, Пластифицирующее вещество, Полимерная добавка Mesamoll, Пластифицирующая добавка Mesamoll, Пластификатор для PU Mesamoll, Гибкая добавка Mesamoll



ПРИМЕНЕНИЕ


Mesamoll® и Mesamoll® II широко используются в формулировке гибких изделий из ПВХ, обеспечивая отличную гибкость и долговечность. Mesamoll® и Mesamoll® II необходимы при производстве высокоэффективных полиуретановых пеноматериалов, улучшая их гибкость. Mesamoll® и Mesamoll® II применяются в производстве эластомеров, улучшая их гибкость и долговечность.

Mesamoll® и Mesamoll® II являются предпочтительными пластификаторами для гибких и жестких пеноматериалов благодаря их эффективности в повышении гибкости. Mesamoll® и Mesamoll® II используются в автомобильных применениях благодаря их отличной гибкости и долговечности при различных условиях. Mesamoll® и Mesamoll® II используются в производстве герметиков и замазок, способствуя их гибкости и производительности.

Mesamoll® и Mesamoll® II используются в водоосновных полимерных системах благодаря их совместимости и эффективности в повышении гибкости. Mesamoll® и Mesamoll® II являются ключевыми компонентами в формулировках полимеров на основе растворителей, обеспечивая улучшенную гибкость. Mesamoll® и Mesamoll® II используются в текстильной промышленности для улучшения гибкости и производительности покрытий на тканях.

Mesamoll® и Mesamoll® II применяются в производстве резиновых материалов благодаря своим пластифицирующим свойствам. Mesamoll® и Mesamoll® II используются в производстве синтетических волокон, улучшая их гибкость и устойчивость. Mesamoll® и Mesamoll® II применяются в строительной отрасли для высокоэффективных покрытий и герметиков.

Mesamoll® и Mesamoll® II используются при создании высокоэффективных клеев, обеспечивая улучшенную гибкость и долговечность. Mesamoll® и Mesamoll® II являются ключевыми компонентами при производстве пластмасс, улучшая их гибкость и механические свойства. Mesamoll® и Mesamoll® II применяются в формулировке промышленных покрытий, обеспечивая улучшенную гибкость и производительность.

Mesamoll® и Mesamoll® II применяются при создании специальных покрытий для различных промышленных применений, обеспечивая улучшенную гибкость и производительность. Mesamoll® и Mesamoll® II используются в производстве покрытий для металлических поверхностей, обеспечивая улучшенную гибкость и долговечность. Mesamoll® и Mesamoll® II необходимы при создании высококачественных печатных чернил, улучшая гибкость и производительность при печати.

Mesamoll® и Mesamoll® II применяются в производстве резиновых изделий, обеспечивая постоянную гибкость и производительность. Mesamoll® и Mesamoll® II используются в автомобильной промышленности, применяются в высокоэффективных покрытиях и клеях для улучшения гибкости. Mesamoll® и Mesamoll® II используются в производстве покрытий для древесины, улучшая их гибкость и долговечность.

Mesamoll® и Mesamoll® II используются в производстве специальных покрытий для промышленного оборудования, обеспечивая улучшенную гибкость и производительность. Mesamoll® и Mesamoll® II применяются в формулировке клеев и герметиков, обеспечивая улучшенную гибкость и производительность. Mesamoll® и Mesamoll® II являются ключевыми компонентами при производстве полиуретановых эластомеров, улучшая их гибкость и долговечность.

Mesamoll® и Mesamoll® II используются в текстильной промышленности для улучшения производительности и гибкости покрытий на тканях. Mesamoll® и Mesamoll® II применяются в резиновой промышленности благодаря своим пластифицирующим свойствам, улучшая гибкость и производительность. Mesamoll® и Mesamoll® II необходимы при производстве высокоэффективных промышленных покрытий, обеспечивая улучшенную гибкость и долговечность.

Mesamoll® и Mesamoll® II являются важными компонентами в водоосновных и растворяющихся полимерных системах, обеспечивая улучшенную гибкость и производительность. Mesamoll® и Mesamoll® II применяются при создании высокоэффективных промышленных продуктов, обеспечивая улучшенную гибкость и долговечность. Mesamoll® и Mesamoll® II используются в формулировке бытовых и промышленных покрытий, улучшая их гибкость и производительность.

Mesamoll® и Mesamoll® II используются в производстве специальных покрытий для электронных устройств, обеспечивая улучшенную гибкость. Mesamoll® и Mesamoll® II применяются при создании специальных чернил для различных применений, улучшая гибкость и производительность. Mesamoll® и Mesamoll® II используются в производстве покрытий для керамики и стекла, улучшая их гибкость и свойства нанесения.

Mesamoll® и Mesamoll® II применяются при создании покрытий для пластиковых поверхностей, обеспечивая улучшенную гибкость и производительность. Mesamoll® и Mesamoll® II используются в формулировке покрытий для деревянных поверхностей, обеспечивая улучшенную гибкость и долговечность. Mesamoll® и Mesamoll® II необходимы при производстве высокоэффективных клеев, обеспечивая улучшенную гибкость и свойства нанесения.

Mesamoll® и Mesamoll® II используются в формулировке покрытий для автомобильных применений, обеспечивая улучшенную гибкость и производительность. Mesamoll® и Mesamoll® II применяются при производстве специальных клеев и герметиков, обеспечивая улучшенную гибкость и долговечность. Mesamoll® и Mesamoll® II используются в производстве покрытий для промышленного оборудования, обеспечивая улучшенную гибкость и производительность.

Mesamoll® и Mesamoll® II используются при создании специальных покрытий для различных субстратов, обеспечивая улучшенную гибкость и производительность. Mesamoll® и Mesamoll® II применяются в формулировке высокоэффективных покрытий для различных применений, обеспечивая улучшенную гибкость и производительность. Mesamoll® и Mesamoll® II являются ключевыми компонентами при производстве специальных чернил для флексографической и глубокой печати, обеспечивая улучшенную гибкость и производительность.

Mesamoll® и Mesamoll® II используются при создании специальных чернил для цифровой печати, обеспечивая улучшенные свойства гибкости и нанесения. Mesamoll® и Mesamoll® II необходимы при производстве высокоэффективных промышленных продуктов, обеспечивая улучшенную гибкость и производительность. Mesamoll® и Mesamoll® II применяются при производстве экологически чистых промышленных продуктов, обеспечивая улучшенную гибкость и долговечность.

Mesamoll® и Mesamoll® II используются при создании продуктов на водной основе и на основе растворителей, обеспечивая улучшенную гибкость и производительность. Mesamoll® и Mesamoll® II являются важными ингредиентами в формулировке специальных покрытий для металлических и пластиковых поверхностей, обеспечивая улучшенные свойства гибкости и нанесения.



ОПИСАНИЕ


Mesamoll® и Mesamoll® II — это высокоэффективные пластификаторы, используемые в различных полимерных применениях благодаря их отличной совместимости и универсальности. Mesamoll® и Mesamoll® II характеризуются своей способностью улучшать гибкость и долговечность полимерных изделий.

Mesamoll® и Mesamoll® II — это универсальные химические соединения, используемые в различных полимерных применениях. Mesamoll® и Mesamoll® II известны своими сильными пластифицирующими свойствами, которые улучшают гибкость и производительность полимерных изделий. Mesamoll® и Mesamoll® II обеспечивают отличную совместимость с широким спектром полимеров, что делает их идеальными для промышленных покрытий и клеев.

Mesamoll® и Mesamoll® II совместимы с широким спектром полимерных систем, улучшая их универсальность в различных формулах. Mesamoll® и Mesamoll® II широко используются в покрытиях, клеях, эластомерах и герметиках и в других отраслях. Нетоксичная природа Mesamoll® и Mesamoll® II делает их безопасными для использования в различных промышленных и потребительских продуктах.

Mesamoll® и Mesamoll® II обеспечивают отличную гибкость, делая их подходящими для приложений, требующих улучшенной гибкости и долговечности. Mesamoll® и Mesamoll® II известны своей легкостью диспергирования, обеспечивая равномерную пластификацию в различных системах. Mesamoll® и Mesamoll® II необходимы для создания долговечных и высокоэффективных полимерных изделий.

Сильные пластифицирующие свойства Mesamoll® и Mesamoll® II делают их предпочтительными при создании высококачественных промышленных покрытий. Mesamoll® и Mesamoll® II являются важными прекурсорами при производстве высокоэффективных клеев и герметиков, улучшая гибкость. Mesamoll® и Mesamoll® II широко используются в производстве долговечных и устойчивых полимерных изделий, обеспечивая улучшенную гибкость и производительность.



СВОЙСТВА


Химическая формула: Конфиденциальная
Общее название: Mesamoll® / Mesamoll® II
Молекулярная структура: Конфиденциальная
Внешний вид: Прозрачная жидкость
Плотность: 1,05 г/см³
Вязкость: Низкая
Растворимость: Смесимый с большинством органических растворителей
Реакционная способность: Низкая
Химическая стабильность: Отличная
Совместимость: Широкий спектр полимерных систем
Гибкость: Отличная
Дисперсия: Легкая



ПЕРВАЯ ПОМОЩЬ


При вдыхании:
При вдыхании Mesamoll® или Mesamoll® II немедленно вывести пострадавшего на свежий воздух. Если дыхание затруднено, немедленно обратиться за медицинской помощью. Если пострадавший не дышит, провести искусственное дыхание. Сохранить пострадавшего в тепле и покое.

При контакте с кожей:
Снять загрязненную одежду и обувь. Тщательно промыть пораженную область кожи водой с мылом. При раздражении или сыпи обратиться за медицинской помощью. Постирать загрязненную одежду перед повторным использованием.

При контакте с глазами:
Промыть глаза большим количеством воды не менее 15 минут, приподнимая верхние и нижние веки. Немедленно обратиться за медицинской помощью, если раздражение или покраснение сохраняется. Снять контактные линзы, если они есть и их легко снять; продолжить промывание.

При проглатывании:
Не вызывать рвоту, если это не указано медицинским персоналом. Тщательно прополоскать рот водой. Немедленно обратиться за медицинской помощью. Если пострадавший в сознании, дать маленькие глотки воды.

Примечание для врачей:
Лечение симптоматическое. Специфического антидота нет. Оказать поддерживающую терапию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ


Обращение:

Личная защита:
Носить соответствующие средства индивидуальной защиты (СИЗ), включая перчатки, устойчивые к химическим веществам, защитные очки или щиток и защитную одежду. Использовать респираторную защиту, если вентиляция недостаточна или превышены пределы воздействия.

Вентиляция:
Обеспечить достаточную вентиляцию в рабочей зоне для контроля концентрации в воздухе ниже предельно допустимых значений. Использовать местную вытяжную вентиляцию или другие инженерные средства для минимизации воздействия.

Избегание:
Избегать прямого контакта с кожей и вдыхания паров. Не есть, не пить и не курить при обращении с Mesamoll® или Mesamoll® II. Тщательно мыть руки после обращения.

Процедуры при разливе и утечке:
Использовать соответствующие средства индивидуальной защиты. Локализовать разливы для предотвращения дальнейшего распространения и минимизации воздействия. Абсорбировать разливы инертными материалами (например, песком, вермикулитом) и собрать для утилизации.

Хранение:
Хранить Mesamoll® и Mesamoll® II в прохладном, хорошо проветриваемом месте, вдали от несовместимых материалов (см. паспорт безопасности материалов для конкретных данных). Держать контейнеры плотно закрытыми, когда они не используются, чтобы предотвратить загрязнение. Хранить вдали от источников тепла, прямого солнечного света и источников воспламенения.

Меры предосторожности при обращении:
Избегать создания аэрозолей или туманов. Заземлять и соединять контейнеры во время операций по переливу для предотвращения накопления статического электричества. Использовать взрывозащищенное электрическое оборудование в местах, где могут присутствовать пары.


Хранение:

Температура:
Хранить Mesamoll® и Mesamoll® II при температурах, рекомендованных производителем. Избегать воздействия экстремальных температур.

Контейнеры:
Использовать одобренные контейнеры из совместимых материалов. Регулярно проверять контейнеры на утечки или повреждения.

Разделение:
Хранить Mesamoll® и Mesamoll® II вдали от несовместимых материалов, включая сильные кислоты, основания, окислители и восстановители.

Оборудование для обращения:
Использовать специализированное оборудование для обращения с Mesamoll® и Mesamoll® II, чтобы избежать перекрестного загрязнения. Убедиться, что все оборудование для обращения находится в хорошем состоянии.

Меры безопасности:
Ограничить доступ к местам хранения. Соблюдать все применимые местные правила относительно хранения опасных материалов.

Экстренная помощь:
Иметь в наличии оборудование и материалы для экстренной помощи, включая материалы для очистки разливов, огнетушители и станции для экстренного промывания глаз.

