Системa очистки воды , Химикаты для металла и буровой системы

HYDROXYETHYL UREA ( (2-hydroxyethyl)urea )
HYDROXYETHYL-2-NITRO-P-TOLUIDINE N° CAS : 100418-33-5 Nom INCI : HYDROXYETHYL-2-NITRO-P-TOLUIDINE Nom chimique : 1-Methyl-3-nitro-4-(.beta.-hydroxyethyl)aminobenzene N° EINECS/ELINCS : 408-090-7
HYDROXYETHYL-2-NITRO-P-TOLUIDINE
HYDROXYETHYLCELLULOSE,Tylose, N° CAS : 9004-62-0, Nom INCI : HYDROXYETHYLCELLULOSE, Classification : Composé éthoxylé, L'hydroxyéthylcellulose est un polymère obtenu par l'action d'oxyde d'éthylène sur de la cellulose. Il est utilisé en cosmétique en tant qu'épaississant.Ses fonctions (INCI). Agent fixant : Permet la cohésion de différents ingrédients cosmétiques Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion. Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Agent stabilisant : Améliore les ingrédients ou la stabilité de la formulation et la durée de conservation. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Noms français : Cellulose, hydroyéthyl de; Hydroxy-2 éthyl cellulose. Noms anglais : 2-Hydroxyethyl cellulose; 2-HYDROXYETHYL CELLULOSE ETHER; CELLULOSE HYDROXYETHYL ETHER; CELLULOSE HYDROXYETHYLATE; CELLULOSE, 2-HYDROXYETHYL ETHER; CELLULOSE, ETHYLENE OXIDE-GRAFTED;HYDROXY ETHYL CELLULOSE HYDROXYETHYL CELLULOSE; HYDROXYETHYL CELLULOSE ETHER; HYDROXYETHYL ETHER CELLULOSE; HYDROXYETHYLCELLULOSE; OXIRANE, POLYMER WITH CELLULOSE Utilisation : Agent épaississant, fabrication de produits pharmaceutiques
HYDROXYETHYLCELLULOSE ( Cellulose, hydroyéthyl de )
N-(2-Hydroxyethyl)ethylenediamine-N,N′,N′-triacetic acid; N-Carboxymethyl-N′-(2-hydroxyethyl)-N,N′-ethylenediglycine, HEDTA, HEEDTA cas no: 150-39-0
HYDROXYETHYLETHYLENEDIAMINTRIACETIC ACID
Cellulose,2-hydroxyethylmethylether;'Tylose'® MH 300;Hydroxythyl Methyl Cellulose;HydroxythylMethylCellulose(Hemc);HEMC;HYDROETHYLMETHYL CELLULOSE (HEMC);METHYL HYDROXYETHYL CELLULOSE (20-40CPS: 2% IN WATER);Methyl Hydroxyethyl Cellulose (20-40mPa.s, 2% in Water at 20deg C) CAS NO:9032-42-2
Hydroxyethyl-Methyl Cellulose
HYDROXYETHYL-P-PHENYLENEDIAMINE SULFATE N° CAS : 93841-25-9 Nom INCI : HYDROXYETHYL-P-PHENYLENEDIAMINE SULFATE Nom chimique : 3-(2-Hydroxyethyl)-p-phenylenediammonium sulphate/ Hydroxyethyl-p- Phenylenediamine Sulfate N° EINECS/ELINCS : 298-995-1
HYDROXYETHYL-P-PHENYLENEDIAMINE SULFATE
HYDROXYLAMINE SULPHATE; Hydroxylammonium sulfate; Hydroxylamine, sulfate (2:1) (salt); bis(hydroxylamine) sulfate; hydroxylamine neutral sulfate; bis(hydroxylammonium) sulfate; Hydroxylamine sulfate; cas no: 10039-54-0
Hydroxylamine
Hydroxylamine Sulfate; Hydroxylamine, sulfate (2:1) (salt); bis(hydroxylamine) sulfate; hydroxylamine neutral sulfate; bis(hydroxylammonium) sulfate; Hydroxylamine sulfate; OXAMMONIUM SULFATE cas no: 10039-54-0
Hydroxylamine Sulfate
SYNONYMS Hydroxylammonium sulfate; Hydroxylamine, sulfate (2:1) (salt); bis(hydroxylamine) sulfate; hydroxylamine neutral sulfate; bis(hydroxylammonium) sulfate; Hydroxylamine sulfate;OXAMMONIUM SULFATE CAS NO. 10039-54-0
HYDROXYLATED LANOLIN
HYDROXYLATED LECITHIN, N° CAS : 8029-76-3., Nom INCI : HYDROXYLATED LECITHIN, N° EINECS/ELINCS : 232-440-6. Ses fonctions (INCI): Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Agent d'entretien de la peau : Maintient la peau en bon état. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
HYDROXYLATED LECITHIN
SODIUM HYDROXYMETHYLGLYCINATE N° CAS : 70161-44-3 - Hydroxymethylglycinate de sodium Origine(s) : Synthétique Nom INCI : SODIUM HYDROXYMETHYLGLYCINATE Nom chimique : Sodium N-(hydroxymethyl)glycinate N° EINECS/ELINCS : 274-357-8. L'hydroxymethylglycinate de sodium est utilisé en tant que conservateur en cosmétique comme alternative aux parabènes. Il agit à lui seul sur un spectre assez large de microbes et bactéries en tout genre.Ses fonctions (INCI) Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques
Hydroxymethylglycinate de sodium
HYDROXYPHENOXY PROPIONIC ACID, N° CAS : 94050-90-5, Nom INCI : HYDROXYPHENOXY PROPIONIC ACID, Nom chimique : (R)-2-(4-hydroxyphenoxy)propanoic acid, N° EINECS/ELINCS : 407-960-3. Ses fonctions (INCI) : Agent d'entretien de la peau : Maintient la peau en bon état
HYDROXYPHENOXY PROPIONIC ACID
HYDROXYPHENYL PROPAMIDOBENZOIC ACID, N° CAS : 697235-49-7, Nom INCI : HYDROXYPHENYL PROPAMIDOBENZOIC ACID, Nom chimique : Benzoic Acid, 2-[[(3-(4-Hydroxyphenyl)-1-Oxopropyl]Amino]-, Ses fonctions (INCI) : Agent d'entretien de la peau : Maintient la peau en bon état
HYDROXYPHENYL PROPAMIDOBENZOIC ACID
HPAA; HPA; Belcor 575; 2-Hydroxy Phosphono Acetic Acid; CAS NO:23783-26-8
Hydroxyphosphono Acetic Acid (HPAA)
HPAA; HPA; Belcor 575; 2-Hydroxy Phosphono Acetic Acid; CAS NO:23783-26-8
Hydroxyphosphono-Acetic Acid
SynonymsHPA;HPAA;HPSE;HPSE1;Belcor 575;Heparanase-1;Snailagglutinin;Endo-glucoronidase;Phosphonoglycolic acid;Heparanase CAS No.23783-26-8
Hydroxyphosphonoacetic Acid (HPA)
HYDROXYPROLINE, N° CAS : 51-35-4, Nom INCI : HYDROXYPROLINE, Nom chimique : L-4-hydroxyproline, N° EINECS/ELINCS : 200-091-9. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent d'entretien de la peau : Maintient la peau en bon état. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
HYDROXYPROLINE
Hydroxypropyl cellulose - Average MW 1,000,000;Low-Substituted Hydroxypropyl cellulose;HYDROXYPROPYLCELLULOSE, M.W.60,000;oxypropylatedcellulose;pm50;pm50(polymer);syntheticvegetablegums;HYDROXYPROPYL CELLULOSE CAS NO: 9004-64-2
Hydroxypropyl Cellulose
HYDROXYPROPYL DISTARCH PHOSPHATE; Hydroxypropyl di-starch phosphate; Hydroxypropylated distarch phosphate cas no: 53124-00-8
HYDROXYPROPYL DISTARCH PHOSPHATE
HYDROXYPROPYL GUAR, N° CAS : 68442-94-4 / 39421-75-5, Nom INCI : HYDROXYPROPYL GUAR, N° EINECS/ELINCS : 270-497-9 / - Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion.Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
HYDROXYPROPYL GUAR
Guar gum, 2-hydroxypropyl ether; gum guar 2-hydroxypropyl ether; Hydroxypropyl guar gum; guar gum, propoxylated; 2-Hydroxypropyl guar gum;HYDROXYPROPYL GUAR CAS NO: 39421-75-5
Hydroxypropyl Guar Gum
Hypromellose; 2-hydroxypropyl methyl ether Cellulose; Hydroxypropyl Methyl Cellulose CAS NO: 9004-65-3
Hydroxypropyl Methylcellulose
HYDROXYPROPYL METHYLCELLULOSE, N° CAS : 9004-65-3 - Hypromellose, Nom INCI : HYDROXYPROPYL METHYLCELLULOSE, Additif alimentaire : E464. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion. Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Noms français : (HYDROXYPROPYL)METHYLCELLULOSE; 2-HYDROXYPROPYL METHYL CELLULOSE; CELLULOSE HYDROXYPROPYL METHYL ETHER CELLULOSE, 2-HYDROXYPROPYL METHYL ETHER; Hydroxypropyl méthylcellulose; Hydroxypropylméthylcellulose; METHYL HYDROXYPROPYL CELLULOSE;METHYLCELLULOSE, PROPYLENE GLYCOL ETHER OF; PROPYLENE GLYCOL ETHER OF METHYLCELLULOSE. Noms anglais : Hydroxypropyl methylcellulose. Utilisation et sources d'émission: Additif alimentaire, agent épaississant
HYDROXYPROPYL METHYLCELLULOSE (Hydroxypropylméthylcellulose)
HYDROXYPROPYL STARCH, N° CAS : 9049-76-7 / 68584-86-1, Nom INCI : HYDROXYPROPYL STARCH. Ses fonctions (INCI) :Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Noms français : (2-HYDROXYPROPOXY) STARCH;HYDROXYPROPYL STARCH;HYDROXYPROPYL-2, AMIDON;STARCH HYDROXYPROPYLATED;STARCH, 2-HYDROXYPROPYL ETHER.Utilisation et sources d'émission: Fabrication de papier, fabrication de colles ou adhésifs
HYDROXYPROPYL STARCH
HYDROXYPROPYL STARCH PHOSPHATE, N° CAS : 53124-00-8 / 39346-84-4 / 113894-92-1, Nom INCI : HYDROXYPROPYL STARCH PHOSPHATE. Ses fonctions (INCI) : Agent de foisonnement : Réduit la densité apparente des cosmétiques. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
HYDROXYPROPYL STARCH PHOSPHATE
Guar Hydroxypropyltrimnonium Chlide; Guar hydroxypropyltrimonium chloride; Guar Hydroxypropyltiamonium Chloride; GUM GUAR 2-HYDROXY-3-(TRIMETHYLAMMONIO) cas no:65497-29-2
HYDROXYPROPYLTRIMONIUM CHLORIDE
HYDROXYSTEARYL ALCOHOL, N° CAS : 2726-73-0, Nom INCI : HYDROXYSTEARYL ALCOHOL. Nom chimique : 1, 12-Ocatadecanediol. Classification : Alcool
HYDROXYSTEARYL ALCOHOL
BHT, N° CAS : 128-37-0 - Hydroxytoluène butylé, Autre langue : Butil hidroxi tolueno (BHL), Nom INCI : BHT, Nom chimique : 2,6-Di-tert-butyl-p-cresol, N° EINECS/ELINCS : 204-881-4; Additif alimentaire : E321. Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Noms français :(DIMETHYLETHYL-1,1)BIS-2,6 METHYL-4 PHENOL; 2,6-BIS(1,1-DIMETHYLETHYL)-4-METHYL PHENOL; Hydroxy toluène butylé; Hydroxytoluène butylé (BHT) 2,6-BIS-(1,1-DIMETHYLETHYL)-4-METHYL PHENOL 2,6-DI-T-BUTYL-P-CRESOL 2,6-DI-TER-BUTYL-P-METHYLPHENOL 2,6-DI-TERT-BUTYL-1-HYDROXY-4-METHYLBENZENE 2,6-DI-TERT-BUTYL-4-METHYLPHENOL 2,6-Di-tert-butyl-p-cresol 2,6-DI-TERT-BUTYL-P-METHYLPHENOL 2,6-DI-TERT-BUTYL-PARA-CRESOL 2,6-DITERBUTYL-4-METHYLPHENOL 2,6-DITERTBUTYLCRESOL (PARA-) 3,5-DI-TERT-BUTYL-4-HYDROXYTOLUENE 4-HYDROXY-3,5-DI-TERT-BUTYLTOLUENE 4-METHYL-2,6-DI-TERT-BUTYLPHENOL Butyl hydroxy toluène Di-tert butyl hydroxytoluène DI-TERT-BUTYL-2,6 METHYL-4 PHENOL DI-TERT-BUTYL-2,6 P-CRESOL Di-tert-butyl-2,6 para-crésol DI-TERT-BUTYL-2,6 PARACRESOL DI-TERT-BUTYLCRESOL DI-TERTBUTYL HYDROXYTOLUENE DITERTBUTYL-2,6 CRESOL (PARA-) METHYLDI-TERT-BUTYLPHENOL O,O'-DI-TERT-BUTYL-P-CRESOL P-CRESOL, 2,6-DI-TERT-BUTYL- PHENOL, 2,6-BIS(1,1-DIMETHYLETHYL)-4-METHYL PHENOL, 2,6-BIS(1,1-DIMETHYLETHYL)-4-METHYL- Noms anglais : 2,6-Di-tert-butyl-p-cresol Butylated hydroxytoluene Butylated hydroxytoluene (BHT) DIBUTYLATED HYDROXYTOLUENE Utilisation et sources d'émission Agent anti-oxydant, agent de préservation alimentaire. 2,6-di-tert-Butyl-4-methylphenol 2,6-di-tert-butyl-p-cresol Butylated hydroxytoluene CAS names Phenol, 2,6-bis(1,1-dimethylethyl)-4-methyl- - 2,6-ditert-butyl-4-methylphenol 2,6 di-tert-butyl-p-cresol 2,6-(Di-t-butyl)-p-cresol 2,6-BIS(1,1-DIMETHYLETHYL)-4-METHYLPHENOL 2,6-di-t-Butyl-p-cresol 2,6-Di-tert-buthyl-4-methyphenol 2,6-di-tert-butil-para-cresol 2,6-Di-tert-butyl-4-hydroxytoluene 2,6-Di-tert-butyl-4-methyl-1-hydroxybenzene 2,6-di-tert-butyl-4-methylphenol; 2,6-DI-TERT-BUTYL-P-CRESOL(30435) 2,6-Di-tert-butyl-p-cresol, BHT, Butylated hydroxytoluene, Butylhydroxytoluene, DBPC, Butylhydroxytoluenum 2,6-di-tert-butyl-p-cresol; BHT 2,6-di-tert-butyl-p-crezol 2,6-Di-tert-butyl-p-kresol 2,6-di-tert-butyl-p-krezol 2,6-di-tert-buytl-p-cresol 2,6-di-tert.-butyl-4-methylphenol 2,6-di-terz-butil-4-metilfenolo 2,6-ditert-butyl-4-methylphenol , 2,6-ditert-butyl-4-methylphenol. 4-methyl-2,6-di-(terc) butylfenol 4-methyl-2,6-di-tert-butyl-phenol BHT , Butil-hidroxi-toluol butylated hydroxytoluene, BHT Butylhydroxytoluol (BHT) Phenol, 2,6-bis(1,1-dimethylethyl)-4-methyl PHENOL,2,6-BIS(1,1-DIMETHYLETHYL)-4-METHYL- s 4-HYDROXY-3,5-DI-TERT-BUTYLTOLUENE 4-methyl-2,6-di-tert-butylphenol antioxidant premix (BHT) of technical grade Agidol 1 BHT of technical grade antioxidant premix, of A and B types BUTYLATED HYDROXY TOLUENE P-CRESOL, 2,6-DI-TERT-BUTYL- Technical grade (BHT). Butylated hydroxytoluene [BAN] [NF] [USAN] [Wiki] 128-37-0 [RN] 2,6-Di-t-butyl-4-hydroxytoluene 2,6-di-tert-butyl-4-methyl phenol 2,6-Di-tert-butyl-4-methylphenol 2,6-Di-tert-butyl-p-cresol 2,6-ジ-tert-ブチル-p-クレゾール [Japanese] 2,6-二叔丁基對甲酚 [Chinese] 246-911-9 [EINECS] 3,5-Di-tert-4-butylhydroxytoluene (BHT) 4-Methyl-2,6-bis(2-methyl-2-propanyl)phenol 4-Methyl-2,6-bis(2-methyl-2-propanyl)phenol [German] 4-Méthyl-2,6-bis(2-méthyl-2-propanyl)phénol [French] 4-Methyl-2,6-di-t-butyl-phenol 4-Methyl-2,6-ditertbutylphenol BHT BUTYLHYDROXYTOLUENE Butylhydroxytoluenum DBPC MFCD00011644 [MDL number] Phenol, 2,6-bis(1,1-dimethylethyl)-4-methyl- [ACD/Index Name] 1-Hydroxy-4-methyl-2,6-di-tert-butylbenzene 2,6-BIS(1,1-DIMETHYLETHYL)-4-METHYLPHENOL 2,6-bis(tert-butyl)-4-methylphenol 2,6-di-(tert.-butyl)-4-methylphenol 2,6-Di(tert-butyl)-4-methylphenol 2,6-Di-(tert-butyl)-4-methylphenol 2,6-Di(tert-butyl)hydroxytoluene 2,6-di-Butyl-para-cresol 2,6-Di-t-butyl-4-methylphenol 2,6-Di-t-butyl-p-cresol 2,6-di-ter-butyl-4-methyl-phenol 2,6-Di-terc.butyl-p-kresol [Czech] 2,6-Di-tert.-butyl-4-methylphenol 2,6-Di-tert-butyl-1-hydroxy-4-methyl benzene 2,6-Di-tert-butyl-1-hydroxy-4-methylbenzene 2,6-Di-tert-butyl-4-cresol 2,6-Di-tert-butyl-4-hydroxytoluene 2,6-Ditertbutyl-4-methyl phenol 2,6-di-tert-butyl-4-methylenol 2,6-Di-tert-butyl-4-methylhydroxybenzene 2,6-ditert-butyl-4-methyl-phenol 2,6-Di-tert-butyl-4-methyl-phenol 2,6-di-tert-butylcresol 2,6-di-tert-Butyl-methylphenol 2,6-Di-tert-butyl-para-methylphenol 2,6-Di-tert-butyl-p-methylphenol 3,5-DI-TERT-BUTYL-4-HYDROXYTOLUENE 4 Methyl 2,6 ditertbutylphenol 42615-30-5 secondary RN [RN] 4-cresol, 2,6-di-t-butyl- 4-Hydroxy-3,5-di-tert-butyltoluene 4-Methyl-2,6-di-terc. butylfenol [Czech] 4-methyl-2,6-ditert-butyl-phenol 4-Methyl-2,6-di-tert-butylphenol 4-Methyl-2,6-tert-butylphenol 50356-19-9 secondary RN [RN] 50641-99-1 secondary RN [RN] 52683-46-2 secondary RN [RN] 53571-70-3 secondary RN [RN] 58500-82-6 secondary RN [RN] 83047-16-9 secondary RN [RN] Advastab 401 Agidol Agidol 1 Alkofen BP Antioxidant 264 Antioxidant 29 Antioxidant 30 Antioxidant 4 Antioxidant 4K Antioxidant KB Antioxidant MPJ Antioxidant T 501 Antox QT Antracine 8 Antrancine 8 AO 4K AOX 4 AOX 4K BENZENE,1,3-DITERT.BUTYL,2-HYDROXY,5-METHYL Butyl hydroxy toluene Butylated hydroxytoluol Butylatedhydroxytoluene Butylhydroxytoluenum [Polish] Butylohydroksytoluenu [Polish] CAO 1 CAO 3 Catalin antioxydant 1 Catalin CAO-3 Chemanox 11 Dalpac DBMP Deenax Dibunol DIBUTYLATED HYDROXYTOLUENE Dibutylcresol Dibutylhydroxytoluene dibutylhydroxytoluene standard Dibutyl-para-cresol Dibutyl-p-cresol Di-tert-Butyl-4-methylphenol Di-tert-butylcresol Di-tert-Butylparamethylphenol di-tert-butyl-p-cresol Di-tert-butyl-p-cresol (VAN) Di-tert-butyl-p-methylphenol Embanox BHT Hydagen DEO Hydroxytoluene, Butylated Impruvol Ional Ionol Ionol (antioxidant) Ionol 1 Ionol CP Ionole Kerabit methyl di-tert-butyl phenol Methyldi-tert-butylphenol Nocrac 200 o-Di-tert-butyl-p-methylphenol Parabar 441 Paranox 441 p-Cresol, 2,6-di-tert-butyl- phenol, 2,6-bis(1,1-dimethylethyl)-4-methyl Phenol, 2,6-di-tert-butyl-4-methyl- Phenol, 3,5-bis(1,1-dimethylethyl)-4-methyl- Popol Stavox SUSTANE Tenamen 3 Tenamene 3 TONAROL Topanol Topanol O Topanol OC Toxolan P Vanlube PC Vanlube PCX Vianol Vulkanox KBButylated hydroxytoluene [BAN] [NF] [USAN] [Wiki] 128-37-0 [RN] 1911640 [Beilstein] 2,6-Di-t-butyl-4-hydroxytoluene 2,6-di-tert-butyl-4-methyl phenol 2,6-Di-tert-butyl-4-methylphenol 2,6-Di-tert-butyl-p-cresol 2,6-ジ-tert-ブチル-p-クレゾール [Japanese] 2,6-二叔丁基對甲酚 [Chinese] 246-911-9 [EINECS] 3,5-Di-tert-4-butylhydroxytoluene (BHT) 4-Methyl-2,6-bis(2-methyl-2-propanyl)phenol 4-Methyl-2,6-bis(2-methyl-2-propanyl)phenol [German] 4-Méthyl-2,6-bis(2-méthyl-2-propanyl)phénol [French] 4-Methyl-2,6-di-t-butyl-phenol 4-Methyl-2,6-ditertbutylphenol BHT BUTYLHYDROXYTOLUENE Butylhydroxytoluenum DBPC MFCD00011644 [MDL number] Phenol, 2,6-bis(1,1-dimethylethyl)-4-methyl- [ACD/Index Name] 1-Hydroxy-4-methyl-2,6-di-tert-butylbenzene 2,6-BIS(1,1-DIMETHYLETHYL)-4-METHYLPHENOL 2,6-bis(tert-butyl)-4-methylphenol 2,6-di-(tert.-butyl)-4-methylphenol 2,6-Di(tert-butyl)-4-methylphenol 2,6-Di-(tert-butyl)-4-methylphenol 2,6-Di(tert-butyl)hydroxytoluene 2,6-di-Butyl-para-cresol 2,6-Di-t-butyl-4-methylphenol 2,6-Di-t-butyl-p-cresol 2,6-di-ter-butyl-4-methyl-phenol 2,6-Di-terc.butyl-p-kresol [Czech] 2,6-Di-tert.-butyl-4-methylphenol 2,6-Di-tert-butyl-1-hydroxy-4-methyl benzene 2,6-Di-tert-butyl-1-hydroxy-4-methylbenzene 2,6-Di-tert-butyl-4-cresol 2,6-Di-tert-butyl-4-hydroxytoluene 2,6-Ditertbutyl-4-methyl phenol 2,6-di-tert-butyl-4-methylenol 2,6-Di-tert-butyl-4-methylhydroxybenzene 2,6-ditert-butyl-4-methyl-phenol 2,6-Di-tert-butyl-4-methyl-phenol 2,6-di-tert-butylcresol 2,6-di-tert-Butyl-methylphenol 2,6-Di-tert-butyl-para-methylphenol 2,6-Di-tert-butyl-p-methylphenol 3,5-DI-TERT-BUTYL-4-HYDROXYTOLUENE 4 Methyl 2,6 ditertbutylphenol 42615-30-5 secondary RN [RN] 4-cresol, 2,6-di-t-butyl- 4-Hydroxy-3,5-di-tert-butyltoluene 4-Methyl-2,6-di-terc. butylfenol [Czech] 4-methyl-2,6-ditert-butyl-phenol 4-Methyl-2,6-di-tert-butylphenol 4-Methyl-2,6-tert-butylphenol 50356-19-9 secondary RN [RN] 50641-99-1 secondary RN [RN] 52683-46-2 secondary RN [RN] 53571-70-3 secondary RN [RN] 58500-82-6 secondary RN [RN] 83047-16-9 secondary RN [RN] Advastab 401 Agidol Agidol 1 Alkofen BP Antioxidant 264 Antioxidant 29 Antioxidant 30 Antioxidant 4 Antioxidant 4K Antioxidant KB Antioxidant MPJ Antioxidant T 501 Antox QT Antracine 8 Antrancine 8 AO 4K AOX 4 AOX 4K BENZENE,1,3-DITERT.BUTYL,2-HYDROXY,5-METHYL Butyl hydroxy toluene Butylated hydroxytoluol Butylatedhydroxytoluene Butylhydroxytoluenum [Polish] Butylohydroksytoluenu [Polish] CAO 1 CAO 3 Catalin antioxydant 1 Catalin CAO-3 Chemanox 11 Dalpac DBMP Deenax Dibunol DIBUTYLATED HYDROXYTOLUENE Dibutylcresol Dibutylhydroxytoluene dibutylhydroxytoluene standard Dibutyl-para-cresol Dibutyl-p-cresol Di-tert-Butyl-4-methylphenol Di-tert-butylcresol Di-tert-Butylparamethylphenol di-tert-butyl-p-cresol Di-tert-butyl-p-cresol (VAN) Di-tert-butyl-p-methylphenol Embanox BHT Hydagen DEO Hydroxytoluene, Butylated Impruvol Ional Ionol Ionol (antioxidant) Ionol 1 Ionol CP Ionole Kerabit methyl di-tert-butyl phenol Methyldi-tert-butylphenol Nocrac 200 o-Di-tert-butyl-p-methylphenol Parabar 441 Paranox 441 p-Cresol, 2,6-di-tert-butyl- phenol, 2,6-bis(1,1-dimethylethyl)-4-methyl Phenol, 2,6-di-tert-butyl-4-methyl- Phenol, 3,5-bis(1,1-dimethylethyl)-4-methyl- Popol Stavox SUSTANE Tenamen 3 Tenamene 3 TONAROL Topanol Topanol O Topanol OC Toxolan P Vanlube PC Vanlube PCX Vianol Vulkanox KB
Hydroxytoluène butylé ( BHT )
SODIUM HYPOCHLORITE, N° CAS : 7681-52-9 - Hypochlorite de sodium (Eau de javel), Origine(s) : Synthétique, Nom INCI : SODIUM HYPOCHLORITE. Nom chimique : Hypochlorous Acid, Sodium Salt. N° EINECS/ELINCS : 231-668-3. L'hypochlorite de sodium est un composé chimique souvent utilisé en solution aqueuse en tant que désinfectant et agent de blanchiment. Il entre dans la composition de l'eau de javel.Ses fonctions (INCI): Agent Oxydant : Modifie la nature chimique d'une autre substance en ajoutant de l'oxygène ou en éliminant l'hydrogène
Hypochlorite de sodium (Eau de javel) SODIUM HYPOCHLORITE
HYPOCHLOROUS ACID, N° CAS : 7790-92-3, Nom INCI : HYPOCHLOROUS ACID. Nom chimique : Hypochlorous Acid. N° EINECS/ELINCS : 239-555-0 (I) Ses fonctions (INCI) Anti-séborrhée : Aide à contrôler la production de sébum Déodorant : Réduit ou masque les odeurs corporelles désagréables Agent Oxydant : Modifie la nature chimique d'une autre substance en ajoutant de l'oxygène ou en éliminant l'hydrogène
HYPOCHLOROUS ACID
HYPOCHLOROUS ACID, N° CAS : 7790-92-3. Nom INCI : HYPOCHLOROUS ACID, Nom chimique : Hypochlorous Acid, N° EINECS/ELINCS : 239-555-0 (I). Ses fonctions (INCI) : Anti-séborrhée : Aide à contrôler la production de sébum. Déodorant : Réduit ou masque les odeurs corporelles désagréables. Agent Oxydant : Modifie la nature chimique d'une autre substance en ajoutant de l'oxygène ou en éliminant l'hydrogène
Hypophosphorous Acid
Hypophosphorous acid; Phosphinic Acid; Acide phosphinique; Phosphinsäure; ácido fosfínico; cas no: 6303-21-5
HYPOPHOSPHORUS ACID
IMBENTIN PPF; POE/POP adduct cas no: 69013-18-9
IDACOL ACID RED 33
IDACOL ACID RED 33 IUPAC Name disodium;5-amino-4-hydroxy-3-phenyldiazenylnaphthalene-2,7-disulfonate IDACOL ACID RED 33 InChI InChI=1S/C16H13N3O7S2.2Na/c17-12-8-11(27(21,22)23)6-9-7-13(28(24,25)26)15(16(20)14(9)12)19-18-10-4-2-1-3-5-10;;/h1-8,20H,17H2,(H,21,22,23)(H,24,25,26);;/q;2*+1/p-2 IDACOL ACID RED 33 InChI Key LQJVOKWHGUAUHK-UHFFFAOYSA-L IDACOL ACID RED 33 Canonical SMILES C1=CC=C(C=C1)N=NC2=C(C3=C(C=C(C=C3C=C2S(=O)(=O)[O-])S(=O)(=O)[O-])N)O.[Na+].[Na+] IDACOL ACID RED 33 Molecular Formula C16H11N3Na2O7S2 IDACOL ACID RED 33 CAS 3567-66-6 IDACOL ACID RED 33 Deprecated CAS 64553-75-9 IDACOL ACID RED 33 European Community (EC) Number 222-656-9 IDACOL ACID RED 33 UNII 9DBA0SBB0L IDACOL ACID RED 33 DSSTox Substance ID DTXSID1044562 IDACOL ACID RED 33 Food Additive Classes Food Additives -> COLOUR IDACOL ACID RED 33 Molecular Weight 467.4 g/mol IDACOL ACID RED 33 Hydrogen Bond Donor Count 2 IDACOL ACID RED 33 Hydrogen Bond Acceptor Count 10 IDACOL ACID RED 33 Rotatable Bond Count 2 IDACOL ACID RED 33 Exact Mass 466.983381 g/mol IDACOL ACID RED 33 Monoisotopic Mass 466.983381 g/mol IDACOL ACID RED 33 Topological Polar Surface Area 202 Ų IDACOL ACID RED 33 Heavy Atom Count 30 IDACOL ACID RED 33 Formal Charge 0 IDACOL ACID RED 33 Complexity 757 IDACOL ACID RED 33 Isotope Atom Count 0 IDACOL ACID RED 33 Defined Atom Stereocenter Count 0 IDACOL ACID RED 33 Undefined Atom Stereocenter Count 0 IDACOL ACID RED 33 Defined Bond Stereocenter Count 0 IDACOL ACID RED 33 Undefined Bond Stereocenter Count 0 IDACOL ACID RED 33 Covalently-Bonded Unit Count 3 IDACOL ACID RED 33 Compound Is Canonicalized Yes IDACOL ACID RED 33 Applications: Cosmetics Pharmaceuticals Soaps - Cold Process and Melt and Pour D&C Red 33 also known as IDACOL ACID RED 33 or simply Red 33 is a red azo dye used as a colorant in mouthwashes, dentifrices, cosmetics, and hair dyes.[1] IDACOL ACID RED 33 is a disodium salt of 5-amino-4-hydroxy-3-(phenylazo)-2,7-naphthalenedisulfonic acid, which can be purified through high performance liquid chromatography.IDACOL ACID RED 33 is a red dye used as a colorant in cosmetic products.The electrochemical oxidation (EO) performance of prepared electrode was investigated using IDACOL ACID RED 33 (AR33) as a model pollutant.IDACOL ACID RED 33 4.FD.033000 is an FDA and global approved, high purity water soluble powder dye. Main applications are make-up, sun care, skin care and toiletries products.The color additive IDACOL ACID RED 33 may be safely used for coloring ingested drugs in amounts not to exceed 0.75 milligram per daily dose of the drug. IDACOL ACID RED 33 may be safely used for coloring externally applied drugs, mouthwashes, and dentifrices in amounts consistent with current good manufacturing practice. IDACOL ACID RED 33 may also be safely used for coloring cosmetic lip products in amounts not to exceed 3 percent total color by weight of the finished cosmetic products. IDACOL ACID RED 33 may be safely used for coloring mouthwashes (including breath fresheners), dentifrices, and externally applied cosmetics in amounts consistent with current good manufacturing practice.IDACOL ACID RED 33 is a drug and cosmetic synthetic dye. The FDA lists it as a safe additive for drugs and cosmetics as per FDA standards. In cosmetics, it can be used externally and in general cosmetics, including lipsticks, but is not to be used in cosmetics close to the eye.IDACOL ACID RED 33 (D&C Red No. 33) and IDACOL ACID RED 33 are synthetic colorants. In cosmetics and personal care products, IDACOL ACID RED 33 and IDACOL ACID RED 33 Lake are used in the formulation of a wide variety of product types, including makeup and lipstick.IDACOL ACID RED 33 is used to impart a red color to cosmetics and personal care products.The color additive IDACOL ACID RED 33 is principally the disodium salt of 5-amino-4-hydroxy-3-(phenylazo)-2,7-naphthalenedisulfonic acid (CAS Reg. No. 3567-66-6). To manufacture the additive, the product obtained from the nitrous acid diazotization of aniline is coupled with 4-hydroxy-5-amino-2,7-naphthalenedisulfonic acid in an alkaline aqueous medium. The color additive is isolated as the sodium salt.Color additive mixtures for drug use made with IDACOL ACID RED 33 may contain only those diluents that are suitable and that are listed in part 73 of this chapter as safe for use in color additive mixtures for coloring drugs.Specifications. IDACOL ACID RED 33 shall conform to the following specifications and shall be free from impurities other than those named to the extent that such impurities may be avoided by current good manufacturing practices:Sum of volatile matter at 135 deg. C (275 deg. F) and chlorides and sulfates (calculated as sodium salts), not more than 18 percent.Uses and restrictions. The color additive IDACOL ACID RED 33 may be safely used for coloring ingested drugs, other than mouthwashes and dentifrices, in amounts not to exceed 0.75 milligram per daily dose of the drug. d&c red no. 33 may be safely used for coloring externally applied drugs, mouthwashes, and dentifrices in amounts consistent with current good manufacturing practice.All batches of IDACOL ACID RED 33 shall be certified in accordance with regulations in part 80 of this chapter.IDACOL ACID RED 33 is used frequently to obtain those amazing colors in bath bombs and bubble products due to the fact that it will color the water but not skin or the tub unless used in large quantity.There is currently a conflict of opinion and clarity on the FDA website as to the use of IDACOL ACID RED 33 in bath bombs.IDACOL ACID RED 33 is a colorant, or dye. We add dyes to products for a variety of reasons including helping you see where you applied the product, when a product is used up, or for aesthetic reasons. This dye is available from multiple suppliers, which are responsible for its contents.Liquid IDACOL ACID RED 33 is a pre-mixed water based liquid dye. Great for soaps, bath salts, bath bombs, body powders, and other water based or dry formulations. Add to your water phase drop by drop until you get the desired color.FNWL uses the standardized name for this color additive. Standardized names, however, can sometimes be vague. In our experience, IDACOL ACID RED 33 is a deep shade of red with a slightly pinkish-violet tint. The amount of colorant that you use will affect the intensity and vibrancy of the hue.The test of photocatalytic activities of the heat-treated TiO2 powders were carried out through the photocatalytic degradation of IDACOL ACID RED 33 dye in aqueous solution under the irradiation of visible light.The results indicate that the TiO2 photocatalyst heat-treated at 400 °C within 60 min shows the highest photocatalytic activity which can effectively degrade the IDACOL ACID RED 33 under the irradiation of visible light. The total degradation process of IDACOL ACID RED 33 has been monitored by UV–vis spectra and ion chromatography. At last, the IDACOL ACID RED 33 molecules in aqueous solution are completely degraded and become some simple inorganic ions such as NO3− and SO42−, etc.UV–Vis spectra of IDACOL ACID RED 33 solutions under different conditions (10 mg/L IDACOL ACID RED 33 concentration, 1.0 g/L Er3+:Y3Al5O12/TiO2–ZrO2 (with Ti/Zr = 7:3 molar ratio), Er3+:Y3Al5O12/TiO2 or Er3+:Y3Al5O12/ZrO2 (with 10 wt% Er3+:Y3Al5O12 at 500 °C for 50 min heat treatment) catalyst amount, 100 mL total volume and 60 min solar light irradiation. (a) IDACOL ACID RED 33 dye solution without any catalyst in the dark (original solution); (b) IDACOL ACID RED 33 dye solution without any catalyst under solar light irradiation; (c) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/ZrO2 composite in the dark; (d) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/TiO2–ZrO2 composite in the dark; (e) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/TiO2 composite in the dark; (f) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/ZrO2 composite under solar light irradiation; (g) IDACOL ACID RED 33 dye solution with TiO2 powder under solar light irradiation; (h) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/TiO2 composite under solar light irradiation; (i) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/TiO2–ZrO2 composite under solar light irradiation)
IMBENTIN PPF
SynonymsE132;Was35;l-blau2;murabba;CI 73015;1311blue;Greell S;12070blue;acidbluew;c.i.75781 CAS No.860-22-0
IMWITOR 960 K
IMWITOR 960 K IMWITOR 960 K Personal Care & Cosmetics IMWITOR 960 K is a classic emulsifier for rich creams and butters. Works best at neutral pH. This self-emulsifying glyceryl stearate quality contains a monoester content of approx. 30%. Glyceryl stearate SE/Mono- and diglycerides based on edible fats. Solubilizing agent for actives. Bacteriostatic. Penetration enhancing. Emulsions Oil in Water Claims Emulsifiers > Emulsifiers O/W (Oil in Water) Solubilizers Appearance Flakes Product Status COMMERCIAL Product information INGREDIENT IDENTIFICATION Name IMWITOR® 960 K Segment Personal care INCI name Glyceryl Stearate SE An oily kind of ingredient that can magically blend with water all by itself. This is called self-emulsifying and SE in its name stands for that. The difference between "normal" Glyceryl Stearate and this guy is that the SE grade contains a small amount of water-loving soap molecules, such as sodium stearate. This increases Glyceryl Stearate's affinity for water and gives it stronger emulsifying abilities. What Is It? Glyceryl Stearate and Glyceryl Stearate SE are esterification products of glycerin and stearic acid. Glyceryl Stearate is a white or cream-colored wax-like solid. IMWITOR 960 K is a "Self-Emulsifying" form of Glyceryl Stearate that also contains a small amount of sodium and or potassium stearate. In cosmetics and personal care products, Glyceryl Stearate is widely used and can be found in lotions, creams, powders, skin cleansing products, makeup bases and foundations, mascara, eye shadow, eyeliner, hair conditioners and rinses, and suntan and sunscreen products. Why is it used in cosmetics and personal care products? Glyceryl Stearate acts as a lubricant on the skin's surface, which gives the skin a soft and smooth appearance. It also slows the loss of water from the skin by forming a barrier on the skin's surface. Glyceryl Stearate, and Glyceryl Stearate SE help to form emulsions by reducing the surface tension of the substances to be emulsified. Scientific Facts: Glyceryl Stearate is made by reacting glycerin with stearic acid, a fatty acid obtained from animal and vegetable fats and oils. IMWITOR 960 K is produced by reacting an excess of stearic acid with glycerin. The excess stearic acid is then reacted with potassium and/or sodium hydroxide yielding a product that contains Glyceryl Stearate as well as potassium stearate and/or sodium stearate. Oil-Soluble, Self-Emulsifying Water-in-Oil Emulsifier IMWITOR 960 K is classified as : Emulsifying CAS Number 11099-07-3 EINECS/ELINCS No: 234-325-6 COSING REF No: 76256 Chem/IUPAC Name: Octadecanoic acid, reaction products with 1,2,3-propanetriol (1:1), neutralized WHAT IS GLYCERYL STEARATE? Glyceryl Stearate, also referred to as Glyceryl Monostearate, is a fatty acid derived from vegetable oil, Soy Oil, or Palm Kernel Oil; however, it is also naturally occurring in the human body. This wax-like substance appears white or cream in color and is produced when Glycerin and Stearic Acid undergo esterification. Traditionally, it is used in formulations for its emulsifying properties. Glyceryl Stearate SE also contains Sodium Stearate and/or Potassium Stearate. The “SE” of Glyceryl Stearate SE stands for “Self-Emulsifying,” as it is a self-emulsifying form of Glyceryl Stearate. HOW DOES GLYCERYL STEARATE WORK? When applied topically, its Glycerol constituent makes Glyceryl Stearate SE a fast-penetrating emollient that helps to create a protective barrier on the surface of the skin. This helps retain hydration and slow the loss of moisture. This reduced rate of water evaporation helps to lubricate, condition, soften, and smoothe the skin. Its protective properties extend to its antioxidant qualities, which help protect the skin against damage caused by free radicals. When added to natural formulations, Glyceryl Stearate and Glyceryl Stearate SE have stabilizing effects on the final product, which means it helps the other ingredients in the formulation to continue functioning effectively in order to go on exhibiting their beneficial properties. In this way, it helps to balance the product’s pH value and thereby prevents the product from becoming overly acidic or alkaline. Furthermore, it helps increase shelf life, prevents products from freezing or from developing crusts on their surfaces, and it helps lessen the greasy nature of some oils that may be added to cosmetics formulations. In formulations that are oil-based, the thickening properties of Glyceryl Stearate SE help to scale down the need for co-emulsifiers and, in emulsions with big water phases, Glyceryl Stearate SE can help develop liquid crystal phases as well as crystalline gel phases. As an opacifier, it makes transparent or translucent preparations opaque, thus protecting them from or increasing their resistance to being penetrated by visible light. This also helps to boost or balance the appearance of pigments and to improve the density of the final product for a luxuriously smooth and creamy texture. APPLICATIONS FOR GLYCERYL STEARATE SEIMWITOR 960 K must be added to formulations in their heated oil phases. The higher the concentration of Glyceryl Stearate SE, the thicker the end product will be. PRODUCT TYPE & FUNCTION EFFECTS When added to this kind of formulation… Shampoo/Conditioner IMWITOR 960 K functions as a(n): Moisturizer Opacifier Softener Conditioner Thickener It helps to: Hydrate the hair and scalp to protect against dryness Prevent frizz Make products opaque in appearance Increase viscosity Reduce tangling The recommended maximum dosage is 2-5% When added to these kinds of formulations… Makeup (Foundation, Mascara, Eye Shadow, Eyeliner) IMWITOR 960 K functions as a(n): Opacifier Softener Emollient It helps to: Soften and smoothe the skin Balance and sustain the skin's moisture levels without leaving a greasy residue Keep makeup on the skin, rather than allowing it to fall off Keep mascara from clumping Ensure smooth application of eyeliner and eyeshadow The recommended maximum dosage is 2-5% When added to these kinds of formulations… Moisturizer Face Wash Face Mask/Peel Body Wash/Gel IMWITOR 960 K functions as a(n): Opacifier Thickener Co-emulsifier Emollient Softener Moisturizer Cleanser It helps to: Emulsify formulations and increase their viscosity, which contributes a creamier texture Lift and remove dirt Soothe skin Create an oily layer on the skin’s surface, which helps it retain water Hydrate and soften the skin to reduce irritation, cracking, and peeling Recommended maximum dosages are: Body Lotion: 1.5-2.5% Face Cream: 1.5-2.5% Sunscreen: 1.5-2.5% Ointments: 2-5% CONTRAINDICATIONS FOR GLYCERYL STEARATE As with all other New Directions Aromatics products, Glyceryl Stearate SE Raw Material is for external use only. It is imperative to consult a medical practitioner before using this wax for therapeutic purposes. Pregnant and nursing women, as well as those with sensitive skin, are especially advised not to use Glyceryl Stearate SE Raw Material without the medical advice of a physician. This product should always be stored in an area that is inaccessible to children, especially those under the age of 7. Prior to using Glyceryl Stearate SE Raw Material, a skin test is recommended. This can be done by melting 1 Glyceryl Stearate wax flake in 1 ml of a preferred Carrier Oil and applying a dime-size amount of this blend to a small area of skin that is not sensitive. Potential side effects of Glyceryl Stearate SE include irritation, rash, stinging, burning, nausea, flatulence, abdominal cramps, and diarrhea. In the event of an allergic reaction, discontinue use of the product and see a doctor, pharmacist, or allergist immediately for a health assessment and appropriate remedial action. To prevent side effects, consult with a medical professional prior to use. Molecular Weight 1704.7 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Hydrogen Bond Donor Count 6 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count 16 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count 90 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass 1704.409171 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass 1703.405816 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area 281 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count 117 Computed by PubChem Formal Charge 0 Computed by PubChem Complexity 754 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count 0 Computed by PubChem Defined Atom Stereocenter Count 2 Computed by PubChem Undefined Atom Stereocenter Count 0 Computed by PubChem Defined Bond Stereocenter Count 0 Computed by PubChem Undefined Bond Stereocenter Count 0 Computed by PubChem Covalently-Bonded Unit Count 7 Computed by PubChem Compound Is Canonicalized Yes
INDIGOTINE, INDIGO CARMINE
IPBC; 3-Iodo-2-propynyl N-butylcarbamate; Troysan; 3-Iodo-2-propynyl butylcarbamate; 3-IODO-2-PROPYNYL BUTYLCARBAMATE; 3-IODO-2-PROPYNYL N-BUTYLCARBAMATE; 3-Iodopropynyl butylcarbamate; asc 67000; IBP; IODOCARB; IODOPROPYNYL BUTYLCARBAMATE; Kitazine P; o,o-bis(1-methylethyl) s-(phenylmethyl) phosphorothioate; PERMATOX; TROYSAN POLYPHASE 588; 3-iodo-2-propynyl; butyl-carbamicaci3-iodo-2-propynylester; Carbamicacid,butyl-,3-iodo-2-propynylester; ipbc(3-iodo-2-propynylnbutylcarbamate); troysankk-108a; troysanpolyphaseanti-mildew; woodlife; Butylcarbamic acid 3-iodo-2-propynyl ester CAS NO: 55406-53-6
Iodopropynyl butylcarbamate
IPBC, IODOPROPYNYL BUTYLCARBAMATE; 3-Iodo-2-propyn-1-yl butylcarbamate; N° CAS : 55406-53-6 - Butylcarbamate d'iodopropynyle (IPBC). Nom INCI : IODOPROPYNYL BUTYLCARBAMATE, Nom chimique : 3-Iodo-2-propynyl butylcarbamate, N° EINECS/ELINCS : 259-627-5. Classification : Règlementé, Conservateur, Ses fonctions (INCI). Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Noms français : Butylcarbamate d'iodo-3 propynyl-2; Butylcarbamate d'iodopropynyle. Noms anglais : 3-IODO-2-PROPYNYL BUTYLCARBAMATE; CARBAMIC ACID, BUTYL-, 3-IODO-2-PROPYNYL ESTER; Iodopropynyl butylcarbamate. Utilisation et sources d'émission :Fongicide et agent antimicrobien utilisé dans les procédés industriels et les constructions résidentielles. 259-627-5 [EINECS]; 3-Iod-2-propin-1-yl-butylcarbamat [German] [ACD/IUPAC Name]; 3-Iod-2-propin-1-yl-hydrogenbutylkohlenstoffimidat [German] [ACD/IUPAC Name]; 3-Iodo-2-propyn-1-yl butylcarbamate [ACD/IUPAC Name]; 3-Iodo-2-propyn-1-yl hydrogen butylcarbonimidate [ACD/IUPAC Name]; 3-Iodo-2-propynyl butylcarbamate ;3-Iodo-2-propynyl N-butylcarbamate; 3-iodo-2-propynyl-butylcarbamate; 3-Iodo-2-propynylbutylcarbamate3-Iodo-2-propynyl-N-butylcarbamate; 55406-53-6 [RN]; Butylcarbamate de 3-iodo-2-propyn-1-yle [French] [ACD/IUPAC Name]; Carbamic acid, N-butyl-, 3-iodo-2-propyn-1-yl ester [ACD/Index Name]; EZ0950000; Hydrogénobutylcarbonimidate de 3-iodo-2-propyn-1-yle [French] [ACD/IUPAC Name]; I1UU2OVM4 [WLN]; Iodocarb; Iodopropynyl butylcarbamate ; Ipbc; Methanol, 1-(butylimino)-1-[(3-iodo-2-propyn-1-yl)oxy]-, (Z)- [ACD/Index Name];MFCD00072438 [MDL number]; ipbc; [55406-53-6]; 1-Iodoprop-1-yn-3-yl N-n-butylcarbamate; 3-iodo-2-propyn-1-yl N-butylcarbamate; 3-iodo-2-propynyi butylcarbamate; 3-Iodo-2-propynyl butyl carbamic acid 3-iodo-2-propynyl n-butylcarbamate; 3-iodo-2-propynyl??n-butylcarbamate; 3-Iodo-2-propynylbutyl carbamate; 3-iodoprop-2-yn-1-yl N-butylcarbamate; 3-iodoprop-2-ynyl butylcarbamate 3-iodoprop-2-ynyl N-butylcarbamate; 3-Iodopropynyl butylcarbamate; 3-IPBC; '55406-53-6; Butyl-3-iodo-2-propynylcarbamate; C106572; Carbamic acid, butyl-, 3-iodo-2-propynyl ester; carbamic acid, butyl-, 3-iodoprop-2-ynyl ester; Carbamic acid, butyl-3-iodo-2-propynyl ester; EINECS 259-627-5; Iodocarb (IPBC); iodocarbe; iodopropynyl??butylcarbamate; Iodopropynylbutylcarbamate , N-[2-(1-iodoethyl)pent-3-enyl]carbamate;N-butyl(3-iodoprop-2-ynyloxy)carboxamide; N-butylcarbamic acid 3-iodoprop-2-ynyl ester; NCGC00164376-01; OR-0600; Troysan KK-108A; Troysan KK-108A; Troysan polyphase anti-mildew; Woodlife; Troysan polyphase anti-mildew; Woodlife
IONOL CP
IONOL CP представляет собой белый кристаллический антиоксидант и относится к группе не окрашивающих, стерически затрудненных фенолов.
IONOL CP - это пищевой антиоксидант, отвечающий большинству требований по охране труда и технике безопасности, включая требования FDA, а IONOL CP производится в соответствии с принципами HACCP для обеспечения безопасности пищевых продуктов.
Кроме того, IONOL CP соответствует аналитическим требованиям FCC (Food Chemical Codex) и фармакопеи EurPh и USP.

