Другие секторы

Wheat germ Oil Virgin
SYNONYMS ewanol WG; ewanol WG-G; lipovol WGO; triticum vulgare germ oil; wheat germ oil;wheat germ oil (solvent free, refined);wheat germ ref USA; wheat germ unref israel; wheat husk oil; ewanol WR-E ( wheat-germ oil, refined ph. eur. 7.0 w. 0.3% nat. vitamin E);ewanol WR (wheat-germ oil, refined ph. eur. 7.0); cropure wheatgerm; wheatgerm oil organic; wheatgerm oil triticum spp, USA; wheatgerm oil triticum vulgare CAS NO:68917-73-7
WHEY PROTEIN
White Oil 70#; PARAFFIN OIL, WHITE; PARAFFIN OIL; MINERAL OIL, WHITE; MINERAL OIL; slaboil(obs.); white; whitemineraloil(petroleum) cas no: 8042-47-5
whey protein
Whey, proteins; Alacen; Daiichilacto; Lacprodan 80; Lacprodan 80;GSH Complex CAS NO: 91082-88-1
WHIPPED CREAM BASE
whipped cream; Whipped topping concentrates
WHITE MINERAL OIL
Wingtack® EXTRA; Wingtack® EXTRA Flake; Wingtack® EXTRA Pastille; Wingtack® EXTRA Molten; WT EXTRA cas no: 62258-49-5
White paraffin oil heavy/light
SYNONYMS C1-C6 N-PARAFFINS;BAYOL F;NUJOL;OIL;OIL BATH FILLING;OIL, MINERAL;PARAFFIN LIQUID;PARAFFIN CAS NO:8012-95-1
WINGTACK EXTRA
coating integrendt; coated precipitated calcium carbonate ; calcium carbonate cas no: 471-34-1
WINNOFIL SPM
Corn sugar gum; Xanthan; Gum xanthan; Polysaccharide gum; thickener food grade xanthan gum; Petrochemical Xanthan Gum; Tarazine; RHODOPOL 23; XANTHAN; XANTHAN GUM; XANTEMPO™ xanthangumfromxanthomonascampestris CAS NO:11138-66-2
WITCONATE AOS-12 АЛЬФА-ОЛЕФИНОВЫЙ СУЛЬФОНАТ, НАТРИЕВАЯ СОЛЬ

Альфа-олефинсульфонат натрия, известный как Витконат АОС-12, представляет собой универсальное поверхностно-активное вещество, широко используемое в различных отраслях промышленности.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль получают из альфа-олефинов и сульфируют для получения высокоэффективного чистящего средства.

Номер CAS: 68439-57-6
Номер ЕС: 270-407-8

Синонимы: альфа-олефинсульфонат, натриевая соль, AOS, натрий AOS, AOS-12, витконат AOS, витконат AOS-12, альфа-олефинсульфонат натрия, альфа-олефинсульфонат натрия, олефинсульфонат натрия C12-16, AOS-40, AOS- 30, олефинсульфонат натрия C14-16, олефинсульфонат натрия C14-17, алкенсульфонат натрия, олефинсульфонат натрия C14-15, альфа-сульфоалканы, натриевая соль, альфа-сульфоалканы, C14-16-олефин-сульфонат, натриевая соль, олефин Сульфонат, натриевая соль, витконат AOS-30, витконат AOS-40, AOS-23, олефинсульфонат натрия C14-15, альфа-олефинсульфонат, натриевая соль, альфа-олефинсульфонат, натриевая соль, жидкость, олефинсульфонат натрия, витконат AOS-23 , Альфа-олефинсульфонат, AOS-12 (натриевая соль), альфа-олефинсульфонат, жидкость, натриевая соль, витконат AOS-60, AOS-18, AOS-25, альфа-олефинсульфонат натрия, Witconate AOS-25, AOS-15, Сульфонат альфа-олефинов натрия, Сульфонат олефинов C14-C16, Альфа-олефинсульфонат, натриевая соль, Альфа-олефинсульфонат, натриевая соль, жидкость, альфа-олефинсульфонат, натриевая соль, раствор, альфа-олефинсульфонат, натриевая соль, 35 % раствор, олефинсульфонат натрия C12-C14, олефинсульфонат натрия C14-C16, олефинсульфонат натрия C14-C17, альфа-олефинсульфонат, 35% раствор, натриевая соль, альфа-олефинсульфонат, натриевая соль, 40% раствор, альфа-натрия Сульфонат олефина, 40% раствор, натриевая соль, альфа-олефинсульфонат, натриевая соль, 25% раствор, олефинсульфонат натрия C12-C15, олефинсульфонат натрия C14-C15, олефинсульфонат натрия C14-C17, альфа-олефинсульфонат натрия, 40% Раствор, натриевая соль, витконат АОС-15, витконат АОС-18, витконат АОС-25, витконат АОС-35, витконат АОС-40, витконат АОС-60.



ПРИЛОЖЕНИЯ


Альфа-олефинсульфонат Witconate AOS-12, натриевая соль обычно используется в рецептурах шампуней для обеспечения эффективных очищающих и пенообразующих свойств.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль является ключевым ингредиентом средств для мытья тела и гелей для душа, способствуя их способности удалять грязь и жир с кожи.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в жидком мыле для рук благодаря своему мягкому, но эффективному очищающему действию.

В средствах для мытья посуды Witconate AOS-12 помогает удалять жир и остатки пищи, оставляя посуду чистой и блестящей.
Стиральные порошки часто содержат это поверхностно-активное вещество для удаления пятен и грязи с тканей во время стирки.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль добавляется в средства для чистки твердых поверхностей, чтобы помочь удалить стойкие пятна и грязь со столешниц, полов и других поверхностей.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в автомобильных чистящих средствах, включая мыло для автомойки, для эффективной очистки кузова автомобиля.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль является распространенным ингредиентом в шампунях и средствах для ухода за домашними животными благодаря своим мягким и очищающим свойствам.

Witconate AOS-12 используется в составе промышленных чистящих средств для обезжиривания и общей очистки.
В сельском хозяйстве он используется в составах пестицидов для улучшения распространения и смачивания поверхности растений.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль содержится в освежителях воздуха и освежителях для тканей, помогая удалять запахи и освежать.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в средствах для чистки ковров и обивки для удаления грязи и пятен с волокон, не повреждая материал.

Witconate AOS-12 добавляется в пенящиеся средства для ванн, такие как пенные ванны и бомбочки для ванн, для создания роскошных и пенящихся ощущений.
В средствах личной гигиены, таких как очищающие средства для лица и средства для снятия макияжа, он помогает эффективно очищать кожу, не удаляя при этом натуральные масла.

Альфа-олефинсульфонат Witconate AOS-12 и натриевая соль добавляются в кремы и гели для бритья, обеспечивая смазку и пену для гладкого бритья.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в дезинфицирующих средствах для рук и антибактериальном мыле из-за его способности образовывать пену и способствовать очищению.
Альфа-олефинсульфонат Witconate AOS-12 и натриевая соль добавляются в средства для укладки волос, такие как муссы и гели, для улучшения текстуры и обеспечения фиксации.

При обработке текстиля он используется в качестве смачивающего агента, способствующего проникновению красителей и химикатов в ткани.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в рецептурах пенящихся моющих средств для использования в пищевой промышленности.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль добавляется в промышленные обезжиривающие и чистящие средства для очистки оборудования и механизмов на производственных предприятиях.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в составе бытовых и промышленных средств для мытья полов для удаления грязи и пятен с полов.

В составах шампуней для ковров он помогает отделить грязь и мусор от волокон ковра и облегчить их удаление.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в очистителях лодок и морских судов для удаления остатков соли и другого мусора с поверхностей.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль содержится в средствах для чистки и кондиционерах для кожи и помогает очищать и увлажнять кожаные поверхности.
Альфа-олефинсульфонат натриевой соли Witconate AOS-12 имеет широкий спектр применения в различных отраслях промышленности, способствуя повышению эффективности и производительности многочисленных чистящих средств и средств личной гигиены.

В косметической промышленности Witconate AOS-12 используется в средствах для очищения лица, средствах для снятия макияжа и отшелушивающих скрабах для эффективного очищени�� и освежения кожи.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль добавляется в соли для ванн и бомбочки для ванн для усиления пенообразования и создания роскошных ощущений от купания.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в средствах для чистки и дезинфицирующих средствах для рук благодаря своей способности образовывать обильную пену и эффективно очищать руки.
В фармацевтической промышленности его используют в составе лечебных шампуней и средств для мытья тела для лечения различных кожных заболеваний.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль включается в средства по уходу за ногами, такие как скрабы для ног и кремы, для очищения и смягчения кожи.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль добавляется в составы для полоскания рта, чтобы помочь удалить бактерии и зубной налет изо рта.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется при производстве жидкого мыла и средств для мытья рук в институциональных и коммерческих условиях.
В индустрии гостеприимства его можно найти в гостиничных принадлежностях, таких как шампуни, кондиционеры и средства для мытья тела.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в составе продуктов по уходу за детьми, таких как детские шампуни и средства для мытья тела, для бережного очищения.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в производстве средств по уходу за домашними животными, таких как шампуни для домашних животных и спреи для ухода за домашними животными, для поддержания гигиены домашних животных.

Альфа-олефинсульфонат Witconate AOS-12 и натриевая соль добавляются в очищающие салфетки для лица и салфетки для снятия макияжа для удобного и эффективного снятия макияжа.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в составе средств для лечения прыщей, таких как очищающие средства для лица и точечные средства, благодаря их очищающим и антибактериальным свойствам.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль содержится в средствах по уходу за солнцем, таких как солнцезащитные кремы и лосьоны после загара, благодаря своим эмульгирующим и увлажняющим свойствам.
В автомобильной промышленности он используется в моющих и обезжиривающих средствах для мойки автомобилей для очистки кузова и двигателей автомобилей.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в составе промышленных чистящих и обезжиривающих средств для рук для удаления тяжелых загрязнений и жира.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль добавляется в средства для очистки и полировки металла для удаления потускнения и восстановления блеска металлических поверхностей.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в производстве бытовых дезинфицирующих средств и дезинфицирующих средств для очистки и дезинфекции поверхностей.

В сельском хозяйстве он используется при разработке сельскохозяйственных вспомогательных средств для повышения эффективности пестицидов и гербицидов.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль содержится в спреях для освежителей воздуха и дезодораторах для помещений для нейтрализации запахов и освежения воздуха.

Альфа-олефинсульфонат Witconate AOS-12 и натриевая соль добавляются в бытовые чистящие салфетки и одноразовые чистящие салфетки для удобной и эффективной очистки на ходу.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в производстве промышленных обезжиривающих салфеток и промышленных чистящих салфеток для тяжелых условий эксплуатации.

В строительной отрасли он используется в составе средств для очистки бетона и каменной кладки для удаления грязи и пятен с поверхностей.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль добавляется в средства для удаления ржавчины и ингибиторы коррозии для защиты металлических поверхностей от ржавчины и коррозии.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль используется в рецептурах растворов для чистки электронных устройств и средств для очистки контактов для удаления пыли и мусора с электронных компонентов.
Альфа-олефинсульфонат натриевой соли Witconate AOS-12 находит разнообразное применение в различных отраслях промышленности, способствуя повышению эффективности и производительности широкого спектра чистящих средств и средств личной гигиены.



ОПИСАНИЕ


Альфа-олефинсульфонат натрия, известный как Витконат АОС-12, представляет собой универсальное поверхностно-активное вещество, широко используемое в различных отраслях промышленности.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль получают из альфа-олефинов и сульфируют для получения высокоэффективного чистящего средства.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль доступна в различных формах, включая жидкости и порошки.
Альфа-олефинсульфонат натриевой соли Witconate AOS-12 демонстрирует превосходные пенообразующие свойства, что делает его идеальным для применений, где желательна стабильность пены.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль обычно используется в средствах личной гигиены, таких как шампуни, средства для мытья тела и жидкое мыло.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль обеспечивает мягкое очищение и образование обильной и роскошной пены.
В бытовых чистящих средствах он используется в жидкостях для мытья посуды, стиральных порошках и средствах для чистки твердых поверхностей.
Альфа-олефинсульфонат натриевой соли Witconate AOS-12 эффективно удаляет грязь, жир и пятна с различных поверхностей.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль является биоразлагаемым, что делает его экологически чистым по сравнению с некоторыми другими поверхностно-активными веществами.
Witconate AOS-12 Альфа-олефинсульфонат, натриевая соль хорошо работает как в жесткой, так и в мягкой воде, не теряя при этом эффективности.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль совместима с широким диапазоном уровней pH, что повышает ее универсальность в рецептуре.
Его мягкость делает его пригодным для использования в средствах личной гигиены даже для чувствительной кожи.
В промышленности Witconate AOS-12 используется в продуктах для автомойки и нефтепромысловых химикатах.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль помогает удалить стойкие пятна и обеспечивает превосходные очищающие свойства.
Альфа-олефинсульфонат натриевой соли Witconate AOS-12 стабилен при нормальных условиях хранения, но его следует защищать от экстремальных температур и влаги.
Альфа-олефинсульфонат натриевой соли Witconate AOS-12 прост в обращении и легко включается в рецептуры.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль, имеет анионную природу, то есть несет отрицательный заряд, что повышает ее способность удалять грязь и жир с поверхностей.
Альфа-олефинсульфонат Witconate AOS-12, натриевая соль часто используется в сочетании с другими поверхностно-активными веществами и ингредиентами для оптимизации производительности.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль совместим с большинством других часто используемых ингредиентов в составах для чистки и личной гигиены.
Альфа-олефинсульфонат натриевой соли Witconate AOS-12 подвергается строгим мерам контроля качества для обеспечения единообразия и чистоты.

Альфа-олефинсульфонат Witconate AOS-12, натриевая соль производится с использованием передовых производственных процессов и соответствует самым высоким отраслевым стандартам.
Альфа-олефинсульфонат натриевой соли Witconate AOS-12 упаковывается и маркируется в соответствии с нормативными требованиями для обеспечения безопасного обращения и использования.

Альфа-олефинсульфонат натриевой соли Witconate AOS-12 широко доступен у различных поставщиков и дистрибьюторов по всему миру.
Его универсальность, эффективность и мягкость делают его предпочтительным выбором для разработчиков рецептур в различных отраслях.
Альфа-олефинсульфонат натрия, Witconate AOS-12, продолжает оставаться важным ингредиентом во многих продуктах бытовой химии, личной гигиены и промышленных продуктах, способствуя их очищающей эффективности и удовлетворению потребителей.



ХАРАКТЕРИСТИКИ


Внешний вид: прозрачная или слегка желтоватая жидкость или белый порошок.
Запах: Легкий характерный запах.
Точка плавления: Обычно не имеет определенной точки плавления, поскольку существует в виде жидкости или порошка.
Точка кипения: Разлагается до кипения; температура разложения зависит от конкретного состава и чистоты.
Плотность: Зависит от концентрации и состава; обычно составляет от 1,0 до 1,2 г/см³ для жидкостей.
Растворимость в воде: Растворим в воде, образуя прозрачный или слегка мутный раствор.
Растворимость в других растворителях: Нерастворим в неполярных растворителях, таких как углеводороды, но растворим в полярных органических растворителях.
pH: Обычно щелочной; В водных растворах pH колеблется от 7 до 10 в зависимости от концентрации.
Температу��а вспышки: Неприменимо для водных растворов; могут иметь температуру вспышки для концентрированных растворов в органических растворителях.
Вязкость: Зависит от концентрации и температуры; обычно низкая вязкость для водных растворов.
Химические свойства:
Химическая формула: Обычно представлена как R-CH=CH-(CH2)n-SO3Na, где R представляет собой алкильную группу, а n представляет собой количество атомов углерода в цепи.
Молекулярный вес: варьируется в зависимости от конкретной длины алкильной цепи и степени сульфирования.
Функциональные группы: Содержит сульфонатную группу (SO3), присоединенную к олефиновой углеродной цепи.
Ионизация: Анионное поверхностно-активное вещество; диссоциирует в воде с образованием ионов натрия (Na+) и сульфонат-ионов (SO3-) в растворе.



ПЕРВАЯ ПОМОЩЬ


1. Вдох:

Симптомы:
Вдыхание аэрозольных или испаренных частиц может вызвать раздражение дыхательных путей, включая кашель и затруднение дыхания.

Немедленные действия:
Немедленно вынесите пострадавшего на свежий воздух.
Если дыхание затруднено, обеспечьте кислород, если он доступен.
Обратитесь за медицинской помощью, если симптомы сохраняются или ухудшаются.

Следовать за:
Следите за человеком на предмет каких-либо признаков респираторного дистресс-синдрома.
Обеспечьте комфорт и уверенность.


2. Контакт с кожей:

Симптомы:
Прямой контакт с концентрированными растворами может вызвать раздражение, покраснение или дерматит.

Немедленные действия:
Снимите загрязненную одежду и обувь.
Тщательно промойте пораженный участок водой с мылом в течение не менее 15 минут.
Если раздражение не проходит, обратитесь за медицинской помощью.

Следовать за:
Нанесите мягкий увлажняющий крем или лосьон, чтобы успокоить кожу.
Следите за любыми признаками аллергических реакций или длительного раздражения.


3. Контакт с глазами:

Симптомы:
Контакт с глазами может вызвать раздражение, покраснение или слезотечение.

Немедленные действия:
Немедленно промойте глаза нежно проточной водой в течение не менее 15 минут, держа веки открытыми.
Снимите контактные линзы, если они есть и легко снимаются.
Обратитесь за медицинской помощью, если раздражение не проходит или есть признаки травмы.

Следовать за:
Защищайте пораженный глаз от дальнейшего раздражения или травмы.
Не тереть глаза, так как это может усилить раздражение.


4. Проглатывание:

Симптомы:
Проглатывание концентрированных растворов может вызвать раздражение желудочно-кишечного тракта, тошноту, рвоту или диарею.

Немедленные действия:
Не вызывайте рвоту, если это не предписано медицинским персоналом.
Прополощите рот водой и выпейте много воды или молока, чтобы разбавить химическое вещество.
Немедленно обратитесь за медицинской помощью, даже если симптомов нет.

Следовать за:
Следите за человеком на предмет каких-либо признаков желудочно-кишечного расстройства или дискомфорта.
При необходимости обеспечьте поддерживающую терапию, например, противорвотные средства при тошноте и рвоте.


5. Общие советы:

Персональная защита для лиц, оказывающих первую помощь:
При работе с концентрированными растворами надевайте соответствующие средства индивидуальной защиты (СИЗ), такие как перчатки, защитные очки и защитную одежду.
Избегайте прямого контакта химического вещества с кожей и глазами.

Примечания для врача:
Лечите симптоматически и поддерживающе.
Обеспечьте соответствующее медицинское лечение в зависимости от тяжести симптомов и воздействия.
Помните о потенциальных взаимодействиях с другими лекарствами или химическими веществами.



ОБРАЩЕНИЕ И ХРАНЕНИЕ


Умение обращаться:

Личная защита:
При работе с концентрированными растворами надевайте соответствующие средства индивидуальной защиты (СИЗ), включая химически стойкие перчатки, защитные очки и защитную одежду.
Используйте средства защиты органов дыхания, такие как пылезащитная маска или респиратор, если присутствуют аэрозольные частицы или пары.
Избегайте длительного или многократного контакта кожи с концентрированными растворами, чтобы свести к минимуму риск раздражения.

Практика безопасного обращения:
Обращайтесь с альфа-олефинсульфонатом натрия осторожно, чтобы не допустить разливов или выбросов.
Используйте подходящие инструменты и оборудование, например, насосы или перекачивающие шланги, чтобы свести к минимуму прямой контакт с химикатом.
Не ешьте, не пейте и не курите во время работы с химикатом и тщательно мойте руки после работы.

Инженерный контроль:
Обеспечьте достаточную вентиляцию в рабочей зоне, чтобы свести к минимуму воздействие частиц или паров, находящихся в воздухе.
При работе с концентрированными растворами используйте системы местной вытяжной вентиляции или вытяжные шкафы для контроля уровня воздействия.

Гигиенические меры:
Обеспечьте возможность мытья рук и тела сразу после работы с альфа-олефинсульфонатом натрия.
Избегайте загрязнения помещений для еды и питья химическими веществами.
Регулярно стирайте рабочую одежду, чтобы предотвратить раздражение кожи от остаточного химического воздействия.