METANITROBENZENE SULFONIC ACID, SODIUM SALT
Synonyms: Oligo tartaric acid;Tartaric acid, oligomer CAS: 31054-64-5
Metatartaric acid
BUTYL METHACRYLATE, N° CAS : 97-88-1, Nom INCI : BUTYL METHACRYLATE, Nom chimique : Butyl methacrylate, N° EINECS/ELINCS : 202-615-1, Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Noms français : 2-METHYL-2-PROPENOIC ACID, BUTYL ESTER; 2-PROPENOIC ACID, 2-METHYL-, BUTYL ESTER; BUTYL 2-METHYLACRYLATE;METHYL-2 PROPENOATE DE BUTYLE; METHYL-2 PROPENOATE DE BUTYLE NORMAL; Méthacrylate de butyle; Méthacrylate de butyle normal; N-BUTYL 2-METHYLPROPENOATE;PROPENOIC ACID, 2-METHYL-, BUTYL ESTER. Noms anglais : Butyl methacrylate; METHACRYLIC ACID, BUTYL ESTER; N-BUTYL METHACRYLATE; NORMAL-BUTYL METHACRYLATE. Commentaires: Ce produit peut contenir un inhibiteur tel que l'éther monométhylique de l'hydroquinone.Utilisation: Fabrication de polymères, fabrication de résines. 2-Methyl-butylacrylaat; 2-Methyl-butylacrylat; 2-Methyl-butylacrylate; 2-Methylacrylic acid, butyl ester; 2-Propenoic acid, 2-methyl-, butyl ester; Butil metacrilato; Butyl 2-methacrylate; Butyl 2-methyl-2-propenoate;bütil metakrilat, butil metakrilat, bütil metakrilad, bütilmetakrilat; Butyl methacrylate; Butyl methacrylate monomer; Butylester kyseliny methakrylove; Butylmethacrylaat; Methacrylate de butyle; Methacrylic acid, butyl ester; Methacrylsaeurebutylester; N-Butyl methacrylate; n-BUTYL METHACRYLATE, STABILIZED butil-metakrilát (hu) butilmetakrilatas (lt) butyl-metakrylát (sk) butyl-methakrylát (cs) butylmetakrylat (sv) butylmethacrylat (da) ester butylowy kwasu metakrylowego (pl) metacrilat de n-butil (ro) metacrilato de butilo (es) metacrilato de n-butilo (pt) metakrylan butylu (pl) méthacrylate de n-butyle (fr) n-butil-metakrilat (hr) n-butilmetacrilato (it) n-butilmetakrilat (sl) n-butilmetakrilāts (lv) n-Butyl-methacrylat (de) n-butylmetakrylat (no) n-butylmethacrylaat (nl) n-Butyylimetakrylaatti (fi) n-butüülmetakrülaat (et) n-бутил-метакрилат (bg) μεθακρυλικός n-βουτυλεστέρας (el) 2-Propenoic acid, 2-methyl-, butyl esterRD_CLP_ 97-88-1_Butylmethacrylate_V1_20180205 butyl 2-methylprop-2-enoate , , Butyl Methacrylate (stabilized with HQ) butyl-methacrylate- Butyllmethacrylate MABU n-Butylmetacrylat n-Butylmethacrylat s 2-Methyl butylacrylate 2-Methyl-2-propenoic acid butyl ester (ECL) 2-Methyl-2-propenoic acid, n-butylester 2-Methyl-butylacrylaat (Dutch) 2-Propenoic acid, 2-methyl, butyl ester (9CI) Butil metacrilato (Italian) Butyl Methacrylate (BMA) Butylester kyseliny methakrylove (Czech) Butylmethacrylaat (Dutch) Butylmethacrylat (German) metacrilato de butilo (Spanish) Methacrylate de butyle (French) Methacrylic acid, butyl ester (8CI) Methacrylsäure-butylester (German) n-Butyl 2-methyl-2-propenoate PROP-2-ENOATE, 2-METHYL-, BUTYL (PICCS) VISIOMER®n-BMA
Méthacrylate de butyle ( BUTYL METHACRYLATE)
METHACRYLIC ACID; MAA; 2-Methylenepropionic Acid; 2-Methacrylic acid; 2-Methyl-2-propenoic Acid; Acide methacrylique (French); Acido metacrilico (Spanish); alpha-Methylacrylic acid; Kyselina methakrylova cas no: 79-41-4
Methacrylıc acıd
cas no: 108-78-1 Cymel; 1,3,5-Triazine-2,4,6-triamine; cyanuramide; cyanuric triamide; triaminotriazine; 2,4,6-triamino-1,3,5-triazine; cyanurotriamide; Teoharn; Theoharn; Virset 656-4; cyanurotriamine; 2,4,6-triamino-s-triazine; s-triaminotriazine; 2,4,6-triamino sym-triazine; 1,3,5-triazine-2,4,6(1H,3H,5H)triimine;
METHACRYLIC ACID/ACRYLIC ACID ESTER COPOLYMER,MODIFIED
Methacrylic Acid; MAA; 2-Methylenepropionic Acid; 2-Methacrylic acid; 2-Methyl-2-propenoic Acid; Acide methacrylique; Acido metacrilico; alpha-Methylacrylic acid; Kyselina methakrylova cas no: 79-41-4
Methacrylic Acid
FORMALDEHYDE, N° CAS : 50-00-0 - Méthanal / Formol, Origine(s) : Synthétique, Nom INCI : FORMALDEHYDE, Nom chimique : Formaldehyde, N° EINECS/ELINCS : 200-001-8, Additif alimentaire : E240, Ses fonctions (INCI). Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes
Méthanal / Formol
METHANE SULPHONIC ACID; MSA, Sulphomethane; Acide methanesulfonique; Acide methanesulfonique, Kyselina methansulfonova; Methylsulphonic acid; ácido metanosulfónico; Methansulfonsäure; cas no: 75-75-2
METHANE SULFONIC ACID 70%
METHANE SULFONIC ACID 70% Ludwigshafen, Germany – December 20, 2018 – BASF intends to expand the production capacity for methane sulfonic acid (MSA) at its Ludwigshafen site by around 65 percent and increase the global capacity to 50,000 metric tons per year. With the investment the company further strengthens its position as the leading global producer of MSA. The volumes from the additional capacity are expected to be available late in 2021 for customers in all regions. “The demand for MSA increased strongly across industries. This expansion will allow us to support the rapid growth of our customers, especially in Asia. Beyond the increase in Ludwigshafen, we evaluate investment options outside of Europe to continuously expand our MSA capacities,” says Martin Widmann, Global Strategic Marketing and Development, Care Chemicals division at BASF. “We focus our extensive know-how and highly efficient manufacturing processes on our customers’ needs to enhance their applications’ performance, sustainability and efficacy." Sustainable alternative to conventional acids Methane sulfonic acid is a strong organic acid used in numerous applications ranging from chemical and biofuel synthesis to industrial cleaning and metal surface treatment in the electronics industry. The expansion is in line with the trend for top-performance and at the same time environmentally friendly technologies in various industries. BASF’s proprietary process enables the production of Lutropur® MSA – a high-purity methane sulfonic acid. Lutropur MSA is a sustainable alternative to other acids such as sulfuric, phosphoric or acetic acid. As part of the natural sulfur cycle MSA is readily biodegradable. Further benefits in practical applications come, for example, from its nonoxidizing nature, the high solubility of its salts and the absence of color and odor. As already announced at the end of 2018, BASF will proceed with expanding global capacities for methane sulfonic acid (MSA) to 50,000 metric tons per year. This involves a higher double-digit million euro investment in constructing a new methane sulfonic acid plant at the Ludwigshafen site. The construction works started recently. The volumes from the additional capacity are expected to be available from the end of 2021 and are dedicated to mainly serve European customers as well as the rapidly growing Asian market. “We want to meet our customers' growing demand for high-quality, sustainable and high-performance technologies in the best possible way now and in future. To achieve that, we continuously invest in expanding our capacities and production technologies. To this end, we acquired an innovative process approach for producing MSA from Grillo-Werke AG in mid 2019 to strengthen our own R&D activities and to accelerate the development of a new manufacturing process for methane sulfonic acid. In doing so, we support as reliable partner the growth of our customers across the world,” said Ralph Schweens, President Care Chemicals, BASF. Sustainable alternative to conventional acids Methane sulfonic acid is a strong organic acid used in numerous applications ranging from chemical and biofuel synthesis to industrial cleaning and metal surface treatment in the electronics industry. BASF's high-purity methane sulfonic acid – sold under the brand name Lutropur® MSA – is a sustainable alternative to other acids such as sulfuric, phosphoric or acetic acid. As part of the natural sulfur cycle, Lutropur MSA is readily biodegradable. Further benefits of using methane sulfonic acid come from its non-oxidizing character, the high solubility of its salts and the absence of color and odor. Product overview MSA (Methane Sulfonic Acid 70% - CAS 75-75-2) is a strong acid widely used as a catalyst (esterification, alkylation, etc.) thanks to its performances, it is an interesting substitute for organic and inorganic strong acids in various applications. Ester quality, easy recyclability and "green" effluent are part of the major methane sulfonic acid 70% advantage is in esterification. Methane sulfonic acid 70% Jump to navigationJump to search Methane sulfonic acid 70% Structural formula of Methane sulfonic acid 70% Ball-and-stick model of Methane sulfonic acid 70% Names IUPAC name Methane sulfonic acid 70% Other names Methylsulfonic acid, MSA Identifiers CAS Number 75-75-2 check 3D model (JSmol) Interactive image ChEBI CHEBI:27376 check ChemSpider 6155 check ECHA InfoCard 100.000.817 Edit this at Wikidata EC Number 200-898-6 PubChem CID 6395 UNII 12EH9M7279 check CompTox Dashboard (EPA) DTXSID4026422 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula CH4O3S Molar mass 96.10 g·mol−1 Appearance Clear, colourless liquid Density 1.48 g/cm3 Melting point 17 to 19 °C (63 to 66 °F; 290 to 292 K) Boiling point 167 °C (333 °F; 440 K) at 10 mmHg, 122 °C/1 mmHg Solubility in water miscible Solubility Miscible with methanol, diethyl ether. Immiscible with hexane log P -2.424[1] Acidity (pKa) −1.9[2] Hazards Safety data sheet Oxford MSDS EU classification (DSD) (outdated) Harmful (Xn), Corrosive (C) Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). check verify (what is check☒ ?) Infobox references Methane sulfonic acid 70% (MsOH) or methanesulphonic acid (in British English) is a colorless liquid with the chemical formula CH3SO3H. It is the simplest of the alkylsulfonic acids. Salts and esters of Methane sulfonic acid 70% are known as mesylates (or methanesulfonates, as in ethyl methanesulfonate). It is hygroscopic in its concentrated form. Methane sulfonic acid 70% may be considered an intermediate compound between sulfuric acid (H2SO4), and methylsulfonylmethane ((CH3)2SO2), effectively replacing an –OH group with a –CH3 group at each step. This pattern can extend no further in either direction without breaking down the –SO2– group. Methane sulfonic acid 70% can dissolve a wide range of metal salts, many of them in significantly higher concentrations than in hydrochloric or sulfuric acid.[3] Contents 1 Applications 1.1 Electroplating 2 See also 3 References Applications Methane sulfonic acid 70% is used as an acid catalyst in organic reactions because it is a non-volatile, strong acid that is soluble in organic solvents. It is convenient for industrial applications because it is liquid at ambient temperature, while the closely related p-toluenesulfonic acid (PTSA) is solid. However, in a laboratory setting, solid PTSA is more convenient. Methane sulfonic acid 70% can be used in the generation of borane (BH3) by reacting Methane sulfonic acid 70% with NaBH4 in an aprotic solvent such as THF or DMS, the complex of BH3 and the solvent is formed.[4] Electroplating Solutions of Methane sulfonic acid 70% are used for the electroplating of tin and tin-lead solders. It is displacing the use of fluoroboric acid, which releases corrosive and volatile hydrogen fluoride.[5] Methane sulfonic acid 70% is also a primary ingredient in rust and scale removers.[6] It is used to clean off surface rust from ceramic, tiles and porcelain which are usually susceptible to acid attack. See also TrifluoroMethane sulfonic acid 70% - the more acidic trifluoro analogue 4.3.3.2.1 Methane sulfonic acid 70% system Methane sulfonic acid 70% with high acidity is not only the catalyst in the process of chitin acylation, but also is a good solvent for partially acylated chitin. Thus homogeneous acylation of chitin can be achieved in the Methane sulfonic acid 70% system. Norio et al. [75] mixed chitin, Methane sulfonic acid 70%, and glacial acetic acid according to different molar ratios, and reacted it at 0°C overnight to obtain acetylated chitin with different DS. In this experiment, a homogeneous phase is gradually formed as the reaction proceeds, which contributes to further acylation. This reaction should be kept at a low temperature to prevent degradation of chitin in acidic conditions. The acylating agent is not limited to carboxylic acid but also acid chloride. Furthermore, Kaifu et al. [78] mixed the chitin, Methane sulfonic acid 70%, and acid chloride first, then the mixture was reacted at 0°C for 2 h, followed by an overnight reaction at –20°C to obtain acylated chitin. By changing the kind and molar amount of acid chloride, hexanoylation, oxime acylation, and dodecyl acylation of chitin with different DS can be obtained, of which DS can be up to 1.9. In this process, the crystallinity of chitin can be effectively destroyed by further acylation by reacting at –20°C overnight. In general, the acylation ability of the acid chloride is higher than that of the carboxylic acid. The larger the acylation group, the greater the damage to the crystalline region of chitin. c. Dilute Methane sulfonic acid 70% in Dioxane–Dichloromethane This diluted Methane sulfonic acid 70% (MSA) system, which uses 0.5 M MSA in 1:9 (v/v) dioxane–CH2Cl2 (Kiso et al., 1992b), is primarily used in SPPS. The advantages are as follows: (i) elimination of side-chain protecting groups is reduced compared to the conventional 45% TFA/CH2Cl2 method, and (ii) pyroglutamyl formation from glutamine-containing peptides is similarly decreased relative to the use of 4 N HCl/dioxane. Using the MSA deprotection system, Kiso et al. (1990a) developed an efficient method for SPPS consisting of in situ neutralization and the rapid coupling reaction using BOP or BOI reagent activation (Kiso et al., 1990a) (Fig. 7). Porcine brain natriuretic peptide (pBNP) was synthesized successfully using this method (Kiso et al., 1992b). 10.14.10.6 DMSO and Methane sulfonic acid 70% DMSO and Methane sulfonic acid 70% are two of the most important organic oxidation products of DMS. It is not entirely clear how Methane sulfonic acid 70%, CH3S(O)(O)(OH), forms, but methanesulfinic acid, CH3S(O)(OH)CH3, has been reported during oxidation in OH–DMS systems. Further addition of OH to methanesulfinic acid, followed by reaction with oxygen, can yield Methane sulfonic acid 70%. At lower temperatures found in the Arctic, there are a wide variety of oxidation products of DMS that include the MSA, DMS, and dimethylsulfone, CH3S(O)(O)CH3. WHAT IS METHANE SULPHONIC ACID 70% Methane sulphonic acid 70%, also known as methane sulfonic acid 70% or mesylic acid. It is widely used as an acid catalyst and solvent in organic reactions in biological and agricultural industry. It is also a key ingredient in plating various metals to print circuit board manufacture in electric industry. Besides, Methane sulphonic acid 70% is popularly used in textile treatment, and the production of plastics and polymers. Synonyms: Methane sulfonic acid 70%, Methane sulphonic acid 70%, Mesylate, Methylsulfonate, Methane sulfonic acid 70%, MSA INCI: Methane Sulphonic Acid Chemical Formula: CH3SO3H CAS Number: CAS 75-75-2 Ludwigshafen, Germany – December 20, 2018 – BASF intends to expand the production capacity for methane sulfonic acid (MSA) at its Ludwigshafen site by around 65 percent and increase the global capacity to 50,000 metric tons per year. With the investment the company further strengthens its position as the leading global producer of MSA. The volumes from the additional capacity are expected to be available late in 2021 for customers in all regions. “The demand for MSA increased strongly across industries. This expansion will allow us to support the rapid growth of our customers, especially in Asia. Beyond the increase in Ludwigshafen, we evaluate investment options outside of Europe to continuously expand our MSA capacities,” says Martin Widmann, Global Strategic Marketing and Development, Care Chemicals division at BASF. “We focus our extensive know-how and highly efficient manufacturing processes on our customers’ needs to enhance their applications’ performance, sustainability and efficacy." Sustainable alternative to conventional acids Methane sulfonic acid is a strong organic acid used in numerous applications ranging from chemical and biofuel synthesis to industrial cleaning and metal surface treatment in the electronics industry. The expansion is in line with the trend for top-performance and at the same time environmentally friendly technologies in various industries. BASF’s proprietary process enables the production of Lutropur® MSA – a high-purity methane sulfonic acid. Lutropur MSA is a sustainable alternative to other acids such as sulfuric, phosphoric or acetic acid. As part of the natural sulfur cycle MSA is readily biodegradable. Further benefits in practical applications come, for example, from its nonoxidizing nature, the high solubility of its salts and the absence of color and odor. As already announced at the end of 2018, BASF will proceed with expanding global capacities for methane sulfonic acid (MSA) to 50,000 metric tons per year. This involves a higher double-digit million euro investment in constructing a new methane sulfonic acid plant at the Ludwigshafen site. The construction works started recently. The volumes from the additional capacity are expected to be available from the end of 2021 and are dedicated to mainly serve European customers as well as the rapidly growing Asian market. “We want to meet our customers' growing demand for high-quality, sustainable and high-performance technologies in the best possible way now and in future. To achieve that, we continuously invest in expanding our capacities and production technologies. To this end, we acquired an innovative process approach for producing MSA from Grillo-Werke AG in mid 2019 to strengthen our own R&D activities and to accelerate the development of a new manufacturing process for methane sulfonic acid. In doing so, we support as reliable partner the growth of our customers across the world,” said Ralph Schweens, President Care Chemicals, BASF. Sustainable alternative to conventional acids Methane sulfonic acid is a strong organic acid used in numerous applications ranging from chemical and biofuel synthesis to industrial cleaning and metal surface treatment in the electronics industry. BASF's high-purity methane sulfonic acid – sold under the brand name Lutropur® MSA – is a sustainable alternative to other acids such as sulfuric, phosphoric or acetic acid. As part of the natural sulfur cycle, Lutropur MSA is readily biodegradable. Further benefits of using methane sulfonic acid come from its non-oxidizing character, the high solubility of its salts and the absence of color and odor. Product overview MSA (Methane Sulfonic Acid 70% - CAS 75-75-2) is a strong acid widely used as a catalyst (esterification, alkylation, etc.) thanks to its performances, it is an interesting substitute for organic and inorganic strong acids in various applications. Ester quality, easy recyclability and "green" effluent are part of the major methane sulfonic acid 70% advantage is in esterification. Methane sulfonic acid 70% Jump to navigationJump to search Methane sulfonic acid 70% Structural formula of Methane sulfonic acid 70% Ball-and-stick model of Methane sulfonic acid 70% Names IUPAC name Methane sulfonic acid 70% Other names Methylsulfonic acid, MSA Identifiers CAS Number 75-75-2 check 3D model (JSmol) Interactive image ChEBI CHEBI:27376 check ChemSpider 6155 check ECHA InfoCard 100.000.817 Edit this at Wikidata EC Number 200-898-6 PubChem CID 6395 UNII 12EH9M7279 check CompTox Dashboard (EPA) DTXSID4026422 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula CH4O3S Molar mass 96.10 g·mol−1 Appearance Clear, colourless liquid Density 1.48 g/cm3 Melting point 17 to 19 °C (63 to 66 °F; 290 to 292 K) Boiling point 167 °C (333 °F; 440 K) at 10 mmHg, 122 °C/1 mmHg Solubility in water miscible Solubility Miscible with methanol, diethyl ether. Immiscible with hexane log P -2.424[1] Acidity (pKa) −1.9[2] Hazards Safety data sheet Oxford MSDS EU classification (DSD) (outdated) Harmful (Xn), Corrosive (C) Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). check verify (what is check☒ ?) Infobox references Methane sulfonic acid 70% (MsOH) or methanesulphonic acid (in British English) is a colorless liquid with the chemical formula CH3SO3H. It is the simplest of the alkylsulfonic acids. Salts and esters of Methane sulfonic acid 70% are known as mesylates (or methanesulfonates, as in ethyl methanesulfonate). It is hygroscopic in its concentrated form. Methane sulfonic acid 70% may be considered an intermediate compound between sulfuric acid (H2SO4), and methylsulfonylmethane ((CH3)2SO2), effectively replacing an –OH group with a –CH3 group at each step. This pattern can extend no further in either direction without breaking down the –SO2– group. Methane sulfonic acid 70% can dissolve a wide range of metal salts, many of them in significantly higher concentrations than in hydrochloric or sulfuric acid.[3] Contents 1 Applications 1.1 Electroplating 2 See also 3 References Applications Methane sulfonic acid 70% is used as an acid catalyst in organic reactions because it is a non-volatile, strong acid that is soluble in organic solvents. It is convenient for industrial applications because it is liquid at ambient temperature, while the closely related p-toluenesulfonic acid (PTSA) is solid. However, in a laboratory setting, solid PTSA is more convenient. Methane sulfonic acid 70% can be used in the generation of borane (BH3) by reacting Methane sulfonic acid 70% with NaBH4 in an aprotic solvent such as THF or DMS, the complex of BH3 and the solvent is formed.[4] Electroplating Solutions of Methane sulfonic acid 70% are used for the electroplating of tin and tin-lead solders. It is displacing the use of fluoroboric acid, which releases corrosive and volatile hydrogen fluoride.[5] Methane sulfonic acid 70% is also a primary ingredient in rust and scale removers.[6] It is used to clean off surface rust from ceramic, tiles and porcelain which are usually susceptible to acid attack. See also TrifluoroMethane sulfonic acid 70% - the more acidic trifluoro analogue 4.3.3.2.1 Methane sulfonic acid 70% system Methane sulfonic acid 70% with high acidity is not only the catalyst in the process of chitin acylation, but also is a good solvent for partially acylated chitin. Thus homogeneous acylation of chitin can be achieved in the Methane sulfonic acid 70% system. Norio et al. [75] mixed chitin, Methane sulfonic acid 70%, and glacial acetic acid according to different molar ratios, and reacted it at 0°C overnight to obtain acetylated chitin with different DS. In this experiment, a homogeneous phase is gradually formed as the reaction proceeds, which contributes to further acylation. This reaction should be kept at a low temperature to prevent degradation of chitin in acidic conditions. The acylating agent is not limited to carboxylic acid but also acid chloride. Furthermore, Kaifu et al. [78] mixed the chitin, Methane sulfonic acid 70%, and acid chloride first, then the mixture was reacted at 0°C for 2 h, followed by an overnight reaction at –20°C to obtain acylated chitin. By changing the kind and molar amount of acid chloride, hexanoylation, oxime acylation, and dodecyl acylation of chitin with different DS can be obtained, of which DS can be up to 1.9. In this process, the crystallinity of chitin can be effectively destroyed by further acylation by reacting at –20°C overnight. In general, the acylation ability of the acid chloride is higher than that of the carboxylic acid. The larger the acylation group, the greater the damage to the crystalline region of chitin. c. Dilute Methane sulfonic acid 70% in Dioxane–Dichloromethane This diluted Methane sulfonic acid 70% (MSA) system, which uses 0.5 M MSA in 1:9 (v/v) dioxane–CH2Cl2 (Kiso et al., 1992b), is primarily used in SPPS. The advantages are as follows: (i) elimination of side-chain protecting groups is reduced compared to the conventional 45% TFA/CH2Cl2 method, and (ii) pyroglutamyl formation from glutamine-containing peptides is similarly decreased relative to the use of 4 N HCl/dioxane. Using the MSA deprotection system, Kiso et al. (1990a) developed an efficient method for SPPS consisting of in situ neutralization and the rapid coupling reaction using BOP or BOI reagent activation (Kiso et al., 1990a) (Fig. 7). Porcine brain natriuretic peptide (pBNP) was synthesized successfully using this method (Kiso et al., 1992b). 10.14.10.6 DMSO and Methane sulfonic acid 70% DMSO and Methane sulfonic acid 70% are two of the most important organic oxidation products of DMS. It is not entirely clear how Methane sulfonic acid 70%, CH3S(O)(O)(OH), forms, but methanesulfinic acid, CH3S(O)(OH)CH3, has been reported during oxidation in OH–DMS systems. Further addition of OH to methanesulfinic acid, followed by reaction with oxygen, can yield Methane sulfonic acid 70%. At lower temperatures found in the Arctic, there are a wide variety of oxidation products of DMS that include the MSA, DMS, and dimethylsulfone, CH3S(O)(O)CH3. WHAT IS METHANE SULPHONIC ACID 70% Methane sulphonic acid 70%, also known as methane sulfonic acid 70% or mesylic acid. It is widely used as an acid catalyst and solvent in organic reactions in biological and agricultural industry. It is also a key ingredient in plating various metals to print circuit board manufacture in electric industry. Besides, Methane sulphonic acid 70% is popularly used in textile treatment, and the production of plastics and polymers. Synonyms: Methane sulfonic acid 70%, Methane sulphonic acid 70%, Mesylate, Methylsulfonate, Methane sulfonic acid 70%, MSA INCI: Methane Sulphonic Acid Chemical Formula: CH3SO3H CAS Number: CAS 75-75-2
METHANE SULPHONIC ACID
SYNONYMS MSA, Sulphomethane; Acide methanesulfonique;Acide methanesulfonique, Kyselina methansulfonova; Methylsulphonic acid; ácido metanosulfónico; Methansulfonsäure; cas no: 75-75-2
Methanesulfonic Acid
MSA, Sulphomethane; Acide methanesulfonique; Acide methanesulfonique, Kyselina methansulfonova; Methylsulphonic acid; ácido metanosulfónico; Methansulfonsäure CAS NO:75-75-2
Méthénamine
N° CAS : 107-98-2,Nom INCI : METHOXYISOPROPANOL. Nom chimique : 1-methoxypropan-2-ol; propyleneglycol monomethylether. N° EINECS/ELINCS : 203-539-1. Ses fonctions (INCI); Solvant : Dissout d'autres substances. .alpha.-Propylene glycol monomethyl ether, 1-Methoxy-2-hydroxypropane, 1-methoxy-2-propanol, 1-Methoxy-2-propanol, 1-Methoxy-propane-2-ol, 1-Methoxypropan-2-ol, 1-METHOXYPROPANOL, 2-METHOXY-1-METHYLETHANOL, 2-Propanol, 1-methoxy-, 58769-19-0, ALPHA-PROPYLENE GLYCOL MONOMETHYL ETHER, Closol, DOWANOL-33B, Dowanol 33B, DOWANOL PM, Dowanol PM glycol ether, DOWTHERM 209, EINECS 203-539-1, Ether monométhylique du propylène-glycol, Glycol ether PM, LS-444, METHOXY ETHER OF PROPYLENE GLYCOL, Methoxyisopropanol, Methyl proxitol, PGME, Poly-Solve MPM, PROPASOL SOLVENT M, Propylene Glycol 1-Methyl Ether, Propylene glycol methyl ether, Propyleneglycol monomethyl ether, propylene glycol monomethyl ether, PROPYLENE GLYCOL MONOMETHYL ETHER, ALPHA, Propylenglykol-monomethylaether, PROPYLENGLYKOL-MONOMETHYLAETHER (GERMAN), UCAR SOLVENT (Obs.), Ucar Solvent LM (Obs.). Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. Noms français : 1-METHOXY-2-HYDROXYPROPANE; 1-Methoxy-2-propanol; 2-METHOXY-1-METHYLETHANOL; 2-PROPANOL, 1-METHOXY-; ALPHA-PROPYLENE GLYCOL MONOMETHYL ETHER ETHER MONOMETHYLIQUE DE PROPYLENE GLYCOL; ETHER MONOMETHYLIQUE DU PROPYLENE GLYCOL; METHOXY-1 PROPANOL-2; Methoxyisopropanol; METHYLPROPYLENE GLYCOL; METHYLPROPYLENEGLYCOL; Éther monométhylique de propylène glycol; Éther monométhylique du propylène glycol. Noms anglais : 1-Methoxy-2-propanol;PROPYLENE GLYCOL METHYL ETHER; Propylene glycol monomethyl ether. Utilisation et sources d'émission: Solvant de produits organiques; 1-Methoxy-2-propanol ; 107-98-2 [RN]; 1-Methoxy-2-hydroxypropane 1-Methoxy-2-propanol [German] ; 1-Méthoxy-2-propanol [French] ; 1-methoxypropan-2-ol; 203-539-1 [EINECS]; 2-Propanol, 1-methoxy- [ACD/Index Name]; 74Z7JO8V3U; DOWANOL PM ; Methoxyisopropanol; Propylene glycol methyl ether ; Propylene glycol monomethyl ether; Propyleneglycol monomethyl ether; (R)-1-Methoxypropan-2-ol; (S)-1-Methoxypropan-2-ol ; 1,2-propylene glycol 1-monomethyl ether; 1-methoxy-2-propanol 95%; 1-methoxy-2-propanol 98%; 1-methoxy-2-propanol, 98.5%, extra pure; 1-methoxy-2-propanol, 99%,; 1-methoxy-2-propanol, 99+%; 2-Methoxy-1-methylethanol; 2-Propanol, methoxy-; Closol; Dowanol 33B; Dowanol PM; Dowanol-33B; Dowtherm 209; Icinol PM; methoxypropanol; Methoxypropanol, ; α isomer; Methyl proxitol; MFCD01632587 [MDL number]; MFCD01632588 [MDL number]; PGME; Propan-1-methoxy-2-ol; propan-2-ol, 1-methoxy-; Propasol solvent M; Propylene glycol 1-methyl ether; Propylenglykol-monomethylaether [German]; QY1 & 1O1 [WLN]; Solvent PM; ucar solvent LM; α-Propylene glycol monomethyl ether; 1-Methoxy-2-hydroxypropane; 1-methoxy-2-propanol; monopropylene glycol methyl ether; 1-Methoxypropanol-2; 2-Methoxy-1-methylethanol; 2-Propanol, 1-methoxy-; Closol; Dowanol 33B; Dowtherm 209; Methoxyisopropanol; Methyl proxitol; monopropylene glycol methyl ether; PGME; Poly-Solve MPM; Propasol solvent M; Propylene glycol 1-methyl ether; Propylene glycol methyl ether; Ucar Solvent LM (Obs.); 1-methoxy-2-propanol (da) 1-methoxypropaan-2-ol (nl) 1-methoxypropan-2-ol (cs) 1-metoksi-2-propanol (hr) 1-metoksi-2-propanoli (fi) 1-metoksi-2-propanolis (lt) 1-metoksi-2-propanols (lv) 1-metoksy-2-propanol (no) 1-metoksypropan-2-ol (pl) 1-metoksü-2-propanool (et) 1-metossi-2-propanol (mt) 1-metossi-2-propanolo (it) 1-metoxi-2-propanol (es) 1-metoxypropán-2-ol (sk) 1-méthoxy-2-propanol (fr) 1-μεθοξυ-προπανόλη-2 (el) 1-метокси-2-пропанол (bg) eter monometylowy glikolu propylenowego (pl) eteru tal-metil glikol monopropilen (mt) monopropilen glicol metil eter (ro) monopropilen glikol metil eter (sl) monopropilen-glikol metil-eter (hr) monopropilenglikolio metileteris (lt) monopropilén-glikol-metil-éter (hu) monopropilēnglikola metilēteris (lv) monopropyleeniglykolimetyylieetteri (fi) monopropylenglycolmethylether (da) monopropylenglykolmetyleter (no) monopropylénglykol-metyléter (sk) monopropüleenglükoolmetüüleeter (et) propilene glicol mono metil etere (it) propyleenglycolmonomethylether (nl) propylenglykolmonomethylether (cs) propylenglykolmonometyleter (no) éter metílico de monopropilenglicol (es) éter monometílico de propilenoglicol (pt) éther méthylique de monopropylèneglycol (fr) μονομεθυλαιθέρας της προπυλενογλυκόλης (el) монопропилен гликол метил етер (bg) 1-Methoxy-2-propanol (Propylene Glycol Methyl Ether) 1-methoxy-2-propanol monopropylene glycol methyl ether 1-Methoxy-2-propanol; 1-Methoxy-2-propanol; 2-Propanol, 1-methoxy-; Closol ... 1-Methoxy-propan-2-ol 1-methoxypropan-2-ol ... Propylene glycol monomethyl ether 2-propanol, 1-methoxy Agent IA94 Dowanol PM Dowanol PM - TE0036 Glycol Ether PM Hydrocarbons, C9-C12, n-alkanes, isoalkanes, cyclics, aromatics Identification: ? 1-methoxy-2-propanol methoxy propanol methoxy-1-propanol-2 PM Solvent Propylene glycol methyl ether [PGME] (CAS 107-98-2) Propylene glycol monomethyl ether propylene glycol monomethylether Propyleneglycol monomethyl ether propyleneglycol monomethylether triphenyl phosphite Trade names 2-Propanol, 1-methoxy- (6CI, 7CI, 8CI, 9CI) Dowanol TM PM Glycol DOWANOL PM Glycol Ether METHYLPROXITOL MISSION MODELS POLYURETHANE MIX ADDITIVE ronacoat ro 304 SHP 401 SOLVENON PM
méthoxyisopropanol ( Éther monométhylique de propylène glycol )
3-Methoxy-3-methyl-1-butanol; 3-methoxy-3-methylbutan-1-ol; 1-Butanol, 3-methoxy-3-methyl-; 3-Methyl-3-methoxybutanol CAS NO:56539-66-3
Methoxymethyl butanol (MMB)
METHOXYMETHYLBUTANOL, N° CAS : 56539-66-3, 3-méthoxy-3-méthylbutane-1-ol . Nom INCI : METHOXYMETHYLBUTANOL. Nom chimique : 1-Butanol, 3-methoxy-3-methyl-, N° EINECS/ELINCS : 260-252-4. Ses fonctions (INCI) : Solvant : Dissout d'autres substances
METHOXYMETHYLBUTANOL
3-Methoxypropylamine (MOPA); 3-Aminopropyl methyl ether, 3-Methoxy-1-propanamine, 1-Amino-3-methoxypropane, 3-Methoxy-n-propylaminl CAS: 5332-73-0
METHOXYPROPYLAMINE ( MOPA )
1-Amino-3-methoxypropane; 3-methoxy-1-Propanamine; 3-Methoxy-1-aminopropane; 3-Methoxypropane-1-amine; CAS NO:5332-73-0
METHYL ACETATE
Methyl Acetate Methyl acetate, also known as MeOAc, acetic acid methyl ester or methyl ethanoate, is a carboxylate ester with the formula CH3COOCH3. Methyl acetate is a flammable liquid with a characteristically pleasant smell reminiscent of some glues and nail polish removers. Methyl acetate is occasionally used as a solvent, being weakly polar and lipophilic, but its close relative ethyl acetate is a more common solvent being less toxic and less soluble in water. Methyl acetate has a solubility of 25% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or aqueous acids. Methyl acetate is not considered a VOC in the USA. Preparation and reactions of Methyl acetate Methyl acetate is produced industrially via the carbonylation of methanol as a byproduct of the production of acetic acid.[6] Methyl acetate also arises by esterification of acetic acid with methanol in the presence of strong acids such as sulfuric acid; this production process is famous because of Eastman Kodak's intensified process using a reactive distillation. Reactions of Methyl acetate In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature. The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a Lewis base that forms 1:1 adducts with a variety of Lewis acids. It is classified as a hard base and is a base in the ECW model with EB =1.63 and CB = 0.95. Applications of Methyl acetate A major use of methyl acetate is as a volatile low toxicity solvent in glues, paints, and nail polish removers. Acetic anhydride is produced by carbonylation of methyl acetate in a process that was inspired by the Monsanto acetic acid synthesis. General description of Methyl acetate Methyl acetate (MA) is an aliphatic ester that can be prepared via carbonylation of dimethyl ether over zeolites.[7] Methyl acetate is formed as a by-product during the preparation of polyvinyl alcohol from acetic acid and methanol.[8] Application of Methyl acetate Methyl acetate may be used for the preparation of fatty acid methyl esters and triacetin from rapeseed oil via non-catalytic trans-esterification reaction under super-critical conditions.[9] Packaging of Methyl acetate 1, 2 L in Sure/Seal™ 100 mL in Sure/Seal Methyl acetate appears as a clear colorless liquid with a fragrant odor. Moderately toxic. Flash point 14°F. Vapors heavier than air. Methyl acetate is an acetate ester resulting from the formal condensation of acetic acid with methanol. A low-boiling (57 ℃) colourless, flammable liquid, it is used as a solvent for many resins and oils. It has a role as a polar aprotic solvent, a fragrance and an EC 3.4.19.3 (pyroglutamyl-peptidase I) inhibitor. It is an acetate ester, a methyl ester and a volatile organic compound. Methyl acetate is a waste chemical stream constituent which may be subjected to ultimate disposal by controlled incineration. The following wastewater treatment technologies have been investigated for methyl acetate: Concentration process: Reverse osmosis. EXCESS METHYL ACETATE IN WASTE GASES CAN BE REMOVED BY CATALYTIC OXIDATION. Absorption, Distribution and Excretion of Methyl acetate After oral administration to rabbits, methyl acetate was hydrolysed to methanol and acetic acid. The animals received a dosage of 20 mL/kg bw of a 5% aqueous solution (1,000 mg/kg). Methanol concentration was analysed in the blood from 30 minutes after application up to 5 hours. Methyl acetate could not be detected in any sample whereas methanol was found in blood and urine already after 30 min. Peak concentrations of methanol in the blood were measured after 3 hours and amounted to 0.573 mg/mL. Following oral application methyl acetate is hydrolysed in the gut. Therefore, in blood and urine only methanol and acetic acid were found, not methyl acetate. Similarly, after inhalation exposure in blood and urine only the products of hydrolysis were detectable. After oral exposure methyl acetate is partially cleaved in the gastrointestinal tract into methanol and acetic acid by esterases of the gastric mucosa. The ester is furthermore hydrolysed by esterases of the blood. Similarly, after inhalation exposure of rats to a concentration of 2,000 ppm (6,040 mg/cu m) blood concentrations less than 4.6 mg/L were determined. ... Inhalation exposure at saturation conditions results in the occurrence of methyl acetate in blood. Biotransformation of methyl acetate takes place by rapid hydrolysis of the compound into methanol and acetic acid by the nonspecific carboxylic esterases in the blood and tissues. With human subjects /it has been shown/ that metabolic hydrolysis of methyl acetate to methanol and acetic acid proceeds directly proportional to exposure level. Biological Half-Life of Methyl acetate For the in vitro hydrolysis of methyl acetate in blood of rats /a/ half-life of 2-3 hr was determined indicating a rapid hydrolysis in the blood. For the in vitro hydrolysis of methyl acetate in blood of humans, /a/ half-life of about 4 hr was determined. Commonly sold in combination with methanol in an 80/20 methyl acetate/methanol by-product blend Overview of Methyl acetate IDENTIFICATION: Methyl acetate is a colorless volatile liquid. It has a pleasant fruity odor. The vapor is heavier than air. It will dissolve in water. USE: Methyl acetate is used in paint remover compounds and solvents. It is used to make other chemicals. It is used as an imitation fruit flavoring. EXPOSURE: Workers in the paint industry and paper mills may be exposed to methyl acetate. People may be exposed to methyl acetate by breathing in air when using paint remover or eating foods containing methyl acetate as a flavor ingredient. Methyl acetate occurs naturally in mint, fungus, Kiwi fruit, grapes, and bananas. If methyl acetate is released to the environment, it will break down in air. It will move down through soil. It will volatilize from soil and water. Methyl acetate is very soluble in water. It appears to be rapidly broken down by microorganisms in soil and water. It does not build up in aquatic organisms. RISK: Methyl acetate is absorbed by the respiratory system and by the skin. In the body, methyl acetate is rapidly converted to methanol. Eye irritation has been reported in furniture polishers exposed to paint thinners containing methyl acetate and other solvents. Recurrent dizziness, headaches, fatigue, faintness, staggering and blindness occurred in a worker exposed to vapors of methyl acetate in an enclosed space. Very high exposure may result in unconsciousness and death. These effects are consistent with the toxic effects of methanol. Eye irritation and skin damage have been observed in laboratory animals following application of methyl acetate to the eyes or skin. Methyl acetate has not been tested for cancer, developmental or reproductive effects in laboratory animals. The potential for methyl acetate to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 12th Report on Carcinogens. Storage Conditions of Methyl acetate Store in a flammable liquid storage area or approved cabinet away from ignition sources and corrosive and reactive materials. ... Methyl acetate must be stored to avoid contact with strong oxidizers (such as chlorine, bromine, and fluorine) and strong acids (such as hydrochloric, sulfuric, and nitric), since violent reactions occur. Store in tightly closed containers in a cool, well-ventilated area away from strong alkalis and nitrates. Sources of ignition, such as smoking and open flames, are prohibited where methyl acetate is used, handled or stored in a manner that could create a potential fire or explosion hazard. Use only nonsparking tools and equipment, especially when opening and closing containers of methyl acetate. Conditions for safe storage, including any incompatibilities: Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage. Moisture sensitive. Reactivity Profile of Methyl acetate METHYL ACETATE presents a fire or explosion hazard when exposed to strong oxidizing agents. Emits irritating fumes and acrid smoke when heated to decomposition, [Lewis, 3rd ed., 1993, p. 826]. Its reactivity is consistent with other compounds of the ester group. For more DOT Emergency Guidelines (Complete) data for METHYL ACETATE (8 total), please visit the HSDB record page. This action promulgates standards of performance for equipment leaks of Volatile Organic Compounds (VOC) in the Synthetic Organic Chemical Manufacturing Industry (SOCMI). The intended effect of these standards is to require all newly constructed, modified, and reconstructed SOCMI process units to use the best demonstrated system of continuous emission reduction for equipment leaks of VOC, considering costs, non air quality health and environmental impact and energy requirements. Methyl acetate is produced, as an intermediate or final product, by process units covered under this subpart. Pursuant to section 8(d) of TSCA, EPA promulgated a model Health and Safety Data Reporting Rule. The section 8(d) model rule requires manufacturers, importers, and processors of listed chemical substances and mixtures to submit to EPA copies and lists of unpublished health and safety studies. Methyl acetate is included on this list. Effective date: 1/26/94; Sunset date: 6/30/98. Methyl acetate is a food additive permitted for direct addition to food for human consumption as a synthetic flavoring substance and adjuvant in accordance with the following conditions: a) they are used in the minimum quantity required to produce their intended effect, and otherwise in accordance with all the principles of good manufacturing practice, and 2) they consist of one or more of the following, used alone or in combination with flavoring substances and adjuvants generally recognized as safe in food, prior-sanctioned for such use, or regulated by an appropriate section in this part. Methyl acetate is an indirect food additive for use only as a component of adhesives. At high concentrations, methyl acetate may cause mild to severe methanol intoxication form ingestion, inhalation, or possible skin contact. The vapor is mildly irritant to the eyes and respiratory system and at high concentrations can cause CNS depression. IDENTIFICATION AND USE: Methyl Acetate is a colorless, volatile liquid, which is used as a solvent for nitrocellulose, acetylcellulose; in many resins and oils and in the manufacture of artificial leather. It is also used in paint remover compounds, lacquer solvent, intermediate, and synthetic flavoring. HUMAN EXPOSURE AND TOXICITY: The vapor is mild irritant to the eyes and respiratory system and at high concentrations can cause CNS depression. Accidental human exposure to methyl acetate vapor for 45 minutes resulted in severe headache and somnolence lasting about 6 hr. In another case report, a teenage girl experienced acute blindness following inhalation of vapor from lacquer thinner. It was determined that methanol and methyl acetate vapors caused optic neuropathy that led to the blindness. At high concentrations, methyl acetate may cause mild to severe methanol intoxication from ingestion, inhalation, or possible skin contact. ANIMAL STUDIES: Inhalation exposure of 4 rats to a saturated atmosphere of methyl acetate (in 25 L bottles) induced narcotic effects in the animals after 10 to 20 min. After decapitation at this time-point concentrations of 70-80 mg methyl acetate/100 mL were found in the blood. Similar experiments with inhalation exposure to methanol showed that the narcotic effects are mainly induced by methyl acetate. Cats exposed to 10,560 ppm methyl acetate vapor suffered from irritation of the eyes and salivation. Rats were exposed (at 10,000 ppm in ambient air) to a thinner containing methyl acetate (12.6%) in a plastic container for 10 min at 10 min intervals (2 times/day, 6 days/wk, for 12-14 mo). Body weight gain was suppressed compared to controls. Electron microscopic exam of slices of the cerebral cortex showed increased abnormal cristae of mitochondria in the neurons and axons and increased number of endoplasmic reticula and ribosomes and dilated Golgi apparatus in the neurons. Increased lysosomes and lipid materials were observed in neurons, suggesting a degenerative process. Methyl acetate did not produce an increase in revertants in Salmonella typhimurium strains TA 98, TA 100, TA 1535, TA 1537 and TA 1538, and Escherichia coli WP2uvrA, in the absence or presence of metabolic activation. Methyl acetate was tested up to 5,000 ug/plate. Negative results were obtained in a study using Salmonella typhimurium strains TA97, TA98, TA100, TA1535 and TA1538 with or without metabolic activation system, when tested up to 10,000 ug/plate. This study employed a 20-minute preincubation period. Biotransformation of methyl acetate takes place by rapid hydrolysis of the compound into methanol and acetic acid by the nonspecific carboxylic esterases in the blood and tissues. /HUMAN EXPOSURE STUDIES/ Respiratory uptake was investigated for 10 polar organic solvents with high blood/air partition coefficients (lambda(blood/air)): ethyl acetate (lambda(blood/air), 77), methyl iso-butyl ketone (90), methyl acetate (90), methyl propyl ketone (150), acetone (245), iso-pentyl alcohol (381), iso-propyl alcohol (848), methyl alcohol (2590), ethylene glycol monobutyl ether (EGBE, 7970), and propylene glycol monomethyl ether (PGME, 12380). Test-air concentrations (Cinh) were 25 to 200 ppm. Four healthy male volunteers inhaled the test air for 10 min at rest and then room air for 5 min. The percentage of solvent in the end-exhaled air and in the mixed-exhaled air increased after the start of the test-air respiration, and reached a quasi-steady-state level within a few min. The speeds of these increases at the start of the test-air respiration became lower as lambda(blood/air) increased. The mean uptakes (U) for the last five min of the test air respiration were 67.3, 52.9, 60.4, 53.0, 52.6, 63.0, 60.3, 60.8, 79.7, and 81.3%, respectively, for ethyl acetate, methyl iso-butyl ketone, methyl acetate, methyl propyl ketone, acetone, iso-pentyl alcohol, iso-propyl alcohol, methyl alcohol, EGBE and PGME. Thus, U values of the alcohols were higher than those of the ketones and lower than the glycol ethers. The overall view, except for esters, showed that U increased with lambda(water/air) increases. This tendency can be explained by a hypothesis that solvent absorbed in the mucus layer of the respiratory tract is removed by the bronchial blood circulation. U values of ethyl acetate and methyl acetate were higher than those of methyl iso-butyl ketone and methyl propyl ketone, though the lambda(blood/air) values of these esters were nearly equal to those of the ketones. For the respiration of the esters, their metabolites, ethyl alcohol and methyl alcohol, were detected in the exhaled air. The exhalation percentage of the metabolites increased after the start of test-air respiration and reached a quasi-steady-state level of 2 and 3%, respectively, by the 5th min. These data suggest that removal of the solvent via metabolism in the wall tissue of the respiratory tract plays an important role for the esters. Women working in a shoe-factory suffered from eye irritation, visual disorders, CNS symptoms, difficulties of breathing and heart trouble and identified a liquid mixture of methylformate, ethylformate, ethyl acetate and methyl acetate. Acute Exposure/ Inhalation exposure of 4 rats to a probably saturated atmosphere of methyl acetate (in 25 L bottles) induced /CNS depressant/ effects in the animals after 10 to 20 min. After decapitation at this time-point concentrations of 70-80 mg methyl acetate/100 mL were found in the blood. Similar experiments with inhalation exposure to methanol showed that the narcotic effects are mainly induced by methyl acetate. Acute Exposure/ Cats exposed to /inhalation of methyl acetate/ 53,790 ppm for 14-18 min /showed/ irritation, salivation, dyspnea, convulsions in 50%, /CNS depression/, lethal in 1-9 min, later with diffuse pulmonary edema. 