Номер CAS: 128-37-0
Номер ЕС: 204-881-4
Молекулярная формула: C15H24O
Молекулярный вес: 220,4 г/моль

IONOL CP также известен как бутилированный гидрокситолуол (BHT).
IONOL CP - это высококачественный антиоксидант с типичной чистотой 99,8%.

IONOL CP представляет собой 2,6-дитерт-бутил (1,1-диметилэтил)-4-метилфенол.
СодержаниеC15H240 должно составлять не менее 98,5% в пересчете на безводный.

IONOL CP, IONOL 220, IONOL 103 и IONOL 99 являются высокоэффективными антиоксидантами для всесезонных смазок, жидкостей для автоматических трансмиссий, дифференциальных жидкостей и турбинных масел.

Крометого, доказано, что ионные антиоксиданты увеличивают срок службы многих промышленных масел, сокращая время простоя оборудования.
Области применения включают гидравлические жидкости, трансформаторные масла, прядильные масла, а также жидкости для прокатки металла и смазочно-охлаждающие жидкости.

Антиоксиданты IONOL являются отличными стабилизаторами для всех марок реактивного топлива А1 на основе керосина для гражданского и военного применения.
Концентрация, необходимая для защиты и стабилизации авиационного топлива, также определяется этими международными спецификациями.
Например, DERD 2494 определяет добавочныйуровень в диапазоне 17,0 – 24,0 мг/л для гидроочищенных топлив.

Области применения IONOL CP:

Полимеры:
IONOL CP используется для стабилизации пластмасс, натурального и синтетического каучука, восков, синтетических и натуральных смол, а также для изделий и смесей, которые производятся из любого из вышеперечисленных компонентов.
Стабилизация с помощью IONOL CP начинается с производства пластмасс и обеспечивает, в зависимости от количества дозировки, стабильность полимерного сырья при хранении до переработки в готовое изделие.

Во время переработки полимерного сырья в конечный продукт дополнительная долговременная стабилизация с помощью IONOL CP может быть очень эффективной.
Область применения IONOL CP широко распространена благодаря превосходному соотношению затрат и эффективности, а такжепрактически универсальным возможностям применения IONOL CP в пластмассах, особенно для изделий, требующих одобрения в соответствии с законодательством о контакте с пищевыми продуктами.

Клеи и горячие расплавы:
Клеи и горячие расплавы также подвержены самоокислительному повреждению, вызванному механическимстрессом, высокой температурой и светом.
IONOL CP используется как для процесса, так и для долговременной стабилизации.

Пахучие вещества:
В пахучих веществах, например, в средствах по уходу за телом, IONOL CP предотвращает процессы самоокисления, которые приводят к образованию нежелательных и неприятно пахнущих продуктов разложения.

Продукты питания:
В пищевых продуктах IONOL CP замедляет разрушительное действие жиров, каротиноидов, витаминов, а также других основных компонентов пищи, вызванных окислением атмосферным кислородом.

Полиолы:
Полиолыподвержены окислительным повреждениям под действием света и тепла в присутствии кислорода из-за радикальных реакций.
При использовании IONOL CP реакционноспособные радикалы захватываются и превращаются в нереактивные соединения.

Цепная реакция остановлена, и можно избежать дальнейшего ущерба.
IONOL CP используется в качестве долговременного стабилизатора для защиты полиолов во время хранения (например, перед использованием в полиуретанах) от реакций разложения.
В зависимости от применения оптимальная дозировка составляет 0,1 - 1,0%.

Дальнейшие примененияIONOL CP:

Полиуретаны:
IONOL CP используется для полиуретанов в качестве обрабатывающего и долговременного стабилизатора.
В частности, при производстве пенополиуретанов IONOL CP более эффективен, чем многие другие антиоксиданты.

Из-за высокихтемператур, которые возникают внутри блочных пенопластов во время производства, может произойти частичное сильное пригорание.
IONOL CP очень эффективен и мобильен, а также предотвращает пригорание.

Таким образом, стало возможным производство неповрежденной и не обесцвечивающейся пены.
В зависимостиот применения оптимальная дозировка составляет 0,1- 1,0 php.
В соответствии с главой XXXIX правил BfR BHT рекомендуется в качестве антивозрастного средства для готовых изделий, изготовленных из полиуретанов.

Печатные краски:
Срок годностичернил printin g может быть сокращен �� результате окисления.
Во время обработки могут произойти физические изменения.

Использование IONOL CP оказывает положительное влияние на стабильность, стойкость к выравниванию, а также на осветляющие и отверждающие свойства печатных красок.
Прилитографической печати IONOL CP предотвращает образование кожицы и ускоряет процесс высыхания.
Средние количества, подлежащие использованию, составляют 0,5 – 1,0%.

Применение IONOL CP:
IONOL CP - это маслорастворимый антиоксидант, широко используемый в стране и за рубежом.
Хотя IONOL CP токсичен, IONOL CP обладает сильной антиоксидантной способностью, хорошей термостойкостью и стабильностью, не имеет специфического запаха, не вызывает цветной реакции ионов металлов и имеет низкую цену, всего 1/8 ~ 1/5 BHA.

Обычно IONOL CP используется в сочетании с BHA и лимонной кислотой или другимиорганическими кислотами в качестве синергиста.
Китайские продукты можно использовать для производства пищевого масла, жареной пищи, печенья, лапши быстрого приготовления, ореховых консервов, сухих рыбных продуктов с максимальным содержанием 0,2 г/кг.
IONOL CP также обладает определенным антибактериальным действием, но слабее, чем BHA.

Характеристики IONOL CP:
IONOL CP представляет собой белый кристаллический антиоксидант и относится к группе не окрашивающих, стерически затрудненных фенолов.
IONOL CP в основном используется для стабилизации полимеров, которые вступают в контакт с пищевыми продуктами и / илипитьевой водой, полиолами, полиуретанами, клеями и горячими расплавами для возможного контакта с пищевыми продуктами, пахучими веществами и / или парфюмерией, пищевыми продуктами и печатными красками.

Существует BfR (ранее BGA, BgVV), одобрение FDA для IONOL CP, а также продукт соответствует всем требованиям, установленным в Регламенте 231/2012 в отношении спецификаций для пищевых добавок, в частности, критериям для E321.
Кроме того, IONOL CP соответствует аналитическим требованиям FCC (Food Chemical Codex) и Фармакопей.

ИОНOL CP представляет собой бесцветный, белый или не совсем белый кристалл или кристаллический порошок.
IONOL CP легко растворим в ацетоне, растворим в этаноле, нерастворим в воде и пропиленгликоле.

Температура замерзания:
Температура замерзания IONOL CP (General 0613) составляет 69~ 70 °C.

AbsКоэффициент поглощения Абс:
Возьмите IONOL CP, точное взвешивание, плюс растворение в этаноле и количественное разведение, чтобы получить раствор, содержащий около 50 мг на л/ л. Согласно УФ-видимой спектрофотометрии (общее правило 0 @1), поглощение измеряли при длине волны 278 нм, а коэффициент поглощения (dish) составлял от 80,0 до 90. 0.

Природа IONOL CP:
IONOL СР представляет собой бесцветный кристаллический или белый кристаллический порошок, без запаха, вкуса.
IONOL CP растворим в этаноле (25%, 25 °C), ацетоне (40%), бензоле (40%), соевом масле, хлопковом масле, нерастворим в воде, глицерине, пропиленгликоле.
IONOL CP легкий, термостойкий, при нагревании может улетучиваться с водяным паром, ион металла не меняет цвет.

Способ приготовления IONOL CP:
п-крезол итрет-бутиловый спирт растворяются при нагревании, а фосфорная кислота используется в качестве катализатора для реакции при определенной температуре.
Продукт реакции сначала промывают раствором гидроксида натрия до щелочного состояния, затем промывают водой до нейтрального состояния и, наконец, дистиллируют, при перекристаллизации получают дибутилгидрокситолуол.
Или изобутилен смешивают с крезолом и концентрированной серной кислотой, проводят реакцию при определенной температуре в течение определенного времени, и сырой продукт нейтрализуют, а затем сырой продукт растворяют в этаноле, добавляя тиомочевину, горячую фильтрацию, отжимную сушку, полученную сушкой.

Дифференциальный диагноз IONOL ХП:
В хроматограмме, записанной в разделе "Определение содержания", время удержания основного пика исследуемого раствора должносоответствовать времени удержания основного пика эталонного раствора.
Инфракрасный спектр поглощения IONOL CP должен соответствовать спектру поглощения эталонного продукта (Общее правило 0402).

Реакционный поток IONOLа CP:
Современные представления оразложении органических соединений (например, полимеров в пластмассах, синтетических или природных масел в смазочных материалах или ненасыщенных жирных кислот в пищевых продуктах) исходят из того факта, что разложение инициируется образованием углеводородных радикалов R.

Эта реакциявызывается теплом, светом и/или механической энергией:
R-H + инициатор -----> R

В реакции распространения цепи радикал R реагирует с атмосферным кислородом с образованием перекисного радикала R-OO, а последний с дополнительной молекулой углеводородов с образованием радикала R иперекисного соединения R-OOH.

R + O2 -----> R-OO
R-OO + R-H -----> R-OOH + R

Радикал R, образовавшийся на второй стадии реакции, далее вступает в цепную реакцию с кислородом в соответствии с уравнением реакции, подробно изложенным на предыдущей странице.
Перекись R-OOH дляmed на второй стадии реакции может разлагаться на альдегиды, кетоны и карбоновые кислоты и, в зависимости от типа поврежденного органического соединения, вызывать изменение цвета, коррозию или неприятный запах (например, прогорклые жиры).

Описанная выше цепная реакция может быть остановлена так называемой рекомбинацией радикалов.
Вероятность такой цепной реакции очень мала, так что радикальное разложение органических соединений не может остановиться без добавления антивозрастных средств.
AntiАнтивозрастные средства на основе стерически затрудненных фенолов действуют как поглотители радикалов, то есть они непосредственно вмешиваются в процесс разложения радикалов, химически связывая радикалы и предотвращая цепную реакцию распространения.

Хранение IONOL CP:
Срок годности IONOL CP составляет 24 месяца при правильной упаковке и хранении (в сухом, прохладном, хорошо проветриваемом помещении, при температуре <50 °C).
Несоблюдение этих требований может привести к пожелтению.

Стандартная упаковка IONOL CP:
Бумажные пакеты с полиэтиленовой подкладкой, 25 кг нетто, упакованные в термоусадочнуюпленку на поддонах (вес нетто: 750 кг или 1000 кг) или 20 кг нетто, упакованные в термоусадочную пленку на поддонах (вес нетто: 1000 кг).
Бочонки с волокном, 40 кг нетто.
Биг-бэги, 500/1000 кг нетто.

Меры первой помощи IONOL CP:

Общие меры первой помощи:
Никогда не давайте ничеговнутрь человеку, находящемуся без сознания.
Если вы чувствуете недомогание, обратитесь к врачу (по возможности покажите этикетку).

Меры первой помощи после вдыхания:
Обеспечьте дыхание свежим воздухом.
Дайте пострадавшему отдохнуть.

Меры первой помощи при контакте с кожей:
ReПереместите пострадавшую одежду и промойте все открытые участки кожи мягким мылом и водой, а затем смойте теплой водой.

Меры первой помощи при попадании в глаза:
Немедленно смойте большим количеством воды.
Обратитесь к врачу, если боль, мигание или покраснение не проходят.

Меры первой помощи после приема внутрь:
Прополоскать рот.
Не вызывайте рвоту.
Обратитесь за неотложной медицинской помощью.

Противопожарные мероприятия IONOL CP:

Подходящие средства пожаротушения:
Пена.
Сухой порошок.
Углекислый газ.
Брызги воды.
Песок.

Неподходящие средства пожаротушения:
Не используйте сильную струю воды.

Особые опасности, связанные с данным веществом или смесью:

Пожароопасность:
Не классифицируется как легковоспламеняющийся, но будет гореть.

Опасные продукты разложения при пожаре:
Моноксид углерода.
Углекислый газ.

Советы для пожарных:

Инструкции по пожаротушению:
Используйте водяные брызги или туман для охлаждения открытых контейнеров.
Соблюдайте осторожность при тушении любого химического пожара.
Не допускайте попадания противопожарной воды в окружающую среду.

ProЗащита при тушении пожара:
Не входите в зону пожара без надлежащего защитного снаряжения, включая средства защиты органов дыхания.