Предотвращение разливов:
Храните контейнеры с Witconate AOS-12 надежно, чтобы предотвратить опрокидывание или случайное разливание.
Используйте вторичные системы локализации, такие как лотки для разливов или насыпи, для локализации разливов и предотвращения загрязнения окружающей среды.
Обучите персонал правильным процедурам реагирования на разливы и предоставьте материалы для ликвидации разливов.


Хранилище:

Условия хранения:
Храните альфа-олефинсульфонат натрия в прохладном, сухом, хорошо проветриваемом помещении, вдали от прямых солнечных лучей и источников тепла.
Поддерживайте температуру хранения в рекомендуемых пределах, чтобы предотвратить разложение или кристаллизацию.
Убедитесь, что складские помещения оборудованы соответствующими средствами контроля температуры и влажности, особенно для порошкообразных форм химикатов.

Обработка контейнеров:
Для хранения Witconate AOS-12 используйте контейнеры из совместимых материалов, таких как полиэтилен высокой плотности (HDPE) или нержавеющая сталь.
Перед хранением проверьте контейнеры на предмет утечек или повреждений и обращайтесь с ними осторожно, чтобы избежать разливов или несчастных случаев.
Пометьте все контейнеры названием химического вещества, концентрацией, предупреждениями об опасности и мерами предосторожности при обращении.

Сегрегация:
Храните альфа-олефинсульфонат натрия вдали от несовместимых веществ, таких как сильные кислоты, основания, окислители и химически активные металлы.
Разделите различные химические классы, чтобы предотвратить перекрестное загрязнение и химические реакции.

Управление запасами:
Внедрите систему инвентаризации по принципу «первым пришел — первым ушел» (FIFO), чтобы обеспечить использование старых запасов раньше новых.
Ведите точный учет уровня запасов и потребления, чтобы предотвратить затоваривание или дефицит.

Меры безопасности:
Ограничьте доступ к местам хранения, содержащим Witconate AOS-12, только уполномоченному персоналу.
Примите меры безопасности, такие как запирание шкафов или контроль доступа, чтобы предотвратить несанкционированный доступ или кражу.

Готовность к чрезвычайным ситуациям:
Разрабатывать и поддерживать планы реагирования на чрезвычайные ситуации при разливах, утечках или авариях, связанных с альфа-олефинсульфонатом натрия.
Убедитесь, что персонал обучен действиям в чрезвычайных ситуациях и имеет доступ к оборудованию для экстренного реагирования, такому как комплекты для разлива и средства индивидуальной защиты.