34,980 ppm for 29-30 min /produced/ irritation, salivation, dyspnea, convulsions in 50%, narcosis, histology: lateral emphysema or edema. /From table/ Acute Exposure/ Cats exposed to /inhalation of methyl acetate/ 18480 ppm for 4 to 4.5 hr showed eye irritation, dyspnea, vomiting and convulsions in 50%, /CNS depression/, slow recovery; at 9900 ppm for 10 hr, eye irritation, salivation, somnolence, recovery;at 5000 ppm for 20 min, eye irritation and salivation. /From table/ Environmental Fate/Exposure Summary Methyl acetate's production and use as a solvent for nitrocellulose, acetylcellulose, resins and oils, in the manufacture of artificial leather; as a catalyst for the biodegradation of organic materials; as a flavoring agent useful in rum, brandy, whiskey; and as a chemical intermediate may result in its release to the environment through various waste streams. Methyl acetate occurs naturally in mint, fungus, grapes, bananas and coffee. If released to air, a vapor pressure of 216.2 mm Hg at 25 °C indicates methyl acetate will exist solely as a vapor in the atmosphere. Vapor-phase methyl acetate will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 41 days. Methyl acetate does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. If released to soil, methyl acetate is expected to have very high mobility based upon an estimated Koc of 9.1. Volatilization from moist soil surfaces is expected to be an important fate process based upon a measured Henry's Law constant of 1.15X10-4 atm-cu m/mole. Methyl acetate may volatilize from dry soil surfaces based upon its vapor pressure. Methyl acetate achieved >70% after 28 days in an OECD 301D Closed bottle test, suggesting that biodegradation is an important environmental fate process in soil and water. If released into water, methyl acetate is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is expected to be an important fate process based upon this compound's Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 5 hours and 5 days, respectively. An estimated BCF of 3 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis half-lives for methyl acetate were 1.7 years and 63 days at pH values of 7 and 8. Occupational exposure to methyl acetate may occur through inhalation and dermal contact with this compound at workplaces where methyl acetate is produced or used. Monitoring and use data indicate that the general population may be exposed to methyl acetate via inhalation of ambient air and ingestion of food and dermal contact with consumer products containing methyl acetate. Methyl acetate may be released to the environment from natural sources. It has been detected as a volatile constituent of nectarines(1,3) and Kiwi fruit flowers(2). Methyl acetate occurs naturally in mint, fungus, grapes and bananas(3). Methyl acetate's production and use as a solvent for nitrocellulose, acetylcellulose, resins and oils, in the manufacture of artificial leather(1); as a catalyst for the biodegradation of organic materials(2); as a flavoring agent useful in rum, brandy, whiskey(3); and as a chemical intermediate(4) may result in its release to the environment through various waste streams(SRC). TERRESTRIAL FATE: Based on a classification scheme(1), an estimated Koc value of 9.1(SRC), determined from a log Kow of 0.18(2) and a regression-derived equation(3), indicates that methyl acetate is expected to have very high mobility in soil(SRC). Volatilization of methyl acetate from moist soil surfaces is expected to be an important fate process(SRC) given a measured Henry's Law constant of 1.15X10-4 atm-cu m/mole(4). Methyl acetate is expected to volatilize from dry soil surfaces(SRC) based upon an measured vapor pressure of 216.2 mm Hg at 25 °C(5). Methyl acetate achieved >70% after 28 days in an OECD 301D Closed bottle test(6), suggesting that biodegradation is an important environmental fate process in soil(SRC). AQUATIC FATE: Based on a classification scheme(1), an estimated Koc value of 9.1(SRC), determined from a log Kow of 0.18(2) and a regression-derived equation(3), indicates that methyl acetate is not expected to adsorb to suspended solids and sediment(SRC). Volatilization from water surfaces is expected(4) based upon a measured Henry's Law constant of 1.15X10-4 atm-cu m/mole(5). Using this Henry's Law constant and an estimation method(4), volatilization half-lives for a model river and model lake are 5 hours and 5 days, respectively(SRC). According to a classification scheme(6), an estimated BCF of 3(SRC), from its log Kow(2) and a regression-derived equation(3), suggests the potential for bioconcentration in aquatic organisms is low(SRC). Methyl acetate achieved >70% after 28 days in an OECD 301D Closed bottle test(7), suggesting that biodegradation is an important environmental fate process in water(SRC). ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere(1), methyl acetate, which has a vapor pressure of 216.2 mm Hg at 25 °C(2), is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase methyl acetate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 41 days(SRC), calculated from its rate constant of 2.6X10-13 cu cm/molecule-sec at 25 °C(3). Methyl acetate does not contain chromophores that absorb at wavelengths >290 nm(4) and, therefore, is not expected to be susceptible to direct photolysis by sunlight(SRC). AEROBIC: Methyl acetate achieved >70% after 28 days in an OECD 301D Closed bottle test(1). Methyl acetate reached > 95% degradation in a 5 day BOD test(2). ANAEROBIC: Methyl acetate is listed as a compound that should undergo ultimate anaerobic biodegradation in industrial wastewater(1). Methyl acetate achieved 96% anaerobic utilization efficiency after a 90 day acclimation period in completely mixed reactors(2). Methyl acetate, present at 50 ppm C, was completely degraded in anaerobic aquifer slurries at a rate of 16.6 ppm C/day and an acclimation period of 0 to 15 days(3). Alcaligenes faecalis, isolated from activated sludge, was found to oxidize methyl acetate after a short lag period(1). Environmental Abiotic Degradation of Methyl acetate The rate constant for the vapor-phase reaction of methyl acetate with photochemically-produced hydroxyl radicals has been estimated as 2.6X10-13 cu cm/molecule-sec at 25 °C(SRC) using a structure estimation method(1). This corresponds to an atmospheric half-life of about 41 days at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm(1). A base-catalyzed second-order hydrolysis rate constant of 1.3X10-1 L/mole-sec(SRC) was estimated using a structure estimation method(2); this corresponds to half-lives of 1.7 years and 63 days at pH values of 7 and 8, respectively(2). Methyl acetate does not contain chromophores that absorb at wavelengths >290 nm(3) and, therefore, is not expected to be susceptible to direct photolysis by sunlight(SRC). An estimated BCF of 3.2 was calculated in fish for methyl acetate(SRC), using a log Kow of 0.18(1) and a regression-derived equation(2). According to a classification scheme(3), this BCF suggests the potential for bioconcentration in aquatic organisms is low(SRC). The Koc of methyl acetate is estimated as 9.1(SRC), using a log Kow of 0.18(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that methyl acetate is expected to have very high mobility in soil(SRC). The Henry's Law constant for methyl acetate is 1.15X10-4 atm-cu m/mole(1). This Henry's Law constant indicates that methyl acetate is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 5 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 5 days(SRC). Methyl acetate's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of methyl acetate from dry soil surfaces may exist(SRC) based upon a vapor pressure of 216.2 mm Hg(3). Methyl acetate was detected, not quantified, in the drinking water from multiple sources in the United States(1). Effluent Concentrations of Methyl acetate Methyl acetate was detected in the waste stream of industrial waste after deep-well injection between 1971 to 1972 at <0.5 mg/L DOC(1). Methyl acetate was detected, not quantified, in the effluent gas from refuse waste obtained from a food center(2). Methyl acetate was detected in active blower exhaust between October and November 1989 at a concentration of 144 ug/cu m from a wastewater treatment sludge/wood chip compost pile located at the Peninsula Composting Facility(3). Methyl acetate was also detected in the biowaste during the aerobic composting process (ACP) at a concentration of 24 mg/cu m(4). Methyl acetate was detected, not quantified, as a volatile organic compound in kitchen waste, kitchen waste exudate, stored food exudate(5), and in garden waste exudate(6). Methyl acetate was also detected in 4 out of 4 biodegradable waste samples collected from household waste at concentrations ranging from 0.1 to 1 mg/cu m and in 5 out of 7 mixed kitchen waste samples at a concentration of <0.1 mg/cu m(7). Methyl acetate was detected as an emission from the production of RDX at the Holston Army Ammunition Plant, TN at an emission rate of 733 lbs/day(8). Atmospheric Concentrations URBAN/SUBURBAN: Methyl acetate was detected as a volatile organic compound collected from UK cities at 0.0018%(1). Methyl acetate was detected in the emissions collected from the Gubrist highway tunnel, Switzerland, in 2004; the emission factor was reported to be 0.03 mg/kg(2). INDOOR: Methyl acetate was detected from the emissions from carpet with a PVC backing in an environmental chamber; the emission rate was 0.08 mg/cu m in a 24 hour time period(1). Methyl acetate was also detected, not quantified, from the emissions from furniture coatings in an environmental chamber(2). Methyl acetate was detected, not quantified, in household consumer products, specifically liquid all purpose adhesive(3). RURAL/REMOTE: Methyl acetate was detected, not quantified, in forest air samples collected from the Eggegbirge in North Rhine-Westfalia, Germany(1). SOURCE DOMINATED: Methyl acetate was detected, not quantified, in the air of the industrialized Kanawha Valley, WV in 1977(1). Methyl acetate was reported in fresh grapefruit juice at a concentration of 0.026 ppm(1). Methyl acetate was detected in the emissions of corn silage, alfalfa silage, cereal silage and almond shells at concentrations of 3.14, 6.15, 0.29 and 0.10 nL/L(2). Methyl acetate was detected, not quantified, as a volatile component in floured chickpea seed(3), chicken meat(4), Cabernet Sauvignon wine from Napa Valley, CA(5). Methyl acetate is reported as found in coffee(6). Methyl acetate was reported in the volatile fraction from Kiwi Fruit flowers (Actinidia chinensis) at 0.57% of the total area(1). Methyl acetate was detected, not quantified in cow milk(1). Methyl acetate was identified as a solvent in a sample of printer's inks at a concentration of 0.1% (W/W)(1). According to the 2012 TSCA Inventory Update Reporting data, the number of persons reasonably likely to be exposed in the industrial manufacturing, processing, and use of methyl acetate is 5000; the data may be greatly underestimated(1). NIOSH (NOES Survey 1981-1983) has statistically estimated that 20,455 workers (6,018 of these were female) were potentially exposed to methyl acetate in the US(1). Occupational exposure to methyl acetate may occur through inhalation and dermal contact with this compound at workplaces where methyl acetate is produced or used. Monitoring data indicate that the general population may be exposed to methyl acetate via inhalation of ambient air, ingestion of food and dermal contact with this compound or other consumer products containing methyl acetate(SRC). A survey was conducted in the second half of a work week on 39 male workers who were occupationally exposed to styrene in combination with methanol and methyl acetate during the production of plastic buttons. Time-weighted average exposure during an 8-h shift to styrene (Sty-A) and methyl acetate was monitored by carbon cloth-equipped personal samplers and to methanol by water-equipped ones. Urine samples were collected near the end of the shift and analyzed for mandelic (MA-U) and phenylglyoxylic acids (PhGA-U) by HPLC. Geometric mean styrene concentration was 12.4 ppm (micrograms/g) with the maximum of 46 ppm, whereas the values for methanol and methyl acetate in combination were 23.5 ppm and 229 ppm, respectively. The relationship of MA-U and PhGA-U with Sty-A was examined by linear regression analysis. The equations for the regression lines were compared with the results from a previous survey (Ikeda et al. 1983) in which workers were exposed only to styrene, and the methods employed were identical with that in the present study. The comparison showed no evidence to suggest that styrene metabolism is suppressed by coexposure to methanol and methyl acetate at low concentrations below the current occupational exposure limit of 200 ppm. What is Methyl Acetate? Methyl acetate (also known as methyl ethanoate, acetic acid methyl ester, MeOAc, Tereton, Devoton) is a carboxylate ester with a molecular formula of C3H6O2. It is a clear, colourless liquid that has a typical ester odour similar to glues and nail polish removers. It is very flammable with a flashpoint of -10° C and a flammability rating of 3. Methyl acetate is commonly used in low toxicity solvents such as glues, nail polish removers. It is highly miscible with all common organic solvents (alcohols, ketones, glycols, esters) but has only slight miscibility in water, but becomes more soluble in water with elevated temperatures. It is commonly found in fruits such as apples, grapes and bananas. Methyl acetate is a carboxylate ester as it contains a carbonyl group bonded to an OR group and is produced through the esterification of acetic acid with methanol. How is methyl acetate produced? There are various methods of producing methyl acetate. One that is used industrially is via carbonylation. These types of reactions bring together carbon monoxide substrates. To produce methyl acetate, methanol is heated alongside acetic acid in the presence of sulfuric acid. Another method of production is the esterification of methanol and acetic acid in the presence of a strong acid. Sulfuric acid is a common catalyst also used in this reaction. Handling, Storage & Distribution Hazards & Toxicity Methly acetate has a NFPA health rating of 2 and can cause temporary incapacitation or residual injury. If inhaled or ingested, headaches, dizziness, drowsiness and fatigue can occur. Contact with the eyes can cause irritation. It has a flammability rating of 3 and can be ignited under most ambient temperature conditions residing from its low flash point of -10 °C. When ablaze, methyl acetate emits heavy, irritating, and toxic fumes that can travel considerable distances. These vapours are also explosive and risk bursting if able to return to the source of ignition. Methyl acetate’s reactivity is aligned with other compounds of the ester group. In th
MÉTHYL BENZOPHÉNONE
METHYLCELLULOSE, N° CAS : 9004-67-5 - Méthylcellulose, Nom INCI : METHYLCELLULOSE, Additif alimentaire : E461, Ses fonctions (INCI) : Agent fixant : Permet la cohésion de différents ingrédients cosmétiques, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion. Agent stabilisant : Améliore les ingrédients ou la stabilité de la formulation et la durée de conservation. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Noms français : Méthyl cellulose Noms anglais : CELLULOSE METHYLATE; CELLULOSE, METHYL ETHER; Methyl cellulose ether; METHYLCELLULOSE. Utilisation et sources d'émission :Additif alimentaire, agent épaississant
Methyl cellulose ether ( Méthylcellulose)
METHYL DIHYDROXYBENZOATE N° CAS : 2150-46-1 Nom INCI : METHYL DIHYDROXYBENZOATE Nom chimique : Benzoic acid, 2,5-Dihydroxy-, Methyl Ester N° EINECS/ELINCS : 218-427-8 Ses fonctions (INCI) Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques
METHYL DIHYDROXYBENZOATE
METHYL ETHYL KETONE; MEK; Methyl Acetone; Oxobutane; 2-Butanone; butan-2-one; Butanone; Ethyl methyl ketone; cas no: 78-93-3
METHYL ETHYL KETONE
METHYL ETHYL KETONE Methyl ethyl ketone Jump to navigationJump to search MEK[1] Skeletal formula of Methyl ethyl ketone Ball-and-stick model of Methyl ethyl ketone Space-filling model of Methyl ethyl ketone methyl ethyl ketone Names Preferred IUPAC name Butan-2-one[2] Other names 2-Methyl ethyl ketone Ethyl methyl ketone[2] Ethylmethylketone Methyl ethyl ketone (MEK; deprecated[2]) Methylpropanone Methylacetone Identifiers CAS Number 78-93-3 check 3D model (JSmol) Interactive image Interactive image Beilstein Reference 741880 ChEBI CHEBI:28398 check ChEMBL ChEMBL15849 check ChemSpider 6321 check ECHA InfoCard 100.001.054 Edit this at Wikidata Gmelin Reference 25656 KEGG C02845 check PubChem CID 6569 RTECS number EL6475000 UNII 6PT9KLV9IO check CompTox Dashboard (EPA) DTXSID3021516 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula C4H8O Molar mass 72.107 g·mol−1 Appearance Colorless liquid Odor Mint or acetone-like[3] Density 0.8050 g/mL Melting point −86 °C (−123 °F; 187 K) Boiling point 79.64 °C (175.35 °F; 352.79 K) Solubility in water 27.5 g/100 mL log P 0.37[4] Vapor pressure 78 mmHg (20 °C)[3] Acidity (pKa) 14.7 Magnetic susceptibility (χ) −45.58·10−6 cm3/mol Refractive index (nD) 1.37880 Viscosity 0.43 cP Structure Dipole moment 2.76 D Hazards Safety data sheet See: data page Safety Data Sheet GHS pictograms GHS02: FlammableGHS07: Harmful[5] GHS Signal word Danger[5] GHS hazard statements H225, H319, H336[5] GHS precautionary statements P233, P210, P280, P240, P241, P243, P242, P264, P261, P271, P370+378, P303+361+353, P305+351+338, P337+313, P304+340, P312, P403+235, P501, P403+233, P405[5] NFPA 704 (fire diamond) NFPA 704 four-colored diamond 310 Flash point −9 °C (16 °F; 264 K) Autoignition temperature 505 °C (941 °F; 778 K) Explosive limits 1.4–11.4%[3] Lethal dose or concentration (LD, LC): LD50 (median dose) 2737 mg/kg (oral, rat) 4050 mg/kg (oral, mouse)[6] LC50 (median concentration) 12667 ppm (mammal) 13333 ppm (mouse, 2 hr) 7833 ppm (rat, 8 hr)[6] NIOSH (US health exposure limits): PEL (Permissible) TWA 200 ppm (590 mg/m3)[3] REL (Recommended) TWA 200 ppm (590 mg/m3) ST 300 ppm (885 mg/m3)[3] IDLH (Immediate danger) 3000 ppm[3] Related compounds Related ketones Acetone; 3-pentanone; 3-methylMethyl ethyl ketone Supplementary data page Structure and properties Refractive index (n), Dielectric constant (εr), etc. Thermodynamic data Phase behaviour solid–liquid–gas Spectral data UV, IR, NMR, MS Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). check verify (what is check☒ ?) Infobox references Methyl ethyl ketone, also known as methyl ethyl ketone (MEK),[a] is an organic compound with the formula CH3C(O)CH2CH3. This colourless liquid ketone has a sharp, sweet odor reminiscent of acetone. It is produced industrially on a large scale, but occurs in nature only in trace amounts.[7] It is partially soluble in water, and is commonly used as an industrial solvent.[8] It is an isomer of another solvent, tetrahydrofuran. Contents 1 Production 2 Applications 2.1 As a solvent 2.2 As a plastic welding agent 2.3 Other uses 3 Safety 3.1 Flammability 3.2 Health effects 3.3 Regulation 4 See also 5 Notes 6 References 7 External links Production Methyl ethyl ketone may be produced by oxidation of 2-butanol. The dehydrogenation of 2-butanol using a catalyst is catalyzed by copper, zinc, or bronze: CH3CH(OH)CH2CH3 → CH3C(O)CH2CH3 + H2 This is used to produce approximately 700 million kilograms yearly. Other syntheses that have been examined but not implemented include Wacker oxidation of 2-butene and oxidation of isobutylbenzene, which is analogous to the industrial production of acetone.[7] The cumene process can be modified to produce phenol and a mixture of acetone and Methyl ethyl ketone instead of only phenol and acetone in the original.[9] Both liquid-phase oxidation of heavy naphtha and the Fischer-Tropsch reaction produce mixed oxygenate streams, from which 2-Methyl ethyl ketone is extracted by fractionation.[10] Applications As a solvent Methyl ethyl ketone is an effective and common solvent[8] and is used in processes involving gums, resins, cellulose acetate and nitrocellulose coatings and in vinyl films.[11] For this reason it finds use in the manufacture of plastics, textiles, in the production of paraffin wax, and in household products such as lacquer, varnishes, paint remover, a denaturing agent for denatured alcohol, glues, and as a cleaning agent. It has similar solvent properties to acetone but boils at a higher temperature and has a significantly slower evaporation rate.[12] Unlike acetone, it forms an azeotrope with water,[13][14] making it useful for azeotropic distillation of moisture in certain applications. Methyl ethyl ketone is also used in dry erase markers as the solvent of the erasable dye. As a plastic welding agent As Methyl ethyl ketone dissolves polystyrene and many other plastics, it is sold as "model cement" for use in connecting parts of scale model kits. Though often considered an adhesive, it is actually functioning as a welding agent in this context. Other uses Methyl ethyl ketone is the precursor to methyl ethyl ketone peroxide, which is a catalyst for some polymerization reactions such as crosslinking of unsaturated polyester resins. Dimethylglyoxime can be prepared from Methyl ethyl ketone first by reaction with ethyl nitrite to give diacetyl monoxime followed by conversion to the dioxime:[15] Preparation of dimethylglyoxime.png In the Peroxide process on producing hydrazine, the starting chemical ammonia is bonded to Methyl ethyl ketone, oxidized by hydrogen peroxide, bonded to another ammonia molecule. Pechiney-Ugine-Kuhlmann process.png In the final step of the process, a hydrolysis produces the desired product hydrazine and regenerates the Methyl ethyl ketone. Me(Et)C=NN=C(Et)Me + 2 H2O → 2 Me(Et)C=O + N2H4 Safety Flammability Methyl ethyl ketone can react with most oxidizing materials, and can produce fires.[8] It is moderately explosive, requiring only a small flame or spark to cause a vigorous reaction.[8] Methyl ethyl ketone fires should be extinguished with carbon dioxide, dry agents, or alcohol-resistant foam.[8] Concentrations in the air high enough to be flammable are intolerable to humans due to the irritating nature of the vapor.[12] Health effects Methyl ethyl ketone is a constituent of tobacco smoke.[16] It is an irritant, causing irritation to the eyes and nose of humans.[12] Serious health effects in animals have been seen only at very high levels. These included skeletal birth defects and low birth weight in mice, when they inhaled it at the highest dose tested (3000 ppm for 7 hours/day).[17] There are no long-term studies with animals breathing or drinking it,[18] and no studies for carcinogenicity in animals breathing or drinking it.[19]:96 There is some evidence that Methyl ethyl ketone can potentiate the toxicity of other solvents, in contrast to the calculation of mixed solvent exposures by simple addition of exposures.[20] As of 2010, some reviewers advised caution in using Methyl ethyl ketone because of reports of neuropsychological effects.[21] Methyl ethyl ketone is listed as a Table II precursor under the United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances.[22] Regulation Emission of Methyl ethyl ketone was regulated in the US as a hazardous air pollutant, because it is a volatile organic compound contributing to the formation of tropospheric (ground-level) ozone. In 2005, the US Environmental Protection Agency removed Methyl ethyl ketone from the list of hazardous air pollutants (HAPs).[23][24][25] Methyl Ethyl Ketone (MEK) Physical characteristic: Colorless Liquid Chemical formula: C4H8O Molecular weight: 72,11 g/mol Type of packaging: Barrel / IBC / Tank MEK is an active & organic solvent. It is in a clear, inflammable and liquid form. It is in the ketone groups. It has a high evaporation rate. It is one of the most widely used ketones in the industry. Areas of usage: It is used in organic synthesis reactions. It is used in the sectors of paint, coating and detergent. Methyl Ethyl Ketone is a liquid solvent used in surface coatings, adhesives, printing inks, chemical intermediates, magnetic tapes and lube oil dewaxing agents. Methyl Ethyl Ketone also is used as an extraction medium for fats, oils, waxes and resins. It is a highly efficient and versatile solvent for surface coatings. Because of its effectiveness as a solvent, Methyl Ethyl Ketone is especially valuable in formulating high solids coatings, which help to reduce emissions from coating operations. Methyl Ethyl Ketone is a natural component of many foods, including apple juice, beans, chicken, honey and a variety of cheeses. Synonyms for Methyl Ethyl Ketone are 2-butanone, ethyl methyl ketone, and methyl acetone. Methyl Ethyl Ketone is a Food and Drug Administration (FDA)-approved indirect food additive for adhesives and polymers. The panel, with the U.S. EPA as the sponsoring organization, prepared the technical support documents for Methyl Ethyl Ketone under the International Council of Chemical Associations (ICCA) Voluntary High Production Volume (HPV) chemical review. Methyl Ethyl Ketone Hazardous Air Pollutant Delisting On December 19, 2005, EPA issued a final rule removing Methyl Ethyl Ketone from Section 112 (b) (1) of the Clean Air Act. Petitions to remove a substance from the HAP list are authorized under Section 112 (b) (3). EPA determined that ambient concentrations, bioaccumulation, or deposition of Methyl Ethyl Ketone may not reasonably be anticipated to cause adverse human health or environmental effects. The panel's delisting petition presented extensive information on Methyl Ethyl Ketone's potential health and environmental effects, environmental releases, and resulting ambient air concentrations. Hazard information included in the petition illustrated Methyl Ethyl Ketone’s low acute and chronic toxicity and low environmental toxicity. Air dispersion modeling results showed that ambient concentrations of Methyl Ethyl Ketone, even at the highest fenceline levels are below levels of concern. Methyl Ethyl Ketone EPCRA Section 313 Delisting On June 30, 2005, EPA deleted Methyl Ethyl Ketone from its list of chemicals subject to reporting under Section 313 of the Emergency Planning and Community Right-to Know Act’s Toxic Release Inventory (TRI) and Section 6607 of the Pollution Prevention Act of 1990. Facilities are no longer required to report releases of and other waste management information on Methyl Ethyl Ketone. EPA’s final delisting rule is the result of a decision by the Court of Appeals of the District of Columbia Circuit, on an appeal filed by the panel, to overturn the District Court and direct EPA to delist Methyl Ethyl Ketone from the TRI. Methyl Ethyl Ketone VCCEP Independent Review On February 19, 2004, the panel participated in an independent review, coordinated by Toxicology Excellence for Risk Assessment (TERA), of Methyl Ethyl Ketone under EPA’s Voluntary Children’s Chemical Evaluation Program (VCCEP). The purpose of the review was to determine whether existing data are adequate to characterize the risks of Methyl Ethyl Ketone to children, and if not, to identify data needs. The panel’s submission to TERA included a quantitative risk characterization demonstrating that normally anticipated children’s exposures to Methyl Ethyl Ketone pose negligible adverse health risks and that no further data are needed to adequately characterize risk to children under the VCCEP program. On April 19, 2004, TERA issued its report of the Methyl Ethyl Ketone peer consultation meeting. In summary, panel members concluded that the Methyl Ethyl Ketone data were adequate to characterize risks to children as outlined under the VCCEP program. No data needs were identified by any of the review committee members. Methyl ethyl ketone Jump to navigationJump to search MEK[1] Skeletal formula of Methyl ethyl ketone Ball-and-stick model of Methyl ethyl ketone Space-filling model of Methyl ethyl ketone methyl ethyl ketone Names Preferred IUPAC name Butan-2-one[2] Other names 2-Methyl ethyl ketone Ethyl methyl ketone[2] Ethylmethylketone Methyl ethyl ketone (MEK; deprecated[2]) Methylpropanone Methylacetone Identifiers CAS Number 78-93-3 check 3D model (JSmol) Interactive image Interactive image Beilstein Reference 741880 ChEBI CHEBI:28398 check ChEMBL ChEMBL15849 check ChemSpider 6321 check ECHA InfoCard 100.001.054 Edit this at Wikidata Gmelin Reference 25656 KEGG C02845 check PubChem CID 6569 RTECS number EL6475000 UNII 6PT9KLV9IO check CompTox Dashboard (EPA) DTXSID3021516 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula C4H8O Molar mass 72.107 g·mol−1 Appearance Colorless liquid Odor Mint or acetone-like[3] Density 0.8050 g/mL Melting point −86 °C (−123 °F; 187 K) Boiling point 79.64 °C (175.35 °F; 352.79 K) Solubility in water 27.5 g/100 mL log P 0.37[4] Vapor pressure 78 mmHg (20 °C)[3] Acidity (pKa) 14.7 Magnetic susceptibility (χ) −45.58·10−6 cm3/mol Refractive index (nD) 1.37880 Viscosity 0.43 cP Structure Dipole moment 2.76 D Hazards Safety data sheet See: data page Safety Data Sheet GHS pictograms GHS02: FlammableGHS07: Harmful[5] GHS Signal word Danger[5] GHS hazard statements H225, H319, H336[5] GHS precautionary statements P233, P210, P280, P240, P241, P243, P242, P264, P261, P271, P370+378, P303+361+353, P305+351+338, P337+313, P304+340, P312, P403+235, P501, P403+233, P405[5] NFPA 704 (fire diamond) NFPA 704 four-colored diamond 310 Flash point −9 °C (16 °F; 264 K) Autoignition temperature 505 °C (941 °F; 778 K) Explosive limits 1.4–11.4%[3] Lethal dose or concentration (LD, LC): LD50 (median dose) 2737 mg/kg (oral, rat) 4050 mg/kg (oral, mouse)[6] LC50 (median concentration) 12667 ppm (mammal) 13333 ppm (mouse, 2 hr) 7833 ppm (rat, 8 hr)[6] NIOSH (US health exposure limits): PEL (Permissible) TWA 200 ppm (590 mg/m3)[3] REL (Recommended) TWA 200 ppm (590 mg/m3) ST 300 ppm (885 mg/m3)[3] IDLH (Immediate danger) 3000 ppm[3] Related compounds Related ketones Acetone; 3-pentanone; 3-methylMethyl ethyl ketone Supplementary data page Structure and properties Refractive index (n), Dielectric constant (εr), etc. Thermodynamic data Phase behaviour solid–liquid–gas Spectral data UV, IR, NMR, MS Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). check verify (what is check☒ ?) Infobox references Methyl ethyl ketone, also known as methyl ethyl ketone (MEK),[a] is an organic compound with the formula CH3C(O)CH2CH3. This colourless liquid ketone has a sharp, sweet odor reminiscent of acetone. It is produced industrially on a large scale, but occurs in nature only in trace amounts.[7] It is partially soluble in water, and is commonly used as an industrial solvent.[8] It is an isomer of another solvent, tetrahydrofuran. Contents 1 Production 2 Applications 2.1 As a solvent 2.2 As a plastic welding agent 2.3 Other uses 3 Safety 3.1 Flammability 3.2 Health effects 3.3 Regulation 4 See also 5 Notes 6 References 7 External links Production Methyl ethyl ketone may be produced by oxidation of 2-butanol. The dehydrogenation of 2-butanol using a catalyst is catalyzed by copper, zinc, or bronze: CH3CH(OH)CH2CH3 → CH3C(O)CH2CH3 + H2 This is used to produce approximately 700 million kilograms yearly. Other syntheses that have been examined but not implemented include Wacker oxidation of 2-butene and oxidation of isobutylbenzene, which is analogous to the industrial production of acetone.[7] The cumene process can be modified to produce phenol and a mixture of acetone and Methyl ethyl ketone instead of only phenol and acetone in the original.[9] Both liquid-phase oxidation of heavy naphtha and the Fischer-Tropsch reaction produce mixed oxygenate streams, from which 2-Methyl ethyl ketone is extracted by fractionation.[10] Applications As a solvent Methyl ethyl ketone is an effective and common solvent[8] and is used in processes involving gums, resins, cellulose acetate and nitrocellulose coatings and in vinyl films.[11] For this reason it finds use in the manufacture of plastics, textiles, in the production of paraffin wax, and in household products such as lacquer, varnishes, paint remover, a denaturing agent for denatured alcohol, glues, and as a cleaning agent. It has similar solvent properties to acetone but boils at a higher temperature and has a significantly slower evaporation rate.[12] Unlike acetone, it forms an azeotrope with water,[13][14] making it useful for azeotropic distillation of moisture in certain applications. Methyl ethyl ketone is also used in dry erase markers as the solvent of the erasable dye. As a plastic welding agent As Methyl ethyl ketone dissolves polystyrene and many other plastics, it is sold as "model cement" for use in connecting parts of scale model kits. Though often considered an adhesive, it is actually functioning as a welding agent in this context. Other uses Methyl ethyl ketone is the precursor to methyl ethyl ketone peroxide, which is a catalyst for some polymerization reactions such as crosslinking of unsaturated polyester resins. Dimethylglyoxime can be prepared from Methyl ethyl ketone first by reaction with ethyl nitrite to give diacetyl monoxime followed by conversion to the dioxime:[15] Preparation of dimethylglyoxime.png In the Peroxide process on producing hydrazine, the starting chemical ammonia is bonded to Methyl ethyl ketone, oxidized by hydrogen peroxide, bonded to another ammonia molecule. Pechiney-Ugine-Kuhlmann process.png In the final step of the process, a hydrolysis produces the desired product hydrazine and regenerates the Methyl ethyl ketone. Me(Et)C=NN=C(Et)Me + 2 H2O → 2 Me(Et)C=O + N2H4 Safety Flammability Methyl ethyl ketone can react with most oxidizing materials, and can produce fires.[8] It is moderately explosive, requiring only a small flame or spark to cause a vigorous reaction.[8] Methyl ethyl ketone fires should be extinguished with carbon dioxide, dry agents, or alcohol-resistant foam.[8] Concentrations in the air high enough to be flammable are intolerable to humans due to the irritating nature of the vapor.[12] Health effects Methyl ethyl ketone is a constituent of tobacco smoke.[16] It is an irritant, causing irritation to the eyes and nose of humans.[12] Serious health effects in animals have been seen only at very high levels. These included skeletal birth defects and low birth weight in mice, when they inhaled it at the highest dose tested (3000 ppm for 7 hours/day).[17] There are no long-term studies with animals breathing or drinking it,[18] and no studies for carcinogenicity in animals breathing or drinking it.[19]:96 There is some evidence that Methyl ethyl ketone can potentiate the toxicity of other solvents, in contrast to the calculation of mixed solvent exposures by simple addition of exposures.[20] As of 2010, some reviewers advised caution in using Methyl ethyl ketone because of reports of neuropsychological effects.[21] Methyl ethyl ketone is listed as a Table II precursor under the United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances.[22] Regulation Emission of Methyl ethyl ketone was regulated in the US as a hazardous air pollutant, because it is a volatile organic compound contributing to the formation of tropospheric (ground-level) ozone. In 2005, the US Environmental Protection Agency removed Methyl ethyl ketone from the list of hazardous air pollutants (HAPs).[23][24][25] Methyl Ethyl Ketone (MEK) Physical characteristic: Colorless Liquid Chemical formula: C4H8O Molecular weight: 72,11 g/mol Type of packaging: Barrel / IBC / Tank MEK is an active & organic solvent. It is in a clear, inflammable and liquid form. It is in the ketone groups. It has a high evaporation rate. It is one of the most widely used ketones in the industry. Areas of usage: It is used in organic synthesis reactions. It is used in the sectors of paint, coating and detergent. Methyl Ethyl Ketone is a liquid solvent used in surface coatings, adhesives, printing inks, chemical intermediates, magnetic tapes and lube oil dewaxing agents. Methyl Ethyl Ketone also is used as an extraction medium for fats, oils, waxes and resins. It is a highly efficient and versatile solvent for surface coatings. Because of its effectiveness as a solvent, Methyl Ethyl Ketone is especially valuable in formulating high solids coatings, which help to reduce emissions from coating operations. Methyl Ethyl Ketone is a natural component of many foods, including apple juice, beans, chicken, honey and a variety of cheeses. Synonyms for Methyl Ethyl Ketone are 2-butanone, ethyl methyl ketone, and methyl acetone. Methyl Ethyl Ketone is a Food and Drug Administration (FDA)-approved indirect food additive for adhesives and polymers. The panel, with the U.S. EPA as the sponsoring organization, prepared the technical support documents for Methyl Ethyl Ketone under the International Council of Chemical Associations (ICCA) Voluntary High Production Volume (HPV) chemical review. Methyl Ethyl Ketone Hazardous Air Pollutant Delisting On December 19, 2005, EPA issued a final rule removing Methyl Ethyl Ketone from Section 112 (b) (1) of the Clean Air Act. Petitions to remove a substance from the HAP list are authorized under Section 112 (b) (3). EPA determined that ambient concentrations, bioaccumulation, or deposition of Methyl Ethyl Ketone may not reasonably be anticipated to cause adverse human health or environmental effects. The panel's delisting petition presented extensive information on Methyl Ethyl Ketone's potential health and environmental effects, environmental releases, and resulting ambient air concentrations. Hazard information included in the petition illustrated Methyl Ethyl Ketone’s low acute and chronic toxicity and low environmental toxicity. Air dispersion modeling results showed that ambient concentrations of Methyl Ethyl Ketone, even at the highest fenceline levels are below levels of concern. Methyl Ethyl Ketone EPCRA Section 313 Delisting On June 30, 2005, EPA deleted Methyl Ethyl Ketone from its list of chemicals subject to reporting under Section 313 of the Emergency Planning and Community Right-to Know Act’s Toxic Release Inventory (TRI) and Section 6607 of the Pollution Prevention Act of 1990. Facilities are no longer required to report releases of and other waste management information on Methyl Ethyl Ketone. EPA’s final delisting rule is the result of a decision by the Court of Appeals of the District of Columbia Circuit, on an appeal filed by the panel, to overturn the District Court and direct EPA to delist Methyl Ethyl Ketone from the TRI. Methyl Ethyl Ketone VCCEP Independent Review On February 19, 2004, the panel participated in an independent review, coordinated by Toxicology Excellence for Risk Assessment (TERA), of Methyl Ethyl Ketone under EPA’s Voluntary Children’s Chemical Evaluation Program (VCCEP). The purpose of the review was to determine whether existing data are adequate to characterize the risks of Methyl Ethyl Ketone to children, and if not, to identify data needs. The panel’s submission to TERA included a quantitative risk characterization demonstrating that normally anticipated children’s exposures to Methyl Ethyl Ketone pose negligible adverse health risks and that no further data are needed to adequately characterize risk to children under the VCCEP program. On April 19, 2004, TERA issued its report of the Methyl Ethyl Ketone peer consultation meeting. In summary, panel members concluded that the Methyl Ethyl Ketone data were adequate to characterize risks to children as outlined under the VCCEP program. No data needs were identified by any of the review committee members.
MÉTHYL ÉTHYLCELLULOSE
METHYL GLUCOSE DIOLEATE, N° CAS : 82933-91-3, Nom INCI : METHYL GLUCOSE DIOLEATE, N° EINECS/ELINCS : 280-069-3. Ses fonctions (INCI) : Emollient : Adoucit et assouplit la peau, Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau. Agent d'entretien de la peau : Maintient la peau en bon état. 2,6-Di-O--(9Z)-9-octadecenoyl-α-D-glucopyranoside de méthyle [French] [ACD/IUPAC Name] 280-069-3 [EINECS] 82933-91-3 [RN] Methyl 2,6-di-O--(9Z)-9-octadecenoyl-α-D-glucopyranoside [ACD/IUPAC Name] METHYL D-GLUCOPYRANOSIDE 2,6-DIOLEATE Methyl-2,6-di-O--(9Z)-9-octadecenoyl-α-D-glucopyranosid [German] [ACD/IUPAC Name] α-D-Glucopyranoside, methyl 2,6-bis-O-[(9Z)-1-oxo-9-octadecen-1-yl]- [ACD/Index Name] 106818-54-6 [RN] 122703-32-6 [RN] METHYL GLUCOSE DIOLEATE UNII-FA9KFJ4Z6P
METHYL GLUCETH-10
ОПИСАНИЕ:
METHYL GLUCETH-10 — это бледно-желтая жидкость, полученная из кукурузы, которая действует как увлажняющий ингредиент, помогая коже прилипать к воде.
METHYL GLUCETH-10 имеет гладкую, шелковистую текстуру и может уменьшить липкость других увлажнителей.
Увлажнитель METHYL GLUCETH-10 представляет собой мягкий ингредиент природного происхождения, который насыщает кожу влагой, уменьшая ощущение липкости, обычно связанное с ингредиентами, обычно используемыми в увлажняющих кремах для кожи.