Идентификаторы IONOL CP:
Химическое название: 2,6-Ди-трет-бутил-4-метилфенол
CAS-номер: 128-37-0
Молекулярный вес: 220,4 г/моль

Форма продукта: Веществоoduct form: Substance
Название вещества: IONOL CP
Химическое название: 2,6-ди-трет-бутил-п-крезол
Номер ЕС: 204-881-4
CAS-номер: 128-37-0
Регистрационный номер REACH: 01-2119565113-46
Формула: C15H24O
Синонимы: 2,6-ди-терк-бутил-4-метилфенол

Типичные свойстваIONOL CP:
Внешний вид: Белое кристаллическое твердое визуальное
Температура кипения при 1013 ГПа: 265 °C
Насыпная плотность: 0,66 кг/л
Плотность при 80°C: 0,899 г/мл
Температура вспышки: 127°C ASTM D93
Показатель преломления: 1,4859
Растворимость в воде при 25°C: 0,6 мг/л
Растворимость вацетоне при 20°C: > 50 %
Растворимость в хлороформе при 20°C: > 50%
Растворимость в гептане при 20°C: 47,8 %
Растворимость в метаноле при 20°C: 26,6 %
Растворимость в толуоле при 20°C: > 50%

Физическое состояние: Твердое
Внешний вид: Кристаллический.
Цвет: Белый.
Запах: Характерный.
Температура плавления: 70 °C
Температура кипения: 265 °C (Справочник и/или научные статьи)
Температура вспышки: 127 °C (Справочник и/или научные статьи)
Температура самовоспламенения: Не применимо
Воспламеняемость (твердое вещество, газ): Не воспламеняется.
Давление параe: 3,82 Па (24,85 ºC)
Относительная плотность: 1,048 (Справочник и/или научные статьи)
Растворимость: В воде: 0,6 г/мл (Справочник и/или научные статьи)
Журнал военнопленных: 5.2 (Справочник и/ или научные статьи)
Вязкость, кинематическая: 3,47 сСт (80 °С), 1,54 сСт (120 °С), 0,920 сСт (160 °С) (Справочник и/или научные статьи)
Окислительные свойства: Исследование не требуется проводить, поскольку вещество не способно вступать в реакцию
экзотермически с горючими материалами.
Нижний предел взрываемости (LEL): 7,5 г/м3

Молекулярнаяформула: C15H24O
Молярная масса: 220,35
Плотность: 1.048
Температура плавления: 69-73°C (лит.)
Точка соединения: 265 °C (лит.)
Температура вспышки: 127 °C
Растворимость в воде: нерастворимая
Растворимость: Растворим в толуоле, растворим в ацетоне, этаноле, бензоле, эфире, изопропаноле, метаноле, 2-бутаноне, эфире этиленгликоля, петролейном эфире и других органических растворах, нерастворим в воде и растворе щелочи.
Давление пара: <0,01 мм рт. ст. (20 °C)
Плотность пара: 7,6 (по сравнению с воздухом)
Возникновение: Бесцветный кристаллический или белый кристаллическийпорошок
Цвет: белый
Запах: слабый характерный запах
Предел воздействия: ACGIH: TWA 2 мг / м3 NIOSH: TWA 10 мг / м3
Мерк: 14,1548
Артикул: 1911640
pKa: pKa 14 (H2Ot = 25c = 0,002-0,01) (неопределенный)
Условия хранения: 2-8 °C
Стабильность: Стабильная, но светочувствительная. Несовместим с хлоридами кислот, ангидридами кислот, латунью, медью, медными сплавами, сталью, щелочами, окислителями. Горючий.
Показатель преломления: 1,4859
ЛЕИ: MFCD00011644

Технические характеристики IONOL CP:
Чистота: минимум 99,8 вт/вт-%
Температура плавления: 70±1ºC
WaterСодержание воды: не более 0,12 вт/вт-%
Цвет (30% мас./мас.% в ацетоне): не более 30 apha
Сульфатная зола: не более 0,002 вт/вт-%

Другие продукты IONOL:
IONOL CP
IONOL 75
IONOL 75S30
IONOL 75T30
IONOL BS35
IONOL BT45
IONOL BF200
IONOL BF350
IONOL BF1000
IONOL K65
IONOL K72
IONOL K78
IONOL K98
IONOL 99
IONOL 103
IONOL 135
IONOL 220
IONOL 220 AH
IONOL PET FOOD
IONOL AQUA 50
IONOL CPS
IONOL CP MOLTEN
IONOL 175N
IONOL 175N PLUS
IONOL FEED 501
IONOL FEED 101
IONOL 200N
IONOL CPF
IONOL CPA
IONOL CPC
IONOL CPD
IONOL FEED 502
IONOL CPA FLAKES
IONOL LC
IONOL BHT TECHNICAL GRADE
IONOL BHT TECHNICAL FLAKES