Withania somnifera
withania somnifera flower extract; extract of the flowers of the winter-cherry, withania somnifera l., solanaceae; ajagandha flower extract;ashwagandha flower extract; winter cherry flower extract; indian ginseng flower extract CAS NO:90147-43-6
Xantan Gum
Corn sugar gum; Xanthan; Gum xanthan; Polysaccharide gum; GALACTOMANNANE; GLUCOMANNAN; GLUCOMANNAN MAYO; GUM XANTHAN; KONJAC GLUCOMANNAN; RHODOPOL 23; XANTEMPO(TM); XANTHAN; XANTHAN GUM; xanthangumfromxanthomonascampestris; XANTHAM; Xanthan Gum Xanthomonas campestris; xanthan gum Xc; Xanthan gum pharma; XANTHAN GUM FOR FOOD & PHARMACEUTICAL APPLICATION; XanthanGumPure; XANTHANGUM,FCC; XANTHANGUM,NF; XANTHATEGUM; Xanthan Gummi CAS NO:11138-66-2
XANTHAN GUM
XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) IUPAC Name of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) 9H-xanthene Experimental Properties of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) Physical Description of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) DryPowder Cream-coloured powder Solubility of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) Soluble in water. Insoluble in ethanol Chemical formula: (C35H49O29)n XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM), widely used in food applications, is a heteropolysaccharide produced by submerged aerobic fermentation using a bacterium named Xanthomonas campestris and forms a sterile fermentation medium with carbohydrate, a suitable nitrogen source, potassium phosphate and other trace elements. The polysaccharide produced at the end of the fermentation step is precipitated using isopropyl alcohol and isolated from the medium. The isolated polysaccharide is then centrifuged and then dried to remove residual isopropyl alcohol. The dried XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is milled to be powdered and packed after being sifted through the sieves. The predominant hexose is D-gluco and D-mannose with D-glucuronic acid and pyruvic acid and is prepared as sodium, potassium or calcium salts and the solutions are neutral The XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM), a microbial heteropolysaccharide, consists essentially of a polymer skeleton containing 1,4-linked ß-D-glucose units as in cellulose. In these scaffolded side chains, there is a trisaccharide consisting of one D-glucuronic acid residue between the two D-mannose residues. The polymer also contains 4.7% O-acetyl groups and 3.0-3.5% pu rvric acid as a ketal in the glucose unit. These side chains found in the XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM), which make up about 60% of the molecule, can gain many physical and chemical properties specific to XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM). Because of the side chains, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) can be completely hydrated even in the cold chain. Furthermore, it is stated that these side chains make XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) resistant to hydrolysis. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) which is soluble in water but not soluble in organic solvents; As rheological control agent in water containing systems and as stabilizer for emulsions and suspensions. Apart from these, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM); These properties of the XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) which are easily soluble in 8% of hydrochloric acid, 10% of hydrochloric acid and 25% of phosphoric acid, can be easily dissolved in the solution of sulfuric acid, nitric acid and acetic acid, It can last for months as long as the temperature does not rise. Commercial XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is a yellowish powdery substance which is completely soluble in hot or cold water and gives high viscosity solutions at low concentrations. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM)'s aqueous solutions are able to poison up to 50% of some hydrophilic solvents such as ethanol and propylene glycol. The viscosity of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is a function of its concentration in its distribution. As with other gauges, the xanthan gauge solenoids also exhibit a pseudo-fluid type. Pseudoplastic fluid type; Mouth sensation, taste perception and suspension formation, which have a significant impact on the formation of properties that affect many sensory qualities. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is a distinctive feature that distinguishes the gamma from other gums, as its resistance to temperature and pH is considerably larger. This durability is said to be caused by the side chains in the xanthan molecule being wrapped around the cellulose skeleton. This feature is the XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM); Enzymes, acids, bases, high temperatures, freezing and thawing, and degradation that can occur during long-term mixing. Interaction of these trisaccharide chains with the main chain makes the molecule a very solid rod and increases the stability of heat, acid and base remarkably. Molecular weight is around 2 million and probably larger values are reported due to aggregation. Pyruvic acid content has the highest xanthans, highest viscosity and thermal stability. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) solvers; Are generally not affected by changes in pH value and are soluble in most of the acids and bases. Most of the other hydrocolloids; Low pH values and viscosity at high temperatures, while XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is stable under the same conditions. Features and benefits of the Xanthan range; To form visible clear solutions even at high concentrations, • dissolving in both hot and cold water, • give high viscosity to solutions even at low polysaccharide concentrations, • minimal change in the viscosity of the solutions formed by xanthan over a wide temperature range, • dissolution and stability in both acidic and alkaline solutions, • stability in solutions with high salt concentration, • high resistance to enzymatic degradation, • a good lubricant, • stability after freezing / thawing steps, • it is an extremely effective emulsion stabilizer, • excellent mouth taste, • can be counted as having synergistic properties with other hydrocolloids (guar and locust bean gum). As food application areas; • sauces and salad dressings, • bakery and pastry products, •meat products, •drinks, • fruit preparations, • powder products are in place. Because the viscosity of the solution does not change much with temperature, that is, when it is cooled it does not increase in consistency, so XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM), salad sauces and chocolate syrups are very suitable for use in products that will be consumed as soon as they are removed from the refrigerator. These products should be as easy to pour as they are at room temperature as soon as they leave the refrigerator. In normal salad sauces, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is used as a thickener and the particles stabilize suspension in the structure and emulsion in water. The XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM)is generally used in combination with the propylene glycol alginate. When used together they give a solution with less pseudoplasticity and less viscosity. The resulting product has improved pourability and a cream-like smooth structure. Anthan gum; Conforms to other hydrocolloids; Especially locust bean gum and konjacla (gel formation) and guar gum (high viscosity). XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) and guar gamma / gum gamma combinations are used in the stabilization of ice cream and frozen products. This addition of carrageenan prevents the separation of the liquid phase during freezing. Double or triple combinations of these scales are used in various dairy products. Finally, it is used in technical fields in toothpaste, cosmetics, cleaning products, coatings and dyes and fire extinguishers. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is a polysaccharide obtained from fermentation of glucose or sucrose with Xanthomonas campestris bacteria. Stabilizer and thickener additive are used as additives. The most important feature of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is its ability to increase consistency even at low concentrations. Use of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) To create visible clear solutions even at high concentrations, Both hot and cold water dissolution, It gives high viscosity to solutions even at low polysaccharide concentrations, Minimal changes in the fluidity of the solutions formed by xanthan in the wide temperature range, The dissolution and stability in both acidic and alkaline solutions, Stability in solutions with high salt concentration, Being a good lubricant, After the freezing / thawing steps, It is an extremely effective emulsion stabilizer, Excellent mouthfeel. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is known as E415 and is used as a stabilizer and thickening additive in food production. One of the most remarkable properties of xanthan gum is its ability to increase its consistency even at very low concentrations. Most food products use 0.5%, even 0.05% Bread, pastry and candies we made with gluten-free flour usually begin to disintegrate and crumble after a short period of time. The duration of the hold is very short. It also does not have the elasticity of products made with normal flours. Food industry Application area tackifier Confectionery sugar and jellies Binding material Coating material Pastry, bakery products emulsifier Salad dressing Create a movie Protective layers, sausage coating Foam fixing XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is used as a thickener and stabilizer in the pharmaceutical and food industry. Suspensions are also used as suspending agent, emulsifier, structuring agent or foam enhancer. powdered drink mixes produced in a similar manner sahlep and among our traditional products, ice cream, salad dressings, powdered soups, mayonnaise, is used in various products such as ketchup. It is the reason for preference in the food industry in terms of high consistency which can be achieved especially in the products by extracting the aroma to the foreground and even at the lowest usage rate. In the pharmaceutical industry, tablet binding (adhesive) is used. Food: food, bakery products, bakery products filler, gels and mixtures thereof, batter mixes, biscuit filling, bread, brine solution ham injection, cake mixes, cakes, canned foods, spread cheese, chewing gum, chocolate sauce, coleslaw ornament, confectionery, cottage cheese, cream cheese, dairy products, sweet cream, dessert mixes, desserts / foams, diet products, eggs displacer, reduced-fat margarine, foams, cold soda, frozen food, fruit filling, fruit preparations, gluten-free bread, meat water, ham pumping, ice cream, icings, instant products, prepared soups, liquid / foam powders, Louisiana style hot sauce, mayonnaise, meat batter, the milk shake, filo pastry, pizza sauce, prepared foods, frozen pasta, salad dressings , Sauces, sausages, soft biscuits, sausages, soy sauce, ready-to-eat chocolate drink, sugar eşni are, tomato ketchup, whipped cream and yogurt. Soft drinks: citrus drinks, dietsal soft drinks, fruit juices, fruit flavors and prepared drinks. Drugs: Liquid antibiotics, lozenges, drug emulsions, drug suspensions, syrups, tablets, tablets that delay the release of drug (drug). Personal care: Cosmetics, creams, liquid make-up materials, liquid soap, lotions, shampoos, toiletries, toothpaste. Cleaners / detergents: Acidic cleaners, alkaline cleaners, domestic cleaners, liquid toilet cleaners. Industrial applications: adhesives, agrochemicals, animal feed, bitumen emulsions, calf fillers, ceramic glazes, inks, fire fighting foams, foundry coatings, latex emulsions, latex paints, liquid animal feed, lubricants, metal polishes, mining oil drilling, paint remover material, paper, pet food, wax emulsions, poultry feed, pickling, silicate paints, textiles and carpet dyeing (printing) pastes, fabric (cloth) coatings, water-based paints. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) beauty products and liquid soap, tooth paste, which kullanılır.şampu as a thickener in cosmetic products such as colognes, lotions, cosmetics and hair care products by bazılarıdır.ayrı the cosmetic product prepared with xanthan gain XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) to the cream and to add a feeling of pleasant touch aftershave Can also be used. Use of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) in the Pharmaceutical Sector: XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is used in the pharmaceutical sector to regulate the effects of drugs such as antibiotics and to ensure regular dosing. It also helps to stabilize creams containing medicinal chemicals. Agriculture and other sectors XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) industry has a wide range of uses as a thickener and stabilizer. It increases the fluidity of fungicides, herbicides and insecticides. Unique density properties of xanthan solutions increase sprayability, reduce friction and increase the viscosity and permanence of the herbicides. Above all, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is a complex exopolysaccharide, i.e. a polymer containing sugar residues secreted by the environment surrounding it by a microorganism. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) produced by plant pathogenic bacteria, a microorganism that causes various diseases in plants, is widely used as a thickener and stabilizing agent in food and industrial products in a wide range. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is widely used today. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) / E-415 Carbohydrate is a high molecular polysaccharide chain produced by a pure culture fermentation with Xanthomonas campestris. It is classified as hydrophilic colloids and their derivatives as a gum. In addition to its utility as an aqueous viscosity enhancer, it is used as a binder, emulsion stabilizer, and various skin conditioning agents and emulsifying surfactants. Stable in solutions containing high concentrations of salt, resistant to enzymatic degradation. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) exhibits extraordinary and useful features. For example; High viscosity at low concentrations, little change in viscosities at varying temperatures, and excellent stability over a wide pH range. It also allows good freeze-thaw stability and exhibits remarkable suspension characteristics. Main functions: Stabilizes emulsions, prevents clotting, improves adhesion, improves texture, gives creamy density, improves mouth feel, improves texture, gives viscosity, stabilizes insoluble ingredients, stabilizes fruit juice in soft drinks, It provides emulsion and foam stability, controls sedimentation, controls drift and adhesion, provides easy flow and pumpability, controls crystallization, provides finer porous structure, increases pitting volume, controls rheology, provides temperature and pH stability, binds water, Allows delayed release of the drug, gives a pleasant skin feel, keeps the active ingredients in suspension, prolongs contact time. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) Product Details: XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is a polysaccharide obtained from fermentation of glucose or sucrose with Xanthomonas campestris bacteria. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is known as E415 and it is used as stabilizer and thickener additive in food production. The chemical formula is (C35H49O29) n. The molecular weight is about 10,000. The pH of the 1% solution is 7.3. The XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM), which is a microbiological heteropolysaccharide, is composed of a main polymer skeleton containing 1,4-linked ß-glucoside units as in cellulose. In these scaffolded side chains, there is a trisaccharide composed of Dglucoric acid residues between the two D mannose residues. The polymer also contains 4.7% of the acetyl groups and 3.03.5% of the pyruvic acid. These side chains found in the XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM), which make up about 60% of the molecule, give many physical and chemical properties specific to XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM). Because of the side chains, the XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) can be completely hydrated even in the cold chain. In addition, these side chains are said to make the XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) resistant to hydrolysis. One of the most remarkable properties of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is its ability to increase its consistency even at very low concentrations. Most food products use 0.5%, or even 0.5%. The pseudoelasticity he carries maintains his determination despite his slick sensation in his mouth. Unlike other gamut types, it is stable in large temperature and pH changes and is considered a reliable additive in America, Canada and Europe. Stable in solutions containing high concentrations of salt, resistant to enzymatic degradation. Features and benefits of xantan gamut; Soluble in both hot and cold water, giving high viscosity to solutions even at low polysaccharide concentrations, Minimal change in the fluidity of solutions formed by xanthan in wide temperature range, Solubility and stability in both acidic and alkaline solutions Stability of solutions with high salt concentration, Good lubricity, Stability after frost / dissolution stages, Excellent emulsion stabilizer, Excellent mouth taste. Applications of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) in the Cosmetic Industry: XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM)Features: Carbohydrate is a high molecular polysaccharide chain produced by a pure culture fermentation with Xanthomonas campestris. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is classified as hydrophilic colloids and their derivatives as a gum. In addition to its utility as an aqueous viscosity enhancer, it is used as a binder, emulsion stabilizer, and various skin conditioning agents and emulsifying surfactants. Stable in solutions containing high concentrations of salt, resistant to enzymatic degradation. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) exhibits extraordinary and useful features. For example; High viscosity at low concentrations, little change in viscosities at varying temperatures, and excellent stability over a wide pH range. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) also allows good freeze-thaw stability and exhibits remarkable suspension characteristics. Major functions / characteristics: Stabilizes emulsions, prevents clotting, provides good adhesion, improves texture, improves mouth feel, improves mouthfeel, gives added viscosity, stabilizes insoluble components, stabilizes fruit juice in soft drinks, provides emulsion and foam stability Control sedimentation, control drift and adhesion, provide easy flow and pumpability, control crystallization, provide finer porous structure, increase pitting volume, control rheology, provide temperature and pH stability, bind water, allow delayed drug release in medication Gives a pleasant skin feel, keeps the active ingredients in suspension, prolongs contact time. Industrial applications of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM): adhesives, agrochemicals, animal feed, bitumen emulsions, calf fillers, ceramic glazes, inks, fire fighting foams, foundry coats, latex emulsions, latex paints, liquid animal feed, lubricants, metal polishes, mining, oil Punching, paint remover, paper, pet food, lacquer emulsions, poultry feed, rust removers, silicate dyes, textile and carpet dyeing (printing) adhesives, textile coatings, water based paints. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is a sugar-like compound made by mixing aged (fermented) sugars with a certain kind of bacteria. It is used to make medicine. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is used for lowering blood sugar and total cholesterol in people with diabetes. It is also used as a laxative. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is sometimes used as a saliva substitute in people with dry mouth (Sjogren's syndrome). In manufacturing, xanthan gum is used as a thickening and stabilizing agent in foods, toothpastes, and medicines. Xanthan gum is also an ingredient in some sustained-release pills. PH 6.0 - 8.0 COLOR White to cream APPEARANCE Free flowing powder INDUSTRY Food Chemicals, Industrial, Industrial Drilling, Oil and Gas Production, Drilling Fluid, Hydraulic Fracturing, Fracking One of the most remarkable properties of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is its ability to produce a large increase in the viscosity of a liquid by adding a very small quantity of gum. The viscosity solutions decrease with higher shear rates, which is called pseudoplasticity. This means that a product subjected to shear, whether from mixing, shaking, or even chewing, will thin out, but once the shear forces are removed, the food will thicken back up. In foods, this gum is used as a good thickening agent which is most often found in salad dressings and sauces. It makes these products thick enough at rest in the bottle to keep the mixture fairly homogeneous, but the shear forces generated by shaking the mixture so it can be easily poured. When it exits the bottle, the shear forces are removed and the mixture thickens back up, so it clings to the salad or food. It is very stable under a wide range of temperatures and pH. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) helps to prevent oil separation by stabilizing the emulsion, although it is not an emulsifier. This gum also helps suspend solid particles, such as spices. Also used in frozen foods and beverages, it helps create the pleasant texture in many ice creams.Gluten-free baking also contains this ingredient; since the gluten found in wheat must be omitted, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is used to give the dough or batter a "stickiness" that would otherwise be achieved with the gluten. It is also a preferred method of thickening liquids for those with swallowing disorders, since it does not change the color or flavor of foods or beverages. In personal care, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is a stabilizer to prevent ingredients from separating. In toothpaste, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) serves as a binder to keep the product uniform. It is also used to prepare water gel, oil-in-water emulsions to help stabilize the oil droplets against coalescence, and has some skin hydrating properties. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is a high molecular weight polysaccharide produced by fermentation of Xanthamonas campestris. The composition and structure of the XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) produced by commercial fermentation is identical to the naturally occurring polysaccharide formed on plants belonging to the cabbage family. Process control and rigorous quality standards throughout production guarantee consistent, reliable product performance. In processed foods, xanthan gum provides stability and improves or modifies textural qualities, pouring characteristics and cling. Exceptional thickening and stabilizing abilities make XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) products a common component in many food systems. For salad dressings, ACAR products are the stabilizers of choice, keeping ingredients suspended uniformly while providing excellent pourability without flavor masking. The dramatic thickening capability of low concentrations of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) provides improved mouthfeel in products such as syrups and powdered juice drinks. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) (/ˈzænθən/) is a polysaccharide with many industrial uses, including as a common food additive. It is an effective thickening agent and stabilizer to prevent ingredients from separating. It can be produced from simple sugars using a fermentation process, and derives its name from the species of bacteria used, Xanthomonas campestris. Contents 1 History of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) 2 Uses of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) 2.1 Shear thinning 2.2 Amounts used 3 Health 3.1 Safety of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) 4 Preparation of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) 4.1 Detail of the biosynthesis 5 References History of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) was discovered by Allene Rosalind Jeanes and her research team at the United States Department of Agriculture, and brought into commercial production by CP Kelco under the trade name Kelzan® in the early 1960s.[2][3] It was approved for use in foods in 1968 and is accepted as a safe food additive in the USA, Canada, European countries, and many other countries, with E number E415, and CAS number 11138-66-2. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) derives its name from the species of bacteria used during the fermentation process, Xanthomonas campestris.[4] This is the same bacterium responsible for causing black rot to form on broccoli, cauliflower, and other leafy vegetables. Uses of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM), 1%, can produce a significant increase in the viscosity of a liquid.[5] In foods, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is common in salad dressings and sauces. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) helps to prevent oil separation by stabilizing the emulsion, although it is not an emulsifier. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) also helps suspend solid particles, such as spices. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) helps create the desired texture in many ice creams. Toothpaste often contains XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) as a binder to keep the product uniform. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) also helps thicken commercial egg substitutes made from egg whites, to replace the fat and emulsifiers found in yolks. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is also a preferred method of thickening liquids for those with swallowing disorders, since it does not change the color or flavor of foods or beverages at typical use levels.[6] In gluten-free baking, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is used to give the dough or batter the stickiness that would otherwise be achieved with gluten. In most foods XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is used at concentrations of 0.5% or less. Xanthan gum is used in wide range food products, such as sauces, dressings, meat and poultry products, bakery products, confectionery products, beverages, dairy products, others. In the oil industry, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is used in large quantities to thicken drilling mud.[7] These fluids carry the solids cut by the drilling bit to the surface. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) provides great "low end" rheology. When circulation stops, the solids remain suspended in the drilling fluid. The widespread use of horizontal drilling and the demand for good control of drilled solids has led to its expanded use. XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) has been added to concrete poured underwater, to increase its viscosity and prevent washout. In cosmetics, XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is used to prepare water gels.[8] It is also used in oil-in-water emulsions to enhance droplet coalescence.[9] Xanthan gum is under preliminary research for its potential uses in tissue engineering to construct hydrogels and scaffolds supporting three-dimensional tissue formation.[8] Shear thinning The viscosity of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) solutions decreases with higher shear rates. This is called shear thinning or pseudoplasticity. This means that a product subjected to shear, whether from mixing, shaking or chewing will thin. When the shear forces are removed, the food will thicken again. In salad dressing, the addition of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) makes it thick enough at rest in the bottle to keep the mixture fairly homogeneous, but the shear forces generated by shaking and pouring thins it, so it can be easily poured. When it exits the bottle, the shear forces are removed and it thickens again, so it clings to the salad. Amounts used The greater the ratio of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) added to a liquid, the thicker the liquid will become. An emulsion can be formed with as little as 0.1% (by weight). Increasing the amount of gum gives a thicker, more stable emulsion up to 1% XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM). A teaspoon of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) weighs about 2.5 grams and brings one cup (250 ml) of water to a 1% concentration.[6][10] To make a foam, 0.2–0.8% XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is typically used. Larger amounts result in larger bubbles and denser foam. Egg white powder (0.2–2.0%) with 0.1–0.4% XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) yields bubbles similar to soap bubbles. Health Evaluation of workers exposed to XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) dust found evidence of a link to respiratory symptoms.[11] On May 20, 2011, the FDA issued a press release about SimplyThick, a food-thickening additive containing XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) as the active ingredient, warning parents, caregivers and health care providers not to feed SimplyThick, a thickening product, to premature infants.[12] The concern is that the product may cause premature infants to suffer necrotizing enterocolitis. Safety of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) According to a 2017 safety review by a scientific panel of the European Food Safety Authority (EFSA), XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) (European food additive number E 415) is extensively digested during intestinal fermentation, and causes no adverse effects, even at high intake amounts.[13] The EFSA panel found no concern about genotoxicity from long-term consumption.[13] EFSA concluded that there is no safety concern for the general population when XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is consumed as a food additive.[13] Preparation XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is produced by the fermentation of glucose and sucrose.[13] The polysaccharide is prepared by the bacteria being inoculated into a sterile aqueous solution of carbohydrate(s), a source of nitrogen, dipotassium phosphate, and some trace elements.[13] The medium is well-aerated and stirred, and the xanthan polymer is produced extracellularly into the medium. After one to four days, the polymer is precipitated from the medium by the addition of isopropyl alcohol, and the precipitate is dried and milled to give a powder that is readily soluble in water or brine.[13] XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is composed of pentasaccharide repeat units, comprising glucose, mannose, and glucuronic acid in the molar ratio 2:2:1.[13][14] A strain of X. campestris has been developed that will grow on lactose - which allows it to be used to process whey, a waste product of cheese production. This can produce 30 g/L of XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) for every 40 g/L of whey powder. Whey-derived XANTHAN GUM (Ksantan Sakızı)(KSANTAN GAM) is commonly used in many commercial products, such as shampoos and salad dressings.[15] Detail of the biosynthesis Synthesis originates from glucose as substrate for synthesis of the sugar nucleotides precursors UDP-glucose, UDP-glucuronate, and GDP-mannose that are required for building the pentasaccharide repeat unit.[13] This links the synthesis of xanthan to carbohydrate metabolism. The repeat units are built up at undecaprenylphosphate lipid carriers that are anchored in the cytoplasmic membrane.[citation needed] Specific glycosyltransferases sequentially transfer the sugar moieties of the nucleotide sugar xanthan precursors to the lipid carriers. Acetyl and pyruvyl residues are added as non-carbohydrate decorations. Mature repeat units are polymerized and exported in a way resembling the Wzy-dependent polysaccharide synthesis mechanism of Enterobacteriaceae. Products of the gum gene cluster drive synthesis, polymerization, and export of the repeat unit.
XANTHAN GUM 60 MESH
Synonyms: xylosic alcohol;XYLITOL CRYSTALLINE;XYLITOL, FOR BIOTECHNOLOGICAL PURPOSES;XYLITOL, 1GM, NEAT;Xylitol 1 M Solution;XYLITOL BIOSYNTH;XYLITOL, WHO 98.5-101.0%;XYLITOL, USP GRADE CAS: 87-99-0
XIAMETER MEM-2664
Xiameter MEM-2664 Xiameter MEM-2664 Emulsion is a non-ionic emulsion of a high molecular weight polydimethyl-siloxane. It delivers high-molecular-weight dimethicone through a water-based system. This product is for use in a variety of hair care applications where the benefits of a high viscosity dimethicone are desired. INCI Name: Dimethicone (and) Laureth-4 (and) Laureth-23 Typical Properties Hair Care Benefits Enhanced Dry Combing, Enhanced Wet Combing, Heat Protection Internal Phase Functionality Dimethyl Surfactant Type Nonionic Features & Benefits • Hair applications Applications • Xiameter MEM-2664 Emulsion is for use in a variety of hair care applications where the benefits of a high viscosity dimethicone are desired. Typical Properties Specification Writers: These values are not intended for use in preparing specifications. Test Unit Value Appearance Milky white Viscosity @ 25°C (77°F) cSt < 200 pH 2.0–5.0 Silicone content % 50 Specific gravity at 25°C (77°F) 0.99 Description Xiameter MEM-2664 Emulsion is a non-ionic emulsion of a high molecular weight polydimethyl-siloxane. How To Use To best stabilize Xiameter MEM-2664 Emulsion in a formulation, add it slowly, at the end of the process, at a temperature below 40°C (104°F) with smooth continuous mixing or stirring. For leave-on and rinse-off conditioners and shampoos the recommended use level is 2% or greater. Usable Life And Storage Product should be stored at or below 25°C (77°F) in original, unopened containers. The emulsion can freeze at 0°C (32°F), so adequate precautions should be taken. Limitations This product is neither tested nor represented as suitable for medical or pharmaceutical uses. Not intended for human injection. Not intended for food use. Health And Environmental Information To support customers in their product safety needs, Dow has an extensive Product Stewardship organization and a team of product safety and regulatory compliance specialists available in each area. For further information, please see our website, www.consumer.dow.com or consult your local Dow representative. Xiameter MEM-2664 Emulsion is designed to meet the need for paraben-free claims in hair care products, and where the benefits of a high viscosity dimethicone are desired; it is the paraben-free counterpart to the Xiameter MEM-1664 Emulsion. This nonionic emulsion of high molecular weight polydimethylsiloxane is recommended at 2% or greater in leave-on and rinse-off conditioners and shampoos. Origin(s): Petrochemical Recommended Use levels: MIN: 2.0 MAX: 2.0 Claims Hair Care Conditioning Feel Shine Function: Surfactants Applications: Conditioners, Hair care, Shampoos Usage level: 2% Xiameter MEM-2664 Emulsion is a non-ionic emulsion of a high molecular weight polydimethyl-siloxane. To support the creation of hair care products that are both effective and consumer-preferred, the Xiameter brand has introduced a paraben-free silicone emulsion for hair conditioning applications—Xiameter MEM-2664 Emulsion. “This emulsion is similar to Xiameter MEM-1664 Emulsion, a proven hair-conditioning agent. The only difference is that Xiameter MEM-2664 Emulsion contains a non-paraben preservative,” explained Kevin Murphy, global market director. Both products enable formulators to deliver high-molecular-weight dimethicone through a water-based system. Both can be used to add valuable conditioning and wet- and dry-combing benefits to shampoos and leave-in and rinse-off conditioners. To support the creation of hair care products that are both effective and consumer-preferred, the Xiameter brand has introduced a new paraben-free silicone emulsion for hair conditioning applications – Xiameter MEM-2664 Emulsion. Today’s consumers are becoming increasingly interested in what their personal care products contain and are actively reading product labels. “Formulators who are responding to consumer desires for paraben-free products need alternative ingredients that are both proven and high-performing,” said Kevin Murphy, global market director. “That’s why we added Xiameter MEM-2664 Emulsion to our hair care line. “This emulsion is similar to Xiameter MEM-1664 Emulsion, a proven hair-conditioning agent. The only difference is that Xiameter MEM-2664 Emulsion contains a non-paraben preservative,” Murphy said. Both products enable formulators to deliver high-molecular-weight dimethicone through a water-based system. Both can be used to add valuable conditioning and wet- and dry-combing benefits to shampoos and leave-in and rinse-off conditioners. Xiameter MEM-2664 emulsion is a non-ionic emulsion of a high molecular weight polydimethylsiloxane. It is ideal for use in a variety of hair care and skin care applications where the benefit of a high viscosity dimethicone is desired. What Is It? Xiameter MEM-2664 are polyoxyethers of lauryl alcohol. They are a clear, colorless liquids. In cosmetics and personal care products, Xiameter MEM-2664 are used in the formulation of a variety of bath, eye, facial, hair, cleansing and sunscreen products. They are also used in cuticle softeners, deodorants and moisturizing products. Why is it used in cosmetics and personal care products? Xiameter MEM-2664 both function as surfactants. Laureth-4 functions as a surfatant - emulsfying agent, while Laureth-23 functions as a surfactant - cleansing agent and a surfactant - solubilizing agent. Scientific Facts: Xiameter MEM-2664 are produced by reacting ethylene oxide with lauryl alcohol. The numerical designation refers to the average number of repeating ethylene oxide units in the molecule. As the numerical value of Laureths increases, the viscosity of the ingredient increases until they become white, waxy solids. Polydimethylsiloxane (Xiameter MEM-2664), also known as dimethylpolysiloxane or dimethicone, belongs to a group of polymeric organosilicon compounds that are commonly referred to as silicones.[1] Xiameter MEM-2664 is the most widely used silicon-based organic polymer due to its versatility and properties leading to many applications.[2] It is particularly known for its unusual rheological (or flow) properties. Xiameter MEM-2664 is optically clear and, in general, inert, non-toxic, and non-flammable. It is one of several types of silicone oil (polymerized siloxane). Its applications range from contact lenses and medical devices to elastomers; it is also present in shampoos (as it makes hair shiny and slippery), food (antifoaming agent), caulking, lubricants and heat-resistant tiles. Structure The chemical formula for Xiameter MEM-2664 is CH3[Si(CH3)2O]nSi(CH3)3, where n is the number of repeating monomer [SiO(CH3)2] units.[3] Industrial synthesis can begin from dimethyldichlorosilane and water by the following net reaction: The polymerization reaction evolves hydrochloric acid. For medical and domestic applications, a process was developed in which the chlorine atoms in the silane precursor were replaced with acetate groups. In this case, the polymerization produces acetic acid, which is less chemically aggressive than HCl. As a side-effect, the curing process is also much slower in this case. The acetate is used in consumer applications, such as silicone caulk and adhesives. Branching and capping Hydrolysis of Si(CH3)2Cl2 generates a polymer that is terminated with silanol groups (−Si(CH3)2OH]). These reactive centers are typically "capped" by reaction with trimethylsilyl chloride: 2 Si(CH3)3Cl + [Si(CH3)2O]n−2[Si(CH3)2OH]2 → [Si(CH3)2O]n−2[Si(CH3)2O Si(CH3)3]2 + 2 HCl Silane precursors with more acid-forming groups and fewer methyl groups, such as methyltrichlorosilane, can be used to introduce branches or cross-links in the polymer chain. Under ideal conditions, each molecule of such a compound becomes a branch point. This can be used to produce hard silicone resins. In a similar manner, precursors with three methyl groups can be used to limit molecular weight, since each such molecule has only one reactive site and so forms the end of a siloxane chain. Well-defined Xiameter MEM-2664 with a low polydispersity index and high homogeneity is produced by controlled anionic ring-opening polymerization of hexamethylcyclotrisiloxane. Using this methodology it is possible to synthesize linear block copolymers, heteroarm star-shaped block copolymers and many other macromolecular architectures. The polymer is manufactured in multiple viscosities, ranging from a thin pourable liquid (when n is very low), to a thick rubbery semi-solid (when n is very high). Xiameter MEM-2664 molecules have quite flexible polymer backbones (or chains) due to their siloxane linkages, which are analogous to the ether linkages used to impart rubberiness to polyurethanes. Such flexible chains become loosely entangled when molecular weight is high, which results in Xiameter MEM-2664' unusually high level of viscoelasticity. Mechanical properties Xiameter MEM-2664 is viscoelastic, meaning that at long flow times (or high temperatures), it acts like a viscous liquid, similar to honey. However, at short flow times (or low temperatures), it acts like an elastic solid, similar to rubber. Viscoelasticity is a form of nonlinear elasticity that is common amongst noncrystalline polymers.[4] The loading and unloading of a stress-strain curve for Xiameter MEM-2664 do not coincide; rather, the amount of stress will vary based on the degree of strain, and the general rule is that increasing strain will result in greater stiffness. When the load itself is removed, the strain is slowly recovered (rather than instantaneously). This time-dependent elastic deformation results from the long-chains of the polymer. But the process that is described above is only relevant when cross-linking is present; when it is not, the polymer Xiameter MEM-2664 cannot shift back to the original state even when the load is removed, resulting in a permanent deformation. However, permanent deformation is rarely seen in Xiameter MEM-2664, since it is almost always cured with a cross-linking agent. If some Xiameter MEM-2664 is left on a surface overnight (long flow time), it will flow to cover the surface and mold to any surface imperfections. However, if the same Xiameter MEM-2664 is poured into a spherical mold and allowed to cure (short flow time), it will bounce like a rubber ball.[3] The mechanical properties of Xiameter MEM-2664 enable this polymer to conform to a diverse variety of surfaces. Since these properties are affected by a variety of factors, this unique polymer is relatively easy to tune. This enables Xiameter MEM-2664 to become a good substrate that can easily be integrated into a variety of microfluidic and microelectromechanical systems.[5][6] Specifically, the determination of mechanical properties can be decided before Xiameter MEM-2664 is cured; the uncured version allows the user to capitalize on myriad opportunities for achieving a desirable elastomer. Generally, the cross-linked cured version of Xiameter MEM-2664 resembles rubber in a solidified form. It is widely known to be easily stretched, bent, compressed in all directions.[7] Depending on the application and field, the user is able to tune the properties based on what is demanded. Fabric embedded within Xiameter MEM-2664. This technique enables a user to retain a thin layer of Xiameter MEM-2664 as a substrate while achieving a higher stiffness through the insertion of reinforcement. Linear relationship in Sylgard 184 Xiameter MEM-2664 between curing temperature and Young's modulus Overall Xiameter MEM-2664 has a low elastic modulus which enables it to be easily deformed and results in the behavior of a rubber.[8][9][10] Viscoelastic properties of Xiameter MEM-2664 can be more precisely measured using dynamic mechanical analysis. This method requires determination of the material's flow characteristics over a wide range of temperatures, flow rates, and deformations. Because of Xiameter MEM-2664's chemical stability, it is often used as a calibration fluid for this type of experiment. The shear modulus of Xiameter MEM-2664 varies with preparation conditions, and consequently dramatically varies in the range of 100 kPa to 3 MPa. The loss tangent is very low (tan δ ≪ 0.001). Chemical compatibility Xiameter MEM-2664 is hydrophobic.[6] Plasma oxidation can be used to alter the surface chemistry, adding silanol (SiOH) groups to the surface. Atmospheric air plasma and argon plasma will work for this application. This treatment renders the Xiameter MEM-2664 surface hydrophilic, allowing water to wet it. The oxidized surface can be further functionalized by reaction with trichlorosilanes. After a certain amount of time, recovery of the surface's hydrophobicity is inevitable, regardless of whether the surrounding medium is vacuum, air, or water; the oxidized surface is stable in air for about 30 minutes.[11] Alternatively, for applications where long-term hydrophilicity is a requirement, techniques such as hydrophilic polymer grafting, surface nanostructuring, and dynamic surface modification with embedded surfactants can be of use. [12] Solid Xiameter MEM-2664 samples (whether surface-oxidized or not) will not allow aqueous solvents to infiltrate and swell the material. Thus Xiameter MEM-2664 structures can be used in combination with water and alcohol solvents without material deformation. However most organic solvents will diffuse into the material and cause it to swell.[6] Despite this, some organic solvents lead to sufficiently small swelling that they can be used with Xiameter MEM-2664, for instance within the channels of Xiameter MEM-2664 microfluidic devices. The swelling ratio is roughly inversely related to the solubility parameter of the solvent. Diisopropylamine swells Xiameter MEM-2664 to the greatest extent; solvents such as chloroform, ether, and THF swell the material to a large extent. Solvents such as acetone, 1-propanol, and pyridine swell the material to a small extent. Alcohols and polar solvents such as methanol, glycerol and water do not swell the material appreciably.[13] Applications Surfactants and antifoaming agents Xiameter MEM-2664 is a common surfactant and is a component of defoamers.[14] Xiameter MEM-2664, in a modified form, is used as an herbicide penetrant[15] and is a critical ingredient in water-repelling coatings, such as Rain-X.[16] Hydraulic fluids and related applications Dimethicone is also the active silicone fluid in automotive viscous limited slip differentials and couplings. This is usually a non-serviceable OEM component but can be replaced with mixed performance results due to variances in effectiveness caused by refill weights or non-standard pressurizations.[citation needed] Soft lithography Xiameter MEM-2664 is commonly used as a stamp resin in the procedure of soft lithography, making it one of the most common materials used for flow delivery in microfluidics chips.[17] The process of soft lithography consists of creating an elastic stamp, which enables the transfer of patterns of only a few nanometers in size onto glass, silicon or polymer surfaces. With this type of technique, it is possible to produce devices that can be used in the areas of optic telecommunications or biomedical research. The stamp is produced from the normal techniques of photolithography or electron-beam lithography. The resolution depends on the mask used and can reach 6 nm. In biomedical (or biological) microelectromechanical systems (bio-MEMS), soft lithography is used extensively for microfluidics in both organic and inorganic contexts. Silicon wafers are used to design channels, and Xiameter MEM-2664 is then poured over these wafers and left to harden. When removed, even the smallest of details is left imprinted in the Xiameter MEM-2664. With this particular Xiameter MEM-2664 block, hydrophilic surface modification is conducted using plasma etching techniques. Plasma treatment disrupts surface silicon-oxygen bonds, and a plasma-treated glass slide is usually placed on the activated side of the Xiameter MEM-2664 (the plasma-treated, now hydrophilic side with imprints). Once activation wears off and bonds begin to reform, silicon-oxygen bonds are formed between the surface atoms of the glass and the surface atoms of the Xiameter MEM-2664, and the slide becomes permanently sealed to the Xiameter MEM-2664, thus creating a waterproof channel. With these devices, researchers can utilize various surface chemistry techniques for different functions creating unique lab-on-a-chip devices for rapid parallel testing.[5] Xiameter MEM-2664 can be cross-linked into networks and is a commonly used system for studying the elasticity of polymer networks.[citation needed] Xiameter MEM-2664 can be directly patterned by surface-charge lithography. Xiameter MEM-2664 is being used in the making of synthetic gecko adhesion dry adhesive materials, to date only in laboratory test quantities.[20] Some flexible electronics researchers use Xiameter MEM-2664 because of its low cost, easy fabrication, flexibility, and optical transparency.[21] Stereo lithography In stereo lithography (SLA) 3D printing, light is projected onto photocuring resin to selectively cure it. Some types of SLA printer are cured from the bottom of the tank of resin and therefore require the growing model to be peeled away from the base in order for each printed layer to be supplied with a fresh film of uncured resin. A Xiameter MEM-2664 layer at the bottom of the tank assists this process by absorbing oxygen : the presence of oxygen adjacent to the resin prevents it adhering to the Xiameter MEM-2664, and the optically clear Xiameter MEM-2664 permits the projected image to pass through to the resin undistorted. Medicine and cosmetics Activated dimethicone, a mixture of polydimethylsiloxanes and silicon dioxide (sometimes called simethicone), is often used in over-the-counter drugs as an antifoaming agent and carminative.[22][23] It has also been at least proposed for use in contact lenses.[24] Silicone breast implants are made out of a Xiameter MEM-2664 elastomer shell, to which fumed amorphous silica is added, encasing Xiameter MEM-2664 gel or saline solution. [25] In addition, Xiameter MEM-2664 is useful as a lice or flea treatment because of its ability to trap insects.[26] It also works as a moisturizer that is lighter and more breathable than typical oils. Skin Xiameter MEM-2664 is used variously in the cosmetic and consumer product industry as well. For example, Xiameter MEM-2664 can be used in the treatment of head lice on the scalp[26] and dimethicone is used widely in skin-moisturizing lotions where it is listed as an active ingredient whose purpose is "skin protection." Some cosmetic formulations use dimethicone and related siloxane polymers in concentrations of use up to 15%. The Cosmetic Ingredient Review's (CIR) Expert Panel, has concluded that dimethicone and related polymers are "safe as used in cosmetic formulations."[27] Hair Xiameter MEM-2664 compounds such as amodimethicone, are effective conditioners when formulated to consist of small particles and be soluble in water or alcohol/act as surfactants[28][29] (especially for damaged hair[30]), and are even more conditioning to the hair than common dimethicone and/or dimethicone copolyols.[31] Contact Lenses A proposed use of Xiameter MEM-2664 is contact lens cleaning. Its physical properties of low elastic modulus and hydrophobicity have been used to clean micro and nano pollutants from contact lens surfaces more effectively than multipurpose solution and finger rubbing; the researchers involved call the technique PoPPR (polymer on polymer pollution removal) and note that it is highly effective at removing nanoplastic that has adhered to lenses.[32] Flea treatment for pets Dimethicone is the active ingredient in a liquid applied to the back of the neck of a cat or dog from a small one time use dose disposable pipette. The parasite becomes trapped and immoblised in the substance and thus breaks the life cycle of the insect. Foods Xiameter MEM-2664 is added to many cooking oils (as an antifoaming agent) to prevent oil splatter during the cooking process. As a result of this, Xiameter MEM-2664 can be found in trace quantities in many fast food items such as McDonald's Chicken McNuggets, french fries, hash browns, milkshakes and smoothies[33] and Wendy's french fries. Under European food additive regulations, it is listed as E900. Condom lubricant Xiameter MEM-2664 is widely used as a condom lubricant. Domestic and niche uses Many people are indirectly familiar with Xiameter MEM-2664 because it is an important component in Silly Putty, to which Xiameter MEM-2664 imparts its characteristic viscoelastic properties.[37] Another toy Xiameter MEM-2664 is used in is Kinetic Sand. The rubbery, vinegary-smelling silicone caulks, adhesives, and aquarium sealants are also well-known. Xiameter MEM-2664 is also used as a component in silicone grease and other silicone based lubricants, as well as in defoaming agents, mold release agents, damping fluids, heat transfer fluids, polishes, cosmetics, hair conditioners and other applications. Xiameter MEM-2664 has also been used as a filler fluid in breast implants. It can be used as a sorbent for the analysis of headspace (dissolved gas analysis) of food. Safety and environmental considerations According to Ullmann's Encyclopedia, no "marked harmful effects on organisms in the environment" have been noted for siloxanes. Xiameter MEM-2664 is nonbiodegradable, but is absorbed in waste water treatment facilities. Its degradation is catalyzed by various clays.[39] Xiameter MEM-2664 is biocompatible[40], and its used in microfluidic device manufacturing because of that. What Is Xiameter MEM-2664? Is It Safe in Skin and Hair Care? At Puracy, we take natural skincare seriously. Discover what Xiameter MEM-2664 is, how it's used, and why it's more harmful than you might think. What is Xiameter MEM-2664, exactly? You might spot it on skin and hair care labels, but chemical names like “polydimethylsiloxane” can be difficult to decipher when you’re pressed for time. As an eco-friendly brand, Puracy wants to set the record straight about Xiameter MEM-2664 in skincare and hair care – and you’ll never find it in our products. What Is Xiameter MEM-2664? If you've ever used a makeup primer, it probably had some form of Xiameter MEM-2664 (ie. polydimethylsiloxane) in it. Since the molecules of silicone-based polymers are too large for the skin and hair to absorb, these products leave behind a silky/slippery layer. Board-certified dermatologist Dr. Julie Jackson states that Xiameter MEM-2664 “does not interact with the stratum corneum (the top layer of the skin). It works by forming a film that prevents the loss of water through the skin, thus keeping the skin moisturized. It also works as an emollient, filling the spaces between cracks in the skin.” The result? Shinier-looking and smoother-feeling skin and hair. What Is Xiameter MEM-2664 Used for? Hundreds of personal care products use Xiameter MEM-2664 for a more seamless application, including diaper rash creams, moisturizers, hand lotions, and liquid foundations. Most hair care companies use silicones and Xiameter MEM-2664 to coat the hair cuticle and make detangling easier. Is Xiameter MEM-2664 Bad for Skin? According to the FDA and Cosmetic Ingredient Review (CIR), Xiameter MEM-2664 is a safe skincare ingredient that calms irritation, minimizes redness, and protects the skin from further damage. We consulted with Dr. Jackson on this topic, and she agreed that – even though it’s an unnatural, man-made substance, Xiameter MEM-2664 is a good chemically-inert moisturizer and safe for skin. When asked whether Xiameter MEM-2664 is known to clog pores, Dr. Jackson concluded, “There is no evidence that Xiameter MEM-2664 causes acne.” How to Avoid Xiameter MEM-2664 in Shampoo & Conditioner Historically, there have beenvery few eco-friendly hair products which provided the same results as their synthetic counterparts. After years of R&D with expert chemists and testers, Puracy Natural Shampoo and Conditioner are rare examples of Xiameter MEM-2664-free hair products that leave all hair types moisturized, bouncy, and shiny. While reformulating our shampoo and conditioner, the biggest change came from the inclusion of Lexfeel N5. This 100% sustainable and biodegradable emollient seamlessly replicates the effects of both Xiameter MEM-2664 and silicone. We’re proud to be one of the first companies to use this plant-sourced ingredient in our unbelievably effective hair care line. Is Xiameter MEM-2664 Bad for the Environment? The short answer: Yes. Depending on the route your water takes, when Xiameter MEM-2664 (a hydrolyzed chemical) is washed down the drain, it can feed into aquatic environments and impact fish and plant life. The National Center for Biotechnology Information also states that “the use of low molecular weight silicones should be reduced...and the purity of high molecular weight silicones should be monitored.” What is Xiameter MEM-2664 used for? Xiameter MEM-2664 is a silicon-based polymer that, when used in beauty products, gives the formula an incredibly smooth, velvety, slippery feel that you either love or hate (although I'll never understand the people who hate it TBH. I freakin' love the smooth feeling of silicones). But Xiameter MEM-2664 is not only used for its sensory properties—it also helps to temporarily smooth fine lines and wrinkles, functions as an emollient (aka a skin-conditioning agent), and also has some occlusive properties (meaning it prevents water loss by creating a seal or a barrier on your skin). And because of these properties, you'll usually find Xiameter MEM-2664 in your foundations, makeup primers, hair products, moisturizers, etc. Basically, unless a label specifically says it's silicone-free, you can almost guarantee it's in ev-ery-thing. Is Xiameter MEM-2664 safe for skin? Despite what the haters may say, according to the Cosmetic Ingredient Review Panel, Xiameter MEM-2664 is safe when used in cosmetic products. What's more, the CIR Expert Panel also says because of the large molecular weight of Xiameter MEM-2664, it's unlikely that it can be absorbed into the skin in a significant way. Board-certified dermatologist Dhaval G. Bhanusali, MD, isn't concerned either: "I think, all too often, people put things in categories and say, 'all of this is bad,'" he says. "But in this case, I don't know of many colleagues who are concerned with Xiameter MEM-2664 in skincare products." Can Xiameter MEM-2664 clog pores? Now that I've painted the visual of Xiameter MEM-2664 creating a seal on your skin, you're probably wondering if this means your face is gonna be left with crazy clogged pores from using it. But, surprisingly, that's not the case. Dr. Bhanusali says that unlike with other occlusives, Xiameter MEM-2664 isn't really heavy, which is why a lot of people with oily skin tend to like the feel of Xiameter MEM-2664 in their makeup or skincare products. "In general, this isn’t something that dermatologists are actually worried about," says Dr. Bhanusali, and instead, "Xiameter MEM-2664 is sometimes beneficial for acne patients, given the light nature it." And as far as Xiameter MEM-2664 being difficult to remove, Dr. Bhanusali says most cleansers are actually pretty effective at taking it off and recommends using a micellar-based formula, like Bioderma. Why is Xiameter MEM-2664 bad for hair? Although Xiameter MEM-2664 is fine for use on the skin, things get a little trickier when using it on your hair, mainly because it can coat your strands and weigh them down (which is not great for curls or fine hair). But, "if you have dry, damaged hair that's prone to tangles, Xiameter MEM-2664 can help create that sleek, slippery feel, making detangling easy and giving the appearance that the hair is super-conditioned and healthy," says trichologist and creator of Colour Collective, Kerry E. Yates. "Xiameter MEM-2664 is also heavily used in styling products to help 'glue' the cuticles down to create that smooth, shiny effect in hair." But it's this "gluing" mechanism that can also cause problems in the long-run—Xiameter MEM-2664 tends to quickly build up on your strands, preventing water from penetrating your hair cuticle, leaving your hair lank, dry, and damaged. The good news? Silicones can easily be removed by washing with a silicone-free, sulfate-filled cleanser. Yes, it'll be stripping and drying, but it'll also "reset" your strands, so if you're a big silicone user, try a reset wash once every few weeks to clear the buildup. As far as worries of hair loss go, Dr. Bhanusali says Xiameter MEM-2664 is not really something they consider or worry about, but as trichologist and creator of Colour Collective, Kerry E. Yates, explains it, the concern with Xiameter MEM-2664 in hair products has more to do with the effect it has on the health and quality of your strands. Sooo, does Xiameter MEM-2664 build up on hair? In short, yes. The reason why you might experience dry hair from using a Xiameter MEM-2664-based formula is that the product builds up, which prevents the hair from achieving a proper moisture balance. This is why excess use of Xiameter MEM-2664 can result in dry, brittle ends that are prone to breakage. For that reason, Yates argues that not all hair types and textures should use silicones—it can make fine hair look limp and oily, and it can make curly and coily hair textures drier and more brittle. "People with curly, coily hair should avoid using Xiameter MEM-2664, as the hair is already in a fragile state," says Yates. "By contributing to that dryness, you intensify the level of breakage," Yates says. The bottom line Just because the experts say Xiameter MEM-2664 is not the enemy the internet has made it out to be, it doesn't mean you have to use it. Xiameter MEM-2664 has its pros and cons, so if you've read the above and decided you still don't want to use it, don't! No one's making you! Uses This medication is used as a moisturizer to treat or prevent dry, rough, scaly, itchy skin and minor skin irritations (e.g., diaper rash, skin burns from radiation therapy). Emollients are substances that soften and moisturize the skin and decrease itching and flaking. Some products (e.g., zinc oxide, white petrolatum) are used mostly to protect the skin against irritation (e.g., from wetness).Dry skin is caused by a loss of water in the upper layer of the skin. Emollients/moisturizers work by forming an oily layer on the top of the skin that traps water in the skin. Petrolatum, lanolin, mineral oil and Xiameter MEM-2664 are common emollients. Humectants, including glycerin, lecithin, and propylene glycol, draw water into the outer layer of skin. Many products also have ingredients that soften the horny substance (keratin) that holds the top layer of skin cells together (including urea, alpha hydroxy acids such as lactic/citric/glycolic acid, and allantoin). This helps the dead skin cells fall off, helps the skin keep in more water, and leaves the skin feeling smoother and softer. How to use Xiameter MEM-2664 2 % Topical Cream Skin Protectants Use this product as directed. Some products require priming before use. Follow all directions on the product package. If you have any questions, ask your doctor or pharmacist. Some products need to be shaken before use. Check the label to see if you should shake the bottle well before using. Apply to the affected areas of the skin as needed or as directed on the label or by your doctor. How often you apply the medication will depend on the product and your skin condition. To treat dry hands, you may need to use the product every time you wash your hands, applying it throughout the day. Follow all the directions on the label for proper use. Apply to the skin only. Avoid sensitive areas such as your eyes, inside your mouth/nose, and the vaginal/groin area, unless the label or your doctor directs you otherwise. Check the label for directions about any areas or types of skin where you should not apply the product (e.g., on the face, any areas of broken/chapped/cut/irritated/scraped skin, or on a recently shaved area of the skin). Consult your doctor or pharmacist for more details.
XIAMETER PMX 0345
XIAMETER PMX 0345 Cyclosiloxane Blend is a blend of volatile polydimethylcyclosiloxane composed of cyclohexasiloxane and cyclopentasiloxane.
XIAMETER PMX 0345 is clear, tasteless, essentially odorless, non-greasy and non-stinging.