Номер КАС: 68239-42-9
ИНЭКС: 7-759
Название Chem/IUPAC: Поли(окси-1,2-этандиил), α-гидро- омега-гидрокси-, эфир с метил β-d-глюкопиранозидом (4:1).

ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА МЕТИЛГЛЮЦЕТА-10:
Молекулярная формула: C15H30O10
Молекулярный вес: 370,39
Название ИЮПАК:
2-[[3,4,5-трис(2-гидроксиэтокси)-6-метоксиоксан-2-ил]метокси]этанол
Молекулярный вес: 370,39
XLogP3-AA: -3,2
Количество доноров водородной связи: 4
Количество акцепторов водородной связи: 10
Количество вращающихся связей: 14
Точная масса: 370,18389715
Масса моноизотопа: 370,18389715
Площадь топологической полярной поверхности : 136 Å ²
Количество тяжелых атомов: 25
Официальное обвинение: 0
Сложность: 319
Количество атомов изотопа: 0
Определенное число стереоцентров атома: 0
Количество стереоцентров неопределенного атома: 5
Определенное число стереоцентров связи: 0
Неопределенный счетчик стереоцентров связи: 0
Количество ковалентно-связанных единиц: 1
Соединение канонизировано: Да
XlogP3-AA: -3,20 (оценка)
Молекулярный вес: 370,39610000
Формула: C15 H30 O10
Анализ: от 95,00 до 100,00
Внесен в Кодекс пищевых химикатов: Нет
Точка кипения: от 562,00 до 563,00 °С. @ 760,00 мм рт.ст. (расчетное)
Температура вспышки: 561,00 °F. TCC (294,00 °C) (оценка)
logP (м/в): -4,430 (оценка)
Растворим в:
вода, 1e+006 мг/л при 25 °C (оценка)
Внешний вид: Легкая вязкая жидкость
Цвет, APHA: макс. 80
Гидроксильное число: 160-180
Число омыления, мг/г: Макс. 1,0
Кислотное число: Макс. 1,0
Содержание воды, %:Макс. 1,0
Йодное число: Макс. 1,0
Зольность, % масс. : Макс. 0,5




METHYL GLUCETH-10 представляет собой этоксилированный метиловый эфир глюкозы и обладает 100% активностью.
Его низкий потенциал раздражения делает METHYL GLUCETH-10 идеальным для использования как в смываемых, так и в несмываемых системах ухода за кожей, таких как лосьоны, кремы и составы для очищения тела.