Синонимы IONOL CP:
bht
BHT
dbpc
Т501
2,6-DBPC
BHTOX-BHT
ralox bht
BHT (МЕШКИ)
bht (мешки)
Антиоксидант 264
501 антиоксидант
антиоксидант bht
BHT, ГРАНУЛИРОВАННЫЙ, FCC
bht, гранулированный, fcc
Антиоксидант T501
антиоксидант bht
Аниониоксидант BHT
дибутилметилфенол
бутилгидрокситолуол
ionol cp-антиоксидант
bht, гранулированный, технический
BHT, ГРАНУЛИРОВАННЫЙ, ТЕХНИЧЕСКИЙ
2-бутил-3-метилфенол
3-бутил-4-метилфенол
бутилатd гидрокситолуола
бутилгидрокситолуол bht
Бутилированный гидрокситолуол
2,6-Ди-трет-бути-п-крезол
бутилированный гидрокситолуол
ди-трет-бутил-пара-крезол
2,6-ди-трет-бутил-п-крезол
2,6-ди-трет-бутил-4-крезол
2,6-ди-трет. бутил-п-крезол
ди-трет-бутилгидрокситолуолoluene
Резиновый антивозрастной агент 264
2,6-дитертиарибутилпаракрезол
2,6-Ди-трет-бутил-4-метилфенол
4-метил-2,6-ди(трет-бутил)фенол
3,5-ди-трет-4-бутилгидрокситолуол
2,6-ди-трет-бутил-4-метилфенол
БУТИЛАТГИДРОКСИТОЛУОЛ ГРАНУЛИРОВАННЫЙ NF
бутилатгидрокситолуолгранулированный, nf
bht (ди-трет.-бутил-4-гидрокситолуол)
2,6,-ди-трет-бутил-4-метилфенол cp
3,5-ди-трет-4бутилгидрокситолуол (bht)
2,6-ди- (трет-бутил)-4-метилфинол-d21
Производитель бутилированного гидрокситолуола
2,6-дитербутил-4-метилфенол[128,37,0]
2,6-бис(1,1-диметилэтил)-4-метилфенол
2,6-дитеритрийбутил-4-метилфенол (bht)
внт 2,6 - ди - трет - бутил -4-метилфенол
бутилерет гидрокситолуол (2,6-ди-трет-бутил-п-крезол)
IONOL CP128-37-0204-881- 4C15H24O
IONOL(R) CPA
IONOL (R) CPD
Iонол(R) CPC
IONOL (R) CPM
2,6-бис(1,1-диметилэтил)-4-метилфенол
2,6-ди-трет-бутил-п-крезол
бутилированный гидрокситолуол
dbpc
ralox bht
бутилгидрокситолуол
2,6-ди-трет. бутил-п-крезол
дибутилметилфенол
bht
бутилгидрокситолуол bht
4-метил-2,6-di(трет-бутил)фенол
антиоксидант bht
антиоксидант bht
2,6-ди-трет-бутил-4-крезол
2,6-ди-трет-бутил-4-метилфенол
501 антиоксидант
бутилированный гидрокситолуол
бутилерет гидрокситолуол (2,6-ди-трет-бутил-п-крезол)
2,6-ди- (трет-бутил)-4-метилфинол-d21
3,5-ди-трет-4бутилгидрокситолуол (bht)
bht (мешки)
bht fcc|nf
bht, гранулированный, fcc
bht, гранулированный, технический
бутилатгидрокситолуол гранулированный nf
ди-трет-бутилгидрокситолуол
2,6-дитеритрийбутил-4-метилфенол (bht)
бутилированный гидрокситолуол (bht и 2,6-dbpc)
ди-трет-бутил-пара-крезол
2,6-дитертиарибутилпаракрезол
bht (ди-трет.-бутил-4-гидрокситолуол)
ionol cp-антиоксидант
2,6-дитербутил-4-метилфенол[128,37,0]
внт 2,6 - ди - трет - бутил -4-метилфенол
2,6,-ди-трет-бутил-4-метилфенол cp
BHTOX-BHT
Аниониоксидант BHT
Т501
Антиоксидант 264
2,6-DBPC
3,5-ди-трет-4-бутилгидрокситолуол
Антиоксидант T501
3-бутил-4-метилфенол
2-бутил-3-метилфенол
2,6-Ди-трет-бути-п-крезол
Резиновый антивозрастной агент 264
IONONE
Iron 3 Chloride; Iron(III) chloride; Iron trichloride; Ferric chloride; Molysite; Flores martis cas no: 7705-08-0
IPBC
IPBC (Iodopropynyl butylcarbamate) Iodopropynyl butylcarbamate Iodopropynyl Butyl Carbamate (IPBC) is a water-soluble preservative used globally in the paints & coatings, wood preservatives, personal care, and cosmetics industries. IPBC is a member of the carbamate family of biocides.[1] IPBC was invented in the 1970s and has a long history of effective use as an antifungal technology. History IPBC was initially developed for use in the paint & coatings industry as a dry-film preservative to protect interior and exterior coatings from mold, mildew, and fungal growth, while also offering cost performance and sustainability benefits. IPBC exhibits efficacy against a broad spectrum of fungal species, typically at very low use levels. IPBC today is incorporated into a wide variety of interior and exterior paint formulations around the world. Use is restricted in some countries due to its toxicity, especially acute inhalation toxicity. IPBC is also becoming recognized as a contact allergen.[2] Uses IPBC is an effective fungicide at very low concentrations in cosmetic and other products, and has shown very low sensitivity in humans tested with this preservative. IPBC was approved in 1996 for use up to 0.1% concentrations in topical products and cosmetics. However, this preservative is mostly found in cosmetics at about one-eighth that level [Maier et al., 2009]. IPBC Toxicity and Safety Tests show it to be generally safe: When used properly in leave-on skin products, IPBC is extremely safe [Steinberg, 2002]. Previous to being approved for cosmetic use in 1996, extensive safety and toxicity tests were conducted on IPBC and their results were gathered along with earlier studies in a report of the Safety Assessment of IPBC by the Cosmetic Ingredient Review [CIR Final Report, Lanigan 1998]. This final report found IPBC to be a non-carcinogen with no genotoxicity and in reproductive and developmental toxicity studies using rats and mice, IPBC had no significant effect on fertility, reproductive performance, or on the incidence of fetal malformation [Lanigan, 1998]. Toxicity The study, "Final Report on the Safety Assessment of Iodopropynyl Butylcarbamate", discusses the results of 32 studies between 1990 and 1994 in 3,582 subjects using skin application of IPBC at relevant concentrations. [3] All 32 studies showed no evidence of contact sensitization compared to placebo controls, with the report stating "With each test formulation, a few panelists had erythema, edema, and/or a papular response, but overall, the results were negative." In addition, the study mentions two skin sensitivity studies on 183 children ages 3 – 12 yrs which showed no adverse effects as well as no significant irritation from IPBC. Since the early safety report, there have been a few reports of human skin sensitivity to IPBC in individual patients – all of which showed complete recovery after discontinuance of use of any product containing the IPBC which was presumably an allergen for these patients [Toholka & Nixon, 2014; Pazzaglia & Tosti, 1999]. Post-1996 tests of human sensitivity to IPBC have all shown quite low sensitivity, having overall reported human skin testing (patch test) on 53,774 subjects with only 491 of those subjects showing any reaction (0.8%) to IPBC. In every study, positive patch test reactions occurred in less than 1% of subjects tested in all but one study. This is a very low reaction rate, but it is not zero, and the industry reports this low rate of reaction even though in the largest study of 25,435 subjects over 69% of the reactions were either weak or doubtful [Warshaw et al., 2013a]. These combined studies showing prevalence of reaction below 1% means that IPBC at this time does not have the reaction rates necessary to be included as an allergen in standard allergy series. But, it remains under close monitoring as it is a relatively new preservative for cosmetic products and will presumably increase in usage [Sasseville, 2004]. Most human patch tests performed before 2004 were with 0.1% IPBC solutions, i.e. 10 times the concentration used in many cosmetic products. Some used 0.5% IPBC. In 2004, it was suggested that a better concentration for tests of this substance would be 0.2% [Brasch et al., 2004] and this has contributed to the diagnosis of more sensitizations to this substance [Martin-Gorgojo & Johansen, 2013]. One study showed significantly increased sensitivity between 2005 and 2010 using 0.5% IPBC in patch tests [Warshaw et al., 2013b]. See also Ingredients of cosmetics Iodopropynyl butylcarbamate Ipbc.svg Names IUPAC name 3-Iodoprop-2-yn-1-yl butylcarbamate Other names 3-Iodo-2-propynyl N-butylcarbamate; 3-Iodo-2-propynyl butylcarbamate; Iodocarb Identifiers CAS Number 55406-53-6 check 3D model (JSmol) Interactive image Abbreviations IPBC ChEBI CHEBI:83279 ☒ ChemSpider 55933 check ECHA InfoCard 100.054.188 PubChem CID 62097 UNII 603P14DHEB check Properties Chemical formula C8H12INO2 Molar mass 281.093 g·mol−1 IODOPROPYNYL BUTYLCARBAMATE IODOPROPYNYL BUTYLCARBAMATE is classified as : Preservative CAS Number 55406-53-6 EINECS/ELINCS No: 259-627-5 Restriction (applies to EU only): VI/56 COSING REF No: 34582 Chem/IUPAC Name: 3-Iodo-2-propynyl butylcarbamate Iodopropynyl Butylcarbamate What Is Iodopropynyl Butylcarbamate? Iodopropynyl Butylcarbamate, also known as IPBC, is a white or slightly off-white crystalline powder that contains iodine. It is used in a wide variety of cosmetics and personal-care products Why is Iodopropynyl Butylcarbamate used in cosmetics and personal care products? Iodopropynyl Butylcarbamate prevents or retards bacterial growth, thereby protecting cosmetics and personal-care products from spoilage. Follow this link for more information about how preservatives protect cosmetics and personal care products. Scientific Facts: Iodopropynyl Butylcarbamate is an internationally recognized preservative that has been used for years because of a wide field of application. The need for a broad-spectrum and safe preservative system for cosmetics has led to the development of several combinations of IPBC with other preservatives effective against a wide variety of organisms. IPBC is also used as a preservative in household products, paints, cements and inks. 3-iodo-2-propynyl butylcarbamate is an off-white solid. 3-iodoprop-2-yn-1-yl butylcarbamate is a carbamate ester that is carbamic acid in which the nitrogen has been substituted by a butyl group and in which the hydrogen of the carboxy group is replaced by a 1-iodoprop-2-yn-3-yl group. A fungicide, it is used as a preservative and sapstain control chemical in wood products and as a preservative in adhesives, paints, latex paper coating, plastic, water-based inks, metal working fluids, textiles, and numerous consumer products. It has a role as a xenobiotic, an environmental contaminant and an antifungal agrochemical. It is a carbamate ester, an organoiodine compound, an acetylenic compound and a carbamate fungicide. Molecular Weight of IPBC: 281.09 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3-AA of IPBC: 2.1 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of IPBC: 1 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of IPBC: 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of IPBC: 5 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of IPBC: 280.99128 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of IPBC: 280.99128 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of IPBC: 38.3 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of IPBC: 12 Computed by PubChem Formal Charge of IPBC: 0 Computed by PubChem Complexity of IPBC: 192 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of IPBC: 0 Computed by PubChem Defined Atom Stereocenter Count of IPBC: 0 Computed by PubChem Undefined Atom Stereocenter Count of IPBC: 0 Computed by PubChem Defined Bond Stereocenter Count of IPBC: 0 Computed by PubChem Undefined Bond Stereocenter Count of IPBC: 0 Computed by PubChem Covalently-Bonded Unit Count of IPBC: 1 Computed by PubChem Compound of IPBC Is Canonicalized Yes Iodopropynyl Butylcarbamate Details It's one of those things that help your cosmetics not to go wrong too soon, aka a preservative. Its strong point is being effective against yeasts and molds, and as a nice bonus seems to be non-comedogenic as well. It is safe in concentrations of less than 0.1% but is acutely toxic when inhaled, so it's not the proper preservative choice for aerosol formulas like hairsprays. Used at 0.1%, Iodopropynyl Butylcarbamate has an extremely low rate of skin-irritation when applied directly for 24 hours (around 0.1% of 4,883 participants) and after 48 hours that figure was 0.5%, so it counts as mild and safe unless your skin is super-duper sensitive. iodopropynyl butylcarbamate Where is iodopropynyl butylcarbamate found? Iodopropynyl butylcarbamate is a preservative used in cosmetics, wet wipes (toilet paper), and other personal care products. It is also used as a biocide in paints, primers, and industrial coolants and cooling lubricants. How can you avoid contact with iodopropynyl butylcarbamate? Avoid products that list any of the following names in the ingredients: • Butyl-3-iodo-2-propynylcarbamate • Carbamic acid, butyl-3-iodo-2-propynyl ester • Iodopropynyl butylcarbamate • 3-Iodo-2-propynyl butylcarbamate • EPA Pesticide Chemical Code 107801 • BRN 2248232 • Caswell No. 501A • EINECS 259-627-5 • HSDB 7314 • 3-Iodo-2-propynyl butyl carbamate What are some products that may contain iodopropynyl butylcarbamate? Baby Care • Baby lotion • Baby wash and shampoo • Diaper rash cream • Flushable moist wipes Body Washes and Soaps • Cleansing towelettes • Makeup remover towelettes Cosmetics • Concealer • Eye lash tint • Liquid eye liner Hair Dye Hair Hair Styling Products • Gel • Hairspray • Pomade • Root lifter Industrial Coolants and Cooling Lubricants Lip Balm Lotions and Skin Care Products • Acne treatment • Anti-itch cream • Bar soap • Body lotion • Moisturizer • Wrinkle cream Paints and Stains Shampoos and Conditioners Shaving Creams and Gels Sunscreens Yard care • Insect killer • Weed killer Iodopropynyl butylcarbamate (IPBC) is an internationally recognized chemical that has been used for years because of its wide field of application. Initially used as a water-based paint and wood preservative and then in metalworking fluids, its role has expanded into the more recent uses in cosmetic products. The need for a potent, broad-spectrum, and safe preservative system in cosmetics allowed for the discovery of several combinations of IPBC effective against a wide variety of organisms. Although IPBC has claimed to be safe when used at concentrations less than 0.1%, the introduction of IPBC into cosmetics has led to several reports labeling IPBC as a potential new contact allergen. As the use of this seemingly safe preservative becomes vast, an increased number of cases of IPBC-induced contact allergy is likely.
IPBC 30
Chemical name: 3-iodo-2-propynyl butyl carbomate Description; Nipacide IPBC 30 is a 30% active IPBC clear glycolic fungicide, Nipacide IPBC 30 has been developed for fungal dry film protection of water based coatings. Nipacide IPBC 30 can also be used for wet state, in-can fungal protection. Nipacide IPBC 30 is effective against a wide range of fungal and yeast species and exhibits some activity against gram negative and gram positive bacteria. Dry –film degradation in paints and decorative coatings can be avoided by using the correct dry-film fungicides at the most cost effective use level. Ideal dry-film properties achieved by Nipacide IPBC3 30 include: • High activity against a broad range of fungi and algae • Excellent activity at relatively low use concentrations • Carbendazim free • pH stable • UV stable • Low water solubility • Approved under the Biocidal Products Directive • Cost effective protection Applications; Nipacide IPBC 30 is recommended for protection of a wide range of coating applications including water based decorative paints, wood stains and colours. Nipacide IPBC 30 can also be used in solvent based applications. Increased antifungal activity can also be achieved by using Nipacide IPBC 30 for in-can use in adhesives grouts and sealants. Nipacide IPBC 30 is effective against a wide range of spoilage organisms effective over a wide pH range. Nipacide IPBC 30 should not be used in products heated above 400 C. Use level; Nipacide IPBC 30 should be evaluated in finished products at levels between 0.50% and 2.0% for dry film applications. The level of protection will depend on many factors including the end destination of coating, relative humidity, sun strength and others and can be determined by evaluation by our team of microbiologists at the Microbiology facility. For in-can antifungal activity Nipacide IPBC 30 should be evaluated between 0.10% and 0.30%. Microbiological data; Even though Nipacide IPBC 30 is designed for dry-film applications it also exhibits activity against a wide range of bacteria, fungi and yeast. This can be demonstrated by the following MIC data. Chemical compatibility; Nipacide IPBC 30 is compatible with most raw materials used in the manufacture of industrial and decorative coatings. Nipacide IPBC 30 compatibility should always be checked and evaluated before use.
IPHA 15%
IPHA 15% Isopropyl alcohol (IPHA 15%) (IUPAC name propan-2-ol; commonly called isopropanol or 2-propanol) is a compound with the chemical formula CH3CHOHCH3.[8] It is a colorless, flammable chemical compound with a strong odor. As an isopropyl group linked to a hydroxyl group, it is the simplest example of a secondary alcohol, where the alcohol carbon atom is attached to two other carbon atoms. It is a structural isomer of 1-propanol and ethyl methyl ether. It is used in the manufacture of a wide variety of industrial and household chemicals, and is a common ingredient in chemicals such as antiseptics, disinfectants, and detergents. isopropyl alcohol (IPHA 15%) is also known as 2-propanol, sec-propyl alcohol, IPA, or isopropanol. IUPAC considers isopropanol an incorrect name as the hydrocarbon isopropane does not exist Recommended use: Monomer stabilizer. Polymerization chainstopper. Synthesis intermediate. Photochemical additive. For industrial use. Other names of isopropyl alcohol (IPHA 15%), colorless, flammable liquid are known. For example, in the lab it may be simply denoted by isopropanol, isopro, iso, isopropyl, or acronym IPA. It is also an inorganic compound sometimes called 2-propanol, possibly referred to as an isomer, also known as propanol. Of course, isopropyl alcohol (IPHA 15%) is most commonly known as simple spirit. isopropyl alcohol (IPHA 15%), also known as isopropanol; clear, mixture of ethanol and acetone has an odor; it is a flammable alcohol. It forms solutions in any proportion with water, ethanol, acetone, chloroform and benzene, can be subjected to all typical reactions of secondary alcohols, and gives strong reactions with strong oxidizing agents. isopropyl alcohol (IPHA 15%), which is used as a low cost solvent in many applications, is similar to ethyl alcohol in terms of solvent properties and evaporation rate. If it burns, it decomposes to form carbon monoxide, which is toxic. IPHA 15% is useful for use in lacquers, inks and thinners in terms of its high latent solvent power, moderate evaporation rate and many other solvents it forms for cellulose nitrate, cellulose acetate butyrate and cellulose acetate procyanate. The use of isopropyl alcohol (IPHA 15%) in the production of monoisoprolamine for herbicides is the fastest growing segment in terms of use, and its use as a solvent in coatings and inks remains either the same or increases slightly. IPHA 15% is usually used by diluting with water when necessary for cleaning and stain removal. IPHA 15% is also used to remove oxidation and residual resin residues in electronic circuit boards. As a solvent IPHA 15%; in extraction and purification of natural products such as vegetable and animal oils, gum resins, waxes, colorants, flavors, alkaloids, vitamins and alginates; as a carrier in the production of foodstuffs; in purification, crystallization and precipitation of organic chemicals; It finds application in synthetic polymers such as phenolic varnishes and nitrocellulose lacquers. Also as a solvent; Participates in formulations of cosmetics, hair tonics, perfumes, skin lotions, hair dye rinse, skin cleaners, deodorant, nail polish, shampoo, hair sprays, air fresheners. As coating and paint solvent; It finds application in the production of cement, primer, paint and ink and acts as a cleaning and drying agent in liquid soap and detergent. isopropyl alcohol (IPHA 15%) (IPA); It is also used in the production of acetone and its derivatives and other chemicals such as isopropyl acetate, isopropylamine, diisopropyl ether, isopropyl xanthate, fatty acid esters, herbicidal esters and aluminum isopropoxide. Other Area of ​​Usage; It can be considered as a cooling agent in beer production, dehydrating agent in polyvinyl fluoride production, polymerization modifier and as a flavoring agent in home tobacco and personal care products. About IPHA 15% IPHA 15% has not been registered under the REACH Regulation, therefore as yet ECHA has not received any data about IPHA 15% from registration dossiers. IPHA 15% is used by professional workers (widespread uses), in formulation or re-packing and at industrial sites. Widespread uses by professional workers IPHA 15% is used in the following products: washing & cleaning products and water treatment chemicals. ECHA has no public registered data on the types of manufacture using IPHA 15%. Other release to the environment of IPHA 15% is likely to occur from: indoor use as reactive substance. Uses at industrial sites IPHA 15% is used in the following products: pH regulators and water treatment products, water treatment chemicals, adhesives and sealants and polymers. IPHA 15% is used for the manufacture of: rubber products. Release to the environment of IPHA 15% can occur from industrial use: as processing aid and as processing aid. The pure N-Isopropylhydroxylamine (IPHA 15%) is a white crystalline flake; however, it is sold as a 15% solution in water [2]. The aqueous solution is colourless with a slight amine odour [2]. IPHA 15% is marketed as a free-radical scavenger and uses in acrylonitrile-butadiene rubber and styrene-butadiene rubber manufacturing under the trade name CHAINGUARDTMI-15 Hydroxylamine. It is also used as an oxygen scavenger and metal passivator to control corrosion in boilers and marketed with the trade name HYDROGUARDTM I-15 Hydroxylamine [2]. IPHA 15% may also be used in other applications, such as photographic processing, “popcorn” polymer inhibition, monomer stabilization, reducing agent, dye affinity aid; ORE recovery (chelator) and as a synthetic building block [1]. The estimated rate constant of oral absorption of IPHA 15% through human gastrointestinal tract (jejunum) is 0.014 min-1by ACD/ADME Suite version 5.0 (Advanced Chemistry development, Toronto, ON, Canada). This low rate of oral absorption is consistent with the pKa (6.16) of the basic (pH of 15% aqueous solution = 10.6) compound. Most of IPHA 15% will remain ionized in human jejunum which has a pH of 6.5, lowering oral absorption. Even with the slow rate of oral absorption, the overall amount of absorption is estimated to be 99% (ACD/ADME Suite). It has also been estimated to have a moderate volume of distribution of 1.1 L/kg in human, consistent with the low log Kow for this compound. Similarly, plasma protein binding of IPHA 15% is estimated to be ~52% in humans by ACD/ADME Suite. No toxicological information for IPHA 15% is found for comparison with the rate of absorption and acute toxicity. The steady-state dermal permeability coefficient of aqueous IPHA 15% through human epidermis has been estimated to be 7.42 x 10-4cm/h by Dermwin version 2.01 (EPI Suite version 4.0). On the basis of this data, negligible penetration of dermally applied IPHA 15% is expected. However, no dermal toxicity data are available for comparison. Distribution Due to its basic nature (pH = 10.6 of 15% aqueous solution [1]), non-lipophilicity (log Kow= 0.15) and moderate plasma protein binding (~52%), a moderate volume of distribution (1.1 L/kg) is estimated for IPHA 15% in humans by ACD/ADME Suite. Accumulation Due to moderate plasma protein binding and low volume of distribution, IPHA 15% is expected to have very low bioaccumulation potential. Metabolism No data on the metabolism of IPHA 15% in rat or other species has been reported. As shown in the chemical structure, IHPA contains the two moieties of isopropyl and hydroxyamine. Therefore, it’s metabolism will be predicted based on the metabolism of both isopropyl and hydroxyamine. The isopropyl group can be metabolized to by cytochrome P450 via hydroxylation, this will lead to the hydroxylated IPHA 15% metabolite. The hydroxyamine group is expected to be metabolically stable, and will not be further metabolized by cytochrome P450 or other Phase I or II enzymes,in vivoorin vitro. Based on these rationale, the potential metabolite of IPHA 15% will be hydroxylated isopropylhydroxyamine. Excretion Both IPHA 15% and the hydroxylated isopropylhydroxyamine metabolite are water-soluble; therefore, would be expected to excreted primarily in urine. Summary This analysis estimated a relative dermal absorption of 3.5% to 7.4% of the applied dose for an aqueous solution of N-isopropylhydroxylamine (IPHA 15%), CAS No. 5080-22-8. A literature search of several databases did not find experimental dermal absorption results for IPHA 15%. QSARs were used to estimate the skin permeability coefficient and which was then extrapolated to a relative dermal absorption. Although one analog of IPHA 15% was found, it did not have experimental dermal absorption results so read across could not be applied. Introduction An evaluation of the potential human dermal absorption was conducted for IPHA 15% in order to refine the DNEL derivation for the ANGUS Chemical registration of IPHA 15% for REACH. The previous DNEL analysis conservatively assumed 100% relative dermal absorption. 1. Physical state. The substance is in aqueous solution under the use conditions; liquids are taken up more readily than dry particulates. 2. Exposure. IPHA 15% is used in 15% aqueous solutions in HYDROGUARD and CHAINGUARD, these products are for industrial use in water-treatment operations and polymer reaction-control applications. It was suggested that transferring the chemical from a product container into a process tank would present the highest exposure potential; other tasks would expose the worker to more dilute solutions. 3. Physical and chemical properties. IPHA 15% has a molecular weight of 75. Molecular weight is an indicator of the molecule volume and the penetration rate of a molecule into the skin is inversely proportional to its volume. One would not expect the molecular weight of IPHA 15% to significantly limit is dermal penetration. 4. Octanol/water partition coefficient, Kow. The estimated log Kow for IPHA 15% is 0.15 and it is classified as lipophobic. The Kow, is the ratio of the chemical concentration in octanol to its concentration in water, with octanol acting as a model for the lipids (fats) in an organism. A log Kow value below 0 will limit penetration into the stratum corneum and limit dermal absorption. A high log Kow value corresponds to a highly lipophilic chemical which will tend to partition into the skin lipids rather than the aqueous matrix. 5. Vapor pressure. If a substance has a significant vapor pressure it may evaporate before it has time to penetrate the skin or the skin penetration may be significantly reduced. The vapor pressure for IPHA 15% was reported as 0.26 mm Hg at 20°C (15% aqueous IPHA 15% in CHAINGUARD™ ) and evaporation may reduce the dermal load and possibly limit the dermal penetration. 6. Lag time. This is the experimentally determined duration for the substance to penetrate the skin and be measured in the receptor fluid in the test cell. A long lag time may be due to the stratum corneum providing a barrier which prevents substance penetration. A long lag time may also be due to the substance penetrating slowly or formation of a skin residue. The calculations using the skin permeability coefficient assume the substance immediately penetrates the skin and do not consider the lag time in uptake. The USEPA DERMWIN v2.01 predicted tau as 0.281 hr, tau is lag time in update; it predicted t*as 0.674 hr, t* is time to steady state penetration. 7. Water solubility. This limits the substance concentration in an aqueous solution. Substances which are soluble tend to penetrate the skin well. Substances with a high water solubility may be too hydrophilic to cross the stratum corneum. IPHA 15% has a high predicted water solubility and it is hydrophilic. 8. Water dissociation. Substances which dissociate (ionize) in water do not tend to penetrate the skin well. IPHA 15% does not ionize. Therefore, using the REACH stepwise approach one would expect the low log Kow and the hydrophilic nature of IPHA 15% to limit its dermal penetration. Evaporation may reduce the dermal load and possibly limit the dermal penetration. IPHA 15% is an organic compound, an isomer of n-propanol, aliased dimethylmethanol, 2-propanol. IPHA 15% is a colorless, transparent liquid with a scent like a mixture of ethanol and acetone. Soluble in water, also soluble in most organic solvents such as alcohol, ether, benzene, chloroform, etc. IPHA 15% has a wide range of uses as an organic raw material and solvent. 1)As a chemical raw material, it can produce acetone, hydrogen peroxide, methyl isobutyl ketone, diisobutyl ketone, isopropylamine, diisopropyl ether, isopropyl chloride, and fatty acid isopropyl ester and chloro fatty acid isopropyl ester. 2)In the fine chemical industry, it can be used to produce isopropyl nitrate, isopropyl xanthate, triisopropyl phosphite, aluminum isopropoxide, pharmaceuticals and pesticides, etc. It can also be used to produce diisopropanone, isopropyl acetate and Thymol and gasoline additives. 3)IPHA 15% Can be used to produce coatings, inks, extractants, aerosols, etc. 4) In the electronics industry, IPHA 15% can be used as a cleaning and degreasing agent. 5) In the oil and fat industry, the extractant of cottonseed oil can also be used for degreasing of animal-derived tissue membranes. IPHA 15% (IUPAC name propan-2-ol; commonly called isopropanol or 2-propanol) is a colorless, flammable chemical compound (chemical formula CH3CHOHCH3) with a strong odor.[8] As an isopropyl group linked to a hydroxyl group, it is the simplest example of a secondary alcohol, where the alcohol carbon atom is attached to two other carbon atoms. It is a structural isomer of 1-propanol and ethyl methyl ether. IPHA 15% is used in the manufacture of a wide variety of industrial and household chemicals and is a common ingredient in chemicals such as antiseptics, disinfectants, and detergents. Names of IPHA 15% IPHA 15% IPHA 15% is also known as 2-propanol, sec-propyl alcohol, IPA, or isopropanol. IUPAC considers isopropanol an incorrect name as the hydrocarbon isopropane does not exist. Properties of IPHA 15% IPHA 15% is miscible in water, ethanol, ether, and chloroform. It dissolves ethyl cellulose, polyvinyl butyral, many oils, alkaloids, gums and natural resins.[9] Unlike ethanol or methanol, IPHA 15% is not miscible with salt solutions and can be separated from aqueous solutions by adding a salt such as sodium chloride. The process is colloquially called salting out, and causes concentrated IPHA 15% to separate into a distinct layer. IPHA 15% forms an azeotrope with water, which gives a boiling point of 80.37 °C (176.67 °F) and a composition of 87.7 wt% (91 vol%) IPHA 15%. Water–IPHA 15% mixtures have depressed melting points.[10] It has a slightly bitter taste, and is not safe to drink. IPHA 15% becomes increasingly viscous with decreasing temperature and freezes at −89 °C (−128 °F). IPHA 15% has a maximal absorbance at 205 nm in an ultraviolet–visible spectrum. Reactions of IPHA 15% IPHA 15% can be oxidized to acetone, which is the corresponding ketone. This can be achieved using oxidizing agents such as chromic acid, or by dehydrogenation of IPHA 15% over a heated copper catalyst: (CH3)2CHOH → (CH3)2CO + H2 IPHA 15% is often used as both solvent and hydride source in the Meerwein-Ponndorf-Verley reduction and other transfer hydrogenation reactions. IPHA 15% may be converted to 2-bromopropane using phosphorus tribromide, or dehydrated to propene by heating with sulfuric acid. Like most alcohols, IPHA 15% reacts with active metals such as potassium to form alkoxides that can be called isopropoxides. The reaction with aluminium (initiated by a trace of mercury) is used to prepare the catalyst aluminium isopropoxide.[14] History of IPHA 15% In 1920, Standard Oil first produced IPHA 15% by hydrating propene. Its major use at the time was not rubbing alcohol but for oxidation to acetone, whose first major use was in World War I for the preparation of cordite, a smokeless, low explosive propellant. Production of IPHA 15% In 1994, 1.5 million tonnes of IPHA 15% were produced in the United States, Europe, and Japan.[16] It is primarily produced by combining water and propene in a hydration reaction or by hydrogenating acetone. There are two routes for the hydration process and both processes require that the IPHA 15% be separated from water and other by-products by distillation. IPHA 15% and water form an azeotrope, and simple distillation gives a material that is 87.9% by weight IPHA 15% and 12.1% by weight water.[18] Pure (anhydrous) IPHA 15% is made by azeotropic distillation of the wet IPHA 15% using either diisopropyl ether or cyclohexane as azeotroping agents.[16] Biological of IPHA 15% Small amounts of IPHA 15% are produced in the body in diabetic ketoacidosis.[19] Indirect hydration of IPHA 15% Indirect hydration reacts propene with sulfuric acid to form a mixture of sulfate esters. This process can use low-quality propene, and is predominant in the USA. These processes give primarily IPHA 15% rather than 1-propanol, because adding water or sulfuric acid to propene follows Markovnikov's rule. Subsequent hydrolysis of these esters by steam produces IPHA 15%, by distillation. Diisopropyl ether is a significant by-product of this process; it is recycled back to the process and hydrolyzed to give the desired product. CH3CH=CH2 + H2O H2SO4⟶ (CH3)2CHOH Direct hydration of IPHA 15% See also: Heteropoly acid Direct hydration reacts propene and water, either in gas or liquid phase, at high pressures in the presence of solid or supported acidic catalysts. This type of process usually requires higher-purity propylene (> 90%).[16] Direct hydration is more commonly used in Europe. Hydrogenation of acetone IPHA 15% may be prepared via the hydrogenation of acetone, however this approach involves an extra step compared to the above methods, as acetone is itself normally prepared from propene via the cumene process.[16] It may remain economical depending on the value of the products. A known issue is the formation of MIBK and other self-condensation products. Raney nickel was one of the original industrial catalysts, modern catalysts are often supported bimetallic materials. This is an efficient process and easy Uses of IPHA 15% One of the small scale uses of isopropanol is in cloud chambers. Isopropanol has ideal physical and chemical properties to form a supersaturated layer of vapor which can be condensed by particles of radiation. In 1990, 45,000 metric tonnes of IPHA 15% were used in the United States, mostly as a solvent for coatings or for industrial processes. In that year, 5400 metric tonnes were used for household purposes and in personal care products. IPHA 15% is popular in particular for pharmaceutical applications,[16] due to its low toxicity. Some IPHA 15% is used as a chemical intermediate. IPHA 15% may be converted to acetone, but the cumene process is more significant. [16] Solvent of IPHA 15% IPHA 15% dissolves a wide range of non-polar compounds. It also evaporates quickly, leaves nearly zero oil traces, compared to ethanol, and is relatively non-toxic, compared to alternative solvents. Thus, it is used widely as a solvent and as a cleaning fluid, especially for dissolving oils. Together with ethanol, n-butanol, and methanol, it belongs to the group of alcohol solvents, about 6.4 million tonnes of which were used worldwide in 2011.[20] IPHA 15% is commonly used for cleaning eyeglasses, electrical contacts, audio or video tape heads, DVD and other optical disc lenses, removing thermal paste from heatsinks on CPUs and other IC packages, etc. Intermediate IPHA 15% is esterified to give isopropyl acetate, another solvent. It reacts with carbon disulfide and sodium hydroxide to give sodium isopropylxanthate, a herbicide and an ore flotation reagent.[21] IPHA 15% reacts with titanium tetrachloride and aluminium metal to give titanium and aluminium isopropoxides, respectively, the former a catalyst, and the latter a chemical reagent.[16] This compound may serve as a chemical reagent in itself, by acting as a dihydrogen donor in transfer hydrogenation. Medical of IPHA 15% Rubbing alcohol, hand sanitizer, and disinfecting pads typically contain a 60–70% solution of IPHA 15% or ethanol in water. Water is required to open up membrane pores of bacteria, which acts as a gateway for IPHA 15%. A 75% v/v solution in water may be used as a hand sanitizer.[22] IPHA 15% is used as a water-drying aid for the prevention of otitis externa, better known as swimmer's ear.[23] Early uses as an anesthetic Although IPHA 15% can be used for anesthesia, its many negative attributes or drawbacks prohibit this use. IPHA 15% can also be used similarly to ether as a solvent[24] or as an anesthetic by inhaling the fumes or orally. Early uses included using the solvent as general anesthetic for small mammals[25] and rodents by scientists and some veterinarians. However, it was soon discontinued, as many complications arose, including respiratory irritation, internal bleeding, and visual and hearing problems. In rare cases, respiratory failure leading to death in animals was observed. Automotive IPHA 15% is a major ingredient in "gas dryer" fuel additives. In significant quantities, water is a problem in fuel tanks, as it separates from gasoline and can freeze in the supply lines at low temperatures. Alcohol does not remove water from gasoline, but the alcohol solubilizes water in gasoline. Once soluble, water does not pose the same risk as insoluble water, as it no longer accumulates in the supply lines and freezes but is consumed with the fuel itself. IPHA 15% is often sold in aerosol cans as a windshield or door lock deicer. IPHA 15% is also used to remove brake fluid traces from hydraulic braking systems, so that the brake fluid (usually DOT 3, DOT 4, or mineral oil) does not contaminate the brake pads and cause poor braking. Mixtures of IPHA 15% and water are also commonly used in homemade windshield washer fluid. Laboratory As a biological specimen preservative, IPHA 15% provides a comparatively non-toxic alternative to formaldehyde and other synthetic preservatives. IPHA 15% solutions of 70–99% are used to preserve specimens. IPHA 15% is often used in DNA extraction. A lab worker adds it to a DNA solution to precipitate the DNA, which then forms a pellet after centrifugation. This is possible because DNA is insoluble in IPHA 15%. Safety of IPHA 15% IPHA 15% vapor is denser than air and is flammable, with a flammability range of between 2 and 12.7% in air. It should be kept away from heat and open flame.[26] Distillation of IPHA 15% over magnesium has been reported to form peroxides, which may explode upon concentration. IPHA 15% is a skin irritant. Wearing protective gloves is recommended. Toxicology of IPHA 15% IPHA 15% and its metabolite, acetone, act as central nervous system (CNS) depressants.[31] Poisoning can occur from ingestion, inhalation, or skin absorption. Symptoms of IPHA 15% poisoning include flushing, headache, dizziness, CNS depression, nausea, vomiting, anesthesia, hypothermia, low blood pressure, shock, respiratory depression, and coma.[31] Overdoses may cause a fruity odor on the breath as a result of its metabolism to acetone.[32] IPHA 15% does not cause an anion gap acidosis but it produces an osmolal gap between the calculated and measured osmolalities of serum, as do the other alcohols.[31] IPHA 15% is oxidized to form acetone by alcohol dehydrogenase in the liver,[31] and has a biological half-life in humans between 2.5 and 8.0 hours.[31] Unlike methanol or ethylene glycol poisoning, the metabolites of IPHA 15% are considerably less toxic, and treatment is largely supportive. Furthermore, there is no indication for the use of fomepizole, an alcohol dehydrogenase inhibitor, unless co-ingestion with methanol or ethylene glycol is suspected. In forensic pathology, people who have died as a result of diabetic ketoacidosis usually have blood concentrations of IPHA 15% of tens of mg/dL, while those by fatal IPHA 15% ingestion usually have blood concentrations of hundreds of mg/dL.
Iron 3 Chloride
ferricchloride iron (III) chloride iron trichloride iron(3+) trichloride iron(III) chloride trichloroiron CAS Number:7705-08-0
IRON III CHLORIDE
FERRIC SULFATE Iron(III) sulfate Iron persulfate Iron tersulfate Diiron tris(sulphate) Diiron trisulfate Ferric persulfate Ferric tersulfate Iron sesquisulfate Ferric sesquisulfate Iron(3+) sulfate Sulfuric acid, iron(3+) salt (3:2) Coquimbite mineral Iron sulfate (2:3) Iron sulfate (Fe2(SO4)3) Iron(3+) sulfate, (2:3) Ferricsulfate Sulfuric acid, iron(3+) salt Iron-S-hydrate iron(III)sulphate Ferric sulfate (USP) Sulfuric acid,iron salt iron(III) sulfate(VI) CAS: 10028-22-5
IRON III SULFATE
IRON SULPHATE; Green Vitriol; Copperas; Melanterite; Ferrous sulfate heptahydrate; Sulfuric acid, iron(2+) salt, heptahydrate; Ferrosulfat (German); cas no: 7782-63-0
ISOAMYL ACETATE
BANANA OIL; ISOAMYL ACETATE, N° CAS : 123-92-2. Nom INCI : ISOAMYL ACETATE. Nom chimique : Isopentyl acetate. N° EINECS/ELINCS : 204-662-3. Noms français : 3-METHYL-1-BUTYL ACETATE; 3-METHYLBUTYL ACETATE; 3-METHYLBUTYL ETHANOATE; ACETATE D'ISOAMYLE; ACETATE D'ISOPENTYLE; ACETATE DE METHYL-3 BUTYLE; ACETIC ACID 3-METHYLBUTYL ESTER ;Acétate d'isoamyle. Noms anglais : ACETIC ACID ISOAMYL ESTER; ACETIC ACID ISOPENTYL ESTER; BANANA OIL; Isoamyl acetate; ISOAMYL ACETIC ESTER; ISOAMYL ETHANOATE ISOPENTYL ACETATE; ISOPENTYL ALCOHOL, ACETATE; Pentyl acetate, all isomers [123-92-2]. Utilisation : L'acétate d'isoamyle a beaucoup d'applications industrielles, notamment : comme saveur artificielle de poire ou de banane dans les aliments, dans les produits pour masquer les odeurs, comme test qualitatif pour les appareils respiratoires (test de l'huile de banane) en tant que solvant pour des vernis et des laques, dans les vernis à ongles, dans les films photographiques
ISOAMYL ALCOHOL
ISOAMYL ALLYLGLYCOLATE, N° CAS : 67634-00-8. Nom INCI : ISOAMYL ALLYLGLYCOLATE. Nom chimique : Acetic Acid, (3-Methylbutoxy), 2-Propenyl Ester, N° EINECS/ELINCS : 266-803-5 Ses fonctions (INCI). Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
ISOAMYL ALLYLGLYCOLATE
ISOAMYL BUTYRATE, N° CAS : 106-27-4, Nom INCI : ISOAMYL BUTYRATE. Nom chimique : 3-Methylbutyl Butanoate. N° EINECS/ELINCS : 203-380-8. Ses fonctions (INCI). Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
ISOAMYL BUTYRATE
ISOAMYL CINNAMATE, N° CAS : 7779-65-9. Nom INCI : ISOAMYL CINNAMATE, Nom chimique : 2-Propenoic Acid, 3-Phenyl-, 3-Methylbutyl Ester. N° EINECS/ELINCS : 231-931-2. Ses fonctions (INCI). Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit
ISOAMYL CINNAMATE
ISOAMYL LAURATE, N° CAS : 6309-51-9, Nom INCI : ISOAMYL LAURATE. Nom chimique : Isopentyl laurate. N° EINECS/ELINCS : 228-626-1. Classification : Huile estérifiée. Emollient : Adoucit et assouplit la peau. Agent d'entretien de la peau : Maintient la peau en bon état
ISOAMYL LAURATE
ISOAMYL P-METHOXYCINNAMATE, N° CAS : 71617-10-2. Origine(s) : Synthétique. Nom INCI : ISOAMYL P-METHOXYCINNAMATE. Nom chimique : Isopentyl p-methoxycinnamate. N° EINECS/ELINCS : 275-702-5. Ses fonctions (INCI) : Absorbant UV : Protège le produit cosmétique contre les effets de la lumière UV. Filtre UV : Permet de filtrer certains rayons UV afin de protéger la peau ou les cheveux des effets nocifs de ces rayons.
ISOAMYL P-METHOXYCINNAMATE
ISOAMYL SALICYLATE, N° CAS : 87-20-7, Nom INCI : ISOAMYL SALICYLATE, Nom chimique : Isopentyl 2-Hydroxybenzoate, N° EINECS/ELINCS : 201-730-4. Ses fonctions (INCI): Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
ISOAMYL SALICYLATE
ISOBORNEOL, N° CAS : 124-76-5, Nom INCI : ISOBORNEOL Nom chimique : exo-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol N° EINECS/ELINCS : 204-712-4 Ses fonctions (INCI) Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
ISOBORNEOL
ISOBORNYL ACETATE, N° CAS : 125-12-2, Nom INCI : ISOBORNYL ACETATE, Nom chimique : Bicyclo[2.2.1]heptan-2-ol,1,7,7-trimethyl-, acetate, exo-, N° EINECS/ELINCS : 204-727-6, Ses fonctions (INCI). Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. Noms français : 1,7,7-TRIMETHYLBICYCLO(2.2.1)HEPTAN-2-OL ACETATE; ACETATE D'ISOBORNYLE; BICYCLO(2.2.1)HEPTAN-2-OL, 1,7,7-TRIMETHYL-, ACETATE, EXO-; ESTER ISOBORNYLIQUE DE ; L'ACIDE ACETIQUE. Noms anglais : ACETIC ACID, ISOBORNYL ESTER; BORNEOL ACETATE; ISOBORNEOL, ACETATE; ISOBORNYL ACETATE. Utilisation et sources d'émission : Fabrication de produits pharmaceutiques, agent de saveur
ISOBORNYL ACETATE
Isobornyl Acetate Isobornyl acetate (izobornil asetat, isobornyl acetate) readily hydrolyzes (within hours) to isobornyl alcohol during the first step of its biochemical pathway. The alcohol will become conjugated with glucoronic acid and be excreted in the urine (expected within hours to days). IDENTIFICATION: Isobornyl acetate (izobornil asetat, isobornyl acetate) is a colorless to straw-colored liquid. It has an odor like pine needles. It is not very soluble in water. Isobornyl acetate (izobornil asetat, isobornyl acetate) is a natural component in many plants. USE: Isobornyl acetate (izobornil asetat, isobornyl acetate) is an important commercial chemical. It is used in perfuming soaps, air fresheners and in making camphor. It is also used as a flavoring ingredient. EXPOSURE: Workers that use Isobornyl acetate (izobornil asetat, isobornyl acetate) may breathe in vapors or have direct skin contact. The general population may be exposed by vapors, dermal contact and consumption of food flavored with Isobornyl acetate (izobornil asetat, isobornyl acetate). If Isobornyl acetate (izobornil asetat, isobornyl acetate) is released to the environment, it will be broken down in air. It is not expected to be broken down by sunlight. It will move into air from moist soil and water surfaces. It is expected to move through soil. It will be broken down by microorganisms, and is expected to build up in fish. RISK: Allergic skin reactions were not observed in volunteers following direct skin exposure. Other data on the potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to produce toxic effects in humans were not available. Isobornyl acetate (izobornil asetat, isobornyl acetate) is a mild skin irritant in laboratory animals. Kidney and liver damage and changes in kidney function were reported in laboratory animals following repeated exposure to moderate-to-high oral doses of Isobornyl acetate (izobornil asetat, isobornyl acetate) over time. No effects were reported at low doses. No evidence of infertility, abortion, or birth defects was reported in laboratory animals exposed to high oral doses of Isobornyl acetate (izobornil asetat, isobornyl acetate) before and during pregancy. Data on the potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to cause cancer in laboratory animals were not available. The potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 14th Report on Carcinogens. For Isobornyl acetate (izobornil asetat, isobornyl acetate) (USEPA/OPP Pesticide Code: 128875) there are 0 labels match. /SRP: Not registered for current use in the USA, but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. Isobornyl acetate (izobornil asetat, isobornyl acetate) is used in large amounts for perfuming soap, bath products, and air fresheners. However, the major use of Isobornyl acetate (izobornil asetat, isobornyl acetate) is as an intermediate in the production of camphor. Isobornyl acetate (izobornil asetat, isobornyl acetate) is prepared from camphene and acetic acid in the presence of acidic catalysts (e.g., sulfuric acid), or on a styrene-divinylbenzene acid ion-exchanger. Residues of Isobornyl acetate (izobornil asetat, isobornyl acetate) are exempted from the requirement of a tolerance when used in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only. IDENTIFICATION AND USE: Isobornyl acetate (izobornil asetat, isobornyl acetate) is used in soaps, detergents, creams and lotions and perfumes. HUMAN STUDIES: A maximization test was carried out on 25 volunteers. The material was tested at a concentration of 10% and produced no sensitization reactions. ANIMAL STUDIES: Isobornyl acetate (izobornil asetat, isobornyl acetate) applied full strength to intact or abraded rabbit skin for 24 hr under occlusion was mildly irritating. Isobornyl acetate (izobornil asetat, isobornyl acetate) was administered daily to rats in doses of 0, 15, 90 or 270 mg/kg bw for 13 wk. Male rats had signs of nephrotoxicity at 90 mg/kg and 270 mg/kg/day, as well as signs of hepatotoxicity at 270 mg/kg. Isobornyl acetate (izobornil asetat, isobornyl acetate) was investigated in a 1-generation reproduction study in rats and it did not produce developmental toxicity. Increased incidences of excess salivation occurred in parent generation male and female rats at 100 and/or 300 mg/kg/d throughout the dosage period, and low incidences of urine-stained abdominal fur were seen in females at 300 mg/kg/d during the gestation period. Isobornyl acetate (izobornil asetat, isobornyl acetate)'s production and use in toilet waters, bath preparations, antiseptics, soaps, making synthetic camphor and as a flavoring agent may result in its release to the environment through various waste streams. Its use in compounding needle odors and theater sprays will result in its direct release to the environment. Isobornyl acetate (izobornil asetat, isobornyl acetate) is reported in a wide variety of herbs and other plants. If released to air, an estimated vapor pressure of 0.11 mm Hg at 25 °C indicates Isobornyl acetate (izobornil asetat, isobornyl acetate) will exist solely as a vapor in the atmosphere. Vapor-phase Isobornyl acetate (izobornil asetat, isobornyl acetate) will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 50 hrs. Isobornyl acetate (izobornil asetat, isobornyl acetate) does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. If released to soil, Isobornyl acetate (izobornil asetat, isobornyl acetate) is expected to have moderate mobility based upon an estimated Koc of 420. Volatilization from moist soil surfaces is expected to be an important fate process based upon an estimated Henry's Law constant of 9.5X10-5 atm-cu m/mole. Isobornyl acetate (izobornil asetat, isobornyl acetate) has an estimated vapor pressure of 0.11 mm Hg and exists as a liquid under environmental conditions; therefore, Isobornyl acetate (izobornil asetat, isobornyl acetate) may volatilize from dry soil. Using the OECD Biodegradability test, isoborneol acetate was biodegraded in 10 days, suggesting that biodegradation is an important environment fate process in soil or water. If released into water, Isobornyl acetate (izobornil asetat, isobornyl acetate) is expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is expected to be an important fate process based upon this compound's estimated Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 17 hrs and 9.5 days, respectively. An estimated BCF of 320 suggests the potential for bioconcentration in aquatic organisms is moderate. Hydrolysis is not expected to be an important environmental fate process as indicated by estimated base-catalyzed second-order half-lives of 2.3 yrs and 84 days at pH values of 7 and 8, respectively. Occupational exposure to Isobornyl acetate (izobornil asetat, isobornyl acetate) may occur through inhalation and dermal contact with this compound at workplaces where Isobornyl acetate (izobornil asetat, isobornyl acetate) is produced or used. Monitoring data indicate that the general population may be exposed to Isobornyl acetate (izobornil asetat, isobornyl acetate) via inhalation of ambient air, ingestion of food, and dermal contact with consumer products containing Isobornyl acetate (izobornil asetat, isobornyl acetate). Isobornyl acetate (izobornil asetat, isobornyl acetate) is reported in a wide variety of herbs and other plants(1). It is a natural emmission from pine and fir trees(2). The compound is reported as occurring in thymus, Parmesan cheese, dill herb, Ocimum basilicum, rosemary and custard apple(3). Isobornyl acetate (izobornil asetat, isobornyl acetate)'s production and use in toilet waters, bath preparations, antiseptics, soaps, making synthetic camphor(1) and as a flavoring agent(1,2) may result in its release to the environment through various waste streams. Its use in compounding pine needle odors and theater sprays(1) will result in its direct release to the environment(SRC). TERRESTRIAL FATE: Based on a classification scheme(1), an estimated Koc value of 420(SRC), determined from a structure estimation method(2), indicates that Isobornyl acetate (izobornil asetat, isobornyl acetate) is expected to have moderate mobility in soil(SRC). Volatilization of Isobornyl acetate (izobornil asetat, isobornyl acetate) from moist soil surfaces is expected to be an important fate process(SRC) given an estimated Henry's Law constant of 9.5X10-5 atm-cu m/mole(SRC), developed using a fragment constant estimation method(2). Isobornyl acetate (izobornil asetat, isobornyl acetate) has an estimated vapor pressure of 0.11 mm Hg(2) and exists as a liquid under environmental conditions; therefore, Isobornyl acetate (izobornil asetat, isobornyl acetate) may volatilize from dry soil. Using the OECD Biodegradability test, isoborneol acetate was biodegraded in 10 days(3), suggesting that biodegradation is an important environment fate process in soil(SRC). ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere(1), Isobornyl acetate (izobornil asetat, isobornyl acetate), which has an estimated vapor pressure of 0.11 mm Hg at 25 °C(SRC), determined from a fragment constant method(2), is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase Isobornyl acetate (izobornil asetat, isobornyl acetate) is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 50 hrs(SRC), calculated from its rate constant of 7.7X10-12 cu cm/molecule-sec at 25 °C(SRC) that was derived using a structure estimation method(2). Isobornyl acetate (izobornil asetat, isobornyl acetate) does not contain chromophores that absorb at wavelengths >290 nm(3) and, therefore, is not expected to be susceptible to direct photolysis by sunlight(SRC). AEROBIC: Isobornyl acetate (izobornil asetat, isobornyl acetate) was biodegraded in 10 days in the OECD Ready Biodegradability test. The compound was 29.0 and 99.8% removed in wastewater treat plants under primary gravitational settling and activated sludge treatement process, respectively(1). The rate constant for the vapor-phase reaction of Isobornyl acetate (izobornil asetat, isobornyl acetate) with photochemically-produced hydroxyl radicals has been estimated as 7.7X10-12 cu cm/molecule-sec at 25 °C(SRC) using a structure estimation method(1). This corresponds to an atmospheric half-life of about 50 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm(1). A base-catalyzed second-order hydrolysis rate constant of 9.5X10-2 L/mole-sec(SRC) was estimated using a structure estimation method(1); this corresponds to half-lives of 2.3 yrs and 84 days at pH values of 7 and 8, respectively(1). Isobornyl acetate (izobornil asetat, isobornyl acetate) does not contain chromophores that absorb at wavelengths >290 nm(2) and, therefore, is not expected to be susceptible to direct photolysis by sunlight(SRC). An estimated BCF of 320 was calculated in fish for Isobornyl acetate (izobornil asetat, isobornyl acetate)(SRC), using a log Kow of 4.30(1) and a regression-derived equation(2). According to a classification scheme(3), this BCF suggests the potential for bioconcentration in aquatic organisms is high(SRC). Using a structure estimation method based on molecular connectivity indices(1), the Koc of Isobornyl acetate (izobornil asetat, isobornyl acetate) can be estimated to be 420(SRC). According to a classification scheme(2), this estimated Koc value suggests that Isobornyl acetate (izobornil asetat, isobornyl acetate) is expected to moderate mobility in soil(SRC). Isobornyl acetate (izobornil asetat, isobornyl acetate) readily hydrolyzes (within hours) to isobornyl alcohol during the first step of its biochemical pathway. The alcohol will become conjugated with glucoronic acid and be excreted in the urine (expected within hours to days). IDENTIFICATION: Isobornyl acetate (izobornil asetat, isobornyl acetate) is a colorless to straw-colored liquid. It has an odor like pine needles. It is not very soluble in water. Isobornyl acetate (izobornil asetat, isobornyl acetate) is a natural component in many plants. USE: Isobornyl acetate (izobornil asetat, isobornyl acetate) is an important commercial chemical. It is used in perfuming soaps, air fresheners and in making camphor. It is also used as a flavoring ingredient. EXPOSURE: Workers that use Isobornyl acetate (izobornil asetat, isobornyl acetate) may breathe in vapors or have direct skin contact. The general population may be exposed by vapors, dermal contact and consumption of food flavored with Isobornyl acetate (izobornil asetat, isobornyl acetate). If Isobornyl acetate (izobornil asetat, isobornyl acetate) is released to the environment, it will be broken down in air. It is not expected to be broken down by sunlight. It will move into air from moist soil and water surfaces. It is expected to move through soil. It will be broken down by microorganisms, and is expected to build up in fish. RISK: Allergic skin reactions were not observed in volunteers following direct skin exposure. Other data on the potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to produce toxic effects in humans were not available. Isobornyl acetate (izobornil asetat, isobornyl acetate) is a mild skin irritant in laboratory animals. Kidney and liver damage and changes in kidney function were reported in laboratory animals following repeated exposure to moderate-to-high oral doses of Isobornyl acetate (izobornil asetat, isobornyl acetate) over time. No effects were reported at low doses. No evidence of infertility, abortion, or birth defects was reported in laboratory animals exposed to high oral doses of Isobornyl acetate (izobornil asetat, isobornyl acetate) before and during pregancy. Data on the potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to cause cancer in laboratory animals were not available. The potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 14th Report on Carcinogens. For Isobornyl acetate (izobornil asetat, isobornyl acetate) (USEPA/OPP Pesticide Code: 128875) there are 0 labels match. /SRP: Not registered for current use in the USA, but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. Isobornyl acetate (izobornil asetat, isobornyl acetate) is used in large amounts for perfuming soap, bath products, and air fresheners. However, the major use of Isobornyl acetate (izobornil asetat, isobornyl acetate) is as an intermediate in the production of camphor. The Henry's Law constant for Isobornyl acetate (izobornil asetat, isobornyl acetate) is estimated as 9.5X10-5 atm-cu m/mole(SRC) developed using a fragment constant estimation method(1). This Henry's Law constant indicates that Isobornyl acetate (izobornil asetat, isobornyl acetate) is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 17 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 9.5 days(SRC). Isobornyl acetate (izobornil asetat, isobornyl acetate)'s Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC).Isobornyl acetate (izobornil asetat, isobornyl acetate) has an estimated vapor pressure of 0.11 mm Hg(SRC), determined from a fragment constant method(13) and exists as a liquid under environmental conditions: therefore, Isobornyl acetate (izobornil asetat, isobornyl acetate) may volatilize from dry soil(SRC). Isobornyl acetate (izobornil asetat, isobornyl acetate) dissipated within one week when added along with 21 other fragrance materials to a Georgetown, DE anaerobically digested municipal sludge and applied to four soils (sandy agricultural loam, silty midwestern agrigultural loam, high organic carbon soil, and a highly weathered oxide-rich soil)(3). Isobornyl acetate (izobornil asetat, isobornyl acetate) was reported at an average concentration of 5,130 ng/L in municipal wastewater influent and an average concentration of 24 ng/L in treated effluent, following a 3-day period in September 1997 at an activated sludge treatment plant in Loveland, OH. Influent and effluent average concentrations of 2,830 and 58 ng/L, respectively, when subjected to trickling filter wastewater treatment(1). Isobornyl acetate (izobornil asetat, isobornyl acetate) was present in frankfurters in both 30% and 5% fat content samples analyzed(1). It was tested for but not detected in headspace volatiles from frankfurters(2). Isobornyl acetate (izobornil asetat, isobornyl acetate) was detected not qunatified in emissions from pine-scented plug-in air fresheners(1). Occupational exposure to Isobornyl acetate (izobornil asetat, isobornyl acetate) may occur through inhalation and dermal contact with this compound at workplaces where Isobornyl acetate (izobornil asetat, isobornyl acetate) is produced or used. Monitoring data indicate that the general population may be exposed to Isobornyl acetate (izobornil asetat, isobornyl acetate) via inhalation of ambient air, ingestion of food, and dermal contact with consumer products containing Isobornyl acetate (izobornil asetat, isobornyl acetate). Isobornyl acetate (izobornil asetat, isobornyl acetate) is conifer herbal camphoraceous coniferous earthy pineneedle pine balsamic camphor aromatherapy lilac mens fougere needle woody lavender spruce citrus nutmeg ginger meat fruit-flavour. Isobornyl acetate (izobornil asetat, isobornyl acetate) (an isomer of bornyl acetate) is a component of many essential oils, which was observed to be inhibitory to microorganisms. It was also shown to have sedative effect on mice after inhalation. Isobornyl acetate (izobornil asetat, isobornyl acetate) is mainly used in cosmetics as a flavor and fragrance agent. Isobornyl acetate (izobornil asetat, isobornyl acetate) (IBCH, Sandenol) is an organic compound used primarily as a fragrance because of its aroma which is similar to sandalwood oil. Its chemical structure is closely related to that of both α-Santalol and β-Santalol,[3] which are the primary constituents of sandalwood oil. Sandalwood trees are endangered due to overharvesting,[4] leading to a high cost for the natural oil. IBCH is therefore produced as an economical alternative to the natural product. Applications of Isobornyl acetate (izobornil asetat, isobornyl acetate) Isobornyl acetate (izobornil asetat, isobornyl acetate) is one of the most important chemicals used in the perfumery industry. It is used in toiletries and soaps as a flavoring agent and antiseptics. One of main applications is as an intermediate to produce camphor. Solubility of Isobornyl acetate (izobornil asetat, isobornyl acetate) Not miscible or difficult to mix with water. Isobornyl acetate (izobornil asetat, isobornyl acetate) is a kind of acetate ester. It can be manufactured through the esterification between acetate and camphene. It is a kind of flavoring agent with fragrance. It can be used as the intermediate needed for producing medical synthetic camphor.
ISOBORNYL ACETATE ( ACETATE D'ISOBORNYLE )
1-Hydroxymethylpropane; Isopropylcarbinol; 2-Methyl-1-Propanol; Isobutyl alcohol; Isopropylcarbinol; Fermentation butyl alcohol; 1-Hydroxymethylpropane; 2-Methylpropanol; 2-Methylpropan-1-ol; 2-Methylpropanol-1; 2-Methylpropyl alcohol; Butanol-iso; Alcool isobutylique; Isobutylalkohol; cas no:78-83-1
ISOBUTANOL
ISOBUTYL PALMITATE, N° CAS : 110-34-9, Nom INCI : ISOBUTYL PALMITATE, Nom chimique : Isobutyl palmitate, N° EINECS/ELINCS : 203-758-2. Ses fonctions (INCI). Emollient : Adoucit et assouplit la peau.Agent d'entretien de la peau : Maintient la peau en bon état
ISOBUTYL PALMITATE
ISOBUTYL SALICYLATE, N° CAS : 87-19-4, Nom INCI : ISOBUTYL SALICYLATE Nom chimique : 2-Methylpropyl 2-Hydroxybenzoate N° EINECS/ELINCS : 201-729-9 Ses fonctions (INCI) Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
ISOBUTYL SALICYLATE
ISOBUTYL STEARATE, N° CAS : 646-13-9, Nom INCI : ISOBUTYL STEARATE, Nom chimique : Isobutyl stearate, N° EINECS/ELINCS : 211-466-1. Ses fonctions (INCI) : Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état
Isobutyl stearate
ISOBUTYLPARABEN, N° CAS : 4247-02-3, Ses fonctions (INCI) Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes
ISOBUTYLPARABEN
ISOCETYL ALCOHOL, N° CAS : 36311-34-9. Nom INCI : ISOCETYL ALCOHOL, Nom chimique : Isohexadecanol. N° EINECS/ELINCS : 252-964-9. Emollient : Adoucit et assouplit la peau.Agent d'entretien de la peau : Maintient la peau en bon état. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
ISOCETYL ALCOHOL
ISOCETYL BEHENATE, N° CAS : 94247-28-6. Nom INCI : ISOCETYL BEHENATE. Nom chimique : Isohexadecyl docosanoate. N° EINECS/ELINCS : 304-205-9. Ses fonctions (INCI). Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état
ISOCETYL BEHENATE
ISOCETYL MYRISTATE, N° CAS : 83708-66-1, Nom INCI : ISOCETYL MYRISTATE, Nom chimique : Tetradecanoic acid, isohexadecy ester.Ses fonctions (INCI) : Emollient : Adoucit et assouplit la peau. Agent d'entretien de la peau : Maintient la peau en bon état
ISOCETYL MYRISTATE
ISODECYL ISONONANOATE, N° CAS : 59231-35-5 / 41395-89-5, Nom INCI : ISODECYL ISONONANOATE, Nom chimique : Isodecyl 3,5,5-trimethylhexanoate, N° EINECS/ELINCS : 261-674-1, Ses fonctions (INCI).Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Emollient : Adoucit et assouplit la peau.Agent d'entretien de la peau : Maintient la peau en bon état
ISOCETYL PALMITATE
ISOCETYL PALMITATE (İzosetil Palmitat) IUPAC Name 14-methylpentadecyl hexadecanoate ISOCETYL PALMITATE (İzosetil Palmitat) InChI InChI=1S/C32H64O2/c1-4-5-6-7-8-9-10-11-14-17-20-23-26-29-32(33)34-30-27-24-21-18-15-12-13-16-19-22-25-28-31(2)3/h31H,4-30H2,1-3H3 ISOCETYL PALMITATE (İzosetil Palmitat) InChI Key OUZOBPPZPCBJAR-UHFFFAOYSA-N ISOCETYL PALMITATE (İzosetil Palmitat) Canonical SMILES CCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC(C)C ISOCETYL PALMITATE (İzosetil Palmitat) Molecular Formula C32H64O2 ISOCETYL PALMITATE (İzosetil Palmitat) CAS 127770-27-8 ISOCETYL PALMITATE (İzosetil Palmitat) UNII 355356620Z ISOCETYL PALMITATE (İzosetil Palmitat) DSSTox Substance ID DTXSID2074584 ISOCETYL PALMITATE (İzosetil Palmitat) Related Compounds Similar Compounds 5,069 Records ISOCETYL PALMITATE (İzosetil Palmitat) Related Substances Same 18 Records ISOCETYL PALMITATE (İzosetil Palmitat) Use Classification Cosmetics -> Emollient; Skin conditioning ISOCETYL PALMITATE (İzosetil Palmitat) Molecular Weight 480.8 g/mol ISOCETYL PALMITATE (İzosetil Palmitat) XLogP3-AA 14.9 ISOCETYL PALMITATE (İzosetil Palmitat) Hydrogen Bond Donor Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Hydrogen Bond Acceptor Count 2 ISOCETYL PALMITATE (İzosetil Palmitat) Rotatable Bond Count 29 ISOCETYL PALMITATE (İzosetil Palmitat) Exact Mass 480.490631 g/mol ISOCETYL PALMITATE (İzosetil Palmitat) Monoisotopic Mass 480.490631 g/mol ISOCETYL PALMITATE (İzosetil Palmitat) Topological Polar Surface Area 26.3 Ų ISOCETYL PALMITATE (İzosetil Palmitat) Heavy Atom Count 34 ISOCETYL PALMITATE (İzosetil Palmitat) Formal Charge 0 ISOCETYL PALMITATE (İzosetil Palmitat) Complexity 391 ISOCETYL PALMITATE (İzosetil Palmitat) Isotope Atom Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Defined Atom Stereocenter Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Undefined Atom Stereocenter Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Defined Bond Stereocenter Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Undefined Bond Stereocenter Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Covalently-Bonded Unit Count 1 ISOCETYL PALMITATE (İzosetil Palmitat) Compound Is Canonicalized Yes ISOCETYL PALMITATE Properties Palmitic acid, or ISOCETYL PALMITATE (İzosetil Palmitat) in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms.Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and other dairy products. Palmitates are the salts and esters of ISOCETYL PALMITATE (İzosetil Palmitat). The palmitate anion is the observed form of ISOCETYL PALMITATE (İzosetil Palmitat) at physiologic pH (7.4).Aluminium salts of ISOCETYL PALMITATE (İzosetil Palmitat) and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and ISOCETYL PALMITATE (İzosetil Palmitat).Palmitic acid was discovered by Edmond Frémy in 1840, in saponified palm oil.This remains the primary industrial route for its production, with the triglycerides (fats) in palm oil being hydrolysed by high temperature water (above 200 °C or 390 °F), and the resulting mixture fractionally distilled to give the pure product.Palmitic acid is naturally produced by a wide range of other plants and organisms, typically at low levels. It is naturally present in butter, cheese, milk, and meat, as well as cocoa butter, soybean oil, and sunflower oil. Karukas contain 44.90% ISOCETYL PALMITATE (İzosetil Palmitat).The cetyl ester of ISOCETYL PALMITATE (İzosetil Palmitat) (cetyl palmitate) occurs in spermaceti.Excess carbohydrates in the body are converted to ISOCETYL PALMITATE (İzosetil Palmitat). Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, ISOCETYL PALMITATE (İzosetil Palmitat) is a major body component of animals. In humans, one analysis found it to make up 21–30% (molar) of human depot fat, and it is a major, but highly variable, lipid component of human breast milk. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC), which is responsible for converting acetyl-CoA to malonyl-CoA, which in turn is used to add to the growing acyl chain, thus preventing further palmitate generation.In biology, some proteins are modified by the addition of a palmitoyl group in a process known as palmitoylation. Palmitoylation is important for membrane localisation of many proteins.Palmitic acid is used to produce soaps, cosmetics, and industrial mold release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate.Because it is inexpensive and adds texture and "mouth feel" to processed foods (convenience food), ISOCETYL PALMITATE (İzosetil Palmitat) and its sodium salt find wide use in foodstuffs. Sodium palmitate is permitted as a natural additive in organic products.The aluminium salt is used as a thickening agent of napalm used in military actions.Hydrogenation of ISOCETYL PALMITATE (İzosetil Palmitat) yields cetyl alcohol, which is used to produce detergents and cosmetics.Recently, a long-acting antipsychotic medication, paliperidone palmitate (marketed as INVEGA Sustenna), used in the treatment of schizophrenia, has been synthesized using the oily palmitate ester as a long-acting release carrier medium when injected intramuscularly. The underlying method of drug delivery is similar to that used with decanoic acid to deliver long-acting depot medication, in particular, neuroleptics such as haloperidol decanoate.According to the World Health Organization, evidence is "convincing" that consumption of ISOCETYL PALMITATE (İzosetil Palmitat) increases the risk of developing cardiovascular disease,based on studies indicating that it may increase LDL levels in the blood. Retinyl palmitate is a source of vitamin A added to low-fat milk to replace the vitamin content lost through the removal of milk fat. Palmitate is attached to the alcohol form of vitamin A, retinol, to make vitamin A stable in milk.Treatment of commercially available 2-(decyl)dodecanoic acid or 2-(tetradecyl)ISOCETYL PALMITATE (İzosetil Palmitat) (37) in methanol in the presence of concd sulfuric acid gave the methyl ester 38 in a quantitative yield. In the essentially same way, 3-(nonyl)dodecanoic acid or 3-(tridecyl)ISOCETYL PALMITATE (İzosetil Palmitat) (40) gave the corresponding methyl esters 41 in almost quantitative yields. Reduction of the methyl esters with LiAlH4 in dry ether gave the corresponding alcohols 39 and 42 in good yields, respectively (Scheme 8).11The homologous series with n = 5 and m = 7 includes cis-9,10-methylene-hexadecanoic acid, and the homologous series with n = 5 and m = 9 includes lactobacillic acid (cis-11,12-methylene-octadecanoic acid). The homologous series with n = 7 and m = 6 includes dihydromalvalic acid (systematic name: 2-octyl-cyclopropaneheptanoic acid), and the homologous series with n = 7 and m = 7 includes dihydrosterculic acid (systematic name: cis-9,10-methylene-octadecanoic acid), see Fig. 6.Experimental Hf data (Table A3) in the range of n-heptanoic acid (nC= 7) and ISOCETYL PALMITATE (İzosetil Palmitat) (nC= 16) were used as the training set for deriving a QPPR of the form of Eq. 3 for the n-alkanoic acid series. The uncertainty level for the data ranges between <0.2% to <3%. The resultant parameter values obtained: B0= (3.461 ± 0.076) × 107 and B1= 1.005525 ± 0.026 with a correlation coefficient R2= 0.998967 and a randomly distributed residual plot (Fig. A3). As in the case of the n-mercaptans, the value of B1 is essentially 1.Essential oils are principal components of the leaves of fenugreek with main compounds as (2E)-hexenal (26.61%), ISOCETYL PALMITATE (İzosetil Palmitat) (10.14%) and (E)-β-ionone (7.99%) among others (Riasat et al., 2017). These fragrant molecules are however not the major constituent of the seeds and are not herein addressed as the pharmacologically relevant constituents. In one particular analysis study by Shahinuzzaman et al. (2015), the essential oil constituents of fenugreek seeds were shown to contain fatty acids as major components: decane, 5,6-bis(2,2-dimethylpropylidene)-, (E,Z)- (19.58%), ISOCETYL PALMITATE (İzosetil Palmitat), methyl ester (18.81%) and dihydro methyl jasmonate (10.99%) (Table 17.1). Hence fatty acids and derivatives are the major essential oil components of fenugreek seeds.The content of essential oils of Centaurea species are characterized by the presence of sesquiterpenes skeleton (caryophyllene, eudesmol and germacrene); hydracarbons (tricosane, pentacosane and heptacosane); fatty acids (ISOCETYL PALMITATE (İzosetil Palmitat), tetradecanoic acid, and dodecanoic acid) and monoterpenes (aspinene, terpinene and carvacrol).Common names of fatty acids are more often used than the IUPAC names (Table 31.1). The most common saturated fatty acids, palmitic and stearic acids, contain 16 and 18 carbon atoms, respectively. Their IUPAC names are ISOCETYL PALMITATE (İzosetil Palmitat) and octadecanoic acid, respectively.The aromatics and their derivatives such as benzene, methylbenzene, and phenol, fatty acids such as a ISOCETYL PALMITATE (İzosetil Palmitat), nitrogen-containing compounds such as amines and amides, and other group alcohols, aldehydes, and ketones were oxygen-containing compounds.DL in ethanol-water cosolvent (EWCS) were more dispersive, and their relative content were lower than 10%, except for ISOCETYL PALMITATE (İzosetil Palmitat) ethyl ester with its relative content of 15.06%. Typically, the content of ISOCETYL PALMITATE (İzosetil Palmitat) produced in HTL reached 17.27% but decreased to 9.79% in EWCS and 3.21% in pure ethanol, while the ISOCETYL PALMITATE (İzosetil Palmitat) ethyl ester content increased from 0% in HTL to 15.06% in EWCS, and then up to 38.4% in pure ethanol. Furthermore, the other ethyl esters such as 5,8,11,14-eicosatetraenoic acid, ethyl ester, (all-Z)- and ethyl linoleate were also higher in bio-oil from EWCS and pure ethanol. This indicated that the addition of ethanol into liquefaction system could serve as a substrate, reacting with acidic components like ISOCETYL PALMITATE (İzosetil Palmitat) and obtaining corresponding esters like ISOCETYL PALMITATE (İzosetil Palmitat) ethyl ester, which is known as etherification. Biswas et al. observed from GS-MS of Sargassum tenerrimum algae-derived bio-oil using water as a solvent for HTL at 280°C (STW280) were 3-pyridiol, p-hydroxybiphenyl, ISOCETYL PALMITATE (İzosetil Palmitat), bis(2-ethylhexyl) phthalate, stigmastan-3,5-diene, and hexadecanamide. For C2H5OH as the solvent (ST-E280) the main compounds were ISOCETYL PALMITATE (İzosetil Palmitat)-ethyl ester, ethyl oleate, tetradecanoic acid-ethyl ester, and isosorbide. Hexadecanoic acid-methyl ester, methyl tetradecanoate, 8-octadecenoic acid methyl ester, and methyl hexadec-9-enoate were the compounds found in major concentrations in bio-oil obtained.This compound, composed of cyclic phosphate and cyclopropane-containing ISOCETYL PALMITATE (İzosetil Palmitat), inhibited more than 80% of the affinity-purified calf thymus DNA polymerase α activity at a concentration of 10 μg/mL.Preparation of one diastereomer of cyclopropane-containing ISOCETYL PALMITATE (İzosetil Palmitat) (81) was summarized in Scheme 7, starting with enzymatic hydrolysis of meso diester (74).Palmitic Acid Palmitic acid (also known as ISOCETYL PALMITATE (İzosetil Palmitat)) is a fatty acid that is found naturally in animals and plants and also can be created in laboratory settings. Palmitic acid is widely used in a variety of applications, including personal care products and cosmetics.Palmitic acid (ISOCETYL PALMITATE (İzosetil Palmitat)) has been for long time negatively depicted for its putative detrimental health effects, shadowing its multiple crucial physiological activities. ISOCETYL PALMITATE (İzosetil Palmitat) is the most common saturated fatty acid accounting for 20–30% of total fatty acids in the human body and can be provided in the diet or synthesized endogenously via de novo lipogenesis (DNL). ISOCETYL PALMITATE (İzosetil Palmitat) tissue content seems to be controlled around a well-defined concentration, and changes in its intake do not influence significantly its tissue concentration because the exogenous source is counterbalanced by ISOCETYL PALMITATE (İzosetil Palmitat) endogenous biosynthesis. Particular physiopathological conditions and nutritional factors may strongly induce DNL, resulting in increased tissue content of ISOCETYL PALMITATE (İzosetil Palmitat) and disrupted homeostatic control of its tissue concentration. The tight homeostatic control of ISOCETYL PALMITATE (İzosetil Palmitat) tissue concentration is likely related to its fundamental physiological role to guarantee membrane physical properties but also to consent protein palmitoylation, palmitoylethanolamide (PEA) biosynthesis, and in the lung an efficient surfactant activity. In order to maintain membrane phospholipids (PL) balance may be crucial an optimal intake of ISOCETYL PALMITATE (İzosetil Palmitat) in a certain ratio with unsaturated fatty acids, especially PUFAs of both n-6 and n-3 families. However, in presence of other factors such as positive energy balance, excessive intake of carbohydrates (in particular mono and disaccharides), and a sedentary lifestyle, the mechanisms to maintain a steady state of ISOCETYL PALMITATE (İzosetil Palmitat) concentration may be disrupted leading to an over accumulation of tissue ISOCETYL PALMITATE (İzosetil Palmitat) resulting in dyslipidemia, hyperglycemia, increased ectopic fat accumulation and increased inflammatory tone via toll-like receptor 4. It is therefore likely that the controversial data on the association of dietary ISOCETYL PALMITATE (İzosetil Palmitat) with detrimental health effects, may be related to an excessive imbalance of dietary ISOCETYL PALMITATE (İzosetil Palmitat)/PUFA ratio which, in certain physiopathological conditions, and in presence of an enhanced DNL, may further accelerate these deleterious effects.Palmitic acid (16:0, ISOCETYL PALMITATE (İzosetil Palmitat)) is the most common saturated fatty acid found in the human body and can be provided in the diet or synthesized endogenously from other fatty acids, carbohydrates and amino acids.n average, a 70-kg man is made up of 3.5 Kg of ISOCETYL PALMITATE (İzosetil Palmitat). As the name suggests, ISOCETYL PALMITATE (İzosetil Palmitat) is a major component of palm oil (44% of total fats), but significant amounts of ISOCETYL PALMITATE (İzosetil Palmitat) can also be found in meat and dairy products (50–60% of total fats), as well as cocoa butter (26%) and olive oil (8–20%). Furthermore, ISOCETYL PALMITATE (İzosetil Palmitat) is present in breast milk with 20–30% of total fats.The tight homeostatic control of ISOCETYL PALMITATE (İzosetil Palmitat) tissue concentration is likely related to its fundamental physiological role in several biological functions. Particularly in infants ISOCETYL PALMITATE (İzosetil Palmitat) seems to play a crucial role as recently thoroughly revised by Innis (Innis, 2016). The disruption of ISOCETYL PALMITATE (İzosetil Palmitat) homeostatic balance, implicated in different physiopathological conditions such as atherosclerosis, neurodegenerative diseases and cancer, is often related to an uncontrolled ISOCETYL PALMITATE (İzosetil Palmitat) endogenous biosynthesis, irrespective of its dietary contribution.FA synthesis starts with citrate conversion to acetyl-CoA and then malonyl-CoA, which is then elongated to form palmitate and other FA. Key enzymes in this process are acetyl-CoA carboxylase (ACC), which catalyzes the DNL limiting step reaction, and the FA synthase (FAS). The main sources of citrate for DNL are glucose and glutamine-derived α-ketoglutarate (α-KG), especially under hypoxia or disruption of the mitochondrial oxidative machinery.Palmitic acid, or ISOCETYL PALMITATE (İzosetil Palmitat), is one of the most common saturated fatty acids found in animals, plants, and microorganisms.Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents.Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent.Palmitic acid, or ISOCETYL PALMITATE (İzosetil Palmitat) in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms.[9][10] Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and other dairy products. Palmitates are the salts and esters of ISOCETYL PALMITATE (İzosetil Palmitat). The palmitate anion is the observed form of ISOCETYL PALMITATE (İzosetil Palmitat) at physiologic pH (7.4).Aluminium salts of ISOCETYL PALMITATE (İzosetil Palmitat) and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and ISOCETYL PALMITATE (İzosetil Palmitat).
ISODECYL ISONONANOATE
ISODECYL PALMITATE,N° CAS : 59231-33-3 / 14779-95-4, Nom INCI : ISODECYL PALMITATE. Nom chimique : Isodecyl palmitate. N° EINECS/ELINCS : 261-672-0. Ses fonctions (INCI) : Emollient : Adoucit et assouplit la peau. Agent d'entretien de la peau : Maintient la peau en bon état
ISODECYL OLEATE
ISODECYL OLEATE Isodecyl Oleate What Is Isodecyl Oleate? Decyl Oleate and Isodecyl Oleate are made from decyl alcohol and oleic acid. Decyl Oleate is made from straight chained decyl alcohol, while Isodecyl Oleate is made from branched chain decyl alcohol. Decyl Oleate and Isodecyl Oleate are used in a variety of cosmetics and personal care products, including makeup, and skin and hair care products. Why is Isodecyl Oleate used in cosmetics and personal care products? Decyl Oleate and Isodecyl Oleate act as lubricants on the skin surface, which gives the skin a soft and smooth appearance. These ingredients also form a thin film on the skin that is neither greasy nor tacky. The unique properties of Decyl Oleate and Isodecyl Oleate facilitate the application and removal of makeup. Scientific Facts: Decyl Oleate and Isodecyl Oleate are made from a naturally occurring fatty acid, oleic acid. Decyl Oleate and Isodecyl Oleate have good lubrication properties and possess low viscosity. Molecular Weight 422.7 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3-AA 11.8 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count 24 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass 422.412381 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass 422.412381 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area 26.3 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count 30 Computed by PubChem Formal Charge 0 Computed by PubChem Complexity 373 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count 0 Computed by PubChem Defined Atom Stereocenter Count 0 Computed by PubChem Undefined Atom Stereocenter Count 0 Computed by PubChem Defined Bond Stereocenter Count 1 Computed by PubChem Undefined Bond Stereocenter Count 0 Computed by PubChem Covalently-Bonded Unit Count 1 Computed by PubChem Compound Is Canonicalized Yes CAS Number 3687-46-5 EINECS/ELINCS No: 222-981-6 COSING REF No: 75506 Chem/IUPAC Name: Decyl oleate What Is Decyl Oleate ? Decyl Oleate and Isodecyl Oleate are made from decyl alcohol and oleic acid. Decyl Oleate is made from straight chained decyl alcohol, while Isodecyl Oleate is made from branched chain decyl alcohol. Decyl Oleate and Isodecyl Oleate are used in a variety of cosmetics and personal care products, including makeup, and skin and hair care products. Why is Decyl Oleate used in cosmetics and personal care products? Decyl Oleate and Isodecyl Oleate act as lubricants on the skin surface, which gives the skin a soft and smooth appearance. These ingredients also form a thin film on the skin that is neither greasy nor tacky. The unique properties of Decyl Oleate and Isodecyl Oleate facilitate the application and removal of makeup.Decyl oleate * Made from the naturally occurring fatty acid, oleic acid. Primarily used as a lubricant.Emollient, Skin conditioning It creates a thin, non-greasy film that gives the skin a smooth and soft appearance. It's frequently used used in products geared at removing makeup. You can find this ingredient in cosmetics such as facial moisturizer/lotion, anti-aging treatment, sunscreen, eye shadow, hand & foot cream, conditioner, aftershave and eye cream.Functions: Primarily used as a lubricant. It creates a thin, non-greasy film that gives the skin a smooth and soft appearance. It's frequently used used in products geared at removing makeup. You can find this ingredient in cosmetics such as facial moisturizer/lotion, anti-aging treatment, sunscreen, eye shadow, hand & foot cream, conditioner, aftershave and eye cream. Safety Measures/Side Effects: The Cosmetic Ingredient Review (CIR) Expert Panel has assessed this ingredient as non-toxic and non-irritating, thus determining it as safe to use in cosmetic products. It has been shown to be comedogenic (clog the pores), and should be avoided by those with oily and acne prone skin types.Decyl Oleate and lsodecyl Oleate are esters of oleic acid. Decyl Oleate is used in cosmetic products at concentrations ranging from I 0.1 to > 50%. Isodecyl Oleate is used at concentrations of > 0.1-25%. Animal studies have shown both Decyl Oleate and lsodecyl Oleate to possess low acute oral toxicities in rats with LD50s of > 40 ml/kg, Single application dermal and eye studies with rabbits have shown these materials at 100% concentrations produce little or no irritation. Daily applications of 159b or 100% concentrations for 60 days to the skin of rabbits produced a moderate degree of irritation with both Decyl and lsodecyl Oleate. Neither of the ingredients was found to be a sensitizer when tested in guinea pigs at concentrations of 15%. Repeated insult patch tests containing 1-5'1'0 Decyl Oleate showed no signs of sensitization. Testing with formulations containing 5.5% Decyl Oleate produced a low number of reactions in 402 human subjects in the SchwartzPeck Prophetic Patch Test and 204 subjects with undiluted lsodecyl Oleate on nine subjects showed a total irritation score of 1 .O out of a maximum of 756. It is concluded that, because of both the chemical similarity of these compounds and the similarity of the available animal and human data, Decyl and lsodecyl Oleates warrant a conclusion of safe in the concentrations of present practices and use in cosmetics. ecyl Oleate and lsodecyl Oleate are esters of oleic acid. Formed by ester- D ification of oleic acid with decyl or isodecyl alcohol, they have the following structural formulas: Decyl Oleate- lsodecyl Oleate- CH3 (CH CH=CH(CH2) 7COOCH2 (CH2) 6CH (CH3) 27 Methyl Oleate is a compound chemically related to Decyl Oleate and lsodecyl Oleate. Its structural formula is as follows: CH3 (CH2) 7CH=CH (CH2) 7COOCH 3 The safety of methyl oleate is not under review in this report. Information and data pertaining to this compound are included to permit a more complete appraisal of the safety of Decyl Oleate and lsodecyl Oleate.Some of the chemical and physical properties of these esters are given in Reactivity Unsaturated fatty acids and their esters readily undergo aut~xidation.'~) Methyl oleate can serve as a model for autoxidation reactions which all the oleic acid esters exhibited. This compound undergoes autoxidation to give primarily trans-hydro peroxide^,'^) which are highly unstable and readily decompose to keto and hydroxy keto acids.(6) Some hydroperoxides have been found to possess carcinogenic potential.") Methyl oleate undergoes photochemical decomposition in direct sunlight and in the presence of oxygen to form the ozonide of methyl oleic acid.(*) The most important secondary products of autoxidation include alpha, beta-u nsatu rated carbonyl com pou nds.(5) Hemati n com pou nds, (') metals, (lo) and chlorinated hydrocarbon i nsecticides' ") accelerate the autoxidation reaction by shortening the induction period. Analytical Methods Methyl oleate can be generated in purities of 98% or better by repeated distillation with urea at a low temperature.('2) Analysis of this and related compounds is done by gas-liquid or thin-layer chromatography. The position of the double bond can be determined by von Rudolph's oxidation procedure. Infrared spectroscopy can be used to delineate cis-trans i~omers.('~-~~) Although gas-liquid chromatography remains the preferred routine analytical method for fatty acid ester mixtures, utilization of high performance liquid chromatography (HPLC) is increasing; for the latter has the advantage of identifying polymerized and oxidized esters which the former does not dete. PURPOSE AND FREQUENCY OF USE IN COSMETICS Decyl and lsodecyl Oleates have been widely used in cosmetic products. When applied to the skin alone, they deposit a thin oily film that is neither greasy nor tacky. They have good lubrication properties and possess low viscosity.(") Both materials are used as dispersants and lubricants in cosmetic formulations, and these are particularly important in makeup and makeup removers, in which they are used as wetting agents for iron oxide pigments; particles of such pigment are dispersed and easily suspended. The use of these ingredients facilities the application and removal of a suspension. By virtue of its branched chain structure, lsodecyl Oleate possesses several distinct properties. It has the ability to lower the freezing point of the emulsion phase of products, as well as to control product viscosity. In dispersible bath oils, it forms a white emulsion, giving the tub water a rich and milky appearance. It also has the ability to suspend aluminum chlorohydrate, which makes it valuable for dry antiperspirant formulations. Lipstick formulations have employed lsodecyl Oleate because its coupling properties increase the hardness and strength of the product without reducing its flow characteristics. Table 2 indicates categories of product use and concentrations of use for Decyl and lsodecyl Oleate.('*) The cosmetic product formulation computer printout which is made available by the Food and Drug Administration (FDA) is compiled through voluntary filing of such data in accordance with Title 21 Part 720.4 of the Code of Federal Regulations (1979). Ingredients are listed in prescribed concentration ranges under specific product type categories. Since certain cosmetic ingredients are supplied by the manufacturer at less that 100% concentration, the value reported by the cosmetic formulator may not necessarily reflect the true, effective concentration found in the finished product; the effective concentration in such a case would be a fraction of that reported to the FDA. The fact that data are only submitted within the framework of preset concentration ranges also provides the opportunity for overestimation of the actual concentration of an ingredient in a particular product. An entry at the lowest end of a concentration range is considered the same as one entered at the highest end of that range, thus introducing the possibility of a two- to ten-fold error in the assumed ingredient concentration. The compounds are employed in a variety of cosmetics, including makeup preparations, skin care preparations, and eye-shadow. Concentrations of use range from 50.1 to > for Decyl Oleate and > 0.1-25% for I sod ec y I 0 leate. Products containing these two materials are applied with varying frequency to all areas of the skin. In such formulations as blushers and moisturizing creams, exposure may occur several times a day, while in other cases there may be daily (deodorants) or less frequent (rinses, hair conditioners) applications. This occasional or daily use may extend over a period of years. Animal Toxicology Decyl Oleate: This ingredient was administered to Wistar rats by intragastric intubation at dose levels of 2.5, 5.0, 10.0, 20.0, and 40.0 mllkg COSMETIC INGREDIENT REVIEW two female rats per dose The animals were fasted for 24 hours prior to dosing. All animals were observed daily for 14 days following administration and no deaths were recorded. The acute LD50 of undiluted Decyl Oleate was greater than 40.0 mllkg of body weight. Wistar-derived rats (groups of five male, five female) were dosed by gavage with either 5.0 glkg of undiluted Decyl Oleate or 5.0 glkg of 20 percent Decyl Oleate, 80% mineral The rats were fasted for 18 hours prior to dosing. The animals were observed for signs of pharmacologic activity and drug toxicity at 1, 3, 6, and 24 hours post-dosing, after which daily observations were made for a total of 14 days. One death was recorded for male animals in the diluted sample group, and one female died following treatment with the undiluted sample. No treatment-related effects were noted in any of the surviving animals. Examination of tissues of nons,urvivors and survivors at gross autopsy revealed no abnormalities. lsodecyl Oleate: This ingredient was administered to Wistar rats by intragastric intubation at dose levels of 2.5, 5.0, 10.0, 20.0, and 40.0 mllkg (two female and three male rats per dose The animals were fasted for 24 hours prior to dosing. One death was recorded at the highest dose level. The acute LD50 of undiluted Isodecyl Oleate was reported to be greater than 40.0 ml/kg of body weight. Dermal irritation Decyl Oleate: Drai~e'~~) and Federal Hazardous Substances Labeling Act(22) (FHSA) methods were used to conduct primary skin irritation studies. Test samples of Decyl Oleate (undiluted, 10 percent in corn oil and 20% in mineral oil) were applied (0.5 ml) to clipped areas of intact and abraded albino rabbits skin (six animals in each group). The abrasions were longitudinal, epidermal incisions sufficiently deep to penetrate the stratum corneum, but not so deep as to disturb the dermis. Following application of the test material, the exposed area was covered with a patch and the entire experimental area was sealed with impervious sheeting. The animals were immobilized for a 24-hour period. The mean scores for 24- and 72-hour gradings were averaged to determine final irritation values. The primary irritation index (PII) for undiluted Decyl Oleate was calculated to be 0.28.L25) Itwas also determined that Decyl Oleate had primary irritation indices of 0.08 as a 10 percent solution in corn oil(22) and 0.05 as a 20% solution in mineral A modified Draize method was used to conduct primary dermal irritation studies with undiluted and 15% Decyl Oleate diluted in polyoxyethylene sorbitan stearate (3%), a perservative (2%)) and water; the material was found to be nonirritating (Table 3).("j) ISODECYL OLEATE ISODECYL OLEATE is classified as : Emollient Skin conditioning CAS Number 59231-34-4 EINECS/ELINCS No: 261-673-6 COSING REF No: 34643 Chem/IUPAC Name: Isodecyl oleate Isodecyl Oleate Definition Isodecyl Oleate is a moisturizer that can also be found in cosmetics. As a moisturizer in our products, decyl oleate helps prevent a product or surface, like leather, from drying out by helping it retain moisture. This makes it softer and more pliable. Clinical Assessment of Safety Decyl Oleate: A human repeated insult patch test was conducted on 103 subjects with a skin conditioner containing 1-5% Decyl Oleate. Patches containing approximately 0.2 ml of undiluted sample were applied on Monday, Wednesday, and Friday for three consecutive weeks. Fourteen days after the final insult patch, challenge patches containing the undiluted skin conditioner were applied, and results were graded 48 and 96 hours later. No evidence of sensitization was found; no information on irritation potential was Four formulations of a foundation containing Decyl Oleate (5.5%) were tested in the Schwartz-Peck Prophetic Patch Test and the Draize-Shelanski Repeated Insult Patch Test. "Virtually zero reactions occurred in 402 subjects in the Schwartz-Peck Test and 204 subjects in the Draize-Shelanski Test."(23) lsodecyl Oleate: A single insult (24-hour) occlusive patch test was conducted on 19 human subjects with undiluted lsodecyl Oleate. The test material did not elicit any erythematous reactions. A summary report of the study concluded that Isodecyl Oleate exhibits an acceptably low incidence of primary skin irritation under occlusive patch test According to an industry raw material evaluation, a procedure was undertaken with lsodecyl Oleate under the conditions of a Maibach-type Cumulative lrritancy Assay. When lsodecyl Oleate was applied undiluted under patch conditions to the skin of nine subjects for 21 consecutive days, it was found to have a total irritation score of 1 .O out of a maximum possible 756.(30) SUMMARY Decyl Oleate and lsodecyl Oleate are esters of oleic acid. Decyl Oleate is used in cosmetic products at concentrations ranging from 10.1 to >50°/o. lsodecyl Oleate is used at concentrations of > 0.1 -25%. Animal studies have shown Decyl Oleate and lsodecyl Oleate to possess low acute oral toxicities in rats; both have LD50s of > 40 mllkg. Single application dermal and eye studies with rabbits have shown that these materials in concentrations up to 100% produce little or no irritation. When 15% or 100°/o concentrations were applied to the skin of rabbits daily for 60 days, both Decyl Oleate and lsodecyl Oleate produced moderate degrees of irritation. Neither ingredient was found to be a sensitizer when it was tested in guinea pigs at concentrations of 15%. Repeated human insult patch tests on 103 subjects with a skin conditioner containing 1-5% Decyl Oleate showed no signs of sensitization. Industrial testing with formulations containing 5.5% Decyl Oleate produced a low number of reactions in 402 human subjects in the Schwartz-Peck Prophetic Patch Test and in 204 subjects in the Draize-Shelanski Patch Test. Repeated insult patch tests with undiluted Isodecyl Oleate on an unspecified number of human subjects showed a total irritation score of 1 .O out of a possible maximum of 756. A single insult occlusive patch test on 19 human subjects with undiluted lsodecyl Oleate produced a low level of primary skin irritation. No chronic, oral subchronic, carcinogenicity, mutagenicity, or teratogenicity animal testing data were available to the Panel. Nor were there any phototoxicity or photosensitization studies in humans.
Isodecyl palmitate
ISODECYL STEARATE, N° CAS : 31565-38-5, Nom INCI : ISODECYL STEARATE, Nom chimique : Isodecyl stearate, N° EINECS/ELINCS : 250-704-9,Ses fonctions (INCI) : Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état
Isodecyl stearate
ISOEUGENOL, N° CAS : 97-54-1 - Isoeugénol, Origine(s) : Naturelle, Synthétique, Autre langue : Isoeugenolo. Nom INCI : ISOEUGENOL, Nom chimique : Phenol, 2-methoxy-4-(1-propenyl)- ,N° EINECS/ELINCS : 202-590-7. Noms français : Iso-Eugénol ; Méthoxy-2 (propènyl-1)-4 phénol. Noms anglais : Isoeugenol; Phenol, 2-methoxy-4-(1-propenyl)-
Isoeugénol ( Iso-Eugénol)
ISONONANOIC ACID; 3,5,5-Trimethylhexansäure (German); ácido 3,5,5-trimetilhexanoico (Spanish); Acide 3,5,5-trimethylhexanoïque , cas no: 3302-10-1
ISONONANOIC ACID
3,5,5-TRIMETHYL HEXANOIC ACID; Isononanoic acid; 3,5,5-Trimethylhexansäure (German); ácido 3,5,5-trimetilhexanoico (Spanish); Acide 3,5,5-trimethylhexanoïque (French); cas no: 3302-10-1
Isononyl Alcohol
ISONONYL ISONONANOATE, N° CAS : 59219-71-5 / 42131-25-9. Nom INCI : ISONONYL ISONONANOATE. Nom chimique : 3,5,5-Trimethylhexyl 3,5,5-trimethylhexanoate, N° EINECS/ELINCS : 261-665-2 / -, Ses fonctions (INCI): Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Emollient : Adoucit et assouplit la peau. Agent d'entretien de la peau : Maintient la peau en bon état
ISONONYL ISONONANOATE
ONANOATE, N° CAS : 59219-71-5 / 42131-25-9, ISONONYL ISONONANOATE. Nom chimique : 3,5,5-Trimethylhexyl 3,5,5-trimethylhexanoate, Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Emollient : Adoucit et assouplit la peau. Agent d'entretien de la peau : Maintient la peau en bon état
ISOOCTANOL
ISOOCTYL PALMITATE, N° CAS : 1341-38-4, Nom INCI : ISOOCTYL PALMITATE; 6-methylheptyl hexadecanoate
ISOOCTYL PALMITATE
ISOOCTYL THIOGLYCOLATE, N° CAS : 25103-09-7, Nom INCI : ISOOCTYL THIOGLYCOLATE. Nom chimique : Isooctyl mercaptoacetate, N° EINECS/ELINCS : 246-613-9. Ses fonctions (INCI): Agent bouclant ou lissant (coiffant) : Modifie la structure chimique des cheveux, pour les coiffer dans le style requis
ISOOCTYL THIOGLYCOLATE
Isophorone diamine; IPDA; aminomethyl-5;chemamminaca17;aralditehy5083;Isophorondiamin cas no: 2855-13-2
ISOPHORONDIAMINE -BAXXODUR EC201
ISOPHORONE; 1,1,3-Trimethyl-3-cyclohexene-5-one; Alpha-isophorone; 3,5,5-Trimethylcyclohex-2-enone; Isoforone (Italian); 3,5,5-Trimethyl-2-Cyclohexenone; 3,5,5-Trimethylcyclohexenone; Isoforon; Isoacetophorone; 3,5,5-Trimethyl-2-cyclohexen-1-one; Izoforon (Polish); 3,5,5-Trimethyl-2-cyclohexen-1-on (German); 1,5,5-Trimethyl-1-cyclohexen-3-one; Isooctopherone; cas no: 78-59-1
ISOPHORONE
5-Amino-1,3,3-Trimethyl Cyclohexanemethanamine; 1-Amino-3-aminomethyl-3,5,5-trimethyl cyclohexane; 3-Aminomethyl-3,5,5-trimethyl cyclohexylamine; 3-Aminomethyl-3,5,5-trimethylcyclohexylamin (German); 3-Aminometil-3,5,5-trimetilciclohexilamina (Spanish); 3-Aminométhyl-3,5,5-triméthyl cyclohexylamine (French) cas no: 2855-13-2
ISOPHORONE DIAMINE
ISOPHTHALIC ACID; Benzene-1,3-dicarboxylic acid; Isophthalic acid; meta-Phthalic acid cas no: 121-91-5
ISOPHTHALIC ACID
ISOPROPYL ALCOHOL, N° CAS : 67-63-0 - Isopropanol, Autres langues : Alcohol isopropílico, Alcool isopropilico, Isopropylalkohol, Nom INCI : ISOPROPYL ALCOHOL, Nom chimique : Propan-2-ol, isopropanol, N° EINECS/ELINCS : 200-661-7, Classification : Alcool. Ses fonctions (INCI). Anti-moussant : Supprime la mousse lors de la fabrication / réduit la formation de mousse dans des produits finis liquides Solvant : Dissout d'autres substances. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. Noms français : 2-Propanol; Alcool isopropylique; Diméthylcarbinol; Isopropanol; Propan-2 ol; Propanol-2. Noms anglais : 2-Propanol; Isopropyl alcohol; Famille chimique : Alcool. Utilisation : L'alcool isopropylique est un bon solvant pour les cires, les huiles, les résines et de nombreux autres produits. Ainsi, il est surtout utilisé comme solvant : Dans les formulations de vernis, peintures, couches d'apprêt, encres, décapants et adhésifs. Dans les secteurs alimentaire et pharmaceutique, pour l'extraction et la purification de différents produits naturels : alcaloïdes, arômes, gommes, huiles, protéines, vitamines, etc.. En électronique, comme solvant de nettoyage des circuits intégrés et des semi-conducteurs. Dans plusieurs produits d'usage domestique, tels que détergent à plancher, cire à chaussures, insecticide, nettoyant pour les vitres, rafraîchisseur d'air, dégivreur de vitre d'automobile, désinfectant. Dans les cosmétiques, tels que lotions, parfums, shampoings, nettoyants pour la peau, vernis à ongle, démaquillants, déodorants, huiles pour le corps, fixatifs pour cheveux, etc. Il est aussi utilisé comme matière première pour la production d'acétone et de ses dérivés, de la glycérine, de l'isopropylamine (pesticides), et comme milieu de réaction pour la production de carboxyméthylcellulose et de nombreux ingrédients pharmaceutiques. Dans le domaine médical, l'alcool isopropylique est utilisé comme antiseptique et désinfectant, principalement sous forme de mélange de 70 % d'alcool isopropylique et de 30 % d'eau, communément appelé alcool à friction. On trouve aussi l'alcool isopropylique dans de nombreux autres produits d'usage médical : liniment, teinture d'iode, solutions pour l'anesthésie locale, comptant au-delà de 200 usages différents. On l'utilise aussi comme additif d'essence pour augmenter l'indice d'octane, comme agent dégivreur de carburateur et comme cosolvant du méthanol dans les mélanges d'essences à moteur. De plus, il est utilisé comme dénaturant de l'alcool éthylique.
ISOPHTHALIC ACID
Isophthalic acid = IPA = PIA