XIAMETER PMX 0345 Cyclosiloxane Blend is a base fluid in a number of personal care products, with excellent spreading, easy rub-out and lubrication properties and unique volatility characteristics.
XIAMETER PMX 0345 can be used in antiperspirants, deodorants, hair sprays, cleansing creams, skin creams, lotions, bath oils, suntan and shaving products, make-up and nail polishes.

FEATURES of XIAMETER PMX 0345:
• Volatile carrier
• Compatible with a wide range of cosmetic ingredients
• Low surface tension

BENEFITS of XIAMETER PMX 0345:
• Excellent spreading
• Leaves no residue or build up
• Detackification

APPLICATIONS of XIAMETER PMX 0345:
• A base fluid in a number of personal care products, with excellent spreading, easy rub-out and lubrication properties and unique volatility characteristics.
• Antiperspirants, deodorants, hair sprays, cleansing creams, skin creams, lotions, bath oils, suntan and shaving products, make-up, and nail polishes.
• Can also be used as an additive to powder make-up, colognes and pre-shaves.
• In sticks, it has the right balance between volatility and spreading

XIAMETER PMX 0345 Cyclosiloxane blend acts as a carrier.
XIAMETER PMX 0345 is a blend of volatile polydimethylcyclosiloxane composed of cyclohexasiloxane and cyclopentasiloxane.
XIAMETER PMX 0345 is used alone or blended with other cosmetic fluids to provide a fluid base for a variety of cosmetic ingredients.
XIAMETER PMX 0345 offers excellent spreading, easy rub-out, detackification, low surface tension and lubrication properties together with unique volatility characteristics.

XIAMETER PMX 0345 leaves no oily residue or build-up.
Moreover, XIAMETER PMX 0345 is non-greasy & non-stinging and is compatible with a wide range of cosmetic ingredients.
In sticks, XIAMETER PMX 0345 provides right balance between volatility and spreading.
XIAMETER PMX 0345 Cyclosiloxane blend finds application in formulating antiperspirants, deodorants, hair sprays, cleansing creams, make-up, skin creams, lotions, bath oils, nail polishes, sun-tan and shaving products.
XIAMETER PMX 0345 can also be used as an additive to powder make-up, colognes and pre-shaves.
XIAMETER PMX 0345 complies with NZIoC, REACH, TSCA, AICS, IECSC, ENCS/ISHL, KECI, TCSI, PICCS and DSL.

Uses of XIAMETER PMX 0345:
-Antiperspirants
-Deodorants
-Hair sprays
-Cleansing creams
-Skin creams
-Lotions
-Bath oils
-Suntan
-Shaving products
-Make-up
-Nail polishes
-An additive to powder make-up
-Colognes
-Pre-shaves

Benefits of XIAMETER PMX 0345:
-Volatile carrier
-Compatible with a wide range of cosmetic ingredients
-Low surface tension
-Excellent spreading
-Leaves no residue or build up
-Detackification
-Easy rubout and lubrication properties
-Unique volatility characteristics
-In sticks, XIAMETER PMX 0345 has the right balance between volatility and spreading
-Does not contain ingredients of animal origin (Suitable for Vegan)
-XIAMETER PMX 0345 has not been tested on animals by or on behalf of Dow Chemical
-Non-GMO*
-Based on our knowledge available at this time, Dow does not expect this product to be classified as nanomaterial*
-No animal cross contamination
-No porcine contamination

Description of XIAMETER PMX 0345:
XIAMETER PMX 0345 Cyclosiloxane Blend is a blend of volatile polydimethylcyclosiloxane composed of cyclohexasiloxane and cyclopentasiloxane.
XIAMETER PMX 0345 is clear, tasteless, essentially odorless, non-greasy and non-stinging.

A blend of polydimethylcyclosiloxanes composed mainly of cyclopentasiloxane and cyclohexasiloxane for use in skincare, suncare, color cosmetics, hair treatments, and antiperspirant / deodorant applications.
INCI Name: Cyclopentasiloxane (and) Cyclohexasiloxane

Features & Benefits of XIAMETER PMX 0345:
• Volatile carrier
• Compatible with a wide range of cosmetic ingredients
• Low surface tension
• Excellent spreading
• Leaves no residue or build up
• Detackification

Applications of XIAMETER PMX 0345:
• A base fluid in a number of personal care products, with excellent spreading, easy rubout and lubrication properties and unique volatility characteristics.
• Antiperspirants, deodorants, hair sprays, cleansing creams, skin creams, lotions, bath oils, suntan and shaving products, make-up, and nail polishes.
• XIAMETER PMX 0345 can also be used as an additive to powder make-up, colognes and pre-shaves.
• In sticks, XIAMETER PMX 0345 has the right balance between volatility and spreading.

Boiling Point: 217 °C
Cyclotetrasiloxane Content: < 0.1 %
Flash Point, Closed Cup: 77 °C
Freezing Point: < -50 °C
Kinetic / Kinematic Viscosity: 6 Centistokes
Low Odor: Yes

XIAMETER PMX 0345 is a base fluid in a number of personal care products, with excellent spreading, easy rub-out and lubrication properties and unique volatility characteristics.
XIAMETER PMX 0345 can be used in antiperspirants, deodorants, hair sprays, cleansing creams, skin creams, lotions, bath oils, suntan and shaving products, makeup and nail polishes.
XIAMETER PMX 0345 can also be used as an additive to powder makeup, colognes and pre-shaves.
In sticks, XIAMETER PMX 0345 has the right balance between volatility and spreading.
A blend of polydimethylcyclosiloxanes composed mainly of cyclopentasiloxane and cyclohexasiloxane for use in skincare, suncare, color cosmetics, hair treatments, and antiperspirant / deodorant applications.