ПРИМЕНЕНИЕ МЕТИЛГЛЮЦЕТА-10:
METHYL GLUCETH-10 используется в продуктах по уходу за кожей во всех формулах.
Methyl Gluceth-10 является чрезвычайно эффективным увлажнителем как для смываемых, так и для несмываемых продуктов.

Рекомендуется для использования в продуктах по уходу за кожей, включая лосьоны, кремы и составы для очищения тела, а также в составах для ухода за волосами.
Кроме того, Methyl Gluceth-10 помогает образовывать эмульсии за счет снижения поверхностного натяжения эмульгируемых веществ.
METHYL GLUCETH-10 в основном используется в наших продуктах для укладки.

ПРЕИМУЩЕСТВА МЕТИЛГЛЮЦЕТА-10:
METHYL GLUCETH-10 обладает очень эффективными водоудерживающими свойствами, которые помогают предотвратить потерю влаги кожей.
METHYL GLUCETH-10 Улучшает растекаемость продуктов.
METHYL GLUCETH-10 Может значительно уменьшить раздражение кожи, связанное с любыми анионными и амфотерными поверхностно-активными веществами.

METHYL GLUCETH-10 обладает превосходными смягчающими свойствами, обеспечивая ощущение гладкости и нежности кожи.
METHYL GLUCETH-10 Обладает также загущающими и эмульгирующими свойствами.

ПРИМЕНЕНИЕ МЕТИЛГЛЮЦЕТА-10:
• Лосьоны
• Кремы
• Средства после бритья
• Кусковое мыло
• Банные принадлежности
• Шампуни и очищающие средства

MEG E-10 — чрезвычайно эффективный увлажнитель для систем ухода за кожей.
МЭГ Е-10 обеспечивает следующие характеристики составов:
• Улучшено после ощущения
• Снижение обезжиривания кожи
• Легкий, гладкий на ощупь
• Предотвращает растрескивание кускового мыла
• Эффективная технологическая добавка для производства мыла

МЕТОД СМЕШИВАНИЯ:
METHYL GLUCETH-10 Смешать с водой
METHYL GLUCETH-10 Может выдерживать тепло
METHYL GLUCETH-10 Может иметь диапазон pH 3-10 (можно использовать с кусковым мылом).

СКОРОСТЬ ИСПОЛЬЗОВАНИЯ: 0,5-5% (Использование Высокий уровень Methyl Gluceth-10 более 2% может вызвать ощущение тепла кожи.
Но аллергии и раздражения не вызывает. )
Характеристики продукта: Полуконденсированная жидкость
Растворимость: METHYL GLUCETH-10 Может растворяться в воде.

ХРАНИЛИЩЕ:
METHYL GLUCETH-10 Можно хранить при комнатной температуре Но плотно закрывать бутылку И закрывать от прямых солнечных лучей или тепла, продукту не менее 2 лет

ИНФОРМАЦИЯ О БЕЗОПАСНОСТИ МЕТИЛГЛЮЦЕТА-10:
Меры первой помощи:
Описание мер первой помощи:
Общий совет:
Проконсультируйтесь с врачом.
Покажите этот паспорт безопасности лечащему врачу.
Выйти из опасной зоны:

При вдыхании:
При вдыхании вывести пострадавшего на свежий воздух.
Если нет дыхания проведите искусственную вентиляцию легких.
Проконсультируйтесь с врачом.
При попадании на кожу:
Немедленно снять загрязненную одежду и обувь.
Смыть большим количеством воды с мылом.
Проконсультируйтесь с врачом.

При попадании в глаза:
Тщательно промойте большим количеством воды в течение не менее 15 минут и обратитесь к врачу.
Продолжайте промывать глаза во время транспортировки в больницу.

При проглатывании:
Не вызывает рвоту.
Никогда не давайте ничего в рот человеку, находящемуся без сознания.
Прополоскать рот водой.
Проконсультируйтесь с врачом.

Противопожарные меры:
Средства пожаротушения:
Подходящие средства пожаротушения:
Используйте водяной спрей, спиртостойкую пену, сухой химикат или двуокись углерода.
Особые опасности, исходящие от вещества или смеси
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород

Совет пожарным:
При необходимости наденьте автономный дыхательный аппарат для тушения пожара.
Меры по случайному выбросу:
Индивидуальные меры предосторожности, защитное снаряжение и порядок действий в чрезвычайных ситуациях
Используйте средства индивидуальной защиты.

Избегайте вдыхания паров, тумана или газа.
Эвакуируйте персонал в безопасные зоны.

Меры предосторожности в отношении окружающей среды:
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Следует избегать выброса в окружающую среду.

Методы и материалы для локализации и очистки:
Впитать инертным абсорбирующим материалом и утилизировать как опасные отходы.
Хранить в подходящих закрытых контейнерах для утилизации.

Обращение и хранение:
Меры предосторожности для безопасного обращения:
Избегайте вдыхания паров или тумана.

Условия для безопасного хранения, включая любые несовместимости:
Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.
Контейнеры, которые открываются, должны быть тщательно запечатаны и храниться в вертикальном положении, чтобы предотвратить утечку.
Класс хранения (TRGS 510): 8A: Горючие, коррозионно-опасные материалы

Контроль воздействия / личная защита:
Параметры управления:
Компоненты с параметрами контроля рабочего места
Не содержит веществ с ПДК на рабочем месте.
Средства контроля воздействия:
Соответствующие инженерные средства контроля:
Обращайтесь в соответствии с правилами промышленной гигиены и техники безопасности.
Мойте руки перед перерывами и в конце рабочего дня.

Средства индивидуальной защиты:
Защита глаз/лица:
Плотно прилегающие защитные очки.
Маска для лица (минимум 8 дюймов).
Используйте средства защиты глаз, проверенные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или EN 166 (ЕС).

Защита кожи:
Обращайтесь в перчатках.
Перчатки должны быть проверены перед использованием.
Используйте подходящую перчатку
метод удаления (не касаясь внешней поверхности перчатки), чтобы избежать контакта с кожей с этим продуктом.
Утилизируйте загрязненные перчатки после использования в соответствии с применимыми законами и передовой лабораторной практикой.
Вымойте и высушите руки.

Полный контакт:
Материал: Нитриловый каучук
Минимальная толщина слоя: 0,11 мм
Время прорыва: 480 мин.
Испытанный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Заставка контакта
Материал: Нитриловый каучук
Минимальная толщина слоя: 0,11 мм
Время прорыва: 480 мин.
Испытанный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Его не следует рассматривать как предложение одобрения для какого-либо конкретного сценария использования.

Защита тела:
Полный костюм, защищающий от химических веществ. Тип средств защиты необходимо выбирать в зависимости от концентрации и количества опасного вещества на конкретном рабочем месте.
Защита органов дыхания:
Там, где оценка риска показывает, что воздухоочистительные респираторы уместны, используйте полнолицевые респираторы с многоцелевыми комбинированными (США) или респираторными картриджами типа ABEK (EN 14387) в качестве резерва средств технического контроля.

Если респиратор является единственным средством защиты, используйте полнолицевой респиратор с подачей воздуха.
Используйте респираторы и компоненты, проверенные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или CEN (ЕС).
Контроль воздействия окружающей среды
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Следует избегать выброса в окружающую среду.

Стабильность и химическая активность:
Химическая стабильность:
Стабилен при соблюдении рекомендуемых условий хранения.
Несовместимые материалы:
Сильные окислители:
Опасные продукты разложения:
Опасные продукты разложения, образующиеся в условиях пожара.
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород.

Утилизация отходов:
Методы обработки отходов:
Продукт:
Предложите излишки и неперерабатываемые решения лицензированной компании по утилизации.
Обратитесь в лицензированную профессиональную службу по утилизации отходов, чтобы утилизировать этот материал.
Загрязненная упаковка:
Утилизируйте как неиспользованный продукт.