CAS Number: 121-91-5
EC Number: 204-506-4
Chemical formula: C8H6O4
Molar mass: 166.132 g·mol−1

Isophthalic acid is a colorless crystalline solid.
Isophthalic acid is used as an intermediate primarily for unsaturated polyester resins and alkyd and polyester coating resins; other applications include use in aramid fibers, as a component of copolyester resins and in high-temperature polymers.
Nearly pure isophthalic acid has a purity of >99.8%.
This material is called purified isophthalic acid or PIA.
Currently, there is significant global overcapacity for isophthalic acid, with sufficient spare capacity for the next five years.

Isophthalic acid (1,3-benzenecarboxylic acid) is the meta form of phthalic acid.
Isophthalic acid is a white crystalline solid subliming at 345°C.
Isophthalic acid is slightly soluble in water, alcohol and acetic acid (insoluble in benzene).
Isophthalic acid is obtained by oxidizing meta-xylene with chromic acid, or by fusing potassium meta-sulphobenzoate, or meta-brombenzoate with potassium formate.
IPA has excellent performance characteristics including exceptional hardness, corrosion and stain resistance, hydrolytic stability of coatings and gel coats, outstanding thermal stability and low resin color in coatings industry.

Isophthalic acid is a key ingredient in FRP (Fiberglass Reinforced Plastics) markets for such products as marine, automotive, and corrosion resistant pipes and tanks.
Polyesters containing isophthalic acid are also used extensively in industrial coatings applications for home appliances, automobiles, aluminum siding, and metal office furniture.
Isophthalic acid used as an intermediate for polyesters, polyurethane resins, plasticizers.

Applications of Isophthalic acid:
Isophthalic acid can be used as a reactant to prepare:
Poly(m-phenyleneisophthalamide) by polycondensation with m-phenylenediamine via thermal solid-phase polymerization reaction.

Isophthalic acid can also be used as a ligand to synthesize:
Metal coordination polymers by hydrothermal and sonochemical process.
Isophthalic acid-zirconium(IV) nanocomposite, which is used as a precursor to prepare crystalline tetragonal ZrO2 via thermal decomposition method.

Melting point: 341-343 °C (lit.)
Boiling point: 214.32°C (rough estimate)
Density: 1,54 g/cm3
refractive index: 1.5100 (estimate)
storage temp.: Sealed in dry,Room Temperature
solubility: 0.12g/l
form: Crystalline Powder
pka: 3.54(at 25℃)
color: White to off-white
Water Solubility: 0.01 g/100 mL (25 ºC)
Merck: 14,5197
BRN: 1909332
Stability: Stable. Incompatible with strong oxidizing agents, strong bases.

Isophthalic acid is an aromatic dicarboxylic acid industrially produced by the oxidation of m-xylene.
Commercially, Isophthalic acid is used primarily as a component of PET (polyethylene terephthalate) copolymer, which is used in bottle resins and, to a much lesser extent, for fibers.
Isophthalic acid reduces the crystallinity of PET, which serves to improve clarity and increase the productivity of bottle-making.
Isophthalic acid’s second major use is as a component of high-quality alkyds and polyester resins for industrial coatings and unsaturated polyesters for fiberglass-reinforced plastics applications.

Appearance: White crystalline solid
Density: 1.526 g/cm3, Solid
Solubility in water: Insoluble
Acidity (pKa): 3.46, 4.46
Magnetic susceptibility (χ): -84.64·10−6 cm3/mol

Purified Isophthalic Acid (PIA) is used primarily in unsaturated polyester resins.
Isophthalic acid improves the property balance for coating resins and enhances clarity of PET-bottle grade resins.
Isophthalic Acid is used as an intermediate primarily for unsaturated polyester resins and alkyd and polyester coating resins; other applications include use in aramid fibers, as a component of copolyester resins and in high-temperature polymers.

CHEBI:30802
ChemSpider: 8182
ECHA InfoCard: 100.004.098
PubChem CID: 8496
UNII: X35216H9FJ

Isophthalic acid, CAS number: 121-91-5, also known as PIA or PIPA, is an organic compound with the formula C6H4(CO2H)2.
PIA, Purified Isophtalic Acid, is an aromatic dicarboxylic acid, an isomer of phthalic acid and terephthalic acid.
Together with terephthalic acid, PTA, the isophthalic acid (CAS: 121-91-5) is used in the production of resins for drink bottles, PET resin.
PIA, Purified Isophthalic acid is produced starting from meta-xylene using oxygen, in the presence of a catalyst.
Main application areas for Isophthalic acid are: PET Bottle Grade Resins, Fibres, Low-Melt Fibres, Polyamide Resins, UPR - Unsaturated Polyester Resins, Powder Coating Resins, Coil Coating Resins, Polymer Modifier, Adhesives, High-performance Polymerpolybenzimidazole.

Preparation of Isophthalic acid:
Isophthalic acid is produced on the billion kilogram per year scale by oxidizing meta-xylene using oxygen.
The process employs a cobalt-manganese catalyst.
The world's largest producer of isophthalic acid is Lotte Chemical Corporation.
In the laboratory, chromic acid can be used as the oxidant.
Isophthalic acid also arises by fusing potassium meta-sulfobenzoate, or meta-bromobenzoate with potassium formate (terephthalic acid is also formed in the last case).
The barium salt, as its hexahydrate, is very soluble in water (a distinction between phthalic and terephthalic acids).
Uvitic acid, 5-methylisophthalic acid, is obtained by oxidizing mesitylene or by condensing pyroracemic acid with baryta water.

Name: ISOPHTHALIC ACID
Source of Sample: Aldrich Chemical Company, Inc., Milwaukee, Wisconsin
CAS Registry Number: 121-91-5
Compound Type: Pure
Copyright: Copyright © 1980, 1981-2021 John Wiley & Sons, Inc. All Rights Reserved.
Formula: C8H6O4
Instrument Name: PERKIN-ELMER 1710
Melting Point: 342C
Molecular Weight: 166.13
Sample Description: WHITE CRYSTALLINE POWDER
Solubility: Insoluble in= BENZENE, PETROLEUM ETHER
Soluble in: GLACIAL ACETIC ACID, ALCOHOL
SpectraBase Batch ID: EhD9M7pruGY

Isophthalic acid is an organic compound with the formula C6H4(CO2H)2.
Isophthalic acid ,colorless solid, is an isomer of phthalic acid and terephthalic acid.
The main industrial uses of purified isophthalic acid (PIA) are for the production of polyethylene terephthalate (PET) resin and for the production of unsaturated polyester resin (UPR) and other types of coating resins.
Isophthalic acid is one of three isomers of benzenedicarboxylic acid, the others being phthalic acid and terephthalic acid.
Isophthalic Acid is an organic compound with the molecular formula C8H6O4.
Isophthalic acid’s a colourless solid and Isophthalic acid’s an isomer of phthalic acid and terephthalic acid.

Applications of Isophthalic acid:
Aromatic dicarboxylic acids are used as precursors (in form of acyl chlorides) to commercially important polymers, e.g. the fire-resistant material Nomex.
Mixed with terephthalic acid, isophthalic acid is used in the production of PET resins for drink plastic bottles and food packaging.
The high-performance polymer polybenzimidazole is produced from isophthalic acid.
Also, Isophthalic acid is used as an important input to produce insulation materials.

Isophthalic acid (IPA) is a non-toxic organic compound with the formula C6H4(CO2H)2.
Isophthalic acid is an isomer of phthalic acid and terephthalic acid.
These aromatic dicarboxylic acids are used as precursors (in the form of acylchlorides) to commercially important polymers.
The high-performance polymer polybenzimidazole is produced from isophthalic acid.
Isophthalic acid is produced on the billion kilogram/year scale by oxidizing meta-xylene using oxygen.
The process employs a cobalt-manganese catalyst.

Description of Isophthalic acid:
Isophthalic acid is an organic compound with the formula C6H4(CO2H)2.
Isophthalic acid is an isomer of phthalic acid and terephthalic acid.
These aromatic dicarboxylic acids are used as precursors (in form of acyl chlorides) to commercially important polymers, e.g. the fire-resistant material Nomex.
Mixed with terephthalic acid, iso phthalic acid is used in the production of resins for drink bottles.
The high-performance polymer poly benzimidazole is produced from iso phthalic acid.

Chemical Properties of Isophthalic acid:
Isophthalic acid is a white crystalline powder or needle-like crystals and Isophthalic acid’s an isomer of phthalic acid and terephthalic acid.
Isophthalic acid is insoluble in cold water but soluble in oxygenated solvents and alcohol.
Isophthalic acid is combustible and finely dispersed particles will form explosive mixtures in air.

Isophthalic Acid (PIA) is mainly used in the production of bottle PET, also used in the production of alkyd resin, polyester resin, also used in the production of photosensitive materials, pharmaceutical intermediates and so on.
One of the largest applications for PIA is in unsaturated polyester resins for high-quality gel coats.
The hardness, stain and detergent resistance characteristics of PIA are ideal for polyester solid-surface countertops that are an inexpensive alternative to acrylics.

Uses of Isophthalic acid:
Purified Isophthalic Acid (PIA) is mainly used as intermediate for high performance UPR, resins for coatings, high solids paints, gel coats, modifier of PET for bottles.
Isophthalic acid is used as an intermediate for high performance unsaturated polyesters, resins for coatings, high solids paints, gel coats and modifier of polyethylene terephthalate for bottles.
Isophthalic acid acts as precursors for the fire-resistant material nomex as well as used in the preparation of high-performance polymer polybenzimidazole.
Isophthalic acid is also employed as an input for the production of insulation materials.

What Does Isophthalic Polyester Coating Mean?
Isophthalic acid is a high-quality surface protection gel or lining that contains polyester resins, which that include isophthalic acid (purified isophthalic acid or PIA) as an intermediate or saturated monomer.
The isophthalic acid enhances chemical resistance, though Isophthalic acid increases the product cost of isophthalic polyester.
Isophthalic acid is applied in chemical service applications on automobiles, marine vessels, tanks and pipelines to provide corrosion resistance.

Preparation of Isophthalic acid:
Iso phthalic acid is produced on the billion kilogram per year scale by oxidizing meta-xylene using oxygen.
The process employs a cobalt-manganese catalyst.
In the laboratory, chromic acid can be used as the oxidant.
Isophthalic acid also arises by fusing potassium meta-sulpho benzoate , or meta - brom benzoate with potassium formate (terephthalic acid is also formed in the last case).
The barium salt (as its hexa hydrate) is very soluble (a distinction between phthalic and terephthalic acids).
Uvitic acid, 5- methylisophthalic acid, is obtained by oxidizing mesitylene or by condensing pyroracemic acid with baryta water.

The (1,3-benzenecarboxylic acid) is the meta form of phthalic acid.
Isophthalic acid is a white crystalline solid subliming at 345°C.
Isophthalic acid is slightly soluble in water, alcohol and acetic acid (insoluble in benzene).
Isophthalic acid is obtained by oxidizing meta-xylene with chromic acid, or by fusing potassium meta-sulphobenzoate, or meta-brombenzoate with potassium formate.
Isophthalic acid is a key ingredient in FRP (Fiberglass Reinforced Plastics) markets for such products as marine, automotive, and corrosion resistant pipes and tanks.
Polyesters containing PIA (Purified Isophthalic Acid) are also used extensively in industrial coatings applications for home appliances, automobiles, aluminum siding, and metal office furniture.

Purity (% w/w): Min. 99,9
Acid Number (mg KOH/g): 675 ± 2
3-CBA (ppm): Max. 25
m-Toluic Acid (ppm): Max. 150
b* - Value: Max. 1,0
Total Metal content (ppm): None > 2 and Total Max. 10
Ash (ppm): Max. 15
Water (w/w %): Max. 0,1
Mean Particle Size (Micron): 110 ± 15