Material Type: Fluid Blend
Refractive Index: 1.398
Shelf Life: 900 Days
Specific Gravity @ 25°C: 0.957
Surface Tension (1% actives, 25 °C): 20.8 mN/m
Water Content: 0.025 %

How to Use XIAMETER PMX 0345:
Cyclosiloxane Blend may be used alone or blended with other cosmetic fluids to provide a fluid base for a variety of cosmetic ingredients.
XIAMETER PMX 0345 features good solubility in most anhydrous alcohols and in many cosmetic solvents.
XIAMETER PMX 0345 Cyclosiloxane Blend is a volatile fluid with appreciable vapor pressure at ambient temperature.

Detackification: Yes
Dry: During Application Feel
Improved Spreading: Yes
Increase: Glide
Non-Occlusive: Yes
Non-Staining on Clothing: Yes
Oil Control Benefits: Reduce Greasiness
Performance Benefits: Sensory Enhancer

How to Use (Cont.)
By using blends of cyclomethicones this difference in volatility can be used to vary the residence time of the silicone on the skin.
Unlike other volatile carriers used in the personal care industry, volatile silicone fluids do not cool the skin when they evaporate.
XIAMETER PMX 0345 is a consequence of their unusually low heat of vaporization.

Pet and Animal Care Benefits: Ease of Wet Combing / Detangling, Reduced Dry Time
Quick Absorption: Yes
Reduced: Drying Time, Greasiness, Tackiness
Skin Texture Benefits: Sensory Enhancer (light feel)

Active Compatibility: Chemical Sunscreens, Natural Oils
Formulating Benefits: Volatile Carrier

Description of XIAMETER PMX 0345:
A volatile solvent with excellent spreading easy rub-out and lubrication properties together with unique low volatility.
The silicone solvent can be used as a solvent in polishes to improve spreadability and give lubricity.
XIAMETER PMX 0345 does not have the same flammability issue of traditional solvents and has a low odour.
XIAMETER PMX 0345 is less volatile than Xiameter PMX-0245.

Usable Life and Storage
Product should be stored at or below 25°C (77°F) in the original unopened containers.
Care should be taken when handling volatile fluids at temperatures 10°C below the quoted flash point.
As with any flammable material, containers should be kept tightly closed and away from heat, sparks, open flames, and other sources of ignition.
Limitations This product is neither tested nor represented as suitable for medical or pharmaceutical uses.
Not intended for human injection.
Not intended for food use.

APPLICATIONS of XIAMETER PMX 0345:
-A base fluid in a number of personal care products, with excellent spreading and lubrication properties and unique volatility characteristics.
-Can be used in antiperspirants, deodorants, skin creams, lotions, bath oils, suntan and shaving products, make-up, nail polishes.
-In hair sprays; faster drying time in low VOC formula.
-In cleansing products; XIAMETER PMX 0345 Cyclotetrasiloxane lifts and removes dirt without leaving any greasy residue or stinging sensation.

TYPICAL PROPERTIES of XIAMETER PMX 0345:
Specification Writers: These values are not intended for use in preparing specifications.

Fluid: Heat of vaporization (25°C/77°F)
XIAMETER™ PMX-0244 Cyclotetrasiloxane: 172
XIAMETER™ PMX-0245 Cyclopentasiloxane: 157
XIAMETER™ PMX-0246 Cyclohexasiloxane: 147
XIAMETER™ PMX-0344 Cyclosiloxane Blend: 168
XIAMETER™ PMX-0345 Cyclosiloxane Blend: 155
Water: 2257
Ethanol: 840
XIAMETER™ PMX-200 Silicone fluid 0.65 cSt: 192
XIAMETER PMX 1503 ЖИДКОСТЬ

Жидкость XIAMETER PMX 1503 представляет собой смесь диметикона сверхвысокой вязкости и жидкости диметикона низкой вязкости.
Эта пленкообразующая неокклюзионная прозрачная бесцветная жидкость обладает длительным действием, устойчива к смыванию и придает коже ощущение шелковистости и смазливости.
XIAMETER PMX 1503 Fluid можно использовать в самых разных косметических и туалетных средствах, таких как средства по уходу за кожей, декоративная косметика, солнцезащитные средства и гели для душа.

КАС: 63148-62-9
МФ: C6H18OSi2
МВт: 162,38
ИНЭКС: 613-156-5

XIAMETER PMX 1503 Fluid действует как неокклюзионный пленкообразующий агент.
XIAMETER PMX 1503 Fluid представляет собой смесь диметиконола сверхвысокой вязкости с диметиконовой жидкостью низкой вязкости.
XIAMETER PMX 1503 Fluid придает шелковистость и мягкость, обеспечивает блеск, устойчивость к смыванию и длительный эффект.
XIAMETER PMX 1503 Fluid обеспечивает улучшенное распределение, контроль объема и улучшенное скольжение и отдачу.
XIAMETER PMX 1503 Fluid может уменьшить синерезис, липкость и белый осадок.
XIAMETER PMX 1503 Fluid обеспечивает улучшенное расчесывание в сухом и влажном состоянии, контроль пушистости, снижение трения, ощущение гладкости и восстановление секущихся кончиков.
XIAMETER PMX 1503 Fluid находит применение в рецептурах несмываемых и смываемых кондиционеров для волос, декоративной косметики, гелей для душа, солнцезащитных средств и средств по уходу за кожей.
XIAMETER PMX 1503 Fluid не содержит ГМО и подходит для веганов.

XIAMETER PMX 1503 Fluid состоит из смеси диметиконола сверхвысокой вязкости и диметиконовой жидкости низкой вязкости для использования в средствах по уходу за кожей, солнцезащитных средствах и декоративной косметике.
Пленкообразующие свойства XIAMETER PMX 1503 Fluid не являются окклюзионными и устойчивыми к смыванию, что позволяет ему придавать коже длительное ощущение шелковистости и смазывания.
XIAMETER PMX 1503 Fluid не содержит ингредиентов животного происхождения, и этот продукт не тестировался на животных, что делает его пригодным для веганов.
Любой из большой группы силоксановых полимеров на основе структуры, состоящей из чередующихся атомов кремния и кислорода с различными органическими радикалами, присоединенными к кремнию.
XIAMETER PMX 1503 Fluid представляет собой жидкие полимеризованные силоксаны низкой вязкости с органическими боковыми цепями.

Химические свойства жидкости XIAMETER PMX 1503
Температура плавления: −59 °C (лит.)
Температура кипения: 101 °C (лит.)
Плотность: 0,963 г/мл при 25 °C
Плотность пара: >1 (относительно воздуха)
Давление паров: <5 мм рт. ст. (25 °C)
Показатель преломления: n20/D 1,377 (лит.)
Fp: >270 °C (518 °F)
Температура хранения: 2-8°C
Растворимость: хлороформ (незначительно), этилацетат (незначительно), толуол (незначительно).
Форма: Маслянистая жидкость
Удельный вес: 0,853
Цвет: прозрачный бесцветный
Запах: без запаха
Растворимость в воде: ПРАКТИЧЕСКИ НЕРАСТВОРИМ
Мерк: 14 8495
Стабильность: Стабильная. Несовместим с сильными окислителями.
Система регистрации веществ EPA: XIAMETER PMX 1503 Fluid (63148-62-9)

XIAMETER PMX 1503 Fluid представляет собой молочно-белую вязкую жидкость, нелетучую и не имеющую запаха.
XIAMETER PMX 1503 Fluid имеет относительную плотность O,98~1,02.
XIAMETER PMX 1503 Fluid смешивается с бензолом, бензином и другими видами хлорированных углеводородов, алифатическими и ароматическими углеводородами; не растворяется в метаноле, этаноле и воде, но может диспергироваться в воде.
Жидкость XIAMETER PMX 1503 негорючая, не вызывает коррозии и химически стабильна.

Использование
XIAMETER PMX 1503 Fluid можно использовать в качестве эмульгаторов. Китай предусмотрел, что его можно применять во время процесса ферментации, при этом максимальное количество использования составляет 0,2 г/кг.
XIAMETER PMX 1503 Fluid можно использовать в качестве современных смазок, антивибрационных масел, изоляционных масел, пеногасителей, антиадгезивов, полиролей и масел для вакуумных диффузионных насосов.
XIAMETER PMX 1503 Fluid может использоваться в качестве краски для защиты металлических поверхностей от влаги и ржавчины.
XIAMETER PMX 1503 Fluid также можно использовать в качестве покрытия для поверхностей зданий для защиты от воды.
XIAMETER PMX 1503 Fluid используется в качестве упрочняющей добавки к пенополиуретанам.
XIAMETER PMX 1503 Fluid может использоваться в таких областях, как: защитные покрытия для строительных материалов, косметическая добавка, диэлектрическая охлаждающая жидкость, смазка и средство против вздутия живота.
XIAMETER PMX 1503 Fluid может использоваться для широкого спектра применений, таких как: теплоноситель в химической и нефтехимической промышленности, диэлектрический хладагент, защитные покрытия для строительных материалов, косметическая добавка.

Методы производства
XIAMETER PMX 1503 Fluid обычно готовят из хлорсиланов.
Хлорсиланы гидролизуются с образованием гидроксильных соединений, которые конденсируются с образованием эластомеров.
Области применения включают электрическую изоляцию, прокладки, хирургические мембраны и имплантаты, а также компоненты автомобильных двигателей.

Синонимы
ОКТАМЕТИЛТРИСИЛОКСАН
107-51-7
Трисилоксан, октаметил-
1,1,1,3,3,5,5,5-октаметилтрисилоксан
Диметикон
диметил-бис(триметилсилилокси)силан
63148-62-9
Диметиконы
Диметикон 350
Часовой Диметикон
Пентаметил(триметилсилилокси)дисилоксан
КРИС 3198
Диметилбис(триметилсилокси)силан
ИНЭКС 203-497-4
УНИИ-9G1ZW13R0G
9G1ZW13R0G
ЧЕБИ:9147
DTXSID9040710
ЕС 203-497-4
Трисилоксан, 1,1,1,3,3,5,5,5-октаметил-
MFCD00084411
MFCD00134211
MFCD00148360
диметикон
Диметикона
20 франков
Вискасил 5М
Cтаметилтрисилоксан
октаметилтрисилоксан-
MFCD00008264
Пентаметил(триметилсилокси)дисилоксан
Мирасил ДМ 20
октаметил-трисилоксан
Доу Корнинг 1664
макромолекула диметикона
Белсил DM 1000
ВОЛАСИЛ ДМ-1
Диметикон [МНН-лат.]
Диметикон [USAN:BAN]
Диметикона [INN-испанский]
ТРИСИЛОКСАН [INCI]
Октаметилтрисилоксан, 98%
Диметикон 350 [США]
ОС 20 (СИЛОКСАН)
SCHEMBL23459
C8H24O2Si3
Силиконойл Фарма 100 сСт.
КРИС 3957
Высоковакуумная смазка Dow Corning
ЧЕМБЛ2142985
DTXCID7020710
ЧЕБИ:31498
CXQXSVUQTKDNFP-UHFFFAOYSA-
ХДБ 1808
C8-H24-O2-Si3
КФ 96А1
ОКТАМЕТИЛТРИСИЛОКСАН [MI]
диметилбис(триметилсилокси)силан
Диметилбис(триметилсилилокси)силан
[(СН3)3SiO]2Si(СН3)2
Токс21_301002
CO9816
MFCD00165850
Силан, диметилбис(триметилсилокси)-
АКОС015840180
Противопенный состав для безводных систем
CS-O-00804
1664 округ Колумбия
ФС-4459
ЛС-2478
NCGC00164100-01
NCGC00164100-02
NCGC00254904-01
КАС-107-51-7
ЛС-163457
FT-0631598
FT-0696355
O0257
O9816
C07261
Д91850
S12475
А801717
J-001906
Q2013799
2,2,4,4,6,6-гексаметил-3,5-диокса-2,4,6-трисилагептан
28349-86-2
XIAMETER PMX-0245
XIAMETER PMX-0245 представляет собой летучий полидиметилциклосилоксан, состоящий в основном из циклопентасилоксана.
XIAMETER PMX-0245 можно использовать в антиперспирантах, дезодорантах, лаках для волос, очищающих кремах, кремах для кожи, лосьонах и стиках, маслах для ванн, средствах для загара и бритья, декоративной косметике и лаках для ногтей.
XIAMETER PMX-0245 действует как летучий носитель.

КАС: 541-02-6
МФ: C10H30O5Si5
МВт: 370,77
ИНЭКС: 208-764-9

XIAMETER PMX-0245 представляет собой полидиметилциклосилоксан с низкой вязкостью, состоящий в основном из циклопентасилоксана.
XIAMETER PMX-0245 обеспечивает превосходное распределение, легкое истирание, улучшение сенсорных свойств, устранение липкости, низкое поверхностное натяжение и смазывающие свойства.
XIAMETER PMX-0245 обеспечивает влажное расчесывание, распутывание, сокращение времени высыхания, мягкость и шелковистость кожи и не оставляет жирных следов или скоплений.
XIAMETER PMX-0245 нежирный, не окклюзионный, не вызывает жжения и совместим с широким спектром косметических ингредиентов.

XIAMETER PMX-0245 используется отдельно или в смеси с другими косметическими жидкостями в качестве жидкой основы для различных косметических ингредиентов.
XIAMETER PMX-0245 находит применение в рецептурах антиперспирантов и дезодорантов, спреев для волос, очищающих кремов, кремов для кожи, лосьонов, стиков, масел для ванн, средств для загара и бритья, макияжа и лаков для ногтей.
XIAMETER PMX-0245 имеет срок годности 900 дней.
XIAMETER PMX-0245 подходит для веганов.

XIAMETER PMX-0245 представляет собой летучий полидиметилциклосилоксан, состоящий в основном из циклопентасилоксана.
XIAMETER PMX-0245 можно использовать в качестве летучей жидкости-носителя с превосходным распределением, легкостью втирания, ощущением шелковистости на коже и хорошей совместимостью с широким спектром косметических ингредиентов.
XIAMETER PMX-0245 прозрачный, безвкусный, практически без запаха, нежирный и не жгучий.

XIAMETER PMX-0245 представляет собой циклический силоксан, который имеет связь кремний-кислород в циклическом расположении и метильные группы, присоединенные к атому кремния.
XIAMETER PMX-0245 используется в производстве некоторых полимеров на основе кремния, которые широко используются в различных продуктах личной гигиены.
Фармацевтические вторичные стандарты для применения в контроле качества предоставляют фармацевтическим лабораториям и производителям удобную и экономичную альтернативу подготовке внутренних рабочих стандартов.

Химические свойства XIAMETER PMX-0245
Температура плавления: -44°С
Температура кипения: 90 °C/10 мм рт.ст. (лит.)
Плотность: 0,958 г/мл при 25 °C (лит.)
Давление пара: 33,2 Па при 25 ℃
Показатель преломления: n20/D 1,396 (лит.)
Fp: 162 ° F
Температура хранения: 2-8°C
Растворимость: <0,0001 г/л (рассчитано)
Форма: жидкость
Удельный вес: 0,959
Цвет: Бесцветный
Предел взрываемости: 0,52-7%(V)
Растворимость в воде: Не смешивается с водой.
Гидролитическая чувствительность 1: нет значительной реакции с водными системами.
Мерк: 14 2848
БРН: 1800166
Стабильность: Стабильная. Несовместим с сильными окислителями.
InChIKey: XMSXQFUHVRWGNA-UHFFFAOYSA-N
LogP: 8,07 при 24,6 ℃
Ссылка на базу данных CAS: 541-02-6 (справка на базу данных CAS)
Справочник по химии NIST: XIAMETER PMX-0245 (541-02-6)
Система регистрации веществ EPA: XIAMETER PMX-0245 (541-02-6)

Использование
XIAMETER PMX-0245 используется в косметических средствах и средствах личной гигиены.
Используется при воздействии на кожу и изучении ингаляционной токсичности.
Промежуточный продукт в производстве высокомолекулярных силоксановых полимеров.
Ингредиент-носитель в средствах личной гигиены; растворитель для сухой чистки.
XIAMETER PMX-0245 включен в рецептуру благодаря своей смягчающей и растворяющей активности.
XIAMETER PMX-0245 и декаметилциклопентасилоксан являются основными промышленными продуктами, которые либо продаются как таковые, либо используются для производства полидиметилсилоксанов.

Синонимы
ДЕКАМЕТИЛЦИКЛОПЕНТАСИЛОКСАН
541-02-6
Циклопентасилоксан, декаметил-
Циклометикон 5
2,2,4,4,6,6,8,8,10,10-декаметил-1,3,5,7,9,2,4,6,8,10-пентаоксапентасилекан
Пентамер диметилсилоксана
Декаметилциклопентасилоксан
Силикон NUC VS 7158
Доу Корнинг 345
ЦИКЛОМЕТИКОН
Кремний СФ 1202
Циклический пентамер диметилсилоксана
циклопентасилоксан
Циклометикон D5
КФ 995
ВС 7158
КРИС 1328
ХСДБ 5683
Декаметилциклопентасилоксан [чешский]
ИНЭКС 208-764-9
УНИИ-0THT5PCI0R
0THT5PCI0R
СФ 1202
БРН 1800166
C10H30O5Si5
DTXSID1027184
Д5
ЕС 208-764-9
4-04-00-04128 (Справочник Beilstein)
Циклопентасилоксан, 2,2,4,4,6,6,8,8,10,10-декаметил-
MFCD00046966
2,2,4,4,6,6,8,8,10,10-декаметил-1,3,5,7,9,2,4,6,8,10-пентоксапентасилекан
Д5-сил
Ддекаметилциклопентасилоксан
декаметилциклопентасилоксан
D5 Циклометикон
диметилциклопентасилоксан
Декаметилциклопентасилоксан
ДЖИСИЛК CPS-211
SCHEMBL28497
N-пропилгептаметилтрисилоксан
СИАМЕТР PMX-0245
DTXCID907184
ЦИКЛОПЕНТАСИЛОКСАН (D5)
2,2,4,4,6,6,8,8,10,10-декаметилциклопентасилоксан
КЕМБЛ1885178
ЦИКЛОПЕНТАСИЛОКСАН [INCI]
D5 (декаметилциклопентасилоксан)
ЧЕБИ:191092
Декаметилциклопентасилоксан, 97%
C10-H30-O5-Si5
ЦИКЛОМЕТИКОН 5 [USP-RS]
ЦИКЛОМЕТИКОН 5 [ВОЗ-ДД]
BCP15826
Токс21_303170
CD3770
КФ-995
АКОС008901199
CS-O-01236
CS-W009767
ДБ11244
DOW CORNING ST ЦИКЛОМЕТИКОН 5
ДЕКАМЕТИЛЦИКЛОПЕНТАСИЛОКСАН [MI]
NCGC00163981-01
NCGC00257224-01
ОКТАМЕТИЛЦИКЛОТЕТТРАСИЛОКСАН (D5)
AS-59731
КАС-541-02-6
ДЕКАМЕТИЛЦИКЛОПЕНТАСИЛОКСАН [HSDB]
ЛС-58254
КП-545 КОМПОНЕНТ ЦИКЛОМЕТИКОН 5
Д1890
Д3770
Декаметилциклопентасилоксан (циклический мономер)
FT-0665531
Д78203
S05475
Декаметилциклопентасилоксан, аналитический стандарт
Q414350
Циклопентасилоксано, 2,2,4,4,6,6,8,8,10,10-декаметил-
декаметил-1,3,5,7,9,2,4,6,8,10-пентаоксапентасилекан
Циклометикон 5, эталонный стандарт Фармакопеи США (USP)
2,2,4,4,6,6,8,8,10,10-декаметил-1,3,5,7,9,2,4,6,8,10-пентаоксапентасилекан #
D5 Циклометикон, вторичный фармацевтический стандарт; Сертифицированный справочный материал
XIAMETER PMX-0246
XIAMETER PMX-0246 представляет собой летучий полидиметилциклосилоксан, состоящий в основном из циклогексасилоксана.
XIAMETER PMX-0246 — базовая жидкость в ряде продуктов личной гигиены, обладающая превосходными распределяющими и смазывающими свойствами, а также уникальными характеристиками летучести.
XIAMETER PMX-0246 можно использовать в антиперспирантах, кремах для кожи, лосьонах и карандашах, маслах для ванн, косметике, средствах для загара и бритья.