METHYL GLUCOSE DIOLEATE
METHYL GLUCOSE ISOSTEARATE, Nom INCI : METHYL GLUCOSE ISOSTEARATE. Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Agent d'entretien de la peau : Maintient la peau en bon état
METHYL GLUCOSE ISOSTEARATE
METHYL 2-OCTYNOATE, N° CAS : 111-12-6 - Methyl heptine carbonate. Nom INCI : METHYL 2-OCTYNOATE. Nom chimique : Methyl Oct-2-ynoate; methyl heptine carbonate. N° EINECS/ELINCS : 203-836-6, Ses fonctions (INCI). Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
Methyl heptine carbonate
methyl hexahydrophthalic anhydride (MHHPA); exahydromethylphthalic anhydride; methyl-1,2-cyclohexanedicarboxylic anhydride mixture of isomers; 1,3-Isobenzofurandione, hexahydromethyl-; METHYLAEXAHYDROPHTHALIC ANHYDRIDE(MIXTURE OF 3-AND 4-); 1. Methyl Hexahydrophthalic Anhydride (MHHPA); 3-Isobenzofurandione, hexahydromethyl-1; hexahydromethyl-3-isobenzofurandione; Methylcyclohexane-1,2-dicarboxylic anhydride; Methylhexahydrophthalic anhydride; 1-Methylhexahydrophthalic Anhydride CAS NO:25550-51-0
METHYL HEXA HYDRO PHTHALIC ANHYDRIDE (MHHPA)
MIBK; Isopropylacetone; 4-Methyl-2-pentanone; 2-methyl-4-pentanone; 4-Methylpentan-2-one; Hexanone; Hexone; Isohexanone; Isopropylacetone; cas no: 108-10-1
METHYL ISOBUTYL KETONE
METHYL ISOBUTYL KETONE Methyl isobutyl ketone Methyl isobutyl ketone Skeletal formula of methyl isobutyl ketone Ball-and-stick model of the methyl isobutyl ketone molecule Names Preferred IUPAC name 4-Methylpentan-2-one Other names 4-Methyl-2-pentanone, Isopropylacetone, Hexone, Isobutyl methyl ketone, 2-Methylpropyl methyl ketone, 4-Methyl-2-oxopentane, MIK, Isobutylmethyl ketone, MIBK, Isohexanone Identifiers CAS Number 108-10-1 check 3D model (JSmol) Interactive image ChemSpider 7621 ☒ ECHA InfoCard 100.003.228 EC Number 203-550-1 KEGG C19263 check PubChem CID 7909 RTECS number SA9275000 UNII U5T7B88CNP ☒ CompTox Dashboard (EPA) DTXSID5021889 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula C6H12O Molar mass 100.16 g/mol Appearance colorless liquid Odor pleasant[1] Density 0.802 g/mL, liquid Melting point −84.7 °C (−120.5 °F; 188.5 K) Boiling point 117 to 118 °C (243 to 244 °F; 390 to 391 K) Solubility in water 1.91 g/100 mL (20 °C) Vapor pressure 16 mmHg (20 °C)[1] Magnetic susceptibility (χ) -70.05·10−6 cm3/mol Refractive index (nD) 1.3958 Viscosity 0.58 cP at 20.0 °C Structure Dipole moment 2.8 D Hazards EU classification (DSD) (outdated) Flammable (F) Harmful (Xn) R-phrases (outdated) R11, R20, R36/37, R66 S-phrases (outdated) (S2), S9, S16, S29 NFPA 704 (fire diamond) NFPA 704 four-colored diamond 32 Flash point 14 °C (57 °F; 287 K) Autoignition temperature 449 °C (840 °F; 722 K) Explosive limits 1.2–8.0% (93 °C)[1] NIOSH (US health exposure limits): PEL (Permissible) TWA 100 ppm (410 mg/m3)[1] REL (Recommended) TWA 50 ppm (205 mg/m3) ST 75 ppm (300 mg/m3)[1] IDLH (Immediate danger) 500 ppm[1] Related compounds Related ketones Methyl isopropyl ketone 2-Pentanone Diisobutyl ketone Related compounds 2-Methylpentan-4-ol Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Methyl isobutyl ketone (MIBK) is the organic compound with the formula (CH3)2CHCH2C(O)CH3. This colourless liquid, a ketone, is used as a solvent for gums, resins, paints, varnishes, lacquers, and nitrocellulose.[2] Production Methyl isobutyl ketone is made from acetone via a three-step process. Firstly acetone undergoes an aldol reaction to give diacetone alcohol, which readily dehydrates to give mesityl oxide. Mesityl oxide can then be hydrogenated to give MIBK: Synthesis of Methyl isobutyl ketone from acetone Industrially, these three steps are combined. Acetone is treated with a strong acidic, palladium-doped cation exchange resin under medium pressure of hydrogen.[3] Several million kilograms are produced annually.[4] In 2003, the industrial production capacity for Methyl isobutyl ketone in the United States was 88,000 tons.[5] Uses Methyl isobutyl ketone tank car in Europe. Methyl isobutyl ketone is used as a solvent for nitrocellulose, lacquers, and certain polymers and resins.[4] Precursor to 6PPD Another major use is as a precursor to N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylene diamine (6PPD), an antiozonant used in tires. 6PPD is prepared by reductive coupling of Methyl isobutyl ketone with 4-aminodiphenylamine.[6] Solvent and niche applications Unlike the other common ketone solvents, acetone and MEK, Methyl isobutyl ketone has quite low solubility in water, making it useful for liquid-liquid extraction. It has a similar polarity to ethyl acetate, but greater stability towards aqueous acid and base. It can be used to extract gold, silver and other precious metals from cyanide solutions, such as those found at gold mines, to determine the levels of those dissolved metals. Diisobutyl ketone (DIBK), a related lipophilic ketone, is also used for this purpose. Methyl isobutyl ketone is also used as a denaturing agent for denatured alcohol. When mixed with water or isopropyl alcohol Methyl isobutyl ketone serves as a developer for PMMA electron beam lithography resist. Methyl isobutyl ketone is used as a solvent for CS in the preparation of the CS spray used currently by British police forces. Molecular Weight of Methyl isobutyl ketone: 100.16 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3 1.3 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Methyl isobutyl ketone: 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Methyl isobutyl ketone: 1 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Methyl isobutyl ketone: 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of Methyl isobutyl ketone: 100.088815 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Methyl isobutyl ketone: 100.088815 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Methyl isobutyl ketone: 17.1 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Methyl isobutyl ketone: 7 Computed by PubChem Formal Charge of Methyl isobutyl ketone: 0 Computed by PubChem Complexity of Methyl isobutyl ketone: 64.6 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Methyl isobutyl ketone: 0 Computed by PubChem Defined Atom Stereocenter Count of Methyl isobutyl ketone: 0 Computed by PubChem Undefined Atom Stereocenter Count of Methyl isobutyl ketone: 0 Computed by PubChem Defined Bond Stereocenter Count of Methyl isobutyl ketone: 0 Computed by PubChem Undefined Bond Stereocenter Count of Methyl isobutyl ketone: 0 Computed by PubChem Covalently-Bonded Unit Count of Methyl isobutyl ketone: 1 Computed by PubChem Compound of Methyl isobutyl ketone Is Canonicalized Yes Methyl Isobutyl Ketone (MIBK) - part of our Ketones range of high purity oxygenated chemical solvents. Methyl isobutyl ketone is an active solvent with excellent dissolving characteristics, a high tolerance to other hydrocarbon diluents and a medium evaporation rate. Ketones are strong polar solvents thanks to their carbonyl functional group. Their high solvency and excellent stability make them a solvent of choice for coatings, adhesives, inks and cleaning applications. Methyl isobutyl ketone is a ‘true’ or active solvent due to its compatibility with a variety of organic components and its ability to dissolve them on its own without the need for an alcohol, which can help to simplify system formulations. It also has the ability to combine with lower-cost hydrocarbon solvents in solvent blends. Methyl isobutyl ketone is a colourless liquid with a stable chemical nature and a medium boiling range. It is able to dissolve cellulose esters, vinyl polymers and copolymers, and most natural and synthetic resins and is also partially miscible in water. Its relatively low density combined with strong solvency assists coatings formulators in producing high-quality, high-solids formulations that are also able to comply with VOC regulations. Because of its high solvent strength, less solvent is required to dissolve a resin and in applications where the solvent evaporates to the atmosphere during use, lower levels of VOC emissions are produced. Hazard Summary Methyl isobutyl ketone is used as a solvent for gums, resins, paints, varnishes, lacquers, and nitrocellulose. Acute (short-term) exposure to methyl isobutyl ketone may irritate the eyes and mucous membranes, and cause weakness, headache, nausea, lightheadedness, vomiting, dizziness, incoordination, narcosis in humans. Chronic (long-term) occupational exposure to methyl isobutyl ketone has been observed to cause nausea, headache, burning in the eyes, weakness, insomnia, intestinal pain, and slight enlargement of the liver in humans. Lethargy and kidney and liver effects have been observed in rats and mice chronically exposed by gavage (experimentally placing the chemical in the stomach), ingestion, and inhalation. EPA has classified methyl isobutyl ketone as a Group D, not classifiable as to human carcinogenicity. Uses Methyl isobutyl ketone is used as a solvent for gums, resins, paints, varnishes, lacquers, and nitrocellulose, as an alcohol denaturant, in the extraction of rare metals, and as a synthetic flavoring adjuvant. (1,3,9) Sources and Potential Exposure Occupational exposure may occur in the workplace by the inhalation of vapors and by skin and eye contact. (1) The most probable routes of exposure to methyl isobutyl ketone by the general population are by inhalation and dermal contact during the use of consumer products that contain this compound. (1) Methyl isobutyl ketone may be released to the environment in effluent and emissions from its manufacture and use, in exhaust gas from vehicles, and from land disposal and ocean dumping of waste that contains this compound. Since methyl isobutyl ketone is a solvent and denaturant with a wide variety of applications, a large number of industries could potentially release this compound. Some segments of the population may be exposed by the inhalation of contaminated air or by the ingestion of contaminated drinking water. Methyl isobutyl ketone is used as a chemical intermediate, a solvent for manufacturing paints, rubbers, pharmaceuticals, other chemicals, and industrial cleaners. It is used in the semiconductor industry. Methyl isobutyl ketone is very efficient at dissolving resins used in paints, inks, lacquers, and other types of surface coatings. Synonyms for Methyl isobutyl ketone are hexone, isobutyl methyl ketone, and isohexanone. Methyl isobutyl ketone is a Food and Drug Administration (FDA)-approved indirect food additive for adhesives, paper and paperboard, and polymers.
METHYL ISOSTEARATE
Methylpentanol; MIBC; sec-Hexyl Alcohol; MAOH; 2-Methyl-4-pentanol; 4-methyl-2-pentanol; 4-Methylpentan-2-ol; Isobutylmethyl Carbinol; Methyl-2-pentanol; Methylamyl alcohol; Isobutylmethyl Methanol CAS NO:108-11-2
Methyl isobutyl carbinol (MIBC)
Methylpentanol; MIBC; sec-Hexyl Alcohol; MAOH; 2-Methyl-4-pentanol; 4-methyl-2-pentanol; 4-Methylpentan-2-ol; Isobutylmethyl Carbinol; Methyl-2-pentanol; Methylamyl alcohol; Isobutylmethyl Methanol CAS NO:108-11-2
Methyl isobutyl ketone ( MIBK) Méthyl isobutyl cétone
METHYL LACTATE, N° CAS : 27871-49-4 / 547-64-8. Nom INCI : METHYL LACTATE. Nom chimique : 2-Hydroxy-propanoic acid methyl ester, (S)- / 2-hydroxy-propanoic acid methyl ester, N° EINECS/ELINCS : 248-704-9 / 208-930-0. Ses fonctions (INCI). Solvant : Dissout d'autres substances. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. Agent arômatisant : Donne un arôme au produit cosmétique
METHYL LACTATE
4,7-Methanoisobenzofuran-1,3-dione, 3a,4,7,7a-tetrahydromethyl-; 5-Norbornene-2,3-dicarboxylic anhydride, methyl-; endo-Methylenemethyltetrahydrophthalic anhydride; Epicure NMA; Hardener HY906; HSDB 6093; Kayahard MCD; MEA 610; Methendic anhydride; Methyl-1,2,3,6-tetrahydro-3,6-endomethylenephthalic anhydride; Methyl-5-norbornene-2,3-dicarboxylic anhydride; Methyl-tetrahydro-3,6-endomethylenephthalic anhydride; Methylbicyclo(2.2.1)heptene-2,3-dicarboxylic anhydride; Methylbicyclo(2.2.1)heptene-2,3-dicarboxylic anhydride isomers; Methylendic anhydride; Methylnorbornene-2,3-dicarboxylic anhydride CAS NO:25134-21-8
METHYL NADIC ANHYDRIDE
METHYL NICOTINATE, N° CAS : 93-60-7, Nom INCI : METHYL NICOTINATE, Nom chimique : 3-Pyridinecarboxylic acid, methyl ester, N° EINECS/ELINCS : 202-261-8. Ses fonctions (INCI), Agent apaisant : Aide à alléger l'inconfort de la peau ou du cuir chevelu. Tonifiant : Produit une sensation de bien-être sur la peau et les cheveux
METHYL NICOTINATE
METHYL OLEATE; (Z)-9-octadecenoic acid methyl ester; Methyl 9-octadecenoate; Methyl cis-9-Octadecenoate; Oleic acid Methyl ester; cas no: 112-62-9
METHYL OLEATE
Methyl Oleate IUPAC Name methyl (Z)-octadec-9-enoate Methyl Oleate InChI 1S/C19H36O2/c1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19(20)21-2/h10-11H,3-9,12-18H2,1-2H3/b11-10- Methyl Oleate InChI Key QYDYPVFESGNLHU-KHPPLWFESA-N Methyl Oleate Canonical SMILES CCCCCCCCC=CCCCCCCCC(=O)OC Methyl Oleate Isomeric SMILES CCCCCCCC/C=C\CCCCCCCC(=O)OC Methyl Oleate Molecular Formula C19H36O2 Methyl Oleate CAS 112-62-9 Methyl Oleate Deprecated CAS 139152-82-2, 228858-36-4 Methyl Oleate European Community (EC) Number 203-992-5 Methyl Oleate NSC Number 406282 Methyl Oleate UNII 39736AJ06R Methyl Oleate DSSTox Substance ID DTXSID5025811 Methyl Oleate Physical Description Oleic acid methyl ester is a clear to amber liquid. Insoluble in water. Methyl Oleate Color/Form Colorless to amber clear liquid Methyl Oleate Odor Faint fatty odor Methyl Oleate Boiling Point 425.3 °F at 20 mm Hg Methyl Oleate Melting Point -3.8 °F Methyl Oleate Solubility Insoluble Methyl Oleate Density 0.8739 Methyl Oleate Vapor Pressure 6.29e-06 mmHg Methyl Oleate LogP 7.45 Methyl Oleate Decomposition When heated to decomposition it emits acrid smoke and irritating fumes. Methyl Oleate Viscosity Viscosity coefficients = 4.88, 2.62, and 1.64 cP at 30, 60, and 90 °C, respectively Methyl Oleate Heat of Combustion At constant volume, delta Ec = -2837.3 kcal/mol at 25 °C Methyl Oleate Heat of Vaporization 20.17 kcal/mol at 1 torr Methyl Oleate Surface Tension 31.3 dyne/cm at 25 °C; 25.4 dyne/cm at 100 °C; 19.1 dyne/cm at 180 °C Methyl Oleate Refractive Index MAX ABSORPTION (ALCOHOL): 230 NM (LOG E= 3.5); INDEX OF REFRACTION: 1.4522 AT 20 °C; SADTLER REFERENCE NUMBER: 917 (IR, PRISM) Methyl Oleate Molecular Weight 296.5 g/mol Methyl Oleate XLogP3-AA 7.6 Methyl Oleate Hydrogen Bond Donor Count 0 Methyl Oleate Hydrogen Bond Acceptor Count 2 Methyl Oleate Rotatable Bond Count 16 Methyl Oleate Exact Mass 296.27153 g/mol Methyl Oleate Monoisotopic Mass 296.27153 g/mol Methyl Oleate Topological Polar Surface Area 26.3 Ų Methyl Oleate Heavy Atom Count 21 Methyl Oleate Formal Charge 0 Methyl Oleate Complexity 246 Methyl Oleate Isotope Atom Count 0 Methyl Oleate Defined Atom Stereocenter Count 0 Methyl Oleate Undefined Atom Stereocenter Count 0 Methyl Oleate Defined Bond Stereocenter Count 1 Methyl Oleate Undefined Bond Stereocenter Count 0 Methyl Oleate Covalently-Bonded Unit Count 1 Methyl Oleate Compound Is Canonicalized Yes Methyl Oleate is a fatty acid methyl ester resulting from the formal condensation of the carboxy group of oleic acid with methanol. It derives from an oleic acid.Methyl Oleate is exempted from the requirement of a tolerance when used as a surfacant in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only.Methyl Oleate is exempted from the requirement of a tolerance when used as a surfacant in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only.Methyl Oleate is an indirect food additive for use only as a component of adhesives.Methyl Oleate WAS TESTED FOR CARCINOGENICITY BY ORAL & SC ADMIN IN ST/A MICE OF BOTH SEXES, BUT A POSITIVE EFFECT COULD NOT BE ASSESSED.Methyl Oleate PROMOTED SKIN TUMOR FORMATION IN MICE. THE RELATION OF MOLECULAR CONFIGURATION & CARCINOGENICITY OF FATTY ACIDS IS DISCUSSED.GROWTH OF THE CRICKET, CRYLLODES SIGILLATUS, WAS SHOWN TO BE INHIBITED BY FATTY ACIDS & SOME FATTY ACID METHYL ESTERS. THE ROUTE OF ENTRY APPEARED TO BE THROUGH THE CUTICLE OF THE TARSI. Methyl Oleate SIGNIFICANTLY RETARDED GROWTH, & RESULTED IN LOWER SURVIVAL.Methyl Oleate was found to be negative when tested for mutagenicity using the Salmonella/microsome preincubation assay, using the standard protocol approved by the National Toxicology Program (NTP). Methyl Oleate was tested in as many as 5 Salmonella typhimurium strains (TA1535, TA1537, TA97, TA98, and TA100) in the presence and absence of rat and hamster liver S-9, at doses of 0.100, 0.333, 1.000, 3.333, and 10.000 mg/plate. The highest negative dose tested in any S. typhimurium strain was 10.000 mg/plate. Slight clearing of the background bacterial lawn occurred at the high dose in cultures without activation.Methyl Oleate's production and use as a synthetic intermediate may result in its release to the environment through various waste streams. If released to air, a vapor pressure of 6.3X10-6 mm Hg at 25 °C indicates Methyl Oleate will exist in both the vapor and particulate phases in the ambient atmosphere. Vapor-phase Methyl Oleate will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 7.5 hours. Vapor-phase Methyl Oleate will also be degraded in the atmosphere by reaction with ozone; the half-life for this reaction is estimated to be 2.1 hours. Particulate-phase Methyl Oleate will be removed from the atmosphere by wet and dry deposition. If released to soil, Methyl Oleate is expected to have no mobility based upon an estimated Koc of 62,000. Volatilization from moist soil surfaces is expected to be an important fate process based upon an estimated Henry's Law constant of 0.014 atm-cu m/mole. However, adsorption to soil is expected to attenuate volatilization. Methyl Oleate is expected to rapidly biodegrade in aerobic soils as suggested by the rapid biodegradation of structurally similar long-chain fatty acid esters. If released into water, Methyl Oleate is expected to adsorb to suspended solids and sediment in the water column based upon the estimated Koc. Methyl Oleate is expected to rapidly biodegrade in aerobic waters as suggested by the rapid biodegradation of structurally similar long-chain fatty acid esters. Volatilization from water surfaces is expected to be an important fate process based upon this compound's estimated Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 5 hours and 7 days, respectively. However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The volatilization half-life from a model pond is estimated to be about 61 hours ignoring adsorption; when considering maximum adsorption the volatilization half-life increases to 18 months. An estimated BCF of 490 suggests the potential for bioconcentration in aquatic organisms is moderate. An estimated base-catalyzed second-order hydrolysis rate constant of 0.011 L/mole-sec corresponds to half-lives of 2 years and 74 days at pH values of 7 and 8, respectively. Occupational exposure to Methyl Oleate may occur through inhalation and dermal contact with this compound at workplaces where Methyl Oleate is produced or used. (SRC)Methyl Oleate's production and use as a synthetic intermediate may result in its release to the environment through various waste streams.TERRESTRIAL FATE: Based on a classification scheme, an estimated Koc value of 62,000(SRC), determined from a structure estimation method, indicates that Methyl Oleate is expected to be immobile in soil(SRC). Volatilization of Methyl Oleate from moist soil surfaces is expected to be an important fate process(SRC) given an estimated Henry's Law constant of 0.014 atm-cu m/mole(SRC), using a fragment constant estimation method. However, adsorption to soil is expected to attenuate volatilization(SRC). Methyl Oleate is not expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 6.3X10-6 mm Hg. Methyl Oleate is expected to rapidly biodegrade in aerobic soils as suggested by the rapid biodegradation of structurally similar long-chain fatty acid esters.Based on a classification scheme, an estimated Koc value of 62,000(SRC), determined from a structure estimation method, indicates that Methyl Oleate is expected to adsorb to suspended solids and sediment in water(SRC).Methyl Oleate is expected to rapidly biodegrade in aerobic soils as suggested by the rapid biodegradation of structurally similar long-chain fatty acid esters. An estimated base-catalyzed second-order hydrolysis rate constant of 0.011 L/mole-sec(9,SRC) corresponds to half-lives of 2 years and 70 days at pH values of 7 and 8, respectively(11).According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere(1), Methyl Oleate, which has a vapor pressure of 6.3X10-6 mm Hg at 25 °C, will exist in both the vapor and particulate phases in the ambient atmosphere. Vapor-phase Methyl Oleate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 7.5 hours(SRC) from its estimated rate constant of 7.4X10-11 cu cm/molecule-sec at 25 °C. Vapor-phase Methyl Oleate is also degraded in the atmosphere by reaction with ozone(SRC); the half-life for this reaction in air is estimated to be 2.1 hours(SRC) from its estimated rate constant of 1.3X10-16 cu cm/molecule-sec at 25 °C. Particulate-phase Methyl Oleate may be removed from the air by wet and dry deposition(SRC).The rate constant for the vapor-phase reaction of Methyl Oleate with photochemically-produced hydroxyl radicals has been estimated as 7.4E-11 cu cm/molecule-sec at 25 °C(SRC) using a structure estimation method. This corresponds to an atmospheric half-life of about 7.5 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm. The rate constant for the vapor-phase reaction of Methyl Oleate with ozone has been estimated as 1.3X10-16 cu cm/molecule-sec at 25 °C(SRC) using a structure estimation method. This corresponds to an atmospheric half-life of about 2 hours at an atmospheric concentration of 7X10+11 ozone molecules per cu cm. A base-catalyzed second-order hydrolysis rate constant of 0.11 L/mole-sec(SRC) was estimated using a structure estimation method; this corresponds to half-lives of 2 years and 70 days at pH values of 7 and 8, respectively. The predicted near-surface half-life for the photosensitized oxidation of Methyl Oleate in near suface waters in the Southern US is 1100 hrs. Methyl Oleate is not expected to directly photolyze due to the lack of absorption in the environmental UV spectrum.An estimated BCF of 490 was calculated for Methyl Oleate(SRC) using a log Kow of 7.45 and a regression-derived equation. According to a classification scheme, the estimated BCF suggests the potential for bioconcentration in aquatic organisms is moderate.Using a structure estimation method based on molecular connectivity indices, the Koc for Methyl Oleate can be estimated to be about 62,000(SRC). According to a classification scheme, this estimated Koc value suggests that Methyl Oleate is expected to be immobile in soil.The Henry's Law constant for Methyl Oleate is estimated as 0.014 atm-cu m/mole(SRC) using a fragment constant estimation method. This Henry's Law constant indicates that Methyl Oleate is expected to volatilize rapidly from water surfaces. Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec) is estimated as approximately 5 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec) is estimated as approximately 7 days(SRC). The volatilization half-life from a model pond 2 m deep is estimated to be about 61 hours ignoring adsorption; when considering maximum adsorption the volatilization half-life increases to 18 months. Methyl Oleate's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Methyl Oleate is not expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 6.3X10-6 mm Hg.Methyl Oleate was detected in trace quantities in samples from the River Lee, in the UK.Methyl Oleate was identified in 3 of 3 New Jersey POTW effluents, date not provided, at a estimated concentration of 0.3-18 ppb. It was detected in 13 of 13 effluents samples from an olive oil production plant, Spain, at 520-77721 ug/l. It was qualitatively detected in the effluent of a pulp and paper mill in Finland.First check the victim for contact lenses and remove if present. Flush victim's eyes with water or normal saline solution for 20 to 30 minutes while simultaneously calling a hospital or poison control center. Do not put any ointments, oils, or medication in the victim's eyes without specific instructions from a physician. IMMEDIATELY transport the victim after flushing eyes to a hospital even if no symptoms (such as redness or irritation) develop. SKIN: IMMEDIATELY flood affected skin with water while removing and isolating all contaminated clothing. Gently wash all affected skin areas thoroughly with soap and water. If symptoms such as redness or irritation develop, IMMEDIATELY call a physician and be prepared to transport the victim to a hospital for treatment. INHALATION: IMMEDIATELY leave the contaminated area; take deep breaths of fresh air. If symptoms (such as wheezing, coughing, shortness of breath, or burning in the mouth, throat, or chest) develop, call a physician and be prepared to transport the victim to a hospital. Provide proper respiratory protection to rescuers entering an unknown atmosphere. Whenever possible, Self-Contained Breathing Apparatus (SCBA) should be used; if not available, use a level of protection greater than or equal to that advised under Protective Clothing. INGESTION: DO NOT INDUCE VOMITING. If the victim is conscious and not convulsing, give 1 or 2 glasses of water to dilute the chemical and IMMEDIATELY call a hospital or poison control center. Be prepared to transport the victim to a hospital if advised by a physician. If the victim is convulsing or unconscious, do not give anything by mouth, ensure that the victim's airway is open and lay the victim on his/her side with the head lower than the body. DO NOT INDUCE VOMITING. IMMEDIATELY transport the victim to a hospital. (NTP, 1992)If you spill this chemical, use absorbent paper to pick up all liquid spill material. Your contaminated clothing and absorbent paper should be sealed in a vapor-tight plastic bag for eventual disposal. Solvent wash all contaminated surfaces with alcohol followed by washing with a strong soap and water solution. Do not reenter the contaminated area until the Safety Officer (or other responsible person) has verified that the area has been properly cleaned. STORAGE PRECAUTIONS: You should keep this material in a tightly-closed container under an inert atmosphere, and store it at refrigerated temperatures. Methyl oleate is exempted from the requirement of a tolerance when used as a surfacant in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only.Where the neat test chemical is weighed and diluted, wear a NIOSH-approved half face respirator equipped with an organic vapor/acid gas cartridge (specific for organic vapors, HCl, acid gas and SO2) with a dust/mist filter. RECOMMENDED GLOVE MATERIALS: Permeation data indicate that neoprene gloves may provide protection to contact with this compound. Neoprene over latex gloves is recommended. However, if this chemical makes direct contact with your gloves, or if a tear, puncture or hole develops, remove them at once. Esters, such as OLEIC ACID METHYL ESTER, react with acids to liberate heat along with alcohols and acids. Strong oxidizing acids may cause a vigorous reaction that is sufficiently exothermic to ignite the reaction products. Heat is also generated by the interaction of esters with caustic solutions. Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.Methyl oleate is exempted from the requirement of a tolerance when used as a surfacant in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only.0.05 ML OF 10% EMULSION OF OLEIC ACID IN NACL SOLN OR 0.05 ML OF 10% SOLN OF SODIUM OLEATE ADJUSTED WITH HCL TO PH 7.2 INJECTED INTO CORNEAS OF RABBITS CAUSED EYES TO BECOME INFLAMED WITHIN FEW HR & TO DEVELOP CORNEAL ABSCESS WITHIN FEW DAYS. ... METHYL OLEATE ALSO PRODUCED NECROSIS & LIPOGENESIS WHEN TESTED IN SAME WAY.Methyl oleate was found to be negative when tested for mutagenicity using the Salmonella/microsome preincubation assay, using the standard protocol approved by the National Toxicology Program (NTP). Methyl oleate was tested in as many as 5 Salmonella typhimurium strains (TA1535, TA1537, TA97, TA98, and TA100) in the presence and absence of rat and hamster liver S-9, at doses of 0.100, 0.333, 1.000, 3.333, and 10.000 mg/plate. The highest negative dose tested in any S. typhimurium strain was 10.000 mg/plate. Slight clearing of the background bacterial lawn occurred at the high dose in cultures without activation.Methyl oleate's production and use as a synthetic intermediate may result in its release to the environment through various waste streams. If released to air, a vapor pressure of 6.3X10-6 mm Hg at 25 °C indicates methyl oleate will exist in both the vapor and particulate phases in the ambient atmosphere. Vapor-phase methyl oleate will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 7.5 hours. Vapor-phase methyl oleate will also be degraded in the atmosphere by reaction with ozone; the half-life for this reaction is estimated to be 2.1 hours. Particulate-phase methyl oleate will be removed from the atmosphere by wet and dry deposition. If released to soil, methyl oleate is expected to have no mobility based upon an estimated Koc of 62,000. Volatilization from moist soil surfaces is expected to be an important fate process based upon an estimated Henry's Law constant of 0.014 atm-cu m/mole. However, adsorption to soil is expected to attenuate volatilization. Methyl oleate is expected to rapidly biodegrade in aerobic soils as suggested by the rapid biodegradation of structurally similar long-chain fatty acid esters. If released into water, methyl oleate is expected to adsorb to suspended solids and sediment in the water column based upon the estimated Koc. Methyl oleate is expected to rapidly biodegrade in aerobic waters as suggested by the rapid biodegradation of structurally similar long-chain fatty acid esters. Volatilization from water surfaces is expected to be an important fate process based upon this compound's estimated Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 5 hours and 7 days, respectively. However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The volatilization half-life from a model pond is estimated to be about 61 hours ignoring adsorption; when considering maximum adsorption the volatilization half-life increases to 18 months. An estimated BCF of 490 suggests the potential for bioconcentration in aquatic organisms is moderate. An estimated base-catalyzed second-order hydrolysis rate constant of 0.011 L/mole-sec corresponds to half-lives of 2 years and 74 days at pH values of 7 and 8, respectively. Occupational exposure to methyl oleate may occur through inhalation and dermal contact with this compound at workplaces where methyl oleate is produced or used. Based on a classification scheme, an estimated Koc value of 62,000(SRC), determined from a structure estimation method, indicates that methyl oleate is expected to be immobile in soil(SRC). Volatilization of methyl oleate from moist soil surfaces is expected to be an important fate process(SRC) given an estimated Henry's Law constant of 0.014 atm-cu m/mole(SRC), using a fragment constant estimation method. However, adsorption to soil is expected to attenuate volatilization(SRC). Methyl oleate is not expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 6.3X10-6 mm Hg. Methyl oleate is expected to rapidly biodegrade in aerobic soils as suggested by the rapid biodegradation of structurally similar long-chain fatty acid esters.Based on a classification scheme, an estimated Koc value of 62,000(SRC), determined from a structure estimation method, indicates that methyl oleate is expected to adsorb to suspended solids and sediment in water(SRC). Volatilization from water surfaces is expected based upon an estimated Henry's Law constant of 0.014 atm-cu m/mole(SRC), developed using a fragment constant estimation method. Volatilization half-lives for a model river and model lake are 5 hours and 7 days, respectively(SRC), using an estimation method. However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column(SRC). The volatilization half-life from a model pond is estimated to be about 61 hours ignoring adsorption; when considering maximum adsorption the volatilization half-life increases to 18 months. According to a classification scheme, an estimated BCF of 490 from its log Kow of 7.45 and a regression-derived equation suggests the potential for bioconcentration in aquatic organisms is moderate. Methyl oleate is expected to rapidly biodegrade in aerobic soils as suggested by the rapid biodegradation of structurally similar long-chain fatty acid esters. An estimated base-catalyzed second-order hydrolysis rate constant of 0.011 L/mole-sec(SRC) corresponds to half-lives of 2 years and 70 days at pH values of 7 and 8, respectively.According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, methyl oleate, which has a vapor pressure of 6.3X10-6 mm Hg at 25 °C, will exist in both the vapor and particulate phases in the ambient atmosphere. Vapor-phase methyl oleate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 7.5 hours(SRC) from its estimated rate constant of 7.4X10-11 cu cm/molecule-sec at 25 °C. Vapor-phase methyl oleate is also degraded in the atmosphere by reaction with ozone(SRC); the half-life for this reaction in air is estimated to be 2.1 hours(SRC) from its estimated rate constant of 1.3X10-16 cu cm/molecule-sec at 25 °C. Particulate-phase methyl oleate may be removed from the air by wet and dry deposition(SRC).The rate constant for the vapor-phase reaction of methyl oleate with photochemically-produced hydroxyl radicals has been estimated as 7.4E-11 cu cm/molecule-sec at 25 °C(SRC) using a structure estimation method. This corresponds to an atmospheric half-life of about 7.5 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm. The rate constant for the vapor-phase reaction of methyl oleate with ozone has been estimated as 1.3X10-16 cu cm/molecule-sec at 25 °C(SRC) using a structure estimation method. This corresponds to an atmospheric half-life of about 2 hours at an atmospheric concentration of 7X10+11 ozone molecules per cu cm. A base-catalyzed second-order hydrolysis rate constant of 0.11 L/mole-sec(SRC) was estimated using a structure estimation method; this corresponds to half-lives of 2 years and 70 days at pH values of 7 and 8, respectively. The predicted near-surface half-life for the photosensitized oxidation of methyl oleate in near suface waters in the Southern US is 1100 hrs. Methyl oleate is not expected to directly photolyze due to the lack of absorption in the environmental UV spectrum.The Henry's Law constant for methyl oleate is estimated as 0.014 atm-cu m/mole(SRC) using a fragment constant estimation method. This Henry's Law constant indicates that methyl oleate is expected to volatilize rapidly from water surfaces. Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec) is estimated as approximately 5 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec) is estimated as approximately 7 days(SRC). The volatilization half-life from a model pond 2 m deep is estimated to be about 61 hours ignoring adsorption; when considering maximum adsorption the volatilization half-life increases to 18 months. Methyl oleate's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Methyl oleate is not expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 6.3X10-6 mm Hg.Methyl oleate produces small amounts of allylic keto-oleates (with CO on carbons 8-, 9-, 10- and 11), epoxy-stearate or epoxy-oleates (8,9-, 9,10- and 10,11-epoxy), dihydroxy-oleates (8,9-, 9,10-, and 10,11-diOH) and dihydroxystearates (between carbon-9 and carbon-11). The allylic keto-oleates may be derived by dehydration of the corresponding hydroperoxides. 9,10-Epoxystearate may be produced by the reaction of oleate and the hydroperoxides. The other epoxy products can be formed by cyclization of an alkoxy radical formed from the corresponding hydroperoxides of oleate. Accordingly, the 11-hydroperoxide forms the 10,11-epoxy ester, the 8-hydroperoxide forms the 8,9-epoxy ester, and the 9- and 10-hydroperoxides form the 9,10-epoxy ester. The 1,2- and 1,4-dihydroxy esters may be formed from a similar alkoxyl radical that undergoes hydroxyl and hydrogen radical substitution via an allylic hydroxy ester radical.Acrylated methyl oleate (AMO) was synthesized using methods reported by Bunker and Wool [4]. The monomer synthesis requires two steps. First, the unsaturated bond in oleic methyl ester (OME) must be epoxidized by a peroxy acid. The epoxidized fatty acid methyl ester is then acrylated using acrylic acid. The acrylate groups are able to participate in free-radical polymerization. A schematic of the monomer synthesis is shown in Fig. 12.2. The OME can also be derived as a by-product from biodiesel, assuming that we have an efficient fatty acid separation process. The separation process was explored by Bunker and Wool and potentially can be done economically at large scale. This would circumvent the need for the development of specialty high-oleic oils and provide additional utilization of biodiesel plants currently being constructed in Delaware and elsewhere. From a green engineering perspective, the biodiesel is perhaps more valuable as a chemical feedstock rather than a combustible fuel feedstock and can attain this value when the current generation of internal combustion engines is replaced in the future by their fuel-cell equivalents.They also demonstrated that jojoba oil undergoes facile ene addition reactions with these two enophiles. Recently, Biswas et al.119 studied the ene reaction of soybean oil with diethyl azodicarboxylate and observed a self-curing and thickening behavior at room temperature, which are believed to be due to cross-linking ene reactions. The ene adducts between soybean oil and diethyl azodicarboxylate were subjected to hydrolysis and alcoholysis reactions by chemical and enzymatic methods.120 Chemical hydrolysis yielded hydrazino-fatty acids, while enzymatic alcoholysis with methanol, glycerol, and poly(ethylene glycol) yielded the corresponding transesterified products.In sheet metal-forming processes, lubricants that can provide corrosion protection and scratch resistance are necessary to prevent material transfer from the sheet metal to the tool surface and to control friction. While a silane film can give good corrosion protection properties, it is often too thin to prevent such galling. With the desire to use environment-friendly pretreatments in the surface engineering of metal substrates,121 the proper choice of silane pretreatment of a metal surface, along with a vegetable oil coupled to the surface, can provide the desired lubrication properties. The coupling between a vegetable oil and a mercaptosilane was achieved through a photoinduced thiol–ene reaction using UV radiation.122 The thiol–ene coupling reaction of 2-ethyl-(hydroxymethyl)-1,3-propanediol trimercapto acetate and 2-ethyl-(hydroxymethyl)-1,3-propanediol trimercapto propionate with methyl oleate and methyl linoleate was evaluated by Samuelsson et al.123 Both thiols were more prone to add to the monounsaturated methyl oleate than to methyl linoleate, which contains two unconjugated double bonds. Real-time infrared (IR) measurements also showed that the cis-unsaturation in methyl oleate isomerized much more quickly than in methyl linoleate, and this also had an impact on the overall addition rate of the thiols because a trans-unsaturation was more reactive than a cis-unsaturation.Some of the more recent developments utilizing the ene reaction of vegetable oils are in the area of coatings and thermoset resins. Vinyl alkoxysilanes and vinyl acetoxysilanes have been grafted onto unsaturated vegetable oils to synthesize moisture-curable coatings.124 Similarly, butanethiol has been used in UV-initiated thiol–ene reactions with canola and corn oils.125 High butanethiol-to-vegetable-oil ratios and low reaction temperatures were used to effect high conversion of the double bonds and obtain high yields. Rubbery, thermoset polymers have been synthesized using the ene reaction between soybean oil and p-nitrosobenzene.126 High-performance thermosetting resins have also been prepared from DCO and 1,1′-(methylenedi-4,1-phenylene)bismaleimide.127 Similarly, grafted autoxidizable polyester resins for high-solid alkyd coating compositions have been reported, which utilize an ene adduct between natural oils and a diacid or its anhydride.No reproductive or developmental toxicity information was found for biodiesel. Methyl oleate was tested in a limited study design in which female rats, exposed to 100 mg kg−1 day−1 for 12 weeks, were bred to unexposed males. There were no effects to reproductive parameters.Several oils used as feedstocks for biodiesel have been evaluated for reproductive or developmental toxicity potential in limited testing. For tallow, a three-generation study in pigs and a one-generation study in rats failed to identify adverse effects to reproduction or offspring. In the rat study, the fatty acid profiles in fat tissues of newborn rats contained higher 14:0 and 18:0 content, reflecting the tallow composition in the diet. A screening study for developmental toxicity in rats administered palm oil at doses up to 3 ml kg−1 (ca. 2760 mg kg−1 day−1) resulted in prenatal mortality (resorptions), defects, and growth retardation, but the authors hypothesized that the effects may have been due to high vitamin A in the palm oil sample. Testing with palm oil for effects on sexual maturation and endocrine function, with the control group given corn oil and a second group controlling for fat content, found that vaginal opening occurred earlier in female rats given a high-fat diet. To the authors, this suggested that body weight or body fat was a factor in acceleration of vaginal patency, as there were no differences in average body weights at first estrus, no irregularities in estrous cyclicity, and no measured differences during the estrous cycles for estradiol, prolactin, or luteinizing hormone.Biodiesel exhaust (B100 soy-derived, 0.5 mg particulates per cubic meter per day) did not cause developmental toxicity in rats.
METHYL OLEATE ( OLEATE DE METHYLE )
Methyl 4-hydroxybenzoate; Methyl Chemosept; Methyl Parasept; 4-Hydroxybenzoic acid methyl ester; Nipagin M; Tegosept M; Aseptoform; Nipagin; 4-Hydroxy methyl benzoate CAS NO. : 99-76-3
METHYL PARABEN
Chemical name: Methyl 4-Hydroxybenzoate Chemical structure INCI designation Methylparaben Product properties Appearance (20°C): White, crystalline powder. Chemical and physical data Melting point: 125 - 128 oC Assayacc. BP/PH.Eur: 98.0 - 102.0 % EC / List no.: 202-785-7 CAS no.: 99-76-3 Uses METHYL PARABEN is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries and topical pharmaceuticals. METHYL PARABEN is suitable to preserve both rinse- off and leave- on formulations. Applications Typical use concentrations of METHYL PARABEN is 0.1 – 0.3 %. Combinations of p- Hydroxybenzoic acid esters, e.g.with Nipasol M, Nipagin A or Nipabutyl exhibit increased activity compared with individual esters. Incorporation METHYL PARABEN is freely soluble in most oils, waxes, fatty alcohols, but have relatively low solubility in water. The low aqueous solubility does not affect the microbiological efficacy of the esters. Most formulations requiring preservation contain a significant amount of water. This may mean that METHYL PARABEN cannot readily be added directly to the formulation. Other methods of incorporation are quite straightforward however, and are listed below. Dissolving in water The solubility of METHYL PARABEN increases greatly as the temperature of the water rises. Therefore a concentrate may be made up by heating an appropriate quantity of water to 60- 100 °C prior to addition of METHYL PARABEN. This concentrate may then be added to the formulation, provided that the ester concentration does not exceed its solubility in the formulation at normal ambient temperatures. Dissolving in organic solvents METHYL PARABEN is readily soluble in polar organic solvents. Where such a solvent is already part of a formulation an METHYL PARABEN concentrate may be made up prior to addition. If a suitable solvent is not already part of the formulation,a highly concentrated solution may be made up e.g. 32 % in Ethanol, which would give insignificant residual levels of ethanol in the end product. Solubilisation in oils, emulsifiers etc. METHYL PARABEN is readily soluble in lipophilic ingredients and may be introduced to a formulation by adding to the oil phase with some warming before any emulsification stage. In multiphase systems, such as emulsions, it is often advisable to use a combination of aqueous dissolution with either of the other methods to ensure adequate preservation. The ester may be incorporated in the water to its maximum solubility and any further quantities may be dissolved in the oil phase, or solvent, as appropriate. pH stability METHYL PARABEN remains fully stable over a wide pH range from 4- 8. In general the lower the pH of the formulation, the more active is METHYL PARABEN. That can result in a lower use concentration when the pH of the formulation is more acidic. Temperature stability METHYL PARABEN is stable up to 80 °C. METHYL PARABEN is the best water soluble short-chain Paraben. Benefits Broad spectrum of activity against bacteria and fungi Low order of toxicity Effectiveness at low concentrations Stability over a broad pH-range Water-soluble Biodegradability at environmental concentrations Global acceptance in personal care applications Solubility The solubility of METHYL PARABEN in different solvents is illustrated in the following table. Solvent % (w/w) Water 10 °C 0.13 Water 25 °C 0.25 Water 80 °C 3.1 Water 100 °C 6.2 Acetone 39 Methanol 37 Ethanol 32 Propylene Glycol 26 Glycerol 3.3 Vegetable oils (arachis) 2.4 Liquid paraffin 0.02 Microbial Activity METHYL PARABEN exhibits microbiostatic activity against a wide range of bacteria, yeast and mould. This is illustrated by the following table which shows the minimum inhibitory concentration (MIC) of METHYL PARABEN against examples of different groups of microorganisms. Microorganisms MIC level (%) Gram Negative Bacteria Pseudomonas aeruginosa 0.20 Escherichia coli 0.10 Klebsiella aerogenes 0.075 Klebsiella pneumoniae 0.10 Serratia marcescens 0.075 Proteus vulgaris 0.10 Salmonella enteritidis 0.15 Salmonella typhi 0.15 Microorganisms MIC level (%) Gram Positive Bacteria Stpahylococcus aureus 0.15 Streptococcus haemolyticus 0.10 Bacillus cereus 0.075 Bacillus subtilis 0.10 Lactobacillus buchneri 0.10 Yeasts Candida albicans 0.10 Saccharomyces cerevisiae 0.10 Molds Aspergillus niger 0.10 Penicillium digitatum 0.05 Rhizopus nigricans 0.05 Storage instructions The product must be stored in tighly closed container in a cool, well- ventilated, dry place. Further information on handling, storage and dispatch is given in the EC safety data sheet Methylparaben, also methyl paraben, one of the parabens, is a preservative with the chemical formula CH3(C6H4(OH)COO). Methylparaben is the methyl ester of p-hydroxybenzoic acid. Natural occurrences Methylparaben serves as a pheromone for a variety of insects and is a component of queen mandibular pheromone. It is a pheromone in wolves produced during estrus associated with the behavior of alpha male wolves preventing other males from mounting females in heat. Uses Methylparaben is an anti-fungal agent often used in a variety of cosmetics and personal-care products. It is also used as a food preservative and has the E number E218. Methylparaben is commonly used as a fungicide in Drosophila food media at 0.1%.[5] To Drosophila, methylparaben is toxic at higher concentrations, has an estrogenic effect (mimicking estrogen in rats and having anti-androgenic activity), and slows the growth rate in the larval and pupal stages at 0.2%.[6] Safety There is controversy about whether methylparaben or propylparabens are harmful at concentrations typically used in body care or cosmetics. Methylparaben and propylparaben are considered generally recognized as safe (GRAS) by the USFDA for food and cosmetic antibacterial preservation. Methylparaben is readily metabolized by common soil bacteria, making it completely biodegradable. Methylparaben is readily absorbed from the gastrointestinal tract or through the skin. It is hydrolyzed to p-hydroxybenzoic acid and rapidly excreted in urine without accumulating in the body. Acute toxicity studies have shown that methylparaben is practically non-toxic by both oral and parenteral administration in animals. In a population with normal skin, methylparaben is practically non-irritating and non-sensitizing; however, allergic reactions to ingested parabens have been reported. A 2008 study found no competitive binding for human estrogen and androgen receptors for methylparaben, but varying levels of competitive binding were seen with butyl- and isobutyl-paraben. Preferred IUPAC name Methyl 4-hydroxybenzoate Other names Methyl paraben; Methyl p-hydroxybenzoate; Methyl parahydroxybenzoate; METHYL PARABEN; E number E218; Tegosept; Mycocten Identifiers CAS Number: 99-76-3 Methyl 4-hydroxybenzoate This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as guaranteeing specific properties of the products described on their suitability for a particular application. Any existing industrial property rights must be observed. The quality of our products is guaranteed under our General Conditions of Sale.
Methyl paraben
Methyl 4-hydroxybenzoate, sodium salt; Sodium 4-(methoxycarbonyl)phenolate; Natrium-4-(methoxycarbonyl)phenolat; 4-(metoxicarbonil)fenolato de sodio; 4-(méthoxycarbonyl)phénolate de sodium; Methyl paraben sodium salt; Sodium methyl 4-hydroxybenzoate; methyl-4-oxide-benzoate, sodium salt; Methyl p-hydroxybenzoate, sodium salt CAS NO: 5026-62-0
Methyl paraben sodium
4-hydroxybenzoate de méthyle, méthylparabène parahydroxybenzoate de méthyle, No CAS :99-76-3, Le 4-hydroxybenzoate de méthyle ou méthylparabène (E2184) est un conservateur de la famille des parabènes. Il est utilisé dans les cosmétiques, les médicaments et les aliments, pour ses propriétés antibactériennes et antifongiques.Benzoic acid, p-hydroxy-, methyl ester;Benzoic acid, p-hydroxy-, methyl ester (6CI,8CI), 4-(Carbomethoxy)phenol, 4-(Methoxycarbonyl)phenol, 4-Hydroxybenzoic acid methyl ester, 4-Hydroxymethyl benzoate, Methyl 4-(3'-butenyloxy)benzoate; methyl parabel [INCI]; METHYL PARABEN; methyl-4-hydroxybenzoate
METHYL PARABEN( Paraoxybenzoate de méthyle )
Synonyms: AKOS BBS-00004393;4-(methoxycarbonyl)phenol;4-HYDROXYBENZOIC ACID METHYL ESTER;4-HYDROXYBENZOIC ACID METYL ESTER;4-(carbomethoxy)phenol;METHYLIS PARAHYDROXYBENZOAS;METHYLPARABEN;Methyl parasept CAS: 99-76-3
METHYL P-HYDROXYBENZOATE (METHYL PARABEN)
NMP; n-methyl-2-pyrrolidone; N-Methyl pyrrolidone; N-Methylpyrrolidone; N° CAS : 872-50-4, Nom INCI : METHYL PYRROLIDONE. Nom chimique : N-methyl-2-pyrrolidone. N° EINECS/ELINCS : 212-828-1. Solvant : Dissout d'autres substances, 1-Méthyl-2-pyrrolidone, 1-Methyl-2-pyrrolidinone, 1-methyl-5-pyrrolidinone, 1-METHYLAZACYCLOPENTAN-2-ONE, 1-METHYLPYRROLIDINONE,1-METHYLPYRROLIDONE, 2-Pyrrolidinone, 1-methyl-, M-PYROL, N-METHYL-2-PYRROLIDINONE, n-methyl-2-pyrrolidone, N-METHYL-ALPHA-PYRROLIDINONE, N-METHYL-ALPHA-PYRROLIDONE,N-METHYL-GAMMA-BUTYROLACTAM, N-METHYLPYRROLIDINONE, N-Methylpyrrolidone, NMP, METHYL PYRROLIDONE, Noms français :1-Methyl-2-pyrrolidinone; 1-Methyl-2-pyrrolidone; 1-METHYL-5-PYRROLIDINONE; 1-METHYLAZACYCLOPENTAN-2-ONE; 1-METHYLPYRROLIDINONE; 1-METHYLPYRROLIDONE-2; 2-PYRROLIDINONE, 1-METHYL-; M-Pyrol; METHYLPYRROLIDINONE ;Méthyl-1 pyrrolidinone-2; N-METHYL PYROLIDINONE; N-METHYL-2-PYRROLIDINONE ;N-METHYL-ALPHA-PYRROLIDINONE; N-METHYL-ALPHA-PYRROLIDONE ;N-METHYLPYROLIDINONE; N-METHYLPYROLIDONE ;N-METHYLPYRROLIDINONE; N-Méthyl 2-pyrrolidone; N-Méthyl pyrrolidone; N-Méthyl pyrrolidone-2. Noms anglais :N-Methyl pyrrolidone; N-Methylpyrrolidone Utilisation: La N-méthyl 2-pyrrolidone est un solvant industriel utilisé dans différents secteurs d'activité. Les principales utilisations de la N-méthyl 2-pyrrolidone qu'on peut rencontrer dans les établissements québécois sont : dans les produits de nettoyage industriels que ce soit comme composant principal de décapants à peinture, de dégraisseurs ou de nettoyeurs pour surface de métal (enlèvement des huiles, graisses, suies, dépôts de carbone et autres résidus goudronneux dans les moteurs à combustion) en plus faible concentration dans les nettoyeurs à graffitis et les produits de nettoyage domestiques dans la formulation de peintures et revêtements, dont certaines peintures et finis à base d'eau, des revêtements pour séchage au four et d'autres à base de mélanges de solvants en imprimerie, dans la formulation des encres, comme dispersant de pigments, ou en mélange avec d'autres solvants pour nettoyer les écrans ou autres surfaces en électronique, comme solvant de nettoyage pour les plaques de silicium (semi-conducteur), décapant de résines photosensibles (circuit imprimé), ou solvant de nettoyage de résidus d'enrobage ou autres résines dans l'industrie du plastique, comme solvant pour de nombreux polymères et copolymères ou comme milieu de réaction pour la production de polymères tels que les polyéthersulfones, les polyimides ou les aramides en agrochimie, comme solvant dans la formulation de pesticides dans l'industrie pharmaceutique, comme intermédiaire de synthèse, dans les formulations de médicaments à application topique pour augmenter la pénétration ou comme solvant de produits cosmétiques.N-Methylpyrrolidione; N-Methylpyrrolidone; 106420 [Beilstein]; 1-Methyl-2-pyrrolidinon [German] [ACD/IUPAC Name]; 1-Methyl-2-pyrrolidinone [ACD/IUPAC Name] 1-Méthyl-2-pyrrolidinone [French] [ACD/IUPAC Name]; 1-Methyl-2-pyrrolidone; 1-Methylpyrrolidin-2-on; 1-methylpyrrolidin-2-one; 212-828-1 [EINECS]; 2-Pyrrolidinone, 1-methyl- [ACD/Index Name]; 2-Pyrrolidone, 1-methyl; 872-50-4 [RN]; Methyl pyrrolidone; METHYLPYRROLIDINONE; Methylpyrrolidone [Wiki]; Methylpyrrolidone, N-MFCD00003193 [MDL number] ;N-methyl pyrrolidinone; N-methyl-2-pyrrolidinone; N-Methyl-2-pyrrolidone;N-Methyl-a-pyrrolidinone; N-Methyl-g-butyrolactone; N-methylpyrrolidinone; N-Methyl-α-pyrrolidinone; N-methyl-α-pyrrolidone; N-Methyl-α-pyrrolidone; NMP [Formula]; Pyrrolidinone, methyl-; 185964-60-7 [RN];1-METHYL-2-PYRROLIDI; 1-Methyl-2-pyrrolidon; 1-Methyl-5-pyrrolidinone; 1-methylazacyclopentan-2-one; 1-Methylazacyclopentane-2-one; 1-Methyl-pyrrolidin-2-one; 1-Methylpyrrolidinone; 1-METHYLPYRROLIDINONE-5,5-D2; 1-Methylpyrrolidone; 204-438-5 [EINECS]; 2-Pyrrolidinone, methyl-; 2-Pyrrolidone, 1-methyl-; Agsolex 1; MB3; Methyl-2-pyrrolidinone;METHYLPYRROLIDIN-1-YLNE; M-Pyrol; N-methyl pyrrolidone; N-Methyl-2-ketopyrrolidine; N-methyl-2-pyrolidinone;N-Methyl-2-pyrrolidinone ACS reagent; N-Methylbutyrolactam; N-Methyl-d3-2-pyrrolidinone-d6; N-METHYLPYROLIDONE; N-Methylpyrrolid-2-one; N-methylpyrrolidin-2-one; N-Methylpyrrolidione (en); N-methyl-pyrrolidone; N-methyl-α-pyrrolidinone; N-methyl-γ-butyrolactam; N-Methyl-γ-butyrolactam; N-甲基吡咯烷酮 [Chinese]; pyrrolidin-2-one, 1-methyl-; T5NVTJ A [WLN]; 1-Methyl-2-pyrrolidinone; 1-methyl-2-pyrrolidone; EC Inventory, , , ; 1-Methyl-2-pyrrolidone (NMP); Candidate List; 1-Methyl-5-pyrrolidinone; 1-Methylazacyclopentan-2-one; 1-Methylpyrrolidinone; 1-Methylpyrrolidone; 2-Pyrrolidinone, 1-methyl-; AgsolEx 1; Methylpyrrolidone; Microposit 2001;N-Methyl-2-pyrrolidinone; N-Methyl-2-pyrrolidone; N-Methyl-gamma-butyrolactam; N-Methylpyrrolidinone; N-methylpyrrolidone; NMP; Pharmasolve; Pyrol M; SL 1332; Translated names: 1-methyl-2-pyrrolidon (da); 1-methylpyrrolidin-2-on (cs); 1-metil-2-pirolidon (hr);1-metil-2-pirolidonas (lt); 1-metil-2-pirolidons (lv); 1-metil-2-pirolidonă (ro); 1-metil-2-pirrolidon (hu); 1-metil-2-pirrolidona (es); 1-metil-2-pirrolidone (it); 1-metyl-2-pyrrolidon (no);1-metylo-2-pirolidon (pl); 1-metylpyrolidín-2-ón (sk); 1-metyyli-2-pyrrolidoni (fi); 1-metüül-2-pürrolidoon (et); 1-méthyl-2-pyrrolidone (fr); 1-μεθυλο-πυρρολιδόνη-2 (el); 1-метил-2-пиролидон (bg); N-metil-2-pirolidon (hr); N-methyl-2-pyrrolidon (cs); N-metil-2-pirolidon (sl); N-metil-2-pirolidonas (lt); N-metil-2-pirolidons (lv); N-metil-2-pirolidonă (ro); N-metil-2-pirrolidon (hu); N-metil-2-pirrolidona (es); N-metil-2-pirrolidone (it); N-metyl-2-pyrolidón (sk); N-metyl-2-pyrrolidon (no); N-metylo-2-pirolidon (pl); N-metyyli-2-pyrrolidoni (fi); N-metüül-2-pürrolidoon (et); N-méthyl-2-pyrrolidone (fr); N-μεθυλο-πυρρολιδόνη-2· (el); N-метил-2-пиролидон (bg); : 1-mehyl-2-pyrrolodone; 1-Methyl 2-pyrrolidone; 1-methylpyrrolidin-1-one; 1-methylpyrrolidin-2-one; 1-methylpyrrolidin-2-one,N-METHYLPYRROLIDONE, 1-Methyl-2-pyrrolidinone, N-METHYL-2-PYRROLIDONE; 1-O-butyl 2-O-(phenylmethyl) benzene-1,2-dicarboxylate; 2-Pyrrolidone, 1-methyl; Methyl pyrrolidone; METHYL-N 2-PYRROLIDONE; n methyl 2 pyrrolidone;N-Methyl pyrolidone; N-methyl-2-pyrolidone; N-methyl-2-pyrrolidone; 1-methyl-2-pyrrolidone; NMP (n-methyl-2-pyrrolidone); Trade names;2-Pyrrolidinone, 1-methyl- (7CI, 8CI, 9CI); 2-Pyrrolidinone, 1-methyl-(7Cl, 8Cl, 9Cl); M-Pyrol; N-methyl pyrrolidone; N-Methyl-.alpha.-pyrrolidinone;N-Methyl-.alpha.-pyrrolidone;N-Methyl-.gamma.-butyrolactam; N-METHYLPYROLIDONE;N-Methylpyrrolidon; n-methylpyrrolidon in Lube Green preparation; POLYFLON PTFE SM-3900; Pyrol-M