Synonyms:
1,3-BENZENEDICARBOXYLIC ACID
meta-PHTHALIC ACID

Preferred IUPAC name:
Benzene-1,3-dicarboxylic acid

Other names:
Isophthalic acid
meta-Phthalic acid
ISOPHTHALIC ACID
121-91-5
Benzene-1,3-dicarboxylic acid
1,3-Benzenedicarboxylic acid
m-Phthalic acid
m-Benzenedicarboxylic acid
Acide isophtalique
Kyselina isoftalova
iso-phthalic acid
NSC 15310
UNII-X35216H9FJ
Acide isophtalique [French]
Kyselina isoftalova [Czech]
meta-benzenedicarboxylic acid
HSDB 2090
EINECS 204-506-4
CHEBI:30802
X35216H9FJ
BRN 1909332
AI3-16107
1,3-Benzenedicarboxylic acid, homopolymer
DSSTox_CID_1485
DSSTox_RID_76179
DSSTox_GSID_21485
WLN: QVR CVQ
4-09-00-03292 (Beilstein Handbook Reference)
MLS001075180
3-Carboxybenzoic acid; Isoterephthalic acid; NSC 15310; m-Benzenedicarboxylic acid
26776-13-6
CAS-121-91-5
NSC15310
NCGC00164010-01
SMR000112097
isopthalic acid
CCRIS 8899
m-Dicarboxybenzene
MFCD00002516
1,3-dicarboxybenzene
ACMC-1BQVP
Isophthalic acid, 99%
benzene-1,3-dioic acid
55185-18-7
EC 204-506-4
Isophthalic acid pound PIA)
SCHEMBL22462
Benzene,1,3-dicarboxylic acid
CHEMBL1871181
DTXSID3021485
HMS2269O09
AMY30288
ZINC3845021
Tox21_200409
Tox21_300106
BBL011591
Isophthalic acid, analytical standard
NSC-15310
SBB060284
STL163327
AKOS000119766
DS-6425
MCULE-2481502954
NCGC00164010-02
NCGC00164010-03
NCGC00254219-01
NCGC00257963-01
BP-21126
CS-0020265
FT-0627450
FT-0693429
I0155
ST50824886
A23846
C22203
21179-EP2284165A1
21179-EP2292597A1
21179-EP2301536A1
21179-EP2301538A1
21179-EP2311455A1
21179-EP2311830A1
21179-EP2314295A1
21179-EP2374780A1
21179-EP2374781A1
21179-EP2374895A1
Q415253
J-004707
J-521560
1,3-Benzenedicarboxylic acid, polymer with dimethyl 1,4-benzenedicarboxylate, 2,2-dimethyl-1,3-propanediol, 1,2-ethanediol and nonanedioic acid
8G0
ISOPROPANOL
ISOPROPANOL Isopropyl Alcohol Isopropanol (izopropil alkol, Isopropanol, IPA) is an organic compound, an isomer of n-propanol, aliased dimethylmethanol, 2-propanol. Isopropanol (izopropil alkol, Isopropanol, IPA) is a colorless, transparent liquid with a scent like a mixture of ethanol and acetone. Soluble in water, also soluble in most organic solvents such as alcohol, ether, benzene, chloroform, etc. Isopropanol (izopropil alkol, Isopropanol, IPA) has a wide range of uses as an organic raw material and solvent. 1)As a chemical raw material, it can produce acetone, hydrogen peroxide, methyl isobutyl ketone, diisobutyl ketone, isopropylamine, diisopropyl ether, isopropyl chloride, and fatty acid isopropyl ester and chloro fatty acid isopropyl ester. 2)In the fine chemical industry, it can be used to produce isopropyl nitrate, isopropyl xanthate, triisopropyl phosphite, aluminum isopropoxide, pharmaceuticals and pesticides, etc. It can also be used to produce diisopropanone, isopropyl acetate and Thymol and gasoline additives. 3)Isopropanol (izopropil alkol, Isopropanol, IPA) Can be used to produce coatings, inks, extractants, aerosols, etc. 4) In the electronics industry, Isopropanol (izopropil alkol, Isopropanol, IPA) can be used as a cleaning and degreasing agent. 5) In the oil and fat industry, the extractant of cottonseed oil can also be used for degreasing of animal-derived tissue membranes. Isopropanol (izopropil alkol, Isopropanol, IPA) (IUPAC name propan-2-ol; commonly called isopropanol or 2-propanol) is a colorless, flammable chemical compound (chemical formula CH3CHOHCH3) with a strong odor.[8] As an isopropyl group linked to a hydroxyl group, it is the simplest example of a secondary alcohol, where the alcohol carbon atom is attached to two other carbon atoms. It is a structural isomer of 1-propanol and ethyl methyl ether. Isopropanol (izopropil alkol, Isopropanol, IPA) is used in the manufacture of a wide variety of industrial and household chemicals and is a common ingredient in chemicals such as antiseptics, disinfectants, and detergents. Names of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) is also known as 2-propanol, sec-propyl alcohol, IPA, or isopropanol. IUPAC considers isopropanol an incorrect name as the hydrocarbon isopropane does not exist. Properties of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) is miscible in water, ethanol, ether, and chloroform. It dissolves ethyl cellulose, polyvinyl butyral, many oils, alkaloids, gums and natural resins.[9] Unlike ethanol or methanol, Isopropanol (izopropil alkol, Isopropanol, IPA) is not miscible with salt solutions and can be separated from aqueous solutions by adding a salt such as sodium chloride. The process is colloquially called salting out, and causes concentrated Isopropanol (izopropil alkol, Isopropanol, IPA) to separate into a distinct layer. Isopropanol (izopropil alkol, Isopropanol, IPA) forms an azeotrope with water, which gives a boiling point of 80.37 °C (176.67 °F) and a composition of 87.7 wt% (91 vol%) Isopropanol (izopropil alkol, Isopropanol, IPA). Water-Isopropanol (izopropil alkol, Isopropanol, IPA) mixtures have depressed melting points.[10] It has a slightly bitter taste, and is not safe to drink. Isopropanol (izopropil alkol, Isopropanol, IPA) becomes increasingly viscous with decreasing temperature and freezes at -89 °C (-128 °F). Isopropanol (izopropil alkol, Isopropanol, IPA) has a maximal absorbance at 205 nm in an ultraviolet-visible spectrum. Reactions of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) can be oxidized to acetone, which is the corresponding ketone. This can be achieved using oxidizing agents such as chromic acid, or by dehydrogenation of Isopropanol (izopropil alkol, Isopropanol, IPA) over a heated copper catalyst: (CH3)2CHOH → (CH3)2CO + H2 Isopropanol (izopropil alkol, Isopropanol, IPA) is often used as both solvent and hydride source in the Meerwein-Ponndorf-Verley reduction and other transfer hydrogenation reactions. Isopropanol (izopropil alkol, Isopropanol, IPA) may be converted to 2-bromopropane using phosphorus tribromide, or dehydrated to propene by heating with sulfuric acid. Like most alcohols, Isopropanol (izopropil alkol, Isopropanol, IPA) reacts with active metals such as potassium to form alkoxides that can be called isopropoxides. The reaction with aluminium (initiated by a trace of mercury) is used to prepare the catalyst aluminium isopropoxide.[14] History of Isopropanol (izopropil alkol, Isopropanol, IPA) In 1920, Standard Oil first produced Isopropanol (izopropil alkol, Isopropanol, IPA) by hydrating propene. Its major use at the time was not rubbing alcohol but for oxidation to acetone, whose first major use was in World War I for the preparation of cordite, a smokeless, low explosive propellant. Production of Isopropanol (izopropil alkol, Isopropanol, IPA) In 1994, 1.5 million tonnes of Isopropanol (izopropil alkol, Isopropanol, IPA) were produced in the United States, Europe, and Japan.[16] It is primarily produced by combining water and propene in a hydration reaction or by hydrogenating acetone. There are two routes for the hydration process and both processes require that the Isopropanol (izopropil alkol, Isopropanol, IPA) be separated from water and other by-products by distillation. Isopropanol (izopropil alkol, Isopropanol, IPA) and water form an azeotrope, and simple distillation gives a material that is 87.9% by weight Isopropanol (izopropil alkol, Isopropanol, IPA) and 12.1% by weight water.[18] Pure (anhydrous) Isopropanol (izopropil alkol, Isopropanol, IPA) is made by azeotropic distillation of the wet Isopropanol (izopropil alkol, Isopropanol, IPA) using either diisopropyl ether or cyclohexane as azeotroping agents.[16] Biological of Isopropanol (izopropil alkol, Isopropanol, IPA) Small amounts of Isopropanol (izopropil alkol, Isopropanol, IPA) are produced in the body in diabetic ketoacidosis.[19] Indirect hydration of Isopropanol (izopropil alkol, Isopropanol, IPA) Indirect hydration reacts propene with sulfuric acid to form a mixture of sulfate esters. This process can use low-quality propene, and is predominant in the USA. These processes give primarily Isopropanol (izopropil alkol, Isopropanol, IPA) rather than 1-propanol, because adding water or sulfuric acid to propene follows Markovnikov's rule. Subsequent hydrolysis of these esters by steam produces Isopropanol (izopropil alkol, Isopropanol, IPA), by distillation. Diisopropyl ether is a significant by-product of this process; it is recycled back to the process and hydrolyzed to give the desired product. CH3CH=CH2 + H2O H2SO4⟶ (CH3)2CHOH Direct hydration of Isopropanol (izopropil alkol, Isopropanol, IPA) See also: Heteropoly acid Direct hydration reacts propene and water, either in gas or liquid phase, at high pressures in the presence of solid or supported acidic catalysts. This type of process usually requires higher-purity propylene (> 90%).[16] Direct hydration is more commonly used in Europe. Hydrogenation of acetone Isopropanol (izopropil alkol, Isopropanol, IPA) may be prepared via the hydrogenation of acetone, however this approach involves an extra step compared to the above methods, as acetone is itself normally prepared from propene via the cumene process.[16] It may remain economical depending on the value of the products. A known issue is the formation of MIBK and other self-condensation products. Raney nickel was one of the original industrial catalysts, modern catalysts are often supported bimetallic materials. This is an efficient process and easy Uses of Isopropanol (izopropil alkol, Isopropanol, IPA) One of the small scale uses of isopropanol is in cloud chambers. Isopropanol has ideal physical and chemical properties to form a supersaturated layer of vapor which can be condensed by particles of radiation. In 1990, 45,000 metric tonnes of Isopropanol (izopropil alkol, Isopropanol, IPA) were used in the United States, mostly as a solvent for coatings or for industrial processes. In that year, 5400 metric tonnes were used for household purposes and in personal care products. Isopropanol (izopropil alkol, Isopropanol, IPA) is popular in particular for pharmaceutical applications,[16] due to its low toxicity. Some Isopropanol (izopropil alkol, Isopropanol, IPA) is used as a chemical intermediate. Isopropanol (izopropil alkol, Isopropanol, IPA) may be converted to acetone, but the cumene process is more significant. [16] Solvent of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) dissolves a wide range of non-polar compounds. It also evaporates quickly, leaves nearly zero oil traces, compared to ethanol, and is relatively non-toxic, compared to alternative solvents. Thus, it is used widely as a solvent and as a cleaning fluid, especially for dissolving oils. Together with ethanol, n-butanol, and methanol, it belongs to the group of alcohol solvents, about 6.4 million tonnes of which were used worldwide in 2011.[20] Isopropanol (izopropil alkol, Isopropanol, IPA) is commonly used for cleaning eyeglasses, electrical contacts, audio or video tape heads, DVD and other optical disc lenses, removing thermal paste from heatsinks on CPUs and other IC packages, etc. Intermediate Isopropanol (izopropil alkol, Isopropanol, IPA) is esterified to give isopropyl acetate, another solvent. It reacts with carbon disulfide and sodium hydroxide to give sodium isopropylxanthate, a herbicide and an ore flotation reagent.[21] Isopropanol (izopropil alkol, Isopropanol, IPA) reacts with titanium tetrachloride and aluminium metal to give titanium and aluminium isopropoxides, respectively, the former a catalyst, and the latter a chemical reagent.[16] This compound may serve as a chemical reagent in itself, by acting as a dihydrogen donor in transfer hydrogenation. Medical of Isopropanol (izopropil alkol, Isopropanol, IPA) Rubbing alcohol, hand sanitizer, and disinfecting pads typically contain a 60-70% solution of Isopropanol (izopropil alkol, Isopropanol, IPA) or ethanol in water. Water is required to open up membrane pores of bacteria, which acts as a gateway for Isopropanol (izopropil alkol, Isopropanol, IPA). A 75% v/v solution in water may be used as a hand sanitizer.[22] Isopropanol (izopropil alkol, Isopropanol, IPA) is used as a water-drying aid for the prevention of otitis externa, better known as swimmer's ear.[23] Early uses as an anesthetic Although Isopropanol (izopropil alkol, Isopropanol, IPA) can be used for anesthesia, its many negative attributes or drawbacks prohibit this use. Isopropanol (izopropil alkol, Isopropanol, IPA) can also be used similarly to ether as a solvent[24] or as an anesthetic by inhaling the fumes or orally. Early uses included using the solvent as general anesthetic for small mammals[25] and rodents by scientists and some veterinarians. However, it was soon discontinued, as many complications arose, including respiratory irritation, internal bleeding, and visual and hearing problems. In rare cases, respiratory failure leading to death in animals was observed. Automotive Isopropanol (izopropil alkol, Isopropanol, IPA) is a major ingredient in "gas dryer" fuel additives. In significant quantities, water is a problem in fuel tanks, as it separates from gasoline and can freeze in the supply lines at low temperatures. Alcohol does not remove water from gasoline, but the alcohol solubilizes water in gasoline. Once soluble, water does not pose the same risk as insoluble water, as it no longer accumulates in the supply lines and freezes but is consumed with the fuel itself. Isopropanol (izopropil alkol, Isopropanol, IPA) is often sold in aerosol cans as a windshield or door lock deicer. Isopropanol (izopropil alkol, Isopropanol, IPA) is also used to remove brake fluid traces from hydraulic braking systems, so that the brake fluid (usually DOT 3, DOT 4, or mineral oil) does not contaminate the brake pads and cause poor braking. Mixtures of Isopropanol (izopropil alkol, Isopropanol, IPA) and water are also commonly used in homemade windshield washer fluid. Laboratory As a biological specimen preservative, Isopropanol (izopropil alkol, Isopropanol, IPA) provides a comparatively non-toxic alternative to formaldehyde and other synthetic preservatives. Isopropanol (izopropil alkol, Isopropanol, IPA) solutions of 70-99% are used to preserve specimens. Isopropanol (izopropil alkol, Isopropanol, IPA) is often used in DNA extraction. A lab worker adds it to a DNA solution to precipitate the DNA, which then forms a pellet after centrifugation. This is possible because DNA is insoluble in Isopropanol (izopropil alkol, Isopropanol, IPA). Safety of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) vapor is denser than air and is flammable, with a flammability range of between 2 and 12.7% in air. It should be kept away from heat and open flame.[26] Distillation of Isopropanol (izopropil alkol, Isopropanol, IPA) over magnesium has been reported to form peroxides, which may explode upon concentration. Isopropanol (izopropil alkol, Isopropanol, IPA) is a skin irritant. Wearing protective gloves is recommended. Toxicology of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) and its metabolite, acetone, act as central nervous system (CNS) depressants.[31] Poisoning can occur from ingestion, inhalation, or skin absorption. Symptoms of Isopropanol (izopropil alkol, Isopropanol, IPA) poisoning include flushing, headache, dizziness, CNS depression, nausea, vomiting, anesthesia, hypothermia, low blood pressure, shock, respiratory depression, and coma.[31] Overdoses may cause a fruity odor on the breath as a result of its metabolism to acetone.[32] Isopropanol (izopropil alkol, Isopropanol, IPA) does not cause an anion gap acidosis but it produces an osmolal gap between the calculated and measured osmolalities of serum, as do the other alcohols.[31] Isopropanol (izopropil alkol, Isopropanol, IPA) is oxidized to form acetone by alcohol dehydrogenase in the liver,[31] and has a biological half-life in humans between 2.5 and 8.0 hours.[31] Unlike methanol or ethylene glycol poisoning, the metabolites of Isopropanol (izopropil alkol, Isopropanol, IPA) are considerably less toxic, and treatment is largely supportive. Furthermore, there is no indication for the use of fomepizole, an alcohol dehydrogenase inhibitor, unless co-ingestion with methanol or ethylene glycol is suspected. In forensic pathology, people who have died as a result of diabetic ketoacidosis usually have blood concentrations of Isopropanol (izopropil alkol, Isopropanol, IPA) of tens of mg/dL, while those by fatal Isopropanol (izopropil alkol, Isopropanol, IPA) ingestion usually have blood concentrations of hundreds of mg/dL. Isopropanol (izopropil alkol, Isopropanol, IPA) will attack some forms of plastics, rubber, and coatings. Isopropanol (izopropil alkol, Isopropanol, IPA) is an isomer of propyl alcohol with antibacterial properties. Although the exact mechanism of isopropanol's disinfecting action is not known, it might kill cells by denaturing cell proteins and DNA, interfering with cellular metabolism, and dissolving cell lipo-protein membranes. Isopropanol is used in soaps and lotions as an antiseptic. Any clothing which becomes wet with liquid Isopropanol (izopropil alkol, Isopropanol, IPA) should be removed immediately and not reworn until the Isopropanol (izopropil alkol, Isopropanol, IPA) is removed from the clothing. Clothing should then be placed in closed containers for storage until it can be discarded or until provision can be made for the removal of Isopropanol (izopropil alkol, Isopropanol, IPA) from the clothing. If the clothing is to be laundered or otherwise cleaned to remove the Isopropanol (izopropil alkol, Isopropanol, IPA), the person performing the operation should be informed of Isopropanol (izopropil alkol, Isopropanol, IPA)'s hazardous properties. When a stream of hydrogen entrained Isopropanol (izopropil alkol, Isopropanol, IPA) vapors and palladium particles, the mixture caught fire on exposure to air. Solutions of 90% nitroform in 10% Isopropanol (izopropil alkol, Isopropanol, IPA) in polyethylene bottles exploded. The reaction between Isopropanol (izopropil alkol, Isopropanol, IPA) and phosgene forms isopropyl chloroformate and hydrogen chloride. In the presence of iron salts thermal decomposition can occur, which in some cases can become explosive. Mixing oleum and Isopropanol (izopropil alkol, Isopropanol, IPA) in a closed container caused the temperature and pressure to increase. Isopropanol (izopropil alkol, Isopropanol, IPA) (without residue) may be used in inks for marking food supplements in tablet form, gum, and confectionery. Isopropanol (izopropil alkol, Isopropanol, IPA) may be present in the following foods under the conditions specified: (a) In spice oleoresins as a residue from the extraction of spice, at a level not to exceed 50 parts per million. (b) In lemon oil as a residue in production of the oil, at a level not to exceed 6 parts per million. (c) In hops extract as a residue from the extraction of hops at a level not to exceed 2.0 percent by weight: Provided, that, (1) The hops extract is added to the wort before or during cooking in the manufacture of beer. (2) The label of the hops extract specifies the presence of the Isopropanol (izopropil alkol, Isopropanol, IPA) and provides for the use of the hops extract only as prescribed by paragraph (c)(1) of this section. WORKERS IN AN Isopropanol (izopropil alkol, Isopropanol, IPA) PACKAGING PLANT BECAME ILL AFTER ACCIDENTAL EXPOSURE TO CARBON TETRACHLORIDE. Isopropanol (izopropil alkol, Isopropanol, IPA) POTENTIATION OF CARBON TETRACHLORIDE TOXICITY HAS BEEN SHOWN PREVIOUSLY ONLY IN RATS. ACETONE, A PRODUCT OF Isopropanol (izopropil alkol, Isopropanol, IPA) METABOLISM, IS A MAJOR POTENTIATOR OF CARBON TETRACHLORIDE TOXICITY. IDENTIFICATION: Isopropanol (izopropil alkol, Isopropanol, IPA) is an aliphatic alcohol hydrocarbon. It is prepared from propylene, which is obtained in the cracking of petroleum or by the reduction of acetone. It is a colorless liquid which is soluble in water, alcohol, ether, acetone, benzene and chloroform. It is insoluble in salt solutions. It has a slight odor resembling a mixture of ethanol and acetone and has a slight bitter taste. It is used in antifreeze, industrial solvent, solvent for gums, shellac, essential oils, in quick drying oils, creosote and resins; extraction of alkaloids; in quick drying inks; in denaturing ethyl alcohol; in body rubs, hand lotions, after shave lotions, cosmetics and pharmaceuticals; in manufacture of acetone, glycerol, isopropyl acetate; antiseptic; rubefacient ; and pharmaceutical aid. HUMAN EXPOSURE: Toxic effects include central nervous depression, liver, kidney, cardiovascular depression and brain damage. It can cause drowsiness, ataxia, stupor, coma and respiratory depression, irritation of mucous membranes and eyes, gastritis, gastric hemorrhage, vomiting, pancreatitis, cold clammy skin, hypothermia, miosis, tachycardia, slow and noisy respiration. High risk of circumstances of poisoning: Accidental ingestion of rubbing alcohols/toiletries by children. There is a potential exposure from dermal and inhalation exposure in children during Isopropanol (izopropil alkol, Isopropanol, IPA) sponging for control of fever. Intentional ingestion for alcoholic effect or in suicide attempts. Occupational or accidental exposure to liquid or its vapor in industrial applications. Individuals exposed to Isopropanol (izopropil alkol, Isopropanol, IPA) include the following: workers in the pharmaceutical industry, cosmetic industry, chemical industry, petroleum workers, laboratory workers, printers, painters and carpenters and cabinet makers. There is little absorption through intact skin. Isopropanol (izopropil alkol, Isopropanol, IPA) is a potent eye and skin irritant. 80% of an oral dose is absorbed within 30 minutes. Absorption is complete within 2 hours although this may be delayed in a large overdose. Alveolar concentration is correlated to the environmental concentration at any given time. Isopropanol (izopropil alkol, Isopropanol, IPA) is absorbed through intact skin on prolonged exposure. Isopropanol (izopropil alkol, Isopropanol, IPA) distributes in body water with an apparent volume of distribution of 0.6-0.7 L/kg. 20-50% of an absorbed dose is excreted unchanged. Most Isopropanol (izopropil alkol, Isopropanol, IPA) is oxidized in the liver by alcohol dehydrogenase to acetone, formate and finally carbon dioxide. Acetone is slowly eliminated by the lung (40%) or kidney. Clinically insignificant excretion occurs into the stomach and saliva. Related keto acids are not produced in sufficient quantities to cause a severe metabolic acidosis. Inebriation, peripheral vasodilation has occurred. In children, hypoglycemia is particularly severe when poisoning following fasting, exercise or chronic malnutrition Lactic acidosis may occur in patients with severe liver disease, pancreatitis or receiving biguanide therapy or as a result of the hypovolemia which frequently accompanies severe intoxication. ANIMAL STUDIES: Isopropanol (izopropil alkol, Isopropanol, IPA) most closely follows first order kinetics, with a half life of 2.5 to 3.2 hours. The elimination half life of the active metabolite acetone is significantly prolonged to about 5 hours in rats. In rat hepatocytes the following has been observed: marked depletion of glutathione, increased malondialdehyde production, decreased protein sulfhydryls content and leakage of lactic dehydrogenase with loss of membrane activity. A complete history and physical examination should be performed to detect pre existing conditions that might place the employee at increased risk, and to establish a baseline for future health monitoring. Examination of the skin, liver, kidneys, and respiratory system should be stressed. Skin disease: Isopropanol (izopropil alkol, Isopropanol, IPA) is a defatting agent and can cause dermatitis on prolonged exposure. Persons with pre existing skin disorders may be more susceptible to the effects of this agent. Liver disease: Although Isopropanol (izopropil alkol, Isopropanol, IPA) is not known as a liver toxin in humans, the importance of this organ in the biotransformation and detoxification of foreign substances should be considered before exposing persons with impaired liver function. Kidney disease: Although Isopropanol (izopropil alkol, Isopropanol, IPA) is not known as a kidney toxin in humans, the importance of this organ in the elimination of toxic substances justifies special consideration in those with impaired renal function. Chronic respiratory disease: In persons with impaired pulmonary function, especially those with obstructive airway diseases, the breathing of Isopropanol (izopropil alkol, Isopropanol, IPA) might cause exacerbation of symptoms due to its irritant properties. Periodic Medical Examination: The aforementioned medical examinations should be repeated on an annual basis. The assessment of Isopropanol (izopropil alkol, Isopropanol, IPA) exposure can be accomplished through measurement of either Isopropanol (izopropil alkol, Isopropanol, IPA) or acetone. Isopropanol (izopropil alkol, Isopropanol, IPA) measurement has not been found to be a good assessment of low level exposure, due to its low sensitivity. However, measurement of acetone has been found to be a good indicator of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) exposure for exposures as low as 70 ppm, and has been found to correlate well with air concentrations. Whole Blood Reference Ranges: Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - BAT (sampling time is end of exposure or end of shift, measured as the metabolite, acetone), 50 mg/l; Toxic - Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) level associated with serious toxic symptoms is 150 mg/l. Serum or Plasma Reference Ranges: Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - not established; and Toxic - not established. Urine Reference Ranges: The assessment of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) exposure can be accomplished through measurement of either Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) or acetone. However only acetone was found to be a useful test, due to its greater sensitivity and good correlation with air exposure levels. Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - BAT (sampling time is end of exposure or end of shift, measured as the metabolite, acetone), 50 mg/l; Toxic - Not established. Persons with pre existing skin disorders may be more susceptible to the effects of this agent. ... In persons with impaired pulmonary function, especially those with obstructive airway diseases, the breathing of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) might cause exacerbation of symptoms due to its irritant properties. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s production and use in the manufacture of acetone, glycerol, and isopropyl acetate and as a solvent for a variety of applications may result in its release to the environment through various waste streams. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s use in hydraulic fracturing fluids results in its direct release to the environment. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) has been identified as a metabolic product of aerobic microorganisms, anaerobic microorganisms, fungi, and yeast. If released to air, a vapor pressure of 45.4 mm Hg at 25 °C indicates Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will exist solely as a vapor in the ambient atmosphere. Vapor-phase Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 3.2 days. If released to soil, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to have very high mobility based upon an estimated Koc of 1.5. Volatilization from moist soil surfaces is expected to be an important fate process based upon a Henry's Law constant of 8.10X10-6 atm-cu m/mole. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to volatilize from dry soil surfaces based upon its vapor pressure. If released into water, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is expected to be an important fate process based upon this compound's Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 86 hours and 29 days, respectively. An estimated BCF of 3 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis is not expected to occur due to the lack of hydrolyzable functional groups. Biodegradation is expected to be an important fate process based on the results of microbial screening tests. Occupational exposure to Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may occur through inhalation and dermal contact with this compound at workplaces where Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is produced or used. Monitoring data indicate that the general population may be exposed to Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) via inhalation of ambient air, ingestion of food and drinking water, and dermal contact with this compound directly and from consumer products containing Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA). ANAEROBIC: Typical Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) removal efficiencies for an anaerobic lagoon treatment facility, with a retention time of 15 days, were 50% after loading with dilute waste, and 69 and 74% after loading with concentrated wastes(1). In closed bottle studies, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was completely degraded anaerobically by an acetate-enriched culture, derived from a seed of domestic sludge(1). The culture started to use cross-fed Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA), after 4 days, at a rate of 200 mg/L/day(1). In a mixed reactor with a 20-day retention time, seeded by the same culture, 56% removal was achieved in the 20 days following 70 days of acclimation to a final concentration of 10,000 mg/L(1). The avg percent removal of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in semi-pilot scale anaerobic lagoons was 50% in 7.5-10 days for dilute wastes with 60 ppm Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and 69-74% in 20-40 days for concentrated wastes with 175 ppm Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)(2). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was readily mineralized to methane and carbon dioxide under methanogenic conditions(3). The degradation rate of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) under these conditions in fuel impacted river sediments and industrial/sewage impacted creek sediments was 2.4 ppm C/day (82% of expected methane recovery) and 3.0 ppm C/day (91% of expected methane recovery), respectively(3). The degradation rate of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in a sediment slurry from a shallow anoxic aquifer under methanogenic conditions was 7.6 ppm C/day (112% of theoretical methane recovery)(4). In anaerobic bioreactor studies using a granular sludge inocula, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) (at 125 ppm initial concentration) degraded with 115.5% of theoretical methane production over a 21-day incubation period(5); acetone was identified as a metabolite(5). In laboratory anaerobic sludge reactor tests using liquid hen manure as inoculum, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was degraded 100% in a 13-day incubation period with lag period(6). The Henry's Law constant for Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is 8.10X10-6 atm-cu m/mole at 25 °C(1). This Henry's Law constant indicates that Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 86 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 29 days(SRC). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 45.2 mm Hg at 25 °C(3). The volatilization of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) from a runoff tank of an industrial wastewater treatment facility was measured; the volatilization rate of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) ranged between 0.64-0.69 mg/sq m-min(4). The evaporation rate of a 1:1 Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA):water mixture from a shallow pool was 1.5 kg/sq-m per hour at a wind speed of 4.5 m/s and pool temperature of 20 °C and an ambient air temperature of 22 °C(5). Laboratory studies demonstrated that Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will volatilize from water to air in the absence of wind(6).
Isopropanol ( Alcool isopropylique )
ISOPROPANOLAMINE, N° CAS : 78-96-6, Nom INCI : ISOPROPANOLAMINE, Nom chimique : 1-Aminopropan-2-ol, N° EINECS/ELINCS : 201-162-7, Régulateur de pH : Stabilise le pH des cosmétiques. Principaux synonymes Noms français : 1-AMINO 2-PROPANOL; 1-AMINO-2-HYDROXYPROPANE; 1-AMINO-2-PROPANOL; 1-AMINOPROPAN-2-OL; 1-METHYL-2-AMINOETHANOL; 2-HYDROXY-1-PROPYLAMINE; 2-HYDROXYPROPANAMINE; 2-HYDROXYPROPYLAMINE; 2-PROPANOL, 1-AMINO-; ALPHA-AMINOISOPROPYL ALCOHOL; AMINO-1 PROPANOL-2; Isopropanolamine; Monoisopropanolamine ; Noms anglais : Isopropanolamine Utilisation et sources d'émission : Fabrication de produits organiques, fabrication de produits pharmaceutiques
ISOPROPANOLAMINE ( Monoisopropanolamine )
isopropyl alcohol; Dimethylcarbinol; sec-Propyl alcohol; Rubbing alcohol; Petrohol; 1-Methylethanol; 1-Methylethyl alcohol; 2-Hydroxypropane; 2-Propyl alcohol; Isopropyl alcohol; Propan-2-ol; IPA; 2-Propanol; Alcool Isopropilico (Italian); Alcool Isopropylique; I-Propanol; I-Propylalkohol; Iso-Propylalkohol cas no: 67-63-0
ISOPROPYL ACETATE
Isopropyl Acetate (İzopropil Asetat) IUPAC Name propan-2-yl acetate Isopropyl Acetate (İzopropil Asetat) InChI InChI=1S/C5H10O2/c1-4(2)7-5(3)6/h4H,1-3H3 Isopropyl Acetate (İzopropil Asetat) InChI Key JMMWKPVZQRWMSS-UHFFFAOYSA-N Isopropyl Acetate (İzopropil Asetat) Canonical SMILES CC(C)OC(=O)C Isopropyl Acetate (İzopropil Asetat) Molecular Formula C5H10O2 Isopropyl Acetate (İzopropil Asetat) CAS 108-21-4 Isopropyl Acetate (İzopropil Asetat) European Community (EC) Number 203-561-1 Isopropyl Acetate (İzopropil Asetat) ICSC Number 0907 Isopropyl Acetate (İzopropil Asetat) NSC Number 9295 Isopropyl Acetate (İzopropil Asetat) RTECS Number AI4930000 Isopropyl Acetate (İzopropil Asetat) UN Number 1220 Isopropyl Acetate (İzopropil Asetat) UNII 1Y67AFK870 Isopropyl Acetate (İzopropil Asetat) JECFA Number 305 Isopropyl Acetate (İzopropil Asetat) FEMA Number 2926 Isopropyl Acetate (İzopropil Asetat) DSSTox Substance ID DTXSID2025478 Isopropyl Acetate (İzopropil Asetat) Physical Description Isopropyl acetate appears as a clear colorless liquid. Flash point 40°F. Vapors are heavier than air. Contact with the material may irritate skin, eyes or mucous membranes. May be toxic by ingestion, inhalation and skin absorption. Used as a solvent. Isopropyl Acetate (İzopropil Asetat) Color/Form Water-white liquid Isopropyl Acetate (İzopropil Asetat) Odor Aromatic Isopropyl Acetate (İzopropil Asetat) Taste ON DILUTION A SWEET APPLE-LIKE FLAVOR Isopropyl Acetate (İzopropil Asetat) Boiling Point 190 to 196 °F at 743.3 mm Hg Isopropyl Acetate (İzopropil Asetat) Melting Point -100.1 °F Isopropyl Acetate (İzopropil Asetat) Flash Point 36 °F Isopropyl Acetate (İzopropil Asetat) Solubility 1 to 10 mg/mL at 68° F Isopropyl Acetate (İzopropil Asetat) Density 0.874 at 68 °F Isopropyl Acetate (İzopropil Asetat) Vapor Density 3.5 Isopropyl Acetate (İzopropil Asetat) Vapor Pressure 1 mm Hg at -36.9 °F ; 100 mm Hg at 96.3° F; 760 mm Hg at 192.2° F Isopropyl Acetate (İzopropil Asetat) LogP log Kow = 1.02 Isopropyl Acetate (İzopropil Asetat) LogKoa 2.93 Isopropyl Acetate (İzopropil Asetat) Henrys Law Constant 2.78e-04 atm-m3/mole Isopropyl Acetate (İzopropil Asetat) Atmospheric OH Rate Constant 3.40e-12 cm3/molecule*sec Isopropyl Acetate (İzopropil Asetat) Autoignition Temperature 860 °F Isopropyl Acetate (İzopropil Asetat) Viscosity 0.49 CENTIPOISE @ 25 °C Isopropyl Acetate (İzopropil Asetat) Heat of Combustion -9420 Btu/lb= -5230 cal/g= -219X10+3 J/kg Isopropyl Acetate (İzopropil Asetat) Heat of Vaporization 150 Btu/lb= 81 cal/g= 3.4X10+5 J/kg Isopropyl Acetate (İzopropil Asetat) Surface Tension 26 dynes/cm= 0.026 N/m @ 20 °C Isopropyl Acetate (İzopropil Asetat) Ionization Potential 9.95 eV Isopropyl Acetate (İzopropil Asetat) Molecular Weight 102.13 g/mol Isopropyl Acetate (İzopropil Asetat) XLogP3-AA 0.9 Isopropyl Acetate (İzopropil Asetat) Hydrogen Bond Donor Count 0 Isopropyl Acetate (İzopropil Asetat) Hydrogen Bond Acceptor Count 2 Isopropyl Acetate (İzopropil Asetat) Rotatable Bond Count 2 Isopropyl Acetate (İzopropil Asetat) Exact Mass 102.06808 g/mol Isopropyl Acetate (İzopropil Asetat) Monoisotopic Mass 102.06808 g/mol Isopropyl Acetate (İzopropil Asetat) Topological Polar Surface Area 26.3 Ų Isopropyl Acetate (İzopropil Asetat) Heavy Atom Count 7 Isopropyl Acetate (İzopropil Asetat) Formal Charge 0 Isopropyl Acetate (İzopropil Asetat) Complexity 66.5 Isopropyl Acetate (İzopropil Asetat) Isotope Atom Count 0 Isopropyl Acetate (İzopropil Asetat) Defined Atom Stereocenter Count 0 Isopropyl Acetate (İzopropil Asetat) Undefined Atom Stereocenter Count 0 Isopropyl Acetate (İzopropil Asetat) Defined Bond Stereocenter Count 0 Isopropyl Acetate (İzopropil Asetat) Undefined Bond Stereocenter Count 0 Isopropyl Acetate (İzopropil Asetat) Covalently-Bonded Unit Count 1 Isopropyl Acetate (İzopropil Asetat) Compound Is Canonicalized Yes General description Isopropyl acetate is an isopropyl ester of acetic acid. It participates in the mesoporous Al-MCM-41 (Si/Al = 55 and 104) and Al, Zn-MCM-41 (Si/(Al+Zn) = 52) molecular sieves catalyzed alkylation of m-cresol. It is widely used for the incorporation of aroma to various cosmetics and food products. Vapor-liquid equilibria for its binary mixture with CO2 at higher pressures has been evaluated.It is a colorless, flammable liquid, having a pleasant fruity type of odor. Application Isopropyl acetate may be employed as model oxygenate compound to evaluate the catalytic efficiency of La0.8Sr0.2MnO3+x perovskite catalyst for the oxidation of various oxy-derivative compounds.It may be used as extracting reagent for the N,N-dimethyl-2-[5-(cyanomethyl)-1H-indol-3-yl]ethylamine. Refer to the product′s Certificate of Analysis for more information on a suitable instrument technique. Contact Technical Service for further support.Isopropyl acetate is an ester, an organic compound which is the product of esterification of acetic acid and isopropanol. It is a clear, colorless liquid with a characteristic fruity odor.Isopropyl acetate is a solvent with a wide variety of manufacturing uses that is miscible with most other organic solvents, and moderately soluble in water. It is used as a solvent for cellulose, plastics, oil and fats. It is a component of some printing inks and perfumes.Isopropyl acetate decomposes slowly on contact with steel in the presence of air, producing acetic acid and isopropanol. It reacts violently with oxidizing materials and it attacks many plastics.Isopropyl acetate is quite flammable in both its liquid and vapor forms, and it may be harmful if swallowed or inhaled.The Occupational Safety and Health Administration has set a permissible exposure limit (PEL) of 250 ppm (950 mg/m3) over an eight-hour time-weighted average for workers handling isopropyl acetate.Isopropyl acetate appears as a clear colorless liquid. Flash point 40°F. Vapors are heavier than air. Contact with the material may irritate skin, eyes or mucous membranes. May be toxic by ingestion, inhalation and skin absorption. Used as a solvent.Isopropyl acetate is found in alcoholic beverages. Isopropyl acetate is isolated from ripening melons, apples, bananas, blackcurrants, other fruits and grape oil. Also present in cheddar cheese, soybean, beer, red wine, white wine and plum brandy. Isopropyl acetate is a flavouring ingredient Isopropyl acetate is a solvent with a wide variety of manufacturing uses that is miscible with most other organic solvents, and moderately soluble in water. It is used as a solvent for cellulose, plastics, oil and fats. It is a component of some printing inks and perfumes. Isopropyl acetate is an ester, an organic compound which is the product of condensation of acetic acid and isopropanol. It is a clear, colorless liquid with a characteristic fruity odor. Application Isopropyl acetate may be employed as a model oxygenate compound to evaluate the catalytic efficiency of La0.8Sr0.2MnO3+x perovskite catalyst for the oxidation of various oxy-derivative compounds.It may be used as an extracting reagent for the N,N-dimethyl-2-[5-(cyanomethyl)-1H-indol-3-yl]ethylamine. Coatings, Cleaning fluids, Printing inks, Cosmetic /personal care solvent,Fragrance solvent Features: Non-HAP (Hazardous air pollutant) Solvent; Good resin solvent; Mild odor; Fast evaporating Substituents: Acetate salt, Carboxylic acid ester, Hydrocarbon derivative, Organooxygen compound, Carbonyl group, Aliphatic acyclic compound Isopropyl acetate is used mainly as a solvent for rotogravure and flexographic printing inks.Other applications include coatings, cleaning fluids, cosmetics, and fragrances.Isopropyl acetate liquid and vapor are flammable. The product is stable at recommended temperatures and pressures. Isopropyl acetate is incompatible with alkali metal hydroxides,such as sodium hydroxide, as well as nitric acid and strong oxidizers, and contact should be avoided.Eye contact with liquid isopropyl acetate may cause severe irritation and severe corneal injury. Eye contact with vapor may cause mild discomfort and redness. Prolonged skin contact may cause slight irritation with local redness and discomfort and possible drying or flaking of the skin. It is unlikely to result in absorption of harmful amounts. Excessive inhalation of isopropyl acetate vapors may cause irritation to the nose, throat, and lungs, as well as central nervous system effects. In confined or poorly ventilated areas,unconsciousness or death could occur. Isopropyl acetate is highly biodegradable, unlikely to bioaccumulate in the food chain, and is practically non-toxic to fish and aquatic organisms.Worker exposure is possible during manufacturing or other industrial processes using isopropyl acetate. Consumers could be exposed by using cosmetics, fragrances, or other products made with it.nt Isopropyl acetate is broadly used as a solvent in commercial printing processes for: Exposure Potential Isopropyl acetate is used in the production of industrial and consumer products. Based on the uses for isopropyl acetate the public could be exposed through: Workplace exposure.Exposure can occur either in an isopropyl acetate manufacturing facility or in the various industrial or manufacturing facilities that use it. Those working with isopropyl acetate in manufacturing operations could be exposed during maintenance, sampling, testing, or other procedures. Each facility should have a thorough training program for employees and appropriate work processes and safety equipment in place to limit unnecessary exposure. Consumer exposure to products containing isopropyl acetate for direct consumer use. Consumers could be exposed to isopropyl acetate by using cosmetics or other products containing it. See Health Information. Isopropyl acetate may be released to air by evaporation from products that contain it. Although the substance is moderately soluble, when introduced to water, it will have a tendency to evaporate. Because the chemical is highly biodegradable, it will be treated by sewage treatment plants. Large release - Industrial spills or releases are infrequent and generally contained. If a large spill does occur, dike the area to contain the spilled material. Isolate the area and evacuate unnecessary personnel. Eliminate all sources of ignition. Ground and bond all containers and handling equipment. In case of fire - Keep people away and prevent unnecessary entry. Isopropyl acetate vapor is an explosion hazard. Vapors are heavier than air and may travel long distances and accumulate in low-lying areas. Wear positive-pressure, self-contained breathing apparatus (SCBA) and protective fire-fighting clothing or fight fire from a safe distance. Use water fog or fine spray, dry-chemical or carbon-dioxide fire extinguishers, or foam. Do not use a direct water stream as it may spread the fire. Follow emergency procedures carefully. Eye and Skin Contact - Eye contact with liquid isopropyl acetate may cause severe irritation and severe corneal injury. Eye contact with vapor may cause mild discomfort and redness. Prolonged skin contact may cause slight irritation with local redness and discomfort and possible drying or flaking of the skin. Prolonged contact is unlikely to result in absorption of harmful amounts. Inhalation - Excessive inhalation of isopropyl acetate vapors may cause irritation to the nose, throat, and lungs, as well as central nervous system effects. In confined or poorly ventilated areas, unconsciousness or death could occur.Ingestion - Isopropyl acetate has very low toxicity if small amounts are swallowed. Cancer and Birth Defect Information - This material did not cause cancer in laboratory animals. In laboratory tests isopropyl acetate has been toxic to the fetus at doses toxic to the mother, but is not expected to interfere with reproduction. This material was negative in in vitro and animal genetic toxicity studies. Isopropyl acetate is moderately volatile, and will evaporate from products that contain it. Although the substance is moderately soluble in water, it will have a tendency to evaporate from it. It has minimal tendency to bind to soil or sediment. Isopropyl acetate is unlikely to persist in the environment. The substance is highly biodegradable, which suggests the chemical will be removed from water and soil environments, including biological wastewater treatment plants. Isopropyl acetate is not likely to accumulate in the food chain (bioconcentration potential is low) and is practically nontoxic to fish and other aquatic organisms on an acute basis. Isopropyl acetate liquid and vapor are flammable. Isopropyl acetate vapors are heavier than air and can travel long distances, posing an explosion hazard. The material is stable at recommended storage and use temperatures. Store away from heat, sparks, and flame. Exposure to elevated temperatures can cause isopropyl acetate to decompose. Isopropyl acetate is incompatible with alkali metal hydroxides, such as sodium hydroxide, as well as nitric acid and strong oxidizers, and contact should be avoided. Regulations may exist that govern the manufacture, sale, transportation, use, and/or disposal of isopropyl acetate. These regulations may vary by city, state, country, or geographic region. HAZARD SUMMARY * Isopropyl Acetate can affect you when breathed in. * Contact can irritate and burn the eyes. * Contact can cause severe skin burns. Repeated exposure can cause dryness and cracking of the skin. * Breathing Isopropyl Acetate can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath. * High exposure can cause headache, drowsiness, poor muscle coordination, unconsciousness and coma. * Isopropyl Acetate may affect the liver. * Isopropyl Acetate is a FLAMMABLE LIQUID and a DANGEROUS FIRE HAZARD. IDENTIFICATION Isopropyl Acetate is a colorless liquid with a fruity odor. It is used as a solvent for cellulose, plastics, oils and fats, and in printing inks and perfume. HOW TO DETERMINE IF YOU ARE BEING EXPOSED The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information and training concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard, 1910.1200, requires private employers to provide similar training and information to their employees. * Exposure to hazardous substances should be routinely evaluated. This may include collecting personal and area air samples. You can obtain copies of sampling results from your employer. You have a legal right to this information under OSHA 1910.1020. * If you think you are experiencing any work-related health problems, see a doctor trained to recognize occupational diseases. Take this Fact Sheet with you. * ODOR THRESHOLD = 4.1 ppm. * The range of accepted odor threshold values is quite broad. Caution should be used in relying on odor alone as a warning of potentially hazardous exposures. WORKPLACE EXPOSURE LIMITS OSHA: The legal airborne permissible exposure limit (PEL) is 250 ppm averaged over an 8-hour workshift. NIOSH: No exposure limit has been established. ACGIH: The recommended airborne exposure limit is 100 ppm averaged over an 8-hour workshift and 200 ppm as a STEL (short term exposure limit). WAYS OF REDUCING EXPOSURE * Where possible, enclose operations and use local exhaust ventilation at the site of chemical release. If local exhaust ventilation or enclosure is not used, respirators should be worn. * Wear protective work clothing. * Wash thoroughly immediately after exposure to Isopropyl Acetate and at the end of the workshift. * Post hazard and warning information in the work area. In addition, as part of an ongoing education and training effort, communicate all information on the health and safety hazards of Isopropyl acetate to potentially exposed workers. This Fact Sheet is a summary source of information of all potential and most severe health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below. HEALTH HAZARD INFORMATION Acute Health Effects The following acute (short-term) health effects may ocur immediately or shortly after exposure to Isopropyl Acetate: * Contact can irritate and burn the eyes. * Contact can cause severe skin burns. * Breathing Isopropyl Acetate can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath. * High exposure can cause headache, drowsiness, poor muscle coordination, unconsciousness and coma. Chronic Health Effects The following chronic (long-term) health effects can occur at some time after exposure to Isopropyl Acetate and can last for months or years: Cancer Hazard * According to the information presently available to the New Jersey Department of Health and Senior Services, Isopropyl Acetate has not been tested for its ability to cause cancer in animals. Reproductive Hazard * According to the information presently available to the New Jersey Department of Health and Senior Services, Isopropyl Acetate has not been tested for its ability to affect reproduction. Other Long-Term Effects * Repeated exposure can cause dryness and cracking of the skin. * Isopropyl Acetate can irritate the lungs. Repeated exposure may cause bronchitis to develop with cough, phlegm, and/or shortness of breath. * Isopropyl Acetate may affect the liver. * This chemical has not been adequately evaluated to determine whether brain or other nerve damage could ocur with repeated exposure. However, many solvents and other petroleum-based chemicals have been shown to cause such damage. Effects may include reduced memory and concentration, personality changes (withdrawal, irritability), fatigue, sleep disturbances, reduced coordination, and/or effects on nerves supplying internal organs (autonomic nerves) and/or nerves to the arms and legs (weakness, "pins and needles"). MEDICAL Medical Testing If symptoms develop or overexposure is suspected, the following are recommended: * Lung function tests. * Liver function tests. * Evaluate for brain effects such as changes in memory, concentration, sleeping patterns and mood (especially irritability and social withdrawal), as well as headaches and fatigue. Consider evaluations of the cerebellar, autonomic and peripheral nervous systems. Positive and borderline individuals should be referred for neuropsychological testing. Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are not a substitute for controlling exposure. Request copies of your medical testing. You have a legal right to this information under OSHA 1910.1020. Mixed Exposures * Because smoking can cause heart disease, as well as lung cancer, emphysema, and other espiratory problems, it may worsen respiratory conditions caused by chemical exposure. Even if you have smoked for a long time, stopping now will reduce your risk of developing health problems. * Because more than light alcohol consumption can cause liver damage, drinking alcohol may increase the liver damage caused by Isopropyl Acetate. WORKPLACE CONTROLS AND PRACTICES Unless a less toxic chemical can be substituted for a hazardous substance, ENGINEERING CONTROLS are the most effective way of reducing exposure. The best protection is to enclose operations and/or provide local exhaust ventilation at the site of chemical release. Isolating operations can also reduce exposure. Using respirators or protective equipment is less effective than the controls mentioned above, but is sometimes necessary. In evaluating the controls present in your workplace, consider: (1) how hazardous the substance is, (2) how much of the substance is released into the workplace and (3) whether harmful skin or eye contact could occur. Special controls should be in place for highly toxic chemicals or when significant skin, eye, or breathing exposures are possible. In addition, the following controls are recommended: * Where possible, automatically pump liquid Isopropyl Acetate from drums or other storage containers to process containers. * Before entering a confined space where Isopropyl Acetate may be present, check to make sure that an explosive concentration does not exist. Good WORK PRACTICES can help to reduce hazardous exposures. The following work practices are recommended: * Workers whose clothing has been contaminated by Isopropyl Acetate should change into clean clothing promptly. * Contaminated work clothes should be laundered by individuals who have been informed of the hazards of exposure to Isopropyl Acetate. * Eye wash fountains should be provided in the immediate work area for emergency use. * If there is the possibility of skin exposure, emergency shower facilities should be provided. * On skin contact with Isopropyl Acetate, immediately wash or shower to remove the chemical. At the end of the workshift, wash any areas of the body that may have contacted Isopropyl Acetate, whether or not known skin contact has occurred. * Do not eat, smoke, or drink where Isopropyl Acetate is handled, processed, or stored, since the chemical can be swallowed. Wash hands carefully before eating, drinking, smoking, or using the toilet. PERSONAL PROTECTIVE EQUIPMENT WORKPLACE CONTROLS ARE BETTER THAN PERSONAL PROTECTIVE EQUIPMENT. However, for some jobs (such as outside work, confined space entry, jobs done only once in a while, or jobs done while workplace controls are being installed), personal protective equipment may be appropriate. OSHA 1910.132 requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment. The following recommendations are only guidelines and may not apply to every situation. Clothing * Avoid skin contact with Isopropyl Acetate. Wear solventresistant gloves and clothing. Safety equipment suppliers/ manufacturers can provide recommendations on the most protective glove/clothing material for your operation. * All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work. Eye Protection * Wear indirect-vent, impact and splash resistant goggles when working with liquids. * Wear a face shield along with goggles when working with corrosive, highly irritating or toxic substances. * Contact lenses should not be worn when working with this substance. Respiratory Protection IMPROPER USE OF RESPIRATORS IS DANGEROUS. Such equipment should only be used if the employer has a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing and medical exams, as described in OSHA 1910.134. * Where the potential exists for exposure over 100 ppm, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positivepressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive-pressure mode. * Exposure to 1,800 ppm is immediately dangerous to life and health. If the possibility of exposure above 1,800 ppm exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressuredemand or other positive-pressure mode equipped with an emergency escape air cylinder. HANDLING AND STORAGE * Prior to working with Isopropyl Acetate you should be trained on its proper handling and storage. * Isopropyl Acetate is not compatible with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE); STRONG ACIDS (such as HYDROCHLORIC, SULFURIC and NITRIC); STRONG BASES (such as SODIUM HYDROXIDE and POTASSIUM HYDROXIDE); and COMBUSTIBLE MATERIALS. * Store in tightly closed containers in a cool, well-ventilated area away from MOISTURE and HEAT. * Sources of ignition, such as smoking and open flames, are prohibited where Isopropyl Acetate is used, handled, or stored. * Metal containers involving the transfer of Isopropyl Acetate should be grounded and bonded. * Use only non-sparking tools and equipment, especially when opening and closing containers of Isopropyl Acetate. Q: When are higher exposures more likely? A: Conditions which increase risk of exposure include physical and mechanical processes (heating, pouring, spraying, spills and evaporation from large surface areas such as open containers), and "confined space" exposures (working inside vats, reactors, boilers, small rooms, etc.). Q: Is the risk of getting sick higher for workers than for community residents? A: Yes. Exposures in the community, except possibly in cases of fires or spills, are usually much lower than those found in the workplace. However, people in the community may be exposed to Contaminated water as well as to chemicals in the air over long periods. This may be a problem for Industrial Hygiene Information Industrial hygienists are available to answer your questions regarding the control of chemical exposures using exhaust ventilation, special work practices, good housekeeping, good hygiene practices, and personal protective equipment including respirators. In addition, they can help to interpret the results of industrial hygiene survey data. Medical Evaluation If you think you are becoming sick because of exposure to chemicals at your workplace, you may call personnel at the Department of Health and Senior Services, Occupational Health Service, who can help you find the information you need. Public Presentations Presentations and educational programs on occupational health or the Right to Know Act can be organized for labor unions, trade associations and other groups. A carcinogen is a substance that causes cancer. The CAS number is assigned by the Chemical Abstracts Service to identify a specific chemical. CFR is the Code of Federal Regulations, which consists of the regulations of the United States government. A combustible substance is a solid, liquid or gas that will burn. A corrosive substance is a gas, liquid or solid that causes irreversible damage to human tissue or containers. A fetus is an unborn human or animal. A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly. The flash point is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air. IARC is the International Agency for Research on Cancer, a scientific group that classifies chemicals according to their cancer-causing potential. IRIS is the Integrated Risk Information System database of the federal EPA. A miscible substance is a liquid or gas that will evenly dissolve in another. It is a measure of concentration (weight/volume). A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer. NAERG is the North American Emergency Response Guidebook. It was jointly developed by Transport Canada, the United States Department of Transportation and the Secretariat of Communications and Transportation of Mexico. It is a guide for first responders to quickly identify the specific or generic hazards of material involved in a transportation incident, and to protect themselves and the general public during the initial response phase of the incident. NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard. NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA. NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer. OSHA is the Occupational Safety and Health Administration, which adopts and enforces health and safety standards. PEL is the Permissible Exposure Limit which is enforceable by the Occupational Safety and Health Administration. PIH is a DOT designation for chemicals which are Poison Inhalation Hazards. >>>>>>>>>>>>>>>>> E M E R G E N C Y I N F O R M A T I O N <<<<<<<<<<<<<<<<< Common Name: ISOPROPYL ACETATE DOT Number: UN 1220 FIRE HAZARDS * Isopropyl Acetate is a FLAMMABLE LIQUID. * Use dry chemical, CO2, alcohol or polymer foam extinguishers, as water may not be effective in fighting fires. * POISONOUS GASES ARE PRODUCED IN FIRE. * CONTAINERS MAY EXPLODE IN FIRE. * Use water spray to keep fire-exposed containers cool. * Vapors may travel to a source of ignition and flash back. * Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source. * If employees are expected to fight fires, they must be trained and equipped as stated in OSHA 1910.156. SPILLS AND EMERGENCIES If Isopropyl Acetate is spilled or leaked, take the following steps: * Evacuate persons not wearing protective equipment from area of spill or leak until clean-up is complete. * Remove all ignition sources. * Cover with an activated charcoal adsorbent and place in covered containers for disposal. * Ventilate and wash area after clean-up is complete. * Keep Isopropyl Acetate out of a confined space, such as a sewer, because of the possibility of an explosion, unless the sewer is designed to prevent the build-up of explosive concentrations. * It may be necessary to contain and dispose of Isopropyl Acetate as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations. * If employees are required to clean-up spills, they must be properly trained and equipped. OSHA 1910.120(q) may be applicable. FOR LARGE SPILLS AND FIRES immediately call your fire department. You can request emergency information from the following: FIRST AID For POISON INFORMATION Eye Contact * Immediately flush with large amounts of water for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. Skin Contact * Remove contaminated clothing. Wash contaminated skin with soap and water. Breathing * Remove the person from exposure. * Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped. * Transfer promptly to a medical facility. PHYSICAL DATA Vapor Pressure: 42 mm Hg at 68oF (20oC) Flash Point: 36oF (2oC) Water Solubility: Slightly soluble
ISOPROPYL ALCOHOL
Isopropyl Alcohol Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is an organic compound, an isomer of n-propanol, aliased dimethylmethanol, 2-propanol. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is a colorless, transparent liquid with a scent like a mixture of ethanol and acetone. Soluble in water, also soluble in most organic solvents such as alcohol, ether, benzene, chloroform, etc. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) has a wide range of uses as an organic raw material and solvent. 1)As a chemical raw material, it can produce acetone, hydrogen peroxide, methyl isobutyl ketone, diisobutyl ketone, isopropylamine, diisopropyl ether, isopropyl chloride, and fatty acid isopropyl ester and chloro fatty acid isopropyl ester. 2)In the fine chemical industry, it can be used to produce isopropyl nitrate, isopropyl xanthate, triisopropyl phosphite, aluminum isopropoxide, pharmaceuticals and pesticides, etc. It can also be used to produce diisopropanone, isopropyl acetate and Thymol and gasoline additives. 3)Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Can be used to produce coatings, inks, extractants, aerosols, etc. 4) In the electronics industry, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) can be used as a cleaning and degreasing agent. 5) In the oil and fat industry, the extractant of cottonseed oil can also be used for degreasing of animal-derived tissue membranes. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) (IUPAC name propan-2-ol; commonly called isopropanol or 2-propanol) is a colorless, flammable chemical compound (chemical formula CH3CHOHCH3) with a strong odor.[8] As an isopropyl group linked to a hydroxyl group, it is the simplest example of a secondary alcohol, where the alcohol carbon atom is attached to two other carbon atoms. It is a structural isomer of 1-propanol and ethyl methyl ether. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is used in the manufacture of a wide variety of industrial and household chemicals and is a common ingredient in chemicals such as antiseptics, disinfectants, and detergents. Names of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is also known as 2-propanol, sec-propyl alcohol, IPA, or isopropanol. IUPAC considers isopropanol an incorrect name as the hydrocarbon isopropane does not exist. Properties of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is miscible in water, ethanol, ether, and chloroform. It dissolves ethyl cellulose, polyvinyl butyral, many oils, alkaloids, gums and natural resins.[9] Unlike ethanol or methanol, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is not miscible with salt solutions and can be separated from aqueous solutions by adding a salt such as sodium chloride. The process is colloquially called salting out, and causes concentrated Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) to separate into a distinct layer. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) forms an azeotrope with water, which gives a boiling point of 80.37 °C (176.67 °F) and a composition of 87.7 wt% (91 vol%) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA). Water–Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) mixtures have depressed melting points.[10] It has a slightly bitter taste, and is not safe to drink. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) becomes increasingly viscous with decreasing temperature and freezes at −89 °C (−128 °F). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) has a maximal absorbance at 205 nm in an ultraviolet–visible spectrum. Reactions of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) can be oxidized to acetone, which is the corresponding ketone. This can be achieved using oxidizing agents such as chromic acid, or by dehydrogenation of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) over a heated copper catalyst: (CH3)2CHOH → (CH3)2CO + H2 Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is often used as both solvent and hydride source in the Meerwein-Ponndorf-Verley reduction and other transfer hydrogenation reactions. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may be converted to 2-bromopropane using phosphorus tribromide, or dehydrated to propene by heating with sulfuric acid. Like most alcohols, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) reacts with active metals such as potassium to form alkoxides that can be called isopropoxides. The reaction with aluminium (initiated by a trace of mercury) is used to prepare the catalyst aluminium isopropoxide.[14] History of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) In 1920, Standard Oil first produced Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) by hydrating propene. Its major use at the time was not rubbing alcohol but for oxidation to acetone, whose first major use was in World War I for the preparation of cordite, a smokeless, low explosive propellant. Production of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) In 1994, 1.5 million tonnes of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) were produced in the United States, Europe, and Japan.[16] It is primarily produced by combining water and propene in a hydration reaction or by hydrogenating acetone. There are two routes for the hydration process and both processes require that the Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) be separated from water and other by-products by distillation. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and water form an azeotrope, and simple distillation gives a material that is 87.9% by weight Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and 12.1% by weight water.[18] Pure (anhydrous) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is made by azeotropic distillation of the wet Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) using either diisopropyl ether or cyclohexane as azeotroping agents.[16] Biological of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Small amounts of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) are produced in the body in diabetic ketoacidosis.[19] Indirect hydration of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Indirect hydration reacts propene with sulfuric acid to form a mixture of sulfate esters. This process can use low-quality propene, and is predominant in the USA. These processes give primarily Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) rather than 1-propanol, because adding water or sulfuric acid to propene follows Markovnikov's rule. Subsequent hydrolysis of these esters by steam produces Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA), by distillation. Diisopropyl ether is a significant by-product of this process; it is recycled back to the process and hydrolyzed to give the desired product. CH3CH=CH2 + H2O H2SO4⟶ (CH3)2CHOH Direct hydration of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) See also: Heteropoly acid Direct hydration reacts propene and water, either in gas or liquid phase, at high pressures in the presence of solid or supported acidic catalysts. This type of process usually requires higher-purity propylene (> 90%).[16] Direct hydration is more commonly used in Europe. Hydrogenation of acetone Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may be prepared via the hydrogenation of acetone, however this approach involves an extra step compared to the above methods, as acetone is itself normally prepared from propene via the cumene process.[16] It may remain economical depending on the value of the products. A known issue is the formation of MIBK and other self-condensation products. Raney nickel was one of the original industrial catalysts, modern catalysts are often supported bimetallic materials. This is an efficient process and easy Uses of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) One of the small scale uses of isopropanol is in cloud chambers. Isopropanol has ideal physical and chemical properties to form a supersaturated layer of vapor which can be condensed by particles of radiation. In 1990, 45,000 metric tonnes of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) were used in the United States, mostly as a solvent for coatings or for industrial processes. In that year, 5400 metric tonnes were used for household purposes and in personal care products. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is popular in particular for pharmaceutical applications,[16] due to its low toxicity. Some Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is used as a chemical intermediate. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may be converted to acetone, but the cumene process is more significant. [16] Solvent of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) dissolves a wide range of non-polar compounds. It also evaporates quickly, leaves nearly zero oil traces, compared to ethanol, and is relatively non-toxic, compared to alternative solvents. Thus, it is used widely as a solvent and as a cleaning fluid, especially for dissolving oils. Together with ethanol, n-butanol, and methanol, it belongs to the group of alcohol solvents, about 6.4 million tonnes of which were used worldwide in 2011.[20] Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is commonly used for cleaning eyeglasses, electrical contacts, audio or video tape heads, DVD and other optical disc lenses, removing thermal paste from heatsinks on CPUs and other IC packages, etc. Intermediate Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is esterified to give isopropyl acetate, another solvent. It reacts with carbon disulfide and sodium hydroxide to give sodium isopropylxanthate, a herbicide and an ore flotation reagent.[21] Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) reacts with titanium tetrachloride and aluminium metal to give titanium and aluminium isopropoxides, respectively, the former a catalyst, and the latter a chemical reagent.[16] This compound may serve as a chemical reagent in itself, by acting as a dihydrogen donor in transfer hydrogenation. Medical of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Rubbing alcohol, hand sanitizer, and disinfecting pads typically contain a 60–70% solution of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) or ethanol in water. Water is required to open up membrane pores of bacteria, which acts as a gateway for Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA). A 75% v/v solution in water may be used as a hand sanitizer.[22] Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is used as a water-drying aid for the prevention of otitis externa, better known as swimmer's ear.[23] Early uses as an anesthetic Although Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) can be used for anesthesia, its many negative attributes or drawbacks prohibit this use. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) can also be used similarly to ether as a solvent[24] or as an anesthetic by inhaling the fumes or orally. Early uses included using the solvent as general anesthetic for small mammals[25] and rodents by scientists and some veterinarians. However, it was soon discontinued, as many complications arose, including respiratory irritation, internal bleeding, and visual and hearing problems. In rare cases, respiratory failure leading to death in animals was observed. Automotive Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is a major ingredient in "gas dryer" fuel additives. In significant quantities, water is a problem in fuel tanks, as it separates from gasoline and can freeze in the supply lines at low temperatures. Alcohol does not remove water from gasoline, but the alcohol solubilizes water in gasoline. Once soluble, water does not pose the same risk as insoluble water, as it no longer accumulates in the supply lines and freezes but is consumed with the fuel itself. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is often sold in aerosol cans as a windshield or door lock deicer. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is also used to remove brake fluid traces from hydraulic braking systems, so that the brake fluid (usually DOT 3, DOT 4, or mineral oil) does not contaminate the brake pads and cause poor braking. Mixtures of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and water are also commonly used in homemade windshield washer fluid. Laboratory As a biological specimen preservative, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) provides a comparatively non-toxic alternative to formaldehyde and other synthetic preservatives. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) solutions of 70–99% are used to preserve specimens. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is often used in DNA extraction. A lab worker adds it to a DNA solution to precipitate the DNA, which then forms a pellet after centrifugation. This is possible because DNA is insoluble in Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA). Safety of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) vapor is denser than air and is flammable, with a flammability range of between 2 and 12.7% in air. It should be kept away from heat and open flame.[26] Distillation of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) over magnesium has been reported to form peroxides, which may explode upon concentration. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is a skin irritant. Wearing protective gloves is recommended. Toxicology of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and its metabolite, acetone, act as central nervous system (CNS) depressants.[31] Poisoning can occur from ingestion, inhalation, or skin absorption. Symptoms of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) poisoning include flushing, headache, dizziness, CNS depression, nausea, vomiting, anesthesia, hypothermia, low blood pressure, shock, respiratory depression, and coma.[31] Overdoses may cause a fruity odor on the breath as a result of its metabolism to acetone.[32] Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) does not cause an anion gap acidosis but it produces an osmolal gap between the calculated and measured osmolalities of serum, as do the other alcohols.[31] Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is oxidized to form acetone by alcohol dehydrogenase in the liver,[31] and has a biological half-life in humans between 2.5 and 8.0 hours.[31] Unlike methanol or ethylene glycol poisoning, the metabolites of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) are considerably less toxic, and treatment is largely supportive. Furthermore, there is no indication for the use of fomepizole, an alcohol dehydrogenase inhibitor, unless co-ingestion with methanol or ethylene glycol is suspected. In forensic pathology, people who have died as a result of diabetic ketoacidosis usually have blood concentrations of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) of tens of mg/dL, while those by fatal Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) ingestion usually have blood concentrations of hundreds of mg/dL. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will attack some forms of plastics, rubber, and coatings. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is an isomer of propyl alcohol with antibacterial properties. Although the exact mechanism of isopropanol's disinfecting action is not known, it might kill cells by denaturing cell proteins and DNA, interfering with cellular metabolism, and dissolving cell lipo-protein membranes. Isopropanol is used in soaps and lotions as an antiseptic. Any clothing which becomes wet with liquid Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) should be removed immediately and not reworn until the Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is removed from the clothing. Clothing should then be placed in closed containers for storage until it can be discarded or until provision can be made for the removal of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) from the clothing. If the clothing is to be laundered or otherwise cleaned to remove the Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA), the person performing the operation should be informed of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s hazardous properties. When a stream of hydrogen entrained Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) vapors and palladium particles, the mixture caught fire on exposure to air. Solutions of 90% nitroform in 10% Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in polyethylene bottles exploded. The reaction between Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and phosgene forms isopropyl chloroformate and hydrogen chloride. In the presence of iron salts thermal decomposition can occur, which in some cases can become explosive. Mixing oleum and Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in a closed container caused the temperature and pressure to increase. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) (without residue) may be used in inks for marking food supplements in tablet form, gum, and confectionery. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may be present in the following foods under the conditions specified: (a) In spice oleoresins as a residue from the extraction of spice, at a level not to exceed 50 parts per million. (b) In lemon oil as a residue in production of the oil, at a level not to exceed 6 parts per million. (c) In hops extract as a residue from the extraction of hops at a level not to exceed 2.0 percent by weight: Provided, that, (1) The hops extract is added to the wort before or during cooking in the manufacture of beer. (2) The label of the hops extract specifies the presence of the Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and provides for the use of the hops extract only as prescribed by paragraph (c)(1) of this section. WORKERS IN AN Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) PACKAGING PLANT BECAME ILL AFTER ACCIDENTAL EXPOSURE TO CARBON TETRACHLORIDE. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) POTENTIATION OF CARBON TETRACHLORIDE TOXICITY HAS BEEN SHOWN PREVIOUSLY ONLY IN RATS. ACETONE, A PRODUCT OF Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) METABOLISM, IS A MAJOR POTENTIATOR OF CARBON TETRACHLORIDE TOXICITY. IDENTIFICATION: Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is an aliphatic alcohol hydrocarbon. It is prepared from propylene, which is obtained in the cracking of petroleum or by the reduction of acetone. It is a colorless liquid which is soluble in water, alcohol, ether, acetone, benzene and chloroform. It is insoluble in salt solutions. It has a slight odor resembling a mixture of ethanol and acetone and has a slight bitter taste. It is used in antifreeze, industrial solvent, solvent for gums, shellac, essential oils, in quick drying oils, creosote and resins; extraction of alkaloids; in quick drying inks; in denaturing ethyl alcohol; in body rubs, hand lotions, after shave lotions, cosmetics and pharmaceuticals; in manufacture of acetone, glycerol, isopropyl acetate; antiseptic; rubefacient ; and pharmaceutical aid. HUMAN EXPOSURE: Toxic effects include central nervous depression, liver, kidney, cardiovascular depression and brain damage. It can cause drowsiness, ataxia, stupor, coma and respiratory depression, irritation of mucous membranes and eyes, gastritis, gastric hemorrhage, vomiting, pancreatitis, cold clammy skin, hypothermia, miosis, tachycardia, slow and noisy respiration. High risk of circumstances of poisoning: Accidental ingestion of rubbing alcohols/toiletries by children. There is a potential exposure from dermal and inhalation exposure in children during Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) sponging for control of fever. Intentional ingestion for alcoholic effect or in suicide attempts. Occupational or accidental exposure to liquid or its vapor in industrial applications. Individuals exposed to Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) include the following: workers in the pharmaceutical industry, cosmetic industry, chemical industry, petroleum workers, laboratory workers, printers, painters and carpenters and cabinet makers. There is little absorption through intact skin. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is a potent eye and skin irritant. 80% of an oral dose is absorbed within 30 minutes. Absorption is complete within 2 hours although this may be delayed in a large overdose. Alveolar concentration is correlated to the environmental concentration at any given time. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is absorbed through intact skin on prolonged exposure. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) distributes in body water with an apparent volume of distribution of 0.6-0.7 L/kg. 20-50% of an absorbed dose is excreted unchanged. Most Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is oxidized in the liver by alcohol dehydrogenase to acetone, formate and finally carbon dioxide. Acetone is slowly eliminated by the lung (40%) or kidney. Clinically insignificant excretion occurs into the stomach and saliva. Related keto acids are not produced in sufficient quantities to cause a severe metabolic acidosis. Inebriation, peripheral vasodilation has occurred. In children, hypoglycemia is particularly severe when poisoning following fasting, exercise or chronic malnutrition Lactic acidosis may occur in patients with severe liver disease, pancreatitis or receiving biguanide therapy or as a result of the hypovolemia which frequently accompanies severe intoxication. ANIMAL STUDIES: Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) most closely follows first order kinetics, with a half life of 2.5 to 3.2 hours. The elimination half life of the active metabolite acetone is significantly prolonged to about 5 hours in rats. In rat hepatocytes the following has been observed: marked depletion of glutathione, increased malondialdehyde production, decreased protein sulfhydryls content and leakage of lactic dehydrogenase with loss of membrane activity. A complete history and physical examination should be performed to detect pre existing conditions that might place the employee at increased risk, and to establish a baseline for future health monitoring. Examination of the skin, liver, kidneys, and respiratory system should be stressed. Skin disease: Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is a defatting agent and can cause dermatitis on prolonged exposure. Persons with pre existing skin disorders may be more susceptible to the effects of this agent. Liver disease: Although Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is not known as a liver toxin in humans, the importance of this organ in the biotransformation and detoxification of foreign substances should be considered before exposing persons with impaired liver function. Kidney disease: Although Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is not known as a kidney toxin in humans, the importance of this organ in the elimination of toxic substances justifies special consideration in those with impaired renal function. Chronic respiratory disease: In persons with impaired pulmonary function, especially those with obstructive airway diseases, the breathing of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) might cause exacerbation of symptoms due to its irritant properties. Periodic Medical Examination: The aforementioned medical examinations should be repeated on an annual basis. The assessment of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) exposure can be accomplished through measurement of either Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) or acetone. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) measurement has not been found to be a good assessment of low level exposure, due to its low sensitivity. However, measurement of acetone has been found to be a good indicator of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) exposure for exposures as low as 70 ppm, and has been found to correlate well with air concentrations. Whole Blood Reference Ranges: Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - BAT (sampling time is end of exposure or end of shift, measured as the metabolite, acetone), 50 mg/l; Toxic - Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) level associated with serious toxic symptoms is 150 mg/l. Serum or Plasma Reference Ranges: Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - not established; and Toxic - not established. Urine Reference Ranges: The assessment of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) exposure can be accomplished through measurement of either Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) or acetone. However only acetone was found to be a useful test, due to its greater sensitivity and good correlation with air exposure levels. Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - BAT (sampling time is end of exposure or end of shift, measured as the metabolite, acetone), 50 mg/l; Toxic - Not established. Persons with pre existing skin disorders may be more susceptible to the effects of this agent. ... In persons with impaired pulmonary function, especially those with obstructive airway diseases, the breathing of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) might cause exacerbation of symptoms due to its irritant properties. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s production and use in the manufacture of acetone, glycerol, and isopropyl acetate and as a solvent for a variety of applications may result in its release to the environment through various waste streams. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s use in hydraulic fracturing fluids results in its direct release to the environment. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) has been identified as a metabolic product of aerobic microorganisms, anaerobic microorganisms, fungi, and yeast. If released to air, a vapor pressure of 45.4 mm Hg at 25 °C indicates Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will exist solely as a vapor in the ambient atmosphere. Vapor-phase Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 3.2 days. If released to soil, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to have very high mobility based upon an estimated Koc of 1.5. Volatilization from moist soil surfaces is expected to be an important fate process based upon a Henry's Law constant of 8.10X10-6 atm-cu m/mole. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to volatilize from dry soil surfaces based upon its vapor pressure. If released into water, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is expected to be an important fate process based upon this compound's Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 86 hours and 29 days, respectively. An estimated BCF of 3 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis is not expected to occur due to the lack of hydrolyzable functional groups. Biodegradation is expected to be an important fate process based on the results of microbial screening tests. Occupational exposure to Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may occur through inhalation and dermal contact with this compound at workplaces where Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is produced or used. Monitoring data indicate that the general population may be exposed to Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) via inhalation of ambient air, ingestion of food and drinking water, and dermal contact with this compound directly and from consumer products containing Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA). ANAEROBIC: Typical Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) removal efficiencies for an anaerobic lagoon treatment facility, with a retention time of 15 days, were 50% after loading with dilute waste, and 69 and 74% after loading with concentrated wastes(1). In closed bottle studies, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was completely degraded anaerobically by an acetate-enriched culture, derived from a seed of domestic sludge(1). The culture started to use cross-fed Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA), after 4 days, at a rate of 200 mg/L/day(1). In a mixed reactor with a 20-day retention time, seeded by the same culture, 56% removal was achieved in the 20 days following 70 days of acclimation to a final concentration of 10,000 mg/L(1). The avg percent removal of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in semi-pilot scale anaerobic lagoons was 50% in 7.5-10 days for dilute wastes with 60 ppm Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and 69-74% in 20-40 days for concentrated wastes with 175 ppm Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)(2). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was readily mineralized to methane and carbon dioxide under methanogenic conditions(3). The degradation rate of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) under these conditions in fuel impacted river sediments and industrial/sewage impacted creek sediments was 2.4 ppm C/day (82% of expected methane recovery) and 3.0 ppm C/day (91% of expected methane recovery), respectively(3). The degradation rate of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in a sediment slurry from a shallow anoxic aquifer under methanogenic conditions was 7.6 ppm C/day (112% of theoretical methane recovery)(4). In anaerobic bioreactor studies using a granular sludge inocula, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) (at 125 ppm initial concentration) degraded with 115.5% of theoretical methane production over a 21-day incubation period(5); acetone was identified as a metabolite(5). In laboratory anaerobic sludge reactor tests using liquid hen manure as inoculum, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was degraded 100% in a 13-day incubation period with lag period(6). The Henry's Law constant for Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is 8.10X10-6 atm-cu m/mole at 25 °C(1). This Henry's Law constant indicates that Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 86 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 29 days(SRC). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Isopropyl alcohol (izopropil
Isopropyl benzoate
ISOPROPYL ISOSTEARATE, N° CAS : 31478-84-9 / 68171-33-5. Nom INCI : ISOPROPYL ISOSTEARATE. Nom chimique : Isopropyl isodecanoate. N° EINECS/ELINCS : 250-651-1 / 269-023-3. Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Emollient : Adoucit et assouplit la peau. Agent d'entretien de la peau : Maintient la peau en bon état
ISOPROPYL ISOSTEARATE
ISOPROPYL LAURATE, N° CAS : 10233-13-3. Nom INCI : ISOPROPYL LAURATE. N° EINECS/ELINCS : 233-560-1. Ses fonctions (INCI) : Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Emollient : Adoucit et assouplit la peau. Agent d'entretien de la peau : Maintient la peau en bon état
ISOPROPYL LAURATE
Isopropyl laurate,Laurate d’isopropyle, IPL,Dodecanoic acid, 1-methylethyl ester, EC / List no.: 233-560-1, CAS no.: 10233-13-3. Mol. formula: C15H30O2 Le Laurate d’isopropyle est produit à partir d’acide laurique dérivé d’huile végétale & d’isopropanol (ou alcool isopropylique). C’est l’ester de l’acide laurique et de l’isopropanol.1-Methylethyl dodecanoate; 233-560-1 [EINECS]; Dodecanoic acid, 1-methylethyl ester ; Isopropyl laurate ; Isopropyllaurat [German] ; Laurate d'isopropyle [French] MFCD00451146 [MDL number]; propan-2-yl dodecanoate; [10233-13-3]; 2-Propanoldodecanoate; 56S; 98-58-8 [RN]; AGN-PC-0JKHZX; Dodecanoic acid 1-methylethyl ester; dodecanoic acid isopropyl ester; Dodecanoic acid methylethyl ester; EINECS 233-560-1; iso-Propyl dodecanoate; Isopropyl dodecanoate; Isopropyl laurate|Propan-2-yl dodecanoate; Isopropyl_laurate; iso-Propyldodecanoate; Isopropyllaurate; Jsp000277; lauric acid isopropyl ester; ST-5309. Isopropyl laurate is used in the following products: washing & cleaning products, polymers, textile treatment products and dyes, adhesives and sealants, lubricants and greases, pH regulators and water treatment products and plant protection products.
ISOPROPYL LINOLEATE
ISOPROPYL MYRISTATE; Tetradecanoic acid 1-methylethyl ester; Estergel; Myristic Acid, Isopropyl Ester; Bisomel; Tegester; Tetradecanoic Acid, Isopropyl; cas no: 110-27-0; 1405-98-7
ISOPROPYL MYRISTATE
Tetradecanoic acid 1-methylethyl ester; Estergel; Myristic Acid, Isopropyl Ester; Bisomel; Tegester; Tetradecanoic Acid, Isopropyl; cas no: 110-27-0
ISOPROPYL PALMITATE
IPP; Isopal; Hexadecanoic acid, 1-methylethyl ester; Palmitic acid, Isopropyl ester; Deltyl; Hexadecanoic acid, Isopropyl ester; Isopal; Isopropyl hexadecanoate; 1-methylethyl hexandecanoate; cas no: 142-91-6
ISOPROPYL STEARATE
propan-2-yl octadecanoate; ISOPROPYL STEARATE, N° CAS : 112-10-7, Nom INCI : ISOPROPYL STEARATE, Nom chimique : Isopropyl stearate, N° EINECS/ELINCS : 203-934-9. Ses fonctions (INCI): Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Emollient : Adoucit et assouplit la peau.Agent d'entretien de la peau : Maintient la peau en bon état. Noms français : ESTER ISOPROPYLIQUE DE L'ACIDE STEARIQUE; STEARATE D'ISOPROPYLE. Noms anglais : ISOPROPYL STEARATE; OCTADECANOIC ACID, 1-METHYLETHYL ESTER; OCTADECANOIC ACID, ISOPROPYL ESTER; STEARIC ACID, ISOPROPYL ESTER. Utilisation et sources d'émission: Produit organique. 112-10-7 [RN] 203-934-9 [EINECS] Isopropyl stearate [ACD/IUPAC Name] Isopropylstearat [German] [ACD/IUPAC Name] MFCD00026666 Octadecanoic acid, 1-methylethyl ester [ACD/Index Name] Stéarate d'isopropyle [French] [ACD/IUPAC Name] [112-10-7] 10/7/112 1-METHYLETHYL OCTADECANOATE 4-02-00-01219 [Beilstein] 4-02-00-01219 (Beilstein Handbook Reference) [Beilstein] 7/10/112 EINECS 203-934-9 https://mcule.com/MCULE-3731648811 isopropyl octadecanoate Octadecanoic acid 1-methylethyl ester octadecanoic acid isopropyl ester Octadecanoic acid, isopropyl ester Octadecanoic acid,1-methylethyl ester propan-2-yl octadecanoate Revenge Stearic acid isopropyl ester Stearic acid, isopropyl ester Tegosoft S Wickenol 127
ISOPROPYLPARABEN
2-ETHYLHEXYL DIPHENYL PHOSPHATE; Diphenyloctylphosphate; Diphenyl phosphate, 2-ethyl-1-hexanol ester; 2-ethylhexyl diphenyl phosphorate; diphenyl 2-ethylhexyl phosphate; Ethylhexyl diphenylphosphate; octicizer; Phosphoric acid 2-ethylhexyl diphenyl ester; santicize CAS NO:1241-94-7
ISOPROPYLPEHNYL DIPHENYL PHOSPHATE
ISOSTEARETH-10, N° CAS : 52292-17-8. Nom INCI : ISOSTEARETH-10, Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
ISOSTEARETH-10
ISOSTEARETH-20, N° CAS : 52292-17-8 Nom INCI : ISOSTEARETH-20 Classification : Composé éthoxylé Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
ISOSTEARETH-20
ISOSTEARIC ACID; 16-METHYLHEPTADECANOIC ACID; Isooctadecanoic acid CAS Number 2724-58-5
Isostearic acid
isostearic acid; steraric acid; ,isooctadecanoic acid; 16-METHYLHEPTADECANOIC ACID CAS NO: 2724-58-5
ISOSTEARYL GLYCOLATE
ISOSTEARYL LACTATE, N° CAS : 42131-28-2, Nom INCI : ISOSTEARYL LACTATE, Nom chimique : Isooctadecyl lactate, N° EINECS/ELINCS : 255-674-0 Compatible Bio (Référentiel COSMOS) Ses fonctions (INCI) Emollient : Adoucit et assouplit la peau Agent d'entretien de la peau : Maintient la peau en bon état
ISOSTEARYL ISOSTEARATE
ISOSTEARYL ISOSTEARATE ISOSTEARYL ISOSTEARATE ISOSTEARYL ISOSTEARATE is classified as : Binding Emollient Skin conditioning CAS Number 41669-30-1 EINECS/ELINCS No: 255-485-3 COSING REF No: 34765 Chem/IUPAC Name: Isooctadecyl isooctadecanoate Isostearyl Isostearate Isostearyl Isostearate is a fluid emollient for oils. It provides a rich feel and improves spreading on the skin. It is appropriate for use in lipsticks and as a binding agent for make-up powders. This product does not modify pigment coloration, and provides superfatting properties to compensate for the drying effect of powders Details An emollient ester (oily liquid from Isostearyl Alcohol + Isostearic Acid) that gives excellent slip, lubricity and luxurious softness on skin. It's also popular in makeup products to disperse pigments nicely and evenly. Molecular Weight of Isostearyl Isostearate 537 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3-AA of Isostearyl Isostearate 16.8 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Isostearyl Isostearate 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Isostearyl Isostearate 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Isostearyl Isostearate 32 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of Isostearyl Isostearate 536.553232 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Isostearyl Isostearate 536.553232 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Isostearyl Isostearate 26.3 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Isostearyl Isostearate 38 Computed by PubChem Formal Charge of Isostearyl Isostearate 0 Computed by PubChem Complexity of Isostearyl Isostearate 456 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Isostearyl Isostearate 0 Computed by PubChem Defined Atom Stereocenter Count of Isostearyl Isostearate 0 Computed by PubChem Undefined Atom Stereocenter Count of Isostearyl Isostearate 0 Computed by PubChem Defined Bond Stereocenter Count of Isostearyl Isostearate 0 Computed by PubChem Undefined Bond Stereocenter Count of Isostearyl Isostearate 0 Computed by PubChem Covalently-Bonded Unit Count of Isostearyl Isostearate 1 Computed by PubChem Compound of Isostearyl Isostearate Is Canonicalized Yes The stearate esters (Butyl Stearate, Cetyl Stearate, Isocetyl Stearate, Isopropyl Stearate, Myristyl Stearate, Ethylhexyl Stearate, Isobutyl Stearate) are oily liquids or waxy solids. Ethylhexyl Stearate may also be called Octyl Stearate. In cosmetics and personal care products, stearate esters are used most frequently in the formulation of eye makeup, skin makeup, lipstick and skin care products. Stearate esters act primarily as lubricants on the skin's surface, which gives the skin a soft and smooth appearance. Butyl Stearate also decreases the thickness of lipsticks, thereby lessening the drag on lips, and imparts water repelling characteristics to nail polishes. Butyl Stearate and Isopropyl Stearate dry to form a thin coating on the skin. Isocetyl Stearate can also be used to dissolve other substances, usually liquids. Function(s) of Isopropyl Stearate: Binder; Skin-Conditioning Agent - Emollient; BINDING; SKIN CONDITIONING Use restrictions of Isopropyl Stearate: Determined safe for use in cosmetics, subject to concentration or use limitations - Safe for use in cosmetics with some qualifications Irritation (skin, eyes, or lungs): Human irritant - strong evidence (only for products for use around the eyes, on the skin, or may be aerosolized (airborne)) GHS Hazard Statements of Isopropyl Stearate: Aggregated GHS information from 2 notifications provided by 23 companies to the ECHA C&L Inventory. H413 (100%): May cause long lasting harmful effects to aquatic life Information may vary between notifications depending on impurities, additives, and other factors. The percentage value in parenthesis indicates the notified classification ratio from all companies. Only Hazard Codes with percentage values above 10% are shown. Molecular Formula: C21H42O2 Molecular Weight: 326.565 g/mol IUPAC Name: propan-2-yl octadecanoate CAS: 112-10-7 EC Number: 203-934-9 Isostearyl Isostearate is a fluid emollient for oils. It provides a rich feel and improves spreading on the skin. It is appropriate for use in lipsticks and as a binding agent for make-up powders. This product does not modify pigment coloration, and provides superfatting properties to compensate for the drying effect of powders. Skincare ingredients: Isostearyl Isostearate What is Isostearyl isostearate? Great for: Emollient like jojoba oil with a virtually non-existent after-feel How it works: It provides a rich but non-greasy skin feel and improves spreading on the skin. It is often used in lipsticks and to bind together make-up powders. Where does isostearyl isostearate come from? Isostearyl isostearate is the ester (the product of an alcohol and an acid) of isosteric alcohol and isostearic acid. Isostearic acid is an isomer of stearic acid, a naturally-occurring fatty acid found in cocoa and shea butter. Isostearic acid and stearic acid have the same chemical formula, but the arrangement of their atoms vary slightly which gives it very different physical properties. For example, stearic acid is solid at room temperature and isostearic acid is clear yellow liquid. Formulation tips Undiluted Isopropyl Isostearate was classified as a slight ocular irritant but otherwise is considered very safe.