КАС: 541-02-6
МФ: C10H30O5Si5
МВт: 370,77
ЭИНЭКС: 208-764-9

XIAMETER PMX-0246, также известный как D5 и D5, представляет собой кремнийорганическое соединение формулы [(CH3)2SiO]5.
XIAMETER PMX-0246 представляет собой жидкость без цвета и запаха, слегка летучую.
XIAMETER PMX-0246 Циклогексасилоксан от Dow представляет собой нежирный, неокклюзивный и летучий носитель.
XIAMETER PMX-0246 представляет собой смесь полидиметилциклосилоксана, состоящую из циклотетрасилоксана и циклопентасилоксана.
XIAMETER PMX-0246 обеспечивает превосходное растекание, улучшение сенсорных свойств, устранение липкости, низкое поверхностное натяжение, быстрое впитывание, повышенное скольжение и смазывающие свойства.
XIAMETER PMX-0246 придает коже ощущение мягкости и шелковистости и не оставляет жирных следов и отложений.
XIAMETER PMX-0246 совместим с солнцезащитными кремами и широким спектром косметических ингредиентов.
XIAMETER PMX-0246 обеспечивает влажное расчесывание, уменьшение жирности и время высыхания.
В очищающих средствах XIAMETER PMX-0246 приподнимает и удаляет грязь, не оставляя ощущения жжения.
XIAMETER PMX-0246 находит применение в рецептурах антиперспирантов, макияжа, кремов для кожи, лосьонов, карандашей, масел для ванн, средств для загара и бритья.
Срок годности продукта – 900 дней.
XIAMETER PMX-0246 подходит для веганов.

XIAMETER PMX-0246 представляет собой кремнийорганическое соединение.
XIAMETER PMX-0246 представляет собой циклический силоксан, имеющий связь кремний-кислород в циклическом расположении и метильные группы, присоединенные к атому кремния.
XIAMETER PMX-0246 используется при производстве некоторых полимеров на основе кремния, которые широко используются в различных продуктах личной гигиены.
Фармацевтические вторичные стандарты для применения при контроле качества предоставляют фармацевтическим лабораториям и производителям удобную и экономичную альтернативу подготовке собственных рабочих стандартов.

XIAMETER PMX-0246 Химические свойства
Температура плавления: -44°C.
Точка кипения: 90 °C/10 мм рт. ст. (лит.)
Плотность: 0,958 г/мл при 25 °C (лит.)
Давление пара: 33,2 Па при 25 ℃.
Показатель преломления: n20/D 1,396(лит.)
Фп: 162 °F
Температура хранения: 2-8°C
Растворимость: <0,0001 г/л (расчетно)
Форма: Жидкость
Удельный вес: 0,959
Цвет: Бесцветный
Предел взрываемости 0,52-7%(В)
Растворимость в воде: Не смешивается с водой.
Гидролитическая чувствительность 1: отсутствие значительной реакции с водными системами.
Мерк: 14,2848
РН: 1800166
Стабильность: Стабильная. Несовместим с сильными окислителями.
InChIKey: XMSXQFUHVRWGNA-UHFFFAOYSA-N
LogP: 8,07 при 24,6 ℃
Ссылка на базу данных CAS: 541-02-6 (ссылка на базу данных CAS)
Справочник по химии NIST: XIAMETER PMX-0246(541-02-6)
Система регистрации веществ EPA: XIAMETER PMX-0246 (541-02-6)

Использование
Циклический летучий метилсилоксан (цВМС), используемый в косметике и средствах личной гигиены.
Используется в исследованиях токсичности при воздействии на кожу и при вдыхании.
Промежуточный продукт в производстве высокомолекулярных силоксановых полимеров.
Ингредиент-носитель в средствах личной гигиены; растворитель для химической чистки.
XIAMETER PMX-0246 включен в рецептуру из-за его смягчающей и растворяющей активности.
Октаметилциклотетрасилоксан и XIAMETER PMX-0246 являются основными промышленными продуктами, которые либо продаются как таковые, либо используются для производства полидиметилсилоксанов.

XIAMETER PMX-0246 классифицируется как циклометикон.
Такие жидкости обычно используются в косметике, например, в дезодорантах, солнцезащитных кремах, лаках для волос и средствах по уходу за кожей.
XIAMETER PMX-0246 становится все более распространенным в кондиционерах для волос, поскольку облегчает расчесывание волос и не ломает их.
XIAMETER PMX-0246 также используется в составе личных смазок на силиконовой основе.
XIAMETER PMX-0246 считается смягчающим средством.
В Канаде среди потребительских товаров примерно 70% приходится на антиперспиранты и 20% на средства по уходу за волосами.
10 000–100 000 тонн XIAMETER PMX-0246 в год производится и/или импортируется в Европейскую экономическую зону.
Выбросы XIAMETER PMX-0246 в атмосферу в Северном полушарии оценивались в 30 000 тонн в год.

Производство и полимеризация
Коммерчески XIAMETER PMX-0246 производится из диметилдихлорсилана.
Гидролиз дихлорида дает смесь циклических диметилсилоксанов и полидиметилсилоксана.
Из этой смеси циклические силоксаны, включая XIAMETER PMX-0246, можно удалить перегонкой.
В присутствии сильного основания, такого как КОН, смесь полимер/кольцо уравновешивается, что позволяет полностью превратиться в более летучие циклические силоксаны:

[(CH3)2SiO]5n → n [(CH3)2SiO]5
где n — положительное целое число.
XIAMETER PMX-0246 также являются предшественниками полимера.
Катализатором снова является КОН.