METHYL PYRROLIDONE ( N-methyl-2-pyrrolidone) NMP
1,1'-sulfonylbis-methane; DMSO2;MSM; NSC 63345; CAS NO. 67-71-0
METHYL SULFONYL METHANE
1,2,3,6-TETRAHYDRO-3-METHYLPHTHALIC ANHYDRIDE; 1,2,3,6-tetrahydro-4-methylphthalic anhydride; 1-METHYL-5-CYCLOHEXENE-2,3-DICARBOXYLIC ANHYDRIDE; 3a,4,7,7a-tetrahydromethyl-1,3-isobenzofurandione; 3-METHYL-4-CYCLOHEXEN-1,2-DICARBOXYLIC ANHYDRIDE; 3-METHYL-4-CYCLOHEXENE-1,2-DICARBOXYLIC ANHYDRIDE; 3-METHYL-DELTA4-TETRAHYDROPHTHALIC ANHYDRIDE; 3-METHYLTETRAHYDROPHTHALIC ANHYDRIDE 4-METHYL TETRAHYDROPHTHALIC ANHYDRIDE; AC-METHYL METHYL-1,2,3,6-TETRAHYDROPHTHALIC ANHYDRIDE; METHYLCYCLOHEXENE-1,2-DICARBOXYLIC ANHYDRIDE; METHYLTETRAHYDROPHTHALIC ANHYDRIDE; MTHPA MTHPA-600; MTHPA-EG; 3-Isobenzofurandione,tetrahydromethyl-1 tetrahydromethyl-3-isobenzofurandione; 1,3-Isobenzofurandione, tetrahydromethyl; tetrahydromethylphthalic anhydride CAS NO: 11070-44-3
METHYL TETRA HYDRO PHTHALIC ANHYDRIDE (MTHPA )
DIMETHOXYMETHANE; Methylene dimethylether; Dimethyl Formal; Anesthenyl; Bis(Methoxy)Methane; Dioxapentane; Formal; Formaldehyde Methyl Ketal; Methoxymethyl Methyl Ether; Metylal; Formaldehyde dimethyl acetal CAS NO:109-87-5
Methylal
3(2H)-Isothiazolone, 5-chloro-2-methyl-, 4-Isothiazolin-3-one, 5-chloro-2-methyl-, 5-Chloro-2-methyl-3(2H)-isothiazolone, 5-Chloro-2-methylisothiazol-3-one, CMIT, Kathon CG 5243, MethylchloroisothiazolinoneMETHYLCHLOROISOTHIAZOLINONE, N° CAS : 26172-55-4 - Methylchloroisothiazolinone. Origine(s) : Synthétique. Autres langues : Methylchlorisothiazolinon, Metilcloroisotiazolinona. Nom INCI : METHYLCHLOROISOTHIAZOLINONE. Nom chimique : 5-Chloro-2-methyl-2H-isothiazol-3-one. N° EINECS/ELINCS : 247-500-7, Classification : Règlementé, Conservateur, La Méthylchloroisothiazolinone plus connue sous l'acronyme de CMIT, est un conservateur utilisé dans les produits cosmétiques et ménagers conjointement avec de la Methylisothiazolinone (MIT). La CMIT ne peut pas être utilisée seule, mais uniquement avec de la MIT. De fait comme la MIT est interdite dans les produits non rincés, la Dans les cosmétiques : Utilisable uniquement avec de la Methylisothiazolinone dans les produits rincés dans les conditions suivantes : 0,0015 % (d'un mélange dans un rapport 3:1 de 5-chloro-2-méthyl-isothiazol-3(2H)-one et de 2-méthylisothiazol-3(2H)-one) Ses fonctions (INCI): Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Noms français : 3(2H)-ISOTHIAZOLONE, 5-CHLORO-2-METHYL; 4-ISOTHIAZOLIN-3-ONE, 5-CHLORO-2-METHYL-; Chloro-5 méthyl-2 isothiazolin-4 one-3; Chloromethylisothiazolinone; Methylchloroisothiazolinone. Noms anglais : 5-chloro-2-methyl-4-isothiazolin-3-one. Utilisation et sources d'émission: Fabrication de pesticides. 247-500-7 [EINECS] 26172-55-4 [RN] 3(2H)-Isothiazolone, 5-chloro-2-methyl- [ACD/Index Name] 5-Chlor-2-methyl-1,2-thiazol-3(2H)-on [German] [ACD/IUPAC Name] 5-Chloro-2-methyl-1,2-thiazol-3(2H)-one [ACD/IUPAC Name] 5-Chloro-2-méthyl-1,2-thiazol-3(2H)-one [French] [ACD/IUPAC Name] 5-Chloro-2-methyl-4-isothiazolin-3-one 5-Chloro-2-methyl-4-isothiazolin-3-one (CMI) 5-chloro-2-methylisothiazol-3(2h)-one chloromethylisothiazolinone DEL7T5QRPN Methylchloroisothiazolinone [Wiki] MFCD00792550 [MDL number] 1210149 2,3-dihydro-2-methyl-3-oxo-5-chloroisothiazole 2682-20-4 MIT 2-methyl-5-chloro-3-isothiazolone 2-METHYL-5-CHLORO-4-ISOTHIAZOLIN-3-ONE 2-methyl-5-chloroisothiazolin-3-one 4-Isothiazolin-3-one, 5-chloro-2-methyl- 55965-84-9 CMIT, MIT 5-Chloride-2-Methyl-4-Isothiazoline-3-Ketone 5-chloro-2-methyl-1,2-thiazol-3-one 5-chloro-2-methyl-2,3-dihydro-1,2-thiazol-3-one 5-CHLORO-2-METHYL-2H-ISOTHIAZOL-3-ONE 5-Chloro-2-methyl-3(2H)-isothiazolone 5-Chloro-2-methyl-3-isothiazolone 5-chloro-2-methyl-4- isothiazolin-3-one 5-Chloro-2-methyl-4-isothiazol-3-one 5-chloro-2-methyl-4-isothiazolin-3-one (active ingredient >14%, cmi/mi 2.5 - 4.0) 5-chloro-2-methyl-4-isothiazolin-3-one(cmi) 5-chloro-2-methyl-4-isothiazolin-3-one(cmit) 5-chloro-2-methyl-4-isothiazoline-3-one 5-Chloro-2-methyl-isothiazol-3-one 5-chloro-N-methylisothiazolone CMIT EINECS 247-500-7 isothiazolin-3-one, 5-chloro-2-methyl- Kathon CG 5243 Kathon IXE MCI MFCD04041015 Plant preservative mixture|PPM
Methylchloroisothiazolinone
N° CAS : 35691-65-7, Nom INCI : METHYLDIBROMO GLUTARONITRILE. Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.2-bromo-2-(bromomethyl)pentanedinitrile (DBDCB), Synonymes : methyldibromoglutaronitrile;Glutaronitrile, 2-bromo-2-(bromomethyl)-;1,2-Dibromo-2,4-dicyanobutane;2-Bromo-2-(bromomethyl)pentanedinitrile;1-bromo-(bromoethyl)-1,3-propanedicarbonitrile;1-Bromo-1-(bromomethyl)-1,3-propanedicarbonitrile;2, 3-Dibromo-2,4-cyanobutane;2-Bromo-2-(bromomethyl) pentanedinitrile;2-Bromo-2-(bromomethyl)glutaronitrile;Dibromodicyanobutane;MDBGN;Metacide 38;Pentanedinitrile, 2-bromo-2-(bromomethyl)-;Tektamer 38;USEPA/OPP Pesticide Code: 111001.
METHYLDIBROMO GLUTARONITRILE
N° CAS : 105-59-9, Nom INCI : METHYL DIETHANOLAMINE, Nom chimique : N-Methyldiethanolamine, METHYL DIETHANOLAMINE, Noms français : 2,2'-Methyliminodiethanol; Diethanolmethylamine; Méthyl diethanolamine; Méthylimino diéthanol-2,2'; N-Methyldiethanolamine; N-Méthyl diéthanolamine. Noms anglais : Ethanol, 2,2'-(methylimino)bis-; Methyldiethanolamine ,2'-(Methylimino)diethanol, 2,2'-Methyliminodiethanol, 2,2`-(Methylimino)bis-ethanol, 2-(N-2-Hydroxyethyl-N-methylamino)ethanol, 2-[2-hydroxyethyl(methyl)amino]ethanol, 4-04-00-01517 (Beilstein Handbook Reference), Bis(2-hydroxyethyl) methyl amine, Bis(2-hydroxyethyl)methylamine, C5H13NO2, Diethanolmethylamine, EINECS 203-312-7, Ethanol, 2,2'-(methylimino)bis-, Ethanol, 2,2'-(methylimino)di-, LS-389, MDEA, Methylbis(2-hydroxyethyl)amine, Methyldiethanolamine, Methyliminodiethanol, N,N-Bis(2-hydroxyethyl)methylamine, N,N-Di(2-hydroxyethyl)-N-methylamine, N-Methyl-2,2'-iminodiethanol, N-Methylaminodiglycol, N-METHYLDIETHANOLAMINE, n-methyl diethanolamine,N-Methyldiethanolimine, N-Methylimino-2,2'-diethanol, N-Methyliminodiethanol,N° EINECS/ELINCS : 203-312-7. Ses fonctions (INCI) : Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Noms français : 2,2'-Methyliminodiethanol; Diethanolmethylamine; Méthyl diethanolamine; Méthylimino diéthanol-2,2'; N-Methyldiethanolamine; N-Méthyl diéthanolamine. Noms anglais : Ethanol, 2,2'-(methylimino)bis-; Methyldiethanolamine
METHYLDIGLYCOL
Chemical Characterization Diethylene glycol monomethyl ether 2-(2-Methoxyethoxy)-ethanol CAS-No.: 111-77-3 EINECS-No.: 203-906-6 Product Description Methyl diglycol is a colorless, neutral, weakly hygroscopic and liquid with a mild pleasant odor. It is miscible in any ratio with water and the usual organic solvents e.g. acetone, diethyl ether and methanol. Methyl diglycol is starting material for the production of methyl diglycol acetate. It is also used as a solvent for fats, oils and waxes; constituent of hydraulic fluids; additive in cleaners for soiled surfaces and starting material for syntheses. To prevent dermal exposure methyl diglycol is not suitable for any application in paints and paint strippers. The technical characteristics of methyl diglycol enable it to meet the requirements stipulated for the technical Supply Conditions as drawn up in accordance with MIL-DTL-85470B in addition with an antioxidant (Clariant product name: Methyl diglycol JFA). Storage Advices Glycol ethers and their derivatives tend to form peroxides in the presence of air or oxygen. For further informations please refer to the safety data sheet. Storage tanks should be made from norm-steel or stainless steel. Aluminum and other light metals are not suitable due to alcoholate formation with methyl diglycol. Azeotropic mixtures Methyl diglycol builds no azeotrope with water and diglycol; nevertheless with several other organic solvents. Some of them are listed here: Methyl diglycol (in %)-Azeotrope with-in %-b.p. (°C) (at 1013 mbar) 80-acetophenone-20-191,90 46-amylether-54-179,50 49-dimethylaniline-51-184,85 33-dipentene-67-168,50 70-glycol-30-192,00 23-isoamylether-77-168,85 13-mesitylene-87-162,50 89-naphtaline-11-192,20 52-o-cresol-48-201,50 61-phenol-39-199,65 45-phenylacetate-55-188,60 30-p-cresol-70-208,00 Technical Data METYLDIGLYCOL molar mass-g/mol-120,2 METYLDIGLYCOL solidification point (DIN 51583) °C -65 METYLDIGLYCOL boiling range/1013 hPa °C 190-196 METYLDIGLYCOL flash point(DIN 51755) °C 91 METYLDIGLYCOL ignition temperature (DIN 51794) °C 245 METYLDIGLYCOL density/20°C (DIN 51757) g/cm³ 1,018-1,022 METYLDIGLYCOL kinematic viscosity/20°C (DIN 51562) mm²/s 3,9 METYLDIGLYCOL vapor pressure/20°C mbar 0,3 METYLDIGLYCOL heat of evaporation /1013 hPa kJ/kg 396 METYLDIGLYCOL evaporation number (DIN 53170, Diethylether = 1) ca. 900 METYLDIGLYCOL refractive number nD20 (DIN 51423, part 2) 1,4263 METYLDIGLYCOL surface tension/25°C mN/m 28,5 METYLDIGLYCOL dielectric constant/20°C (DIN 53483) 15,8 METYLDIGLYCOL specific heat /20°C kJ/kgK 2,15 METYLDIGLYCOL thermal conductivity /20°C W/mK 0,18 METYLDIGLYCOL critical density g/cm3 0,322 METYLDIGLYCOL critical temperature °C 357,1 METYLDIGLYCOL critical pressure bar 35,4 METYLDIGLYCOL miscibility with water miscible
Methyldiethanolamine ( METHYL DIETHANOLAMINE)
METHYL GLUCETH-20, N° CAS : 68239-42-9 - Méthyle Gluceth-20, Origine(s) : Synthétique, Nom INCI : METHYL GLUCETH-20. Le méthyle Gluceth-20 est produit à partir de glucose, d'alcool méthylique et de dérivés de sucre. Il est utilisé en cosmétique en tant qu'émollient (adoucit la peau), humectant (retient l'eau) et hydratant. Il est employé principalement dans les soins hydratants et nourrissants pour des peaux plutôt sèches et irritées.Ses fonctions (INCI): Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau. Hydratant : Augmente la teneur en eau de la peau et aide à la maintenir douce et lisse
Méthyle Gluceth-20
METHYLENE BIS MORPHOLINE; N,N-Dimorpholinomethane; Morpholine,4,4-methylenebis-; Bis(4-morpholinyl)methane; N,N'-Methylenebismorpholine; 4,4'-methanediyldimorpholine; 4,4-methylenebis-Morpholine; N,N-Methylene-bis-morpholine cas no: 5625-90-1
METHYLENE BIS MORPHOLINE
N,N'-Methylenebisacrylamide; N-[(Prop-2-enoylamino)methyl]prop-2-enamide cas no: 110-26-9
METHYLENE BISACRYLAMIDE
N,N-Dimorpholinomethane; Morpholine,4,4-methylenebis-; Bis(4-morpholinyl)methane; N,N'-Methylenebismorpholine; 4,4'-methanediyldimorpholine; 4,4-methylenebis-Morpholine; N,N-Methylene-bis-morpholine CAS:5625-90-1
Methylene Bismorpholine
N,N-Dimorpholinomethane; Morpholine,4,4-methylenebis-; Bis(4-morpholinyl)methane; N,N'-Methylenebismorpholine; 4,4'-methanediyldimorpholine; 4,4-methylenebis-Morpholine; N,N-Methylene-bis-morpholine CAS:5625-90-1
METHYLENE CHLORIDE
Dichloromethane; Freon 30; Methylene dichloride; Chlorure De Methylene; Chlorocarbon; Methylene Bichloride; Metylenu Chlorek CAS NO:75-09-2
METHYLENE GLYCOL
Methylenephosphonic Acid; Bis Hexamethylenetriaminepenta(Methylenephosphonic Acid); TPMP; DTMPA; DETA-Phos; [[(phosphonomethyl)imino]bis[2,1-ethanediylnitrilobis(methylene)]]tetrakis- Phosphonic acid; CAS NO: 15827-60-8
Methylene-bis-morpholine
N,N'-Methylene-bis-morpholine helps to increase the life of metalworking fluid with maintaining the stable product function and preserving the fluid from bacteria and fungi. It could be for metalworking fluid concentrate during manufacturing or for tank side treatment. Name: N,N'-Methylene-bis-morpholine CAS: 5625-90-1 N,N'-Methylene-bis-morpholine - CAS 5625-90-1 Molecular Formula: C9H18N2O2 Molecular Weight: 186.251 Name N,N'-Methylene-bis-morpholine Synonyms N,N-Dimorpholinomethane Morpholine,4,4-methylenebis- Bis(4-morpholinyl)methane N,N'-Methylenebismorpholine 4,4'-methanediyldimorpholine 4,4-methylenebis-Morpholine CAS 5625-90-1 EINECS 227-062-3 N,N'-Methylene-bis-morpholine - Physico-chemical Properties Molecular Formula C9H18N2O2 Molar Mass 186.251 g/mol Density 1.09g/cm3 Boling Point 265.1°C at 760 mmHg Flash Point 77.6°C Vapor Presure 0.00935mmHg at 25°C Refractive Index 1.496 1.Product name:N,N'-Methylene-bis-morpholine 2.Molecular weight:186.25 Molecular formula:C9H18N2O2 3.CAS No:5625-90-1 Eiencs No:227-062-3 4.Specification Item Index Purity of Active Content >92% Appearance Colorless liquid Density 1.08-1.10g/m³ Boiling point ℃ 122-124(P=12torr) PH(1% water) 9.0-11.0 Solubility in Water Completely Usage of MBM ( Methylene-bis-morpholine) : 1, a low toxicity broad spectrum fungicide for water-based metalworking fluid 2, anti-Bacteria and fungi effectively 3, fully meet with the requirements of water-based metalworking fluid: low skin irritation, mild odor, low toxicity; formulation compatibility, lasting bactericidal. At higher concentrations, fungi and molds also have better inhibition.Recommended addition amount (mass ratio): Recipe 2-3%, the working liquid 1-2‰; 6.Package: 25kg/ drums or 200kg/ drums Application and Benefits of Methylene-bis-morpholine : Biocide ( Preservative ) in the the metal working fluid composition permits the efficient practice of cutting, grinding, form rolling, press working and plastic working of metallic materials. In addition, the fluid composition is excellent in the antiseptic properties and it is seldom that the fluid composition adversely affects the environment of the earth and the human bodies. The fluid composition comprises a morpholine compound,the fluid composition is significantly improved in the antiseptic properties and the service life of the metal working fluid composition can thus significantly be extended, as compared with conventionally known metal working fluid compositions. As a result, the fluid composition would permit the saving of natural resources, and the reduction of the amount of waste matter (waste fluid) and accordingly, the use thereof would result in the reduction of any adverse effect on the environment of the earth. NO MORE FORMALDEHYDE !! Formaldehyde occurs naturally in the environment as a by-product of metabolic processes in humans, animals and through the natural decay process of plant species. Formaldehyde is even detectable in human breath at low levels. Under the changes planned to the labelling of certain chemicals, formalin-releasing species have been re-classified according to their total potential to release formaldehyde and not through actual measurement in use. Research by several chemical manufacturers supports very low levels, no higher than the surrounding environment, when used well managed metalworking fluid systems. Formaldehyde has long been classed as a category 1B carcinogen. Formaldehyde Depots or ‘donors’ (FADs) have been used to improve the sump life of soluble metalworking fluids. New legislation now affects certain formalin- containing biocides. Under the recent update to CLP regulation, ATP (Adaptation to Technical Progress, review May 4th 2017), any product or treated article which contains certain formalin-containing biocides (to protect the function of the product) will need to be labelled as category 1B. Examples of the biocides affected include methylene bis-morpholine (MBM) and methylene bis[5-methyloxazolidine] (MBO). Methylene bis-morpholine (MBM) is a low toxicity biocide developed for use in metal working concentrates. Nipacide MBM is effective against a wide range of microorganisms including gram positive and gram negative bacteria, yeast and fungi. Microorganisms grow at a rapid rate and without use of the correct biocide, numbers can increase dramatically. Methylene bis-morpholine (MBM)is recommended for preservation of metal working solution concentrates. N,N'-Methylene-bis-morpholine is effective against a wide range of spoilage organisms and effective over a wide pH and temperature range. Use level; Methylene bis morpholine should be evaluated in finished products at levels between 2.0% and 5.0%.
Methylenephosphonic Acid
P-HYDROXYANISOLE, N° CAS : 150-76-5 - Méthyléther d'hydroquinone/Mequinol, Nom INCI : P-HYDROXYANISOLE; Nom chimique : 4-Methoxyphenol;N° EINECS/ELINCS : 205-769-8, La concentration maximale autorisée est la suivante : 0,02 % (après mélange pour utilisation);Usage professionnel; Ses fonctions (INCI). Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité. Agent réducteur : Modifie la nature chimique d'une autre substance en ajoutant de l'hydrogène ou en éliminant l'oxygène
Méthyléther d'hydroquinone/Mequinol
Trisodium dicarboxymethyl alaninate; * N,N-Bis(carboxymethyl)-DL-alanin trisodium salt; N-(1-Carboxyethyl)-iminodiacetic acid; α-Alanindiacetic acid; α-ADA; MGDA-Na3; Trilon M; carboxylatoethyl)iminodiacetate, methylglycinediacetic acid trisodium salt (MGDA-Na3) or trisodium α-DL-alanine diacetate (α-ADA), cas no: 164462-16-2
METHYLGLYCINEDIACETIC ACID 
Synonyms: D,L-methylglycinediacetic acid trisodium salt; Trisodium 2-Methylnitrilotriacetate Hydrate; methylglycine-N,N-diacetic CAS No.: 164462-16-2
Methylglycine N,N-diacetic acid, Trisodium Salt
N° CAS : 99-76-3 ; 4-Hydroxybenzoate de méthyle, Autre langue : Metilparabeno, Nom INCI : METHYLPARABEN. Methyl-paraben ,CAS : 99-76-3.Synonymes : 4-(Methoxycarbonyl)phenol;4-Hydroxybenzoic acid methyl ester;Abiol;Aseptoform;Benzoic acid, 4-hydroxy-, methyl ester;Benzoic acid, p-hydroxy-, methyl ester;Maseptol;Metaben;Methyl 4-hydroxybenzoate;Methyl chemosept;Methyl ester of p-hydroxybenzoic acid;Methyl p-hydroxybenzoate;Methyl p-oxybenzoate;Methyl parahydroxybenzoate;Methyl parasept;Methylben;Methylester kyseliny p-hydroxybenzoove;Methylester kyseliny p-hydroxybenzoove (Czech);Metoxyde;Moldex, Nipagin, Nipagin M, p-(methoxycarbonyl)phenol, p-Carbomethoxyphenol, p-Hydroxybenzoic acid methyl ester, p-Hydroxybenzoic methyl ester, p-Oxybenzoesauremethylester, p-Oxybenzoesauremethylester (German), Paridol, Preserval M,Septos, Solbrol, Solbrol M,Tegosept M, Nom chimique : Methyl 4-hydroxybenzoate. N° EINECS/ELINCS : 202-785-7. Additif alimentaire : E218. Noms français : 4-(METHOXYCARBONYL)PHENOL; 4-HYDROXYBENOZIC ACID METHYL ESTER; Ester méthylique de l'acide hydroxy-4 benzoïque; HYDROXY-4 BENZOATE DE METHYLE; METHYL 4-HYDROXYBENZOATE; METHYL ESTER OF P-HYDROXYBENZOIC ACID METHYL P-HYDROXYBENZOATE; METHYL PARA-HYDROXYBENZOATE; METHYL PARAHYDROXYBENZOATE; P-CARBOMETHOXYPHENOL;P-HYDROXYBENZOATE DE METHYLE P-HYDROXYBENZOIC ACID METHYL ESTER; P-METHOXYCARBONYLPHENOL. Utilisation et sources d'émission: Agent antiseptique
METHYLGLYCOL
Chemical Characterization Ethylene glycol monomethylether 1-Hydroxy-2-methoxyethane 2-Methoxyethanol CAS-No.: 109-86-4 EINECS-No.: 203-713-7 Registrations: EINECS (Europe), TSCA (USA), AICS (Australian),DSL (Canada), ECL (Korea), PICCS (Philippines), ENCS (Japan),ASIA-PAC Product Description Methyl glycol is a colorless, neutral, weakly liquid with a mild pleasant odor. It is miscible in any ratio with water and the usual organic solvents (except for saturated hydrocarbons, e. g. special boiling point petroleum spirits).Methyl glycol enters into the typical alcohol reactions like esterification, etherification, oxidation, acetal and alcoholate formation. Therefore it is used as a starting material for syntheses of organic intermediates. Methyl glycol is also used as an antifreeze in aviation fuels for jet aircrafts (about 0.10 - 0.15 % by volume, relative to the fuel). The technical characteristics of methyl glycol enable it to meet the requirements stipulated for the technical Supply Conditions as drawn up in accordance with MIL-DTL-2786G (NATO-Code-Number: S-748) in addition with an antioxidant. Storage Advices Glycol ethers and their derivatives tend to form peroxides in the presence of air or oxygen. To prevent the formation of peroxides the product should be stored under an inert nitrogen atmosphere. Despite the very mild odor of methyl glycol, the general precautionary measures for the handling of solvents must always be observed. For further informations please refer to the safety datasheet. Storage tanks should be made from norm-steel or stainless steel. Aluminium and other light metals are not suitable due to alcoholate formation with methyl glycol. We found the following materials suitable. Technical Data Methyl glycol molar mass g/mol 76,1 Methyl glycol solidification point (DIN 51583) °C -85 Methyl glycol boiling range/1013 hPa °C 123-126 Methyl glycol flash point(DIN 51755) °C 37 Methyl glycol ignition temperature (DIN 51794) °C 325 Methyl glycol density/20°C (DIN 51757) g/cm³ 0,967 Methyl glycol vapor density (Luft = 1) 2,63 Methyl glycol vapor pressure/20°C mbar 8,1 Methyl glycol kinematic viscosity/20°C (DIN 51562) mm²/s 1,71 Methyl glycol dielectric constant/20°C (DIN 53483) 16,9 Methyl glycol critical density g/cm3 0,313 Methyl glycol critical temperature °C 292,2 Methyl glycol critical pressure bar 50,1 Methyl glycol dipole moment/25°C Debye 2,04 Methyl glycol surface tension/25°C mN/m 31,2 Methyl glycol refractive number nD20 (DIN 51423, part 2) 1,402 Methyl glycol heat of evaporation /1013 hPa kJ/kg 519 Methyl glycol evaporation number (DIN 53170, Diethylether = 1) 34 Methyl glycol thermal conductivity /20°C W/mK 0,19 Methyl glycol specific heat /20°C kJ/kg*K 2,30
METHYLPARABEN ( Hydroxybenzoate de méthyle)
METHYLPROPANEDIOL, N° CAS : 2163-42-0, Nom INCI : METHYLPROPANEDIOL. Nom chimique : 2-Methyl-1,3-propanediol. N° EINECS/ELINCS : 412-350-5. Ses fonctions (INCI), Solvant : Dissout d'autres substances
METHYLPROPANEDIOL
SYNONYMS Methyltrimethoxysilane;MTMS;HD-119;Z 6070;CM9100;A-1630;DC Z-6070;silanea-163;Dynasylan MTMS;TrimethoxymethyL;unioncarbidea-163 cas no: 1185-55-3
METHYLTETRAGLYCOL
Chemical Characterization Tetraethylene glycol monomethyl ether Homologous mixture, n = 3–6 Main components are: Methyl tetraglycol (min. 60%) CAS-Nr.: 23783-42-8 Methyl pentaglycol CAS-Nr.: 23778-52-1 Registrations: EINECS (Europe), TSCA (USA), AICS (Australian),DSL (Canada), ECL (Korea), PICCS (Philippines), ENCS (Japan) Product Description Methyl tetraglycol is a clear yellowish, slightly hygroscopic and slightly mobile liquid with an extremely faint odour. It is miscible in any ratio with water and the usual organic solvents. Methyl tetraglycol exerts to the typical alcohol reactions. Methyl tetraglycol is used as a hydraulic fluid component e.g. in brake fluids. Because of its high dissolving power methyl tetraglycol is used in water-borne and solvent-borne coating formulations and as dispersing agent. Furthermore, methyl tetraglycol finds many applications in biochemistry and medicine, e.g. in herbicide formulations, X-ray contrast media and medicinal drugs. Also, the esterification with peptides influences the hydrophilic properties as well as the immunochemical resistance. In the electronic industry methyl tetraglycol is used in soldering agents and as regenerations fluid for LCD-cells. Storage advices Glycol ethers and their derivatives tend to form peroxides in the presence of air or oxygen. Due to the hygroscopicity of methyl tetraglycol correct storage in order to prevent absorption of water has to be ensured. It is recommended to reduce moisture pickup by nitrogen blanketing of storage tanks. Drying agents (silica gel) should be used if the tank is able to breath. Storage tanks should be made from stainless steel. Alumina and other light metals are not suitable due to alcoholate formation with methyl tetraglycol. Technical data Methyl tetraglycol molar mass g/mol ca. 208 Methyl tetraglycol boiling range/1013 hPa °C 280–350 Methyl tetraglycol solidification point (DIN 51583) °C -39 Methyl tetraglycol flash point (DIN 51758) °C 161 Methyl tetraglycol ignition temperature (DIN 51794) °C 325 Methyl tetraglycol vapour pressure/20 °C mbar <0,1 Methyl tetraglycol density/20 °C (DIN 51757) g/cm³ ca. 1,06 Methyl tetraglycol kinematic viscosity/20 °C (DIN 51562) mm²/s 11,5-12,5 Methyl tetraglycol miscibility with water/25 °C 100% miscible Methyl tetraglycol specific heat capacity kJ/kgK 2,4
METHYLTRIGLYCOL
Chemical Characterization Triethylene glycol monomethyl ether 2-(2-(2-Methoxyethoxy)-ethoxy)-ethanol CAS-No.: 112-35-6 Registrations: EINECS (Europe), TSCA (USA), AICS (Australian), DSL (Canada), ECL (Korea), PICCS (Philippines), ENCS (Japan), ASIA-PAC i.e. Product Description Methyl triglycol is a colorless, neutral, weakly hygroscopic and slightly mobile liquid with a mild pleasant odor. It is miscible in any ratio with water and the usual organic solvents e.g. acetone, diethyl ether, methanol. Methyl triglycol enters into the typical alcohol reactions. Methyltriglycol is used in brakefluid formulations und organic intermediates. Storage Advices Glycol ethers and their derivatives tend to form peroxides in the presence of air or oxygen. Due to the hygroscopicity Methyl triglycol storage to prevent absorption of water has to be ensured. It is recommended to reduce moisture pickup by nitrogen blanketing of storage tanks. Storage tanks should be made from stainless steel. Alumina and other light metals are not suitable due to alcoholate formation with methyl triglycol. Physical Data Methyl triglycol molar mass g/mol 164 Methyl triglycol boiling range/1013 hPa °C 240-280 Methyl triglycol freezing point (DIN 51583) °C -48 Methyl triglycol flash point(DIN 51755) °C ca. 125 Methyl triglycol ignition temperature (DIN 51794) °C 215 Methyl triglycol refractive number nD20 (DIN 51423, part 2) 1,4381 Methyl triglycol vapor pressure/20°C mbar 0,1 Methyl triglycol density/20°C (DIN 51757) g/cm³ ca. 1,05 Methyl triglycol kinematic viscosity/20°C (DIN 51562) mm²/s 7-7,5 Methyl triglycol miscibility with water 100% miscible
Methyltrimethoxysilane
METHYLENE CHLORIDE; Dichloromethane; Freon 30; Methylene dichloride; Chlorure De Methylene (French); Chlorocarbon; Methylene Bichloride; Metylenu Chlorek (Polish); cas no: 75-09-2
METILEN KLORÜR
Dipropylene glycol methyl ether; 2-(2-methoxypropoxy)propan-1-ol ; Glycol Ether DPM; dipropyleneglycol monomethyl ether cas no:13588-28-8
METOKSI DI PROPANOL (DPM)
1-Methoxy-2-propanol; PGME; 1-Methoxypropan-2-ol; polypropylene glycol methyl ether; propylene glycol 1-methyl ether; PM; (+/-)-1-methoxy-2-propanol; 1-Methoxy-2-hydroxypropane; Methoxy Propanol; 2-Methoxy- 1 -Methyl Ethanol; cas no: 107-98-2
METOKSI PROPANOL (PM)
METYL PARABEN; Methyl 4-hydroxybenzoate, sodium salt; Sodium 4-(methoxycarbonyl)phenolate; Natrium-4-(methoxycarbonyl)phenolat; 4-(metoxicarbonil)fenolato de sodio; 4-(méthoxycarbonyl)phénolate de sodium; Methyl paraben sodium salt; Sodium methyl 4-hydroxybenzoate; methyl-4-oxide-benzoate, sodium salt; Methyl p-hydroxybenzoate, sodium salt; cas no: 5026-62-0
METYL PARABEN
SYNONYMS D,L-methylglycinediacetic acid trisodium salt;;Trisodium 2-Methylnitrilotriacetate Hydrate;;methylglycine-N,N-diacetic acid trisodium salt;;TRISODIUM 2-METHYLNITRILOTRIACETATE;;methylglycinediacetic acid trisodium salt;;Methyl Glycine Diacetic Acid Trisodium Salt Hydrate;;N,N-Bis(carboxylatomethyl)alanine Trisodium Salt Hydrate;;N,N-BIS(CARBOXYLATOMETHYL)ALANINE TRISODIUM SALT; CAS NO:164462-16-2