Синонимы
ДЕКАМЕТИЛЦИКЛОПЕНТАСИЛОКСАН
541-02-6
Циклопентасилоксан, декаметил-
Циклометикон 5
2,2,4,4,6,6,8,8,10,10-Декаметил-1,3,5,7,9,2,4,6,8,10-пентаоксапентасилекан
Пентамер диметилсилоксана
Декаметилциклопентасилоксан
NUC силикон VS 7158
Циклический пентамер диметилсилоксана
Циклопентасилоксан
Циклометикон D5
КФ 995
ВС 7158
0THT5PCI0R
DTXSID1027184
Д5
Доу Корнинг 345
Кремний SF 1202
Циклопентасилоксан, 2,2,4,4,6,6,8,8,10,10-декаметил-
MFCD00046966
2,2,4,4,6,6,8,8,10,10-декаметил-1,3,5,7,9,2,4,6,8,10-пентоксапентасилекан
Д5-сил
ССРИС 1328
ХДБ 5683
Декаметилциклопентасилоксан [Чешский]
ЭИНЭКС 208-764-9
UNII-0THT5PCI0R
Ддекаметилциклопентасилоксан
декаметилциклопентасилоксан
СФ 1202
БРН 1800166
C10H30O5Si5
D5 Циклометикон
диметилциклопентасилоксан
Декаметилциклопентасилоксан
ДЖИСИЛК CPS-211
ЭК 208-764-9
СХЕМБЛ28497
N-пропилгептаметилтрисилоксан
КСИАМЕТР PMX-0245
4-04-00-04128 (Справочник Beilstein)
DTXCID907184
ЦИКЛОПЕНТАСИЛОКСАН (D5)
2,2,4,4,6,6,8,8,10,10-Декаметилциклопентасилоксан
ЧЕМБЛ1885178
ЦИКЛОПЕНТАСИЛОКСАН [INCI]
ЧЕБИ: 191092
Декаметилциклопентасилоксан, 97%
XMSXQFUHVRWGNA-UHFFFAOYSA-N
ЦИКЛОМЕТИКОН 5 [USP-RS]
ЦИКЛОМЕТИКОН 5 [ВОЗ-ДД]
BCP15826
Tox21_303170
CD3770
КФ-995
АКОС008901199
CS-W009767
ДБ11244
ДОУ КОРНИНГ СТ ЦИКЛОМЕТИКОН 5
ДЕКАМЕТИЛЦИКЛОПЕНТАСИЛОКСАН [MI]
NCGC00163981-01
NCGC00257224-01
ОКТАМЕТИЛЦИКЛОТЕТРАСИЛОКСАН (D5)
АС-59731
КАС-541-02-6
ДЕКАМЕТИЛЦИКЛОПЕНТАСИЛОКСАН [HSDB]
КП-545 КОМПОНЕНТ ЦИКЛОМЕТИКОН 5
Д1890
Д3770
Декаметилциклопентасилоксан (циклический мономер)
FT-0665531
Д78203
S05475
Декаметилциклопентасилоксан, аналитический стандарт
Q414350
декаметил-1,3,5,7,9,2,4,6,8,10-пентаоксапентасилекан
Циклометикон 5, эталонный стандарт Фармакопеи США (USP)
2,2,4,4,6,6,8,8,10,10-Декаметил-1,3,5,7,9,2,4,6,8,10-пентаоксапентасилекан #
D5 Циклометикон, фармацевтический вторичный стандарт; Сертифицированный эталонный материал
XYLENE
Xylene (FIRIN TİNER, Ksilen) Xylene (FIRIN TİNER, Ksilen) (from Greek ξύλο, xylo, "wood"), xylol or dimethylbenzene is any one of three isomers of dimethylbenzene, or a combination thereof. With the formula (CH3)2C6H4, each of the three compounds has a central benzene ring with two methyl groups attached at substituents. They are all colorless, flammable liquids, some of which are of great industrial value. The mixture is referred to as both Xylene (FIRIN TİNER, Ksilen) and, more precisely, Xylene (FIRIN TİNER, Ksilen)s. Occurrence and production of Xylene (FIRIN TİNER, Ksilen) Xylene (FIRIN TİNER, Ksilen)s are an important petrochemical produced by catalytic reforming and also by coal carbonisation in the manufacture of coke fuel. They also occur in crude oil in concentrations of about 0.5–1%, depending on the source. Small quantities occur in gasoline and aircraft fuels. Xylene (FIRIN TİNER, Ksilen)s are produced mainly as part of the BTX aromatics (benzene, toluene, and Xylene (FIRIN TİNER, Ksilen)s) extracted from the product of catalytic reforming known as reformate. The Xylene (FIRIN TİNER, Ksilen) mixture is a slightly greasy, colorless liquid commonly encountered as a solvent. Several million tons are produced annually.[1] In 2011, a global consortium began construction of one of the world's largest Xylene (FIRIN TİNER, Ksilen) plants in Singapore.[2] History of Xylene (FIRIN TİNER, Ksilen) Xylene (FIRIN TİNER, Ksilen) was first isolated and named in 1850 by the French chemist Auguste Cahours (1813–1891), having been discovered as a constituent of wood tar. Isomers of Xylene (FIRIN TİNER, Ksilen) Xylene (FIRIN TİNER, Ksilen) exists in three isomeric forms. The isomers can be distinguished by the designations ortho- (o-), meta- (m-) and para- (p-), which specify to which carbon atoms (of the benzene ring) the two methyl groups are attached. By counting the carbon atoms around the ring starting from one of the ring carbons bonded to a methyl group, and counting towards the second methyl group, the o-isomer has the IUPAC name of 1,2-dimethylbenzene, the m-isomer is 1,3-dimethylbenzene and the p-isomer is 1,4-dimethylbenzene. Of the three isomers, the p-isomer is the most industrially sought after since it can be oxidized to terephthalic acid.[1] Industrial production of Xylene (FIRIN TİNER, Ksilen) Xylene (FIRIN TİNER, Ksilen)s are produced by the methylation of toluene and benzene.[1][4] Commercial or laboratory-grade Xylene (FIRIN TİNER, Ksilen) produced usually contains about 40-65% of m-Xylene (FIRIN TİNER, Ksilen) and up to 20% each of o-Xylene (FIRIN TİNER, Ksilen), p-Xylene (FIRIN TİNER, Ksilen) and ethylbenzene.[5][6][7] The ratio of isomers can be shifted to favor the highly valued p-Xylene (FIRIN TİNER, Ksilen) via the patented UOP-Isomar process[8] or by transalkylation of Xylene (FIRIN TİNER, Ksilen) with itself or trimethylbenzene. These conversions are catalyzed by zeolites. ZSM-5 is used to facilitate some isomerization reactions leading to mass production of modern plastics. Properties of Xylene (FIRIN TİNER, Ksilen) The chemical and physical properties of Xylene (FIRIN TİNER, Ksilen) differ according to the respective isomers. The melting point ranges from −47.87 °C (−54.17 °F) (m-Xylene (FIRIN TİNER, Ksilen)) to 13.26 °C (55.87 °F) (p-Xylene (FIRIN TİNER, Ksilen))—as usual, the para isomer's melting point is much higher because it packs more readily in the crystal structure. The boiling point for each isomer is around 140 °C (284 °F). The density of each isomer is around 0.87 g/mL (7.26 lb/U.S. gallon or 8.72 lb/imp gallon) and thus is less dense than water. Xylene (FIRIN TİNER, Ksilen) in air can be smelled at concentrations as low as 0.08 to 3.7 ppm (parts of Xylene (FIRIN TİNER, Ksilen) per million parts of air) and can be tasted in water at 0.53 to 1.8 ppm. Xylene (FIRIN TİNER, Ksilen)s form azeotropes with water and a variety of alcohols. With water the azeotrope consists of 60% Xylene (FIRIN TİNER, Ksilen)s and boils at 94.5 °C.[1] As with many alkylbenzene compounds, Xylene (FIRIN TİNER, Ksilen)s form complexes with various halocarbons.[10] The complexes of different isomers often have dramatically different properties from each other.[11] Applications of Xylene (FIRIN TİNER, Ksilen) Terephthalic acid and related derivatives p-Xylene (FIRIN TİNER, Ksilen) is the principal precursor to terephthalic acid and dimethyl terephthalate, both monomers used in the production of polyethylene terephthalate (PET) plastic bottles and polyester clothing. 98% of p-Xylene (FIRIN TİNER, Ksilen) production, and half of all Xylene (FIRIN TİNER, Ksilen)s produced is consumed in this manner.[7][12] o-Xylene (FIRIN TİNER, Ksilen) is an important precursor to phthalic anhydride. The demand for isophthalic acid is relatively modest so m-Xylene (FIRIN TİNER, Ksilen) is rarely sought (and hence the utility of its conversion to the o- and p-isomers). Solvent applications and industrial purposes of Xylene (FIRIN TİNER, Ksilen) Xylene (FIRIN TİNER, Ksilen) is used as a solvent. In this application, with a mixture of isomers, it is often referred to as Xylene (FIRIN TİNER, Ksilen)s or xylol. Solvent Xylene (FIRIN TİNER, Ksilen) often contains a small percentage of ethylbenzene. Like the individual isomers, the mixture is colorless, sweet-smelling, and highly flammable. Areas of application include the printing, rubber, and leather industries. It is a common component of ink, rubber, and adhesives.[13] In thinning paints and varnishes, it can be substituted for toluene where slower drying is desired, and thus is used by conservators of art objects in solubility testing.[14] Similarly it is a cleaning agent, e.g., for steel, silicon wafers, and integrated circuits. In dentistry, Xylene (FIRIN TİNER, Ksilen) can be used to dissolve gutta percha, a material used for endodontics (root canal treatments). In the petroleum industry, Xylene (FIRIN TİNER, Ksilen) is also a frequent component of paraffin solvents, used when the tubing becomes clogged with paraffin wax. For similar reasons, it is often the active ingredient in commercial products for ear wax (cerumen) removal.(1) Laboratory use of Xylene (FIRIN TİNER, Ksilen) Xylene (FIRIN TİNER, Ksilen) is used in the laboratory to make baths with dry ice to cool reaction vessels,[15] and as a solvent to remove synthetic immersion oil from the microscope objective in light microscopy.[16] In histology, Xylene (FIRIN TİNER, Ksilen) is the most widely used clearing agent.[17] Xylene (FIRIN TİNER, Ksilen) is used to remove paraffin from dried microscope slides prior to staining. After staining, microscope slides are put in Xylene (FIRIN TİNER, Ksilen) prior to mounting with a coverslip. Precursor to other compounds of Xylene (FIRIN TİNER, Ksilen) Although conversion to terephthalic acid is the dominant chemical conversion, Xylene (FIRIN TİNER, Ksilen)s are precursors to other chemical compounds. For instance chlorination of both methyl groups gives the corresponding Xylene (FIRIN TİNER, Ksilen) dichlorides (bis(chloromethyl)benzenes) whilst mono-bromination yields xylyl bromide, a tear gas agent used in World War I. Health and safety of Xylene (FIRIN TİNER, Ksilen) Xylene (FIRIN TİNER, Ksilen) is flammable but of modest acute toxicity, with LD50 ranges from 200 to 5000 mg/kg for animals. Oral LD50 for rats is 4300 mg/kg. The principal mechanism of detoxification is oxidation to methylbenzoic acid and hydroxylation to hydroXylene (FIRIN TİNER, Ksilen).[1] The main effect of inhaling Xylene (FIRIN TİNER, Ksilen) vapor is depression of the central nervous system (CNS), with symptoms such as headache, dizziness, nausea and vomiting. At an exposure of 100 ppm, one may experience nausea or a headache. At an exposure between 200 and 500 ppm, symptoms can include feeling "high", dizziness, weakness, irritability, vomiting, and slowed reaction time.[18][19] The side effects of exposure to low concentrations of Xylene (FIRIN TİNER, Ksilen) (< 200 ppm) are reversible and do not cause permanent damage. Long-term exposure may lead to headaches, irritability, depression, insomnia, agitation, extreme tiredness, tremors, hearing loss, impaired concentration and short-term memory loss.[20][clarification needed] A condition called chronic solvent-induced encephalopathy, commonly known as "organic solvent syndrome" has been associated with Xylene (FIRIN TİNER, Ksilen) exposure. There is very little information available that isolates Xylene (FIRIN TİNER, Ksilen) from other solvent exposures in the examination of these effects. Hearing disorders have been also linked to Xylene (FIRIN TİNER, Ksilen) exposure, both from studies with experimental animals,[21][22] as well as clinical studies. Xylene (FIRIN TİNER, Ksilen) is also a skin irritant and strips the skin of its oils, making it more permeable to other chemicals. The use of impervious gloves and masks, along with respirators where appropriate, is recommended to avoid occupational health issues from Xylene (FIRIN TİNER, Ksilen) exposure.[18] Xylene (FIRIN TİNER, Ksilen)s are metabolized to methylhippuric acids.[26][27] The presence of methylhippuric acid can be used as a biomarker to determine exposure to Xylene (FIRIN TİNER, Ksilen). p-Xylene (FIRIN TİNER, Ksilen) and m-Xylene (FIRIN TİNER, Ksilen) cannot be separated by distillation because their boiling points are too close. In rats and mice, m- and p-Xylene (FIRIN TİNER, Ksilen) are distributed primarily to lipid-rich tissues, such as fat, blood, and brain and also in organs highly perfused with blood such as kidney and liver. Small amounts of p-Xylene (FIRIN TİNER, Ksilen) and o-Xylene (FIRIN TİNER, Ksilen) cross the placenta and distribute to amnionic fluid and fetal tissue. Oral administration of m-Xylene (FIRIN TİNER, Ksilen) to rats led to distribution of 14C-m-Xylene (FIRIN TİNER, Ksilen) in adipose tissue, approximately 0.3% of dose in female and 0.1% in males. Humans exposed to 46 or 92 ppm of o-, m-, p-Xylene (FIRIN TİNER, Ksilen) or a mixture (1:1:1) of the three for 8 hr absorbed approx 64% of the inhaled Xylene (FIRIN TİNER, Ksilen). No difference in the absorption rate was reported due to level of exposure, length of exposure, or the type and/or mixture of the Xylene (FIRIN TİNER, Ksilen) isomers. The absorption of Xylene (FIRIN TİNER, Ksilen) appeared to vary among individuals due to differences in ventilation rate. ... Individuals with an incr ventilation rate retained less Xylene (FIRIN TİNER, Ksilen). Metab of p-Xylene (FIRIN TİNER, Ksilen) (100 umol) studied in isolated, perfused rabbit livers and lungs. Release of p-tolualdehyde into circulation did not occur in perfused rabbit livers. P-toluric acid (n-p-toluylglycine) was major hepatic metabolite, with smaller amt of toluic acid & p-methylbenzyl alcohol. Rabbit livers did not produce detectable amt of p-tolualdehyde, 2,5-dimethylphenol or any glucuronide conjugates. One major pulmonary metab was p-methylbenzyl alc. Predominance of this metab reflects deficiency of lung tissue in alc dehydrogenase. Perfused lung also produced 2,5-dimethylphenol a derivative not produced in the liver. During p-Xylene (FIRIN TİNER, Ksilen) metab in perfused lungs, derivatives which became covalently bound to lung proteins were formed which suggests that p-Xylene (FIRIN TİNER, Ksilen) metab might proceed at least partially through reactive intermediate(s) causing destruction of pulmonary cytochrome P450. The involvement of sequential side-chain oxidn, sulfation, & glutathione conjugation in formation of mercapturic acids from Xylene (FIRIN TİNER, Ksilen)s was investigated. The position of methyl groups attached to the aromatic nucleus affected metabolism. Factors that are involved in high yield of mercapturic acids after admin of o-Xylene (FIRIN TİNER, Ksilen) as compared to m-Xylene (FIRIN TİNER, Ksilen) & p-Xylene (FIRIN TİNER, Ksilen) incl relatively low apparent affinity of o-methylbenzyl alcohol for cytosolic alcohol dehydrogenase, the relatively high apparent affinity of o-methylbenzyl alc for cytosolic sulfotransferase, & the high electrophilic reactivity of the o-methylbenzyl sulfate. In rats, guinea pigs, and rabbits, all three isomers /ortho-, meta-, and para-Xylene (FIRIN TİNER, Ksilen)/ are oxidized on the methyl group to form the corresponding toluic acid or on the ring to form phenols. There was no evidence that both methyl groups were oxidized; unconjugated 3,5-dimethylphenol and its glucuronide were isolated from urine. In rats exposed to atmospheres of m-Xylene (FIRIN TİNER, Ksilen) and ethylbenzene, methylhippuric acid, dimethylphenol, and methylbenzene alcohol were identified in urine as metabolites of m-Xylene (FIRIN TİNER, Ksilen). Xylene (FIRIN TİNER, Ksilen)s are metabolized primarily by oxidation to the methylbenzyl alcohols, followed by further oxidation to the corresponding methylbenzoic acids (toluic acids). These can be conjugated with glycine to form methylhippurates, or with UDPglucuronate to form acyl glucuronides. ... Xylene (FIRIN TİNER, Ksilen)s are metabolized in humans primarily to the corresponding methylhippuric acid (toluric acid); and glycine conjugation is considered to be a rate-limiting step. Only a small portion is excreted as dimethylphenol: 2,3-dimethylphenol and 3,4-dimethylphenol after exposure to ortho-Xylene (FIRIN TİNER, Ksilen), 2,4-dimethylphenol after exposure to meta-Xylene (FIRIN TİNER, Ksilen) and 2,5-dimethylphenol after exposure to para-Xylene (FIRIN TİNER, Ksilen). All three isomers of Xylene (FIRIN TİNER, Ksilen) are primarily metabolized by oxidation of a methyl group and conjugation with glycine to yield the methylhippuric acid. In humans exposed to Xylene (FIRIN TİNER, Ksilen), >90% of the absorbed Xylene (FIRIN TİNER, Ksilen) is excreted in the urine as the methylhippuric acid. Aromatic hydroxylation of Xylene (FIRIN TİNER, Ksilen) to xylenol occurs to only a limited extent in humans. Less than 2% of an absorbed dose is excreted in the urine as xylenol. Other minor metabolites found in urine include methylbenzyl alcohol and glucuronic acid conjugates of the oxidized Xylene (FIRIN TİNER, Ksilen). Metabolism in animals is qualitatively similar, but glucuronide conjugates make up a larger proportion of the urinary excretion products. In addition, methylbenzaldehyde (the product of the action of alcohol dehydrogenase on methylbenzyl alcohol) has been detected in animals, where it may exert toxic effects, but its presence has not been confirmed in humans. The biotransformation of Xylene (FIRIN TİNER, Ksilen) in humans proceeds primarily by the oxidation of a side-chain methyl group by microsomal enzymes (mixed function oxidases) in the liver to yield toluic acids (methylbenzoic acids). These toluic acids conjugate with glycine to form toluric acids (methylhippuric acids) that are excreted into the urine ... . This metabolic pathway accounts for almost all of the absorbed dose of Xylene (FIRIN TİNER, Ksilen), regardless of the isomer, route of administration, administered dose, or duration of exposure. Minor metabolic pathways that account for <10% of the absorbed dose include the elimination of unchanged compound in the exhaled breath and in the urine, and the urinary elimination of methylbenzyl alcohols, o-toluylglucuronides (o-toluic acid glucuronide), Xylene (FIRIN TİNER, Ksilen) mercapturic acid ... , and xylenols (dimethylphenols). ... The metabolism of Xylene (FIRIN TİNER, Ksilen) in animals is qualitatively similar to that of humans, though quantitative differences do exist. ... The differences in Xylene (FIRIN TİNER, Ksilen) metabolism observed between humans and animals may, in part, be explained by differences in the size of the doses given to humans and animals in experimental studies. Metabolism of Xylene (FIRIN TİNER, Ksilen)s by humans consists primarily of side-chain oxidation to form methylbenzoic acid ... Methylbenzoic acid is conjugated principally with glycine and excreted in urine as methylhippuric acid. It has been estimated that glycine conjugation would be saturated in humans exposed to about 1174 mg/cu m (270 ppm) Xylene (FIRIN TİNER, Ksilen) while working and to about 3393 mg/cu m (780 ppm) while resting ... A small amount of the glucuronide ester of methylbenzoic acid and trace levels of methylbenzyl alcohol have been detected in human urine ... Hydroxylation of the aromatic ring with the formation of dimethylphenols seems to be a minor pathway in humans. The following dimethylphenol isomers have been identified in human urine: 2,3- and 3,4-dimethylphenol (with o-Xylene (FIRIN TİNER, Ksilen)), 2,4-dimethylphenol (with m-Xylene (FIRIN TİNER, Ksilen)) and 2,5-dimethylphenol (with p-Xylene (FIRIN TİNER, Ksilen)). Most studies on metabolism of Xylene (FIRIN TİNER, Ksilen)s have been performed on rat. The principal pathway involves side-chain oxidation to methylbenzoic acid via methylbenzyl alcohol and methylbenzyl aldehyde. Methylbenzoic acid is then conjugated with glycine or glucuronic acid ... Conjugation with glycine to form methylhippuric acid predominates for m- and p-Xylene (FIRIN TİNER, Ksilen) ... In the case of o-Xylene (FIRIN TİNER, Ksilen), glucuronide formation has been reported to predominate ... A separate minor pathway resulting in urinary excretion of thioethers has been studied ... This pathway appears to be more important for o-Xylene (FIRIN TİNER, Ksilen) than for the other isomers. Hydroxylation of the aromatic ring with the formation of dimethylphenols has been reported to be another minor metabolic pathway in rats. After an intraperitoneal injection of 87-348 mg/kg body weight m-Xylene (FIRIN TİNER, Ksilen) to rats, 53-75% of the dose was excreted as m-methyl-hippuric acid in urine during 24 hr. After an intraperitoneal dose of 319 mg/kg body weight the proportion excreted as mercapturic acids was calculated to be 10% for o-Xylene (FIRIN TİNER, Ksilen) and 0.6-1.3% for m- and p-Xylene (FIRIN TİNER, Ksilen). When volunteers were exposed to about 195 mg/cu m (45 ppm) of o-, m- or p-Xylene (FIRIN TİNER, Ksilen) for 8 hr, about 95-99% of the dose was excreted as methylhippuric acid in urine. Dimethylphenol excretion was estimated to be 0.1 to 2% of the dose absorbed ... About 90% of the absorbed dose of m-Xylene (FIRIN TİNER, Ksilen) was excreted as methylhippuric acid after exposure to 435 mg/cu m (100 ppm) for 4 hr ... On the other hand, after exposure to 600 mg/cu m (138 ppm) of o-Xylene (FIRIN TİNER, Ksilen), only 46% was excreted in urine as methylhippuric acid and only trace amounts of the o-methylbenzoyl glucuronide were detected. The principal pathway in the rat for m- and p-Xylene (FIRIN TİNER, Ksilen) is the same as that in humans, sidechain oxidation and conjugation with glycine and glucuronic acid. For o-Xylene (FIRIN TİNER, Ksilen), the glucuronide formation predominates and a small amount of sulfate conjugate also is produced. Hydroxylation of the aromatic ring of Xylene (FIRIN TİNER, Ksilen)s is also a minor pathway in the rat. p-Xylene (FIRIN TİNER, Ksilen), also known as para-Xylene (FIRIN TİNER, Ksilen) or 4-Xylene (FIRIN TİNER, Ksilen), belongs to the class of organic compounds known as p-Xylene (FIRIN TİNER, Ksilen)s. These are aromatic compounds that contain a p-Xylene (FIRIN TİNER, Ksilen) moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 4-positions. p-Xylene (FIRIN TİNER, Ksilen) exists as a liquid and is considered to be practically insoluble (in water) and relatively neutral. p-Xylene (FIRIN TİNER, Ksilen) can be converted into 2, 5-dimethyl-p-phenylenediamine. IDENTIFICATION: 4-Xylene (FIRIN TİNER, Ksilen) is a colorless liquid. It is also a colorless plate or prism at low temperatures. It has a sweet aromatic odor. 4-Xylene (FIRIN TİNER, Ksilen) is slightly soluble in water. It occurs naturally in petroleum and coal tar. 4-Xylene (FIRIN TİNER, Ksilen) is formed during forest fires and is naturally given off from corn, alfalfa and cereal silage. USE: 4-Xylene (FIRIN TİNER, Ksilen) is an important commercial chemical that is used to make other chemicals, polyester resins and fibers, in the manufacture of vitamins and insecticides and in paint and paint products. It is typically found in a mixture with other Xylene (FIRIN TİNER, Ksilen)s (2- and 3-Xylene (FIRIN TİNER, Ksilen)). EXPOSURE: Workers that use 4-Xylene (FIRIN TİNER, Ksilen) may breathe in mists or have direct skin contact. The general population may be exposed by breathing air, eating food and drinking water, smoking cigarettes and contact with consumer products containing Xylene (FIRIN TİNER, Ksilen)s (gasoline, paints, varnishes, paint thinner, etc.). If 4-Xylene (FIRIN TİNER, Ksilen) is released to the environment, it will be broken down in air. It is not expected to be broken down by sunlight. It will move into air from moist soil and water surfaces. It is expected to move moderately through soil. It will be broken down by microorganisms, and is not expected to build up in fish. RISK: Risks discussed below are for Xylene (FIRIN TİNER, Ksilen) mixtures in general, as 4-Xylene (FIRIN TİNER, Ksilen) is most often found in a mixture with 2- and 3-Xylene (FIRIN TİNER, Ksilen). Studies indicate that risk of toxicity is the same for 2-, 3-, and 4-Xylene (FIRIN TİNER, Ksilen), or a mixture of the three chemicals. Xylene (FIRIN TİNER, Ksilen)s are skin, eye, nose, and throat irritants. Nervous system effects (headache, dizziness, confusion, incoordination, impaired balance, forgetfulness, etc.) are the primary effects observed in humans that breathe high levels of Xylene (FIRIN TİNER, Ksilen)s. Difficulty breathing, nausea, and damage to the lungs, liver, and kidneys have also been observed following exposure to high vapor levels. Unconsciousness and even death may occur at very high levels. Similar effects were noted in laboratory animals exposed to moderate-to-high levels of Xylene (FIRIN TİNER, Ksilen)s. Studies on the potential for Xylene (FIRIN TİNER, Ksilen)s to cause infertility, abortion, or birth defects in humans are considered inadequate to assess risk due to simultaneous exposure to other solvents (e.g. benzene). Abortion and delayed growth and development of offspring were observed in laboratory animals following exposure to Xylene (FIRIN TİNER, Ksilen) during pregnancy, but only at doses that were toxic to the mothers. Infertility and major birth defects were not observed in laboratory animals following exposure before and/or during pregnancy. No specific forms of cancer have been specifically associated with Xylene (FIRIN TİNER, Ksilen) exposure in workers exposed to solvent mixtures (including Xylene (FIRIN TİNER, Ksilen)s). No evidence of cancer was observed in laboratory animals following lifetime oral exposure to Xylene (FIRIN TİNER, Ksilen)s. The U.S. EPA IRIS program determined that data are inadequate for an assessment of the human carcinogenic potential of Xylene (FIRIN TİNER, Ksilen)s. The International Agency for Research on Cancer has determined that Xylene (FIRIN TİNER, Ksilen)s are not classifiable as to their carcinogenicity to humans based on lack of adequate human data and inconclusive animal data. The potential for Xylene (FIRIN TİNER, Ksilen) to cause cancer in humans has not been assessed by the U.S. National Toxicology Program 13th Report on Carcinogens. (SRC) Low temperature fractional crystallization was the first and for many years the only commercial technique for separating PX /4-Xylene (FIRIN TİNER, Ksilen)/ from mixed Xylene (FIRIN TİNER, Ksilen)s. ... PX has a much higher freezing point than the other Xylene (FIRIN TİNER, Ksilen) isomers. Thus, upon cooling, a pure solid phase of PX crystallizes first. Eventually, upon further cooling, a temperature is reached where solid crystals of another isomer also form. This is called the eutectic point. PX crystals usually form at about -4 °C and the PX-MX /4-Xylene (FIRIN TİNER, Ksilen)-3-Xylene (FIRIN TİNER, Ksilen)/ eutectic is reached at about -68 °C. In commercial practice, PX crystallization is carried out at a temperature just above the eutectic point. At all temperatures above the eutectic point, PX is still soluble in the remaining C8 aromatics liquid solution, called mother liquor. This limits the efficiency of crystallization processes to a per pass PX recovery of about 60-65%. The solid PX crystals are typically separated from the mother liquor by filtration or centrifugation. Xylene (FIRIN TİNER, Ksilen) is produced primarily by the catalytic reforming of naphtha streams, which are rich in alicyclic hydrocarbons. The aromatic reformate fractions consist mainly of benzene, toluene and mixed Xylene (FIRIN TİNER, Ksilen)s, Xylene (FIRIN TİNER, Ksilen)s representing the largest fraction. The Xylene (FIRIN TİNER, Ksilen) isomers are separated from the reformate by extraction and distillation on the basis of differences in boiling point ... 4-Xylene (FIRIN TİNER, Ksilen) is separated by continuous crystallization or adsorption from the mixed Xylene (FIRIN TİNER, Ksilen)s or isomerized from the 3-Xylene (FIRIN TİNER, Ksilen)/4-Xylene (FIRIN TİNER, Ksilen) distillate; 3-Xylene (FIRIN TİNER, Ksilen) is obtained by selective crystallization or solvent extraction of meta-para mixtures. The commercial product "mixed Xylene (FIRIN TİNER, Ksilen)s" is a technical product generally containing approximately 40% m-Xylene (FIRIN TİNER, Ksilen) and 20% each of o-Xylene (FIRIN TİNER, Ksilen), p-Xylene (FIRIN TİNER, Ksilen), and ethylbenzene, as well as small quantities of toluene. The aim of this study was to develop an analytical method to monitor the saliva matrix for ototoxic solvents absorption: the method is based on headspace gas chromatography/mass spectrometry and represents an alternative biological monitoring for investigating low exposure to hazardous ototoxic solvents. Simultaneous determination of toluene, ethylbenzene, Xylene (FIRIN TİNER, Ksilen)s and styrene has been carried out and the method has been optimized for both instrumental parameters and samples treatment. Chromatographic conditions have been set in order to obtain a good separation of Xylene (FIRIN TİNER, Ksilen) isomers due to the interest in p-Xylene (FIRIN TİNER, Ksilen) as ototoxic one. Method validation has been performed on standards spiked in blank saliva by using two internal standards (2-fluorotoluene and deuterated styrene-d(8)). This method showed the possibility to detect the target compounds with a linear dynamic range of at least a 2 orders of magnitude characterized by a linear determination coefficient (r(2)) greater than 0.999. The limit of detection (LOD) ranged between 0.19 ng/mL (styrene) and 0.54 ng/mL (m-Xylene (FIRIN TİNER, Ksilen)) and the lower limit of quantification (LLOQ) ranged between 0.64 ng/mL (styrene) and 1.8 ng/mL (m-Xylene (FIRIN TİNER, Ksilen)). The method achieved good accuracy (from 99 to 105%) and precision for both intra- and inter-assay (relative standard deviation ranging from 1.7 to 13.8%) for all six compounds concerned. The repeatability was improved by adding sodium sulphate to the matrix. Saliva samples resulted stable for at least 7 days after collection, if stored in headspace vials, at the temperature of 4 degrees C. An evaluation of the main sources of uncertainty of the method is also included: expanded uncertainties ranges between 10 and 16% for all of the target compounds. In summary, the headspace gas chromatography/mass spectrometry method is a highly sensitive, versatile and flexible technique for the biological monitoring of exposure to ototoxic solvents by saliva analysis. Commercial or mixed Xylene (FIRIN TİNER, Ksilen) usually contains about 40-65% m-Xylene (FIRIN TİNER, Ksilen) and up to 20% each of o-Xylene (FIRIN TİNER, Ksilen) and p-Xylene (FIRIN TİNER, Ksilen) and ethylbenzene. Xylene (FIRIN TİNER, Ksilen)s are released into the atmosphere as fugitive emissions from industrial sources, from auto exhaust, and through volatilization from their use as solvents. Acute (short- term) inhalation exposure to mixed Xylene (FIRIN TİNER, Ksilen)s in humans results in irritation of the eyes, nose, and throat, gastrointestinal effects, eye irritation, and neurological effects. Chronic (long-term) inhalation exposure of humans to mixed Xylene (FIRIN TİNER, Ksilen)s results primarily in central nervous system (CNS) effects, such as headache, dizziness, fatigue, tremors, and incoordination; respiratory, cardiovascular, and kidney effects have also been reported. EPA has classified mixed Xylene (FIRIN TİNER, Ksilen)s as a Group D, not classifiable as to human carcinogenicity. The major hazards encountered in the use and handling of 4-Xylene (FIRIN TİNER, Ksilen) stem from its toxicologic properties and flammability. Exposure to this colorless sweet-smelling liquid (solid, below 13 °C) may occur from its use as a solvent, as a component of gasoline, and as a chemical intermediate. Toxic by all routes of exposure (ie, dermal, ingestion, and inhalation), 4-Xylene (FIRIN TİNER, Ksilen) can cause effects including headache, dizziness, skin and eye irritation, kidney and liver damage, pulmonary edema, coma, and death. The ACGIH recommends a workplace exposure limit (TLV) of 100 ppm an 8-hr time-weighted average (TWA); however, to assure protection, wear an approved canister or air-supplied mask, face shield, plastic gloves, and boots. In emergency situations, a self-contained breathing apparatus and full protective clothing are recommended. If contact does occur, immediately flush exposed eyes with running water, wash exposed skin with soap and water, and remove contaminated clothing. Individuals with diseases of the central nervous system, liver, kidneys, and blood should be protected from exposure. 4-Xylene (FIRIN TİNER, Ksilen) is easily ignitable by heat, sparks, or flame (flash point: 25 °C, closed cup), and may do so explosively in an enclosed area. Also, vapor may travel a considerable distance to a source of ignition and flash back. The heat of a fire may cause containers to explode and/or cause thermal degradation of 4-Xylene (FIRIN TİNER, Ksilen), producing irritating and poisonous gases. Fires involving 4-Xylene (FIRIN TİNER, Ksilen) may be extinguished with dry chemical, CO2, water spray, fog, or foam. For massive fires in enclosed areas, use unmanned hose holders or monitor nozzles. If a 4-Xylene (FIRIN TİNER, Ksilen) tank car or truck is involved in a fire, isolate 1/2 mile in all directions. Runoff from fire control water may cause pollution and, upon entering a sewer, may create an explosion hazard. 4-Xylene (FIRIN TİNER, Ksilen) should be stored in closed containers, in cool, well ventilated areas (outdoor or detached areas are preferable), away from sources of ignition, oxidizing agents, and any activity that could cause physical damage to containers. For small spills of 4-Xylene (FIRIN TİNER, Ksilen), take up with sand or other non-combustible absorbent and place in containers for later disposal, or absorb on paper and evaporate in an appropriate exhaust hood. For large spills, isolate the area, dike far ahead of the spill, and collect the material for disposal. 4-Xylene (FIRIN TİNER, Ksilen) is a good candidate for the Belliot process of oxidative destruction, as well as liquid injection, rotary kiln, and fluidized bed incineration. 4-Xylene (FIRIN TİNER, Ksilen) may be sent to a solvent disposal company, but prior to implementing any land disposal of waste residue (including waste sludge), consult regulatory agencies for guidance. The rate constant for the vapor-phase reaction of 4-Xylene (FIRIN TİNER, Ksilen) with photochemically-produced hydroxyl radicals has been estimated as 1.43X10-11 cu cm/molecule-sec at 25 °C(1). This corresponds to an atmospheric half-life of about 26 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm(2). The rate constant for the vapor-phase reaction of 4-Xylene (FIRIN TİNER, Ksilen) with night-time nitrate radicals is 4.53X10-16 cu cm/molecule-sec at 25 °C(3). This corresponds to an atmospheric half-life of about 65 days at an atmospheric concentration of 2.5X10+8 nitrate radicals per cu cm(4). The rate constant for the vapor-phase reaction of 4-Xylene (FIRIN TİNER, Ksilen) with ozone is 1.36X1-21 cu cm/molecule-sec at 25 °C(3). This corresponds to an atmospheric half-life of about 23 years at an atmospheric concentration of 7X10+11 ozone molecules per cu cm(2). Products from the gas-phase reaction of nitrate with 4-Xylene (FIRIN TİNER, Ksilen) were 4-methylbenzaldehyde and 4-methylbenzy
XYLITOL
XYLITOL Xylitol Jump to navigationJump to search Xylitol[1] Xylitol Xylitol crystals.jpg Xylitol crystals Names Pronunciation /ˈzaɪlɪtɒl/ Systematic IUPAC name (2R,3R,4S)-Pentane-1,2,3,4,5-pentol Other names (2R,3R,4S)-Pentane-1,2,3,4,5-pentaol (not recommended) 1,2,3,4,5-Pentahydroxypentane Xylite Identifiers CAS Number 87-99-0 ☑ 3D model (JSmol) Interactive image ChEMBL ChEMBL96783 ☑ ChemSpider 6646 ECHA InfoCard 100.001.626 Edit this at Wikidata E number E967 (glazing agents, ...) PubChem CID 6912 UNII VCQ006KQ1E ☑ CompTox Dashboard (EPA) DTXSID7042514 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula C5H12O5 Molar mass 152.146 g·mol−1 Density 1.52 g/cm3 Melting point 92 to 96 °C (198 to 205 °F; 365 to 369 K) Boiling point 345.39 °C (653.70 °F; 618.54 K) Predicted value using Adapted Stein & Brown method[2] Solubility in water ~100 g/L Hazards NFPA 704 (fire diamond) NFPA 704 four-colored diamond 110 Related compounds Related alkanes Pentane Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is ☑☒ ?) Infobox references Xylitol is a chemical compound with the formula C 5H 12O 5, or HO(CH2)(CHOH)3(CH2)OH; specifically, one particular stereoisomer with that structural formula. It is a colorless or white crystalline solid that is soluble in water. It can be classified as a polyalcohol and a sugar alcohol, specifically an alditol. The name derives from Ancient Greek: ξύλον, xyl[on], "wood", with the suffix -itol used to denote sugar alcohols. Xylitol is used as a food additive and sugar substitute. Its European Union code number is E967.[3] Replacing sugar by xylitol in food products may promote better dental health, but evidence is lacking on whether xylitol itself prevents cavities.[4] Contents 1 Structure, production, commerce 2 Uses 3 Food properties 4 Health effects 4.1 Dental care 4.2 Ear aches 4.3 Diabetes 5 Adverse effects 5.1 Humans 5.2 Dogs and other animals 6 Metabolism 7 History 8 See also 9 References 10 External links Structure, production, commerce Xylitol is naturally occurring in small amounts in plums, strawberries, cauliflower, and pumpkin; humans and animals make trace amounts during metabolism of carbohydrates.[5] Unlike most sugar alcohols, xylitol is achiral.[6] Most other isomers of pentane-1,2,3,4,5-pentol are chiral, but xylitol has a plane of symmetry. Industrial production starts with lignocellulosic biomass from which xylan is extracted; raw biomass materials include hardwoods, softwoods, and agricultural waste from processing maize, wheat, or rice. The xylan polymers can be hydrolyzed into xylose, which is catalytically hydrogenated into xylitol. The conversion changes the sugar (xylose, an aldehyde) into the primary alcohol, xylitol. Impurities are then removed.[5] The processing is often done using standard industrial methods; industrial fermentation involving bacteria, fungi, or yeast, especially Candida tropicalis, are common, but are not as efficient.[5][7] According to the US Department of Energy, xylitol production by fermentation from discarded biomass is one of the most valuable renewable chemicals for commerce, forecast to be a US$1.4 billion industry by 2025.[8] Uses Xylitol is used as a sugar substitute in such manufactured products as drugs, dietary supplements, confections, toothpaste, and chewing gum, but is not a common household sweetener.[4][9] Xylitol has negligible effects on blood sugar because it is metabolized independently of insulin.[9] Absorbed more slowly than sugar, xylitol supplies 40% fewer calories than table sugar.[9] It is approved as a food additive in the United States.[10] Food properties Xylitol has about the same sweetness as sucrose,[9] but more sweetness than similar compounds like sorbitol and mannitol.[5] Xylitol is stable enough to be used in baking.[11] Because xylitol and other polyols are heat stable, they do not caramelise as sugars do, and they also lower the freezing point of mixtures in which they are used.[12] No serious health risk exists in most humans for normal levels of consumption; The European Food Safety Authority has not set a limit on daily intake of xylitol. Due to the adverse laxative effect that all polyols have on the digestive system in high doses, xylitol is banned from soft drinks in the EU. Similarly due to a 1985 report, by the EU Scientific Committee on Food, stating that "ingesting 50 g a day of xylitol can cause diarrhea", tabletop sweeteners containing xylitol are required to display the warning: "excessive consumption may induce laxative effects".[13] Chewing gum containing xylitol is permitted.[14] Health effects Dental care As of 2015, clinical trials examining whether xylitol alone or with other agents can prevent cavities found the evidence was too poor to allow generalizations, although when children with permanent teeth use fluoride toothpaste with xylitol, they may get fewer cavities than when using fluoride toothpaste without it.[4] Weak evidence indicates that chewing gum sweetened with xylitol (or similar polyols such as sorbitol) may reduce the incidence of cavities.[15][16][17] In 2008, the European Food Safety Authority (EFSA) concluded that "xylitol chewing gum reduces the risk of cavities in children".[14] The claim was controversially recognised as requiring rewording in 2009 because xylitol chewing gum is not a medicine, thus can "not be claimed to reduce the risk of a disease".[18] In 2011, EFSA approved a claim that replacing sugar with xylitol and similar sweeteners "may maintain tooth mineralisation compared with sugar-containing foods."[13][19] Ear aches In 2011, EFSA "concluded that there was not enough evidence to support" the claim that xylitol-sweetened gum could prevent middle-ear infections with a fast onset, which is also known as acute otitis media (AOM).[13][20] A 2016 review indicated that xylitol in chewing gum or a syrup may have a moderate effect in preventing ear aches in healthy children.[21] It may be an alternative to conventional therapies (such as antibiotics) to lower risk of AOM in healthy children – reducing risk of occurrence by 25%[22] – although there is no definitive proof that it could be used as a therapy for AOM.[21] Diabetes In 2011, EFSA approved a marketing claim that foods or beverages containing xylitol or similar sugar replacers cause lower blood glucose and lower insulin responses compared to sugar-containing foods or drinks.[11][19] Xylitol products are used as sucrose substitutes for weight control,[11][23] as xylitol has 40 percent fewer calories than sucrose (2.4 kcal/g compared to 4.0 for sucrose).[11][24] The glycemic index (GI) of xylitol is 7 if GI is 100 for glucose.[25] Adverse effects Humans Xylitol has no known toxicity in humans.[13] At high doses, xylitol and other polyols cause gastrointestinal discomfort, including flatulence, diarrhea, and irritable bowel syndrome (see metabolism section); some people have these adverse effects at lower doses.[13][26] Xylitol has a lower laxation threshold than some sugar alcohols but is more easily tolerated than mannitol and sorbitol.[27] Increased xylitol consumption can increase oxalate, calcium and phosphate excretion to urine. These affects are termed oxaluria, calciuria and phosphaturia, respectively. These are risk factors for kidney stone disease, but xylitol ingestion has not been linked to this disease in humans.[28] Dogs and other animals In dogs, 100 mg of xylitol per kg of body weight (mg/kg bw) causes a dose-dependent insulin release that can result in hypoglycemia, which can be life-threatening. Hypoglycemia associated symptoms of xylitol toxicity may arise as quickly as 30 to 60 minutes after ingestion. Vomiting is a common first symptom. It can be followed by tiredness and ataxia. At doses above 500 mg/kg bw, liver failure is likely and may result in coagulopathies like disseminated intravascular coagulation.[29] Xylitol is safe for cats, which tolerate even 1000 mg/kg bw ingested doses of it.[30] It is also safe for rhesus macaques, horses and rats.[29] Metabolism Xylitol has 2.4 kcal/g (10 kJ/mol) of food energy according to US and EU food labeling regulations.[31][3] The real value can vary, depending on metabolic factors. About 50% of eaten xylitol is not absorbed by the intestines in humans. Instead, 50–75% of this amount is fermented by gut bacteria to short-chain organic acids and gases, which may cause flatulence. The rest of the unabsorbed xylitol is excreted unchanged mostly in feces and less than 2 g of xylitol out of every 100 g ingested is excreted in urine.[32] Xylitol ingestion also increases motilin secretion, which may be related to xylitol's ability to cause diarrhea.[33] The non-digestible but fermentable nature of xylitol also contributes to constipation relieving effects.[23] About 50% of xylitol is absorbed via intestines. Primarily, the liver metabolizes it. The main metabolic route in humans is: in cytoplasm, nonspecific NAD-dependent dehydrogenase (polyol dehydrogenase) transforms xylitol to D-xylulose. Specific xylulokinase phosphorylates it to D-xylulose-5-phosphate. This then goes to pentose phosphate pathway for further processing.[32] History Sugar rationing during World War II led to an interest in sugar substitutes. Interest in xylitol and other polyols became intense, leading to their characterization and manufacturing methods.[5][34] Related compounds Related alkanes Pentane Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is ☑☒ ?) Infobox references Xylitol is a chemical compound with the formula C 5H 12O 5, or HO(CH2)(CHOH)3(CH2)OH; specifically, one particular stereoisomer with that structural formula. It is a colorless or white crystalline solid that is soluble in water. It can be classified as a polyalcohol and a sugar alcohol, specifically an alditol. The name derives from Ancient Greek: ξύλον, xyl[on], "wood", with the suffix -itol used to denote sugar alcohols. Xylitol is used as a food additive and sugar substitute. Its European Union code number is E967.[3] Replacing sugar by xylitol in food products may promote better dental health, but evidence is lacking on whether xylitol itself prevents cavities.[4] Contents 1 Structure, production, commerce 2 Uses 3 Food properties 4 Health effects 4.1 Dental care 4.2 Ear aches 4.3 Diabetes 5 Adverse effects 5.1 Humans 5.2 Dogs and other animals 6 Metabolism 7 History 8 See also 9 References 10 External links Structure, production, commerce Xylitol is naturally occurring in small amounts in plums, strawberries, cauliflower, and pumpkin; humans and animals make trace amounts during metabolism of carbohydrates.[5] Unlike most sugar alcohols, xylitol is achiral.[6] Most other isomers of pentane-1,2,3,4,5-pentol are chiral, but xylitol has a plane of symmetry. Industrial production starts with lignocellulosic biomass from which xylan is extracted; raw biomass materials include hardwoods, softwoods, and agricultural waste from processing maize, wheat, or rice. The xylan polymers can be hydrolyzed into xylose, which is catalytically hydrogenated into xylitol. The conversion changes the sugar (xylose, an aldehyde) into the primary alcohol, xylitol. Impurities are then removed.[5] The processing is often done using standard industrial methods; industrial fermentation involving bacteria, fungi, or yeast, especially Candida tropicalis, are common, but are not as efficient.[5][7] According to the US Department of Energy, xylitol production by fermentation from discarded biomass is one of the most valuable renewable chemicals for commerce, forecast to be a US$1.4 billion industry by 2025.[8] Uses Xylitol is used as a sugar substitute in such manufactured products as drugs, dietary supplements, confections, toothpaste, and chewing gum, but is not a common household sweetener.[4][9] Xylitol has negligible effects on blood sugar because it is metabolized independently of insulin.[9] Absorbed more slowly than sugar, xylitol supplies 40% fewer calories than table sugar.[9] It is approved as a food additive in the United States.[10] Food properties Xylitol has about the same sweetness as sucrose,[9] but more sweetness than similar compounds like sorbitol and mannitol.[5] Xylitol is stable enough to be used in baking.[11] Because xylitol and other polyols are heat stable, they do not caramelise as sugars do, and they also lower the freezing point of mixtures in which they are used.[12] No serious health risk exists in most humans for normal levels of consumption; The European Food Safety Authority has not set a limit on daily intake of xylitol. Due to the adverse laxative effect that all polyols have on the digestive system in high doses, xylitol is banned from soft drinks in the EU. Similarly due to a 1985 report, by the EU Scientific Committee on Food, stating that "ingesting 50 g a day of xylitol can cause diarrhea", tabletop sweeteners containing xylitol are required to display the warning: "excessive consumption may induce laxative effects".[13] Chewing gum containing xylitol is permitted.[14] Health effects Dental care As of 2015, clinical trials examining whether xylitol alone or with other agents can prevent cavities found the evidence was too poor to allow generalizations, although when children with permanent teeth use fluoride toothpaste with xylitol, they may get fewer cavities than when using fluoride toothpaste without it.[4] Weak evidence indicates that chewing gum sweetened with xylitol (or similar polyols such as sorbitol) may reduce the incidence of cavities.[15][16][17] In 2008, the European Food Safety Authority (EFSA) concluded that "xylitol chewing gum reduces the risk of cavities in children".[14] The claim was controversially recognised as requiring rewording in 2009 because xylitol chewing gum is not a medicine, thus can "not be claimed to reduce the risk of a disease".[18] In 2011, EFSA approved a claim that replacing sugar with xylitol and similar sweeteners "may maintain tooth mineralisation compared with sugar-containing foods."[13][19] Ear aches In 2011, EFSA "concluded that there was not enough evidence to support" the claim that xylitol-sweetened gum could prevent middle-ear infections with a fast onset, which is also known as acute otitis media (AOM).[13][20] A 2016 review indicated that xylitol in chewing gum or a syrup may have a moderate effect in preventing ear aches in healthy children.[21] It may be an alternative to conventional therapies (such as antibiotics) to lower risk of AOM in healthy children – reducing risk of occurrence by 25%[22] – although there is no definitive proof that it could be used as a therapy for AOM.[21] Diabetes In 2011, EFSA approved a marketing claim that foods or beverages containing xylitol or similar sugar replacers cause lower blood glucose and lower insulin responses compared to sugar-containing foods or drinks.[11][19] Xylitol products are used as sucrose substitutes for weight control,[11][23] as xylitol has 40 percent fewer calories than sucrose (2.4 kcal/g compared to 4.0 for sucrose).[11][24] The glycemic index (GI) of xylitol is 7 if GI is 100 for glucose.[25] Adverse effects Humans Xylitol has no known toxicity in humans.[13] At high doses, xylitol and other polyols cause gastrointestinal discomfort, including flatulence, diarrhea, and irritable bowel syndrome (see metabolism section); some people have these adverse effects at lower doses.[13][26] Xylitol has a lower laxation threshold than some sugar alcohols but is more easily tolerated than mannitol and sorbitol.[27] Increased xylitol consumption can increase oxalate, calcium and phosphate excretion to urine. These affects are termed oxaluria, calciuria and phosphaturia, respectively. These are risk factors for kidney stone disease, but xylitol ingestion has not been linked to this disease in humans.[28] Dogs and other animals In dogs, 100 mg of xylitol per kg of body weight (mg/kg bw) causes a dose-dependent insulin release that can result in hypoglycemia, which can be life-threatening. Hypoglycemia associated symptoms of xylitol toxicity may arise as quickly as 30 to 60 minutes after ingestion. Vomiting is a common first symptom. It can be followed by tiredness and ataxia. At doses above 500 mg/kg bw, liver failure is likely and may result in coagulopathies like disseminated intravascular coagulation.[29] Xylitol is safe for cats, which tolerate even 1000 mg/kg bw ingested doses of it.[30] It is also safe for rhesus macaques, horses and rats.[29] Metabolism Xylitol has 2.4 kcal/g (10 kJ/mol) of food energy according to US and EU food labeling regulations.[31][3] The real value can vary, depending on metabolic factors. About 50% of eaten xylitol is not absorbed by the intestines in humans. Instead, 50–75% of this amount is fermented by gut bacteria to short-chain organic acids and gases, which may cause flatulence. The rest of the unabsorbed xylitol is excreted unchanged mostly in feces and less than 2 g of xylitol out of every 100 g ingested is excreted in urine.[32] Xylitol ingestion also increases motilin secretion, which may be related to xylitol's ability to cause diarrhea.[33] The non-digestible but fermentable nature of xylitol also contributes to constipation relieving effects.[23] About 50% of xylitol is absorbed via intestines. Primarily, the liver metabolizes it. The main metabolic route in humans is: in cytoplasm, nonspecific NAD-dependent dehydrogenase (polyol dehydrogenase) transforms xylitol to D-xylulose. Specific xylulokinase phosphorylates it to D-xylulose-5-phosphate. This then goes to pentose phosphate pathway for further processing.[32] History Sugar rationing during World War II led to an interest in sugar substitutes. Interest in xylitol and other polyols became intense, leading to their characterization and manufacturing methods.[5][34]
XYLITYL PHOSPHATE
XYLOSE N° CAS : 58-86-6 Nom INCI : XYLOSE Nom chimique : D-Xylose N° EINECS/ELINCS : 200-400-7 Compatible Bio (Référentiel COSMOS) Ses fonctions (INCI) Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit Agent d'entretien de la peau : Maintient la peau en bon état
Xylitylglucoside & Anhydroxylitol & Xylitol
Aquaxyl CAS number : 1095751-96-4 , 53448-53-6, 87-99-0
XYLOSE
ZINC N° CAS : 7440-66-6 Nom INCI : ZINC N° EINECS/ELINCS : 231-175-3 Ses fonctions (INCI) Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la ranc
Yaban Mersini Ekstraktı
Vaccinium Myrtillus Extract; bilberry bud extract; extract of the buds of the myrtle, vaccinium myrtillus l., ericaceae; vaccinium myrtillus subsp. oreophilum bud extract; vaccinium myrtillus var. oreophilum bud extract; vaccinium oreophilum bud extract; whortleberry bud extract cas no:84082-34-8
Yabanmersini Tohumu&Çekirdeği
CRANBERRY SEED & MEAL; VACCINIUM MACROCARPON SEED OIL; BUTYROSPERMUM PARKII SEEDCAKE EXTRACT; Cranberry Seed; vaccinium macrocarpon seed CAS NO:91770-88-6
Yağ asitlerinin asetik asit esterleri
SYNONYMS E472a;Mono- ve di-gliseritlerin asetik asit esterleri
Yağ asitlerinin laktik asit esterleri
SYNONYMS E472b;Mono- ve di-gliseritlerin laktik asit esterleri
Yağ asitlerinin mono ve diasetil tartarik esterleri
SYNONYMS E472e;Mono- ve di-gliseritlerin diasetiltartarik asik esterleri
Yağ asitlerinin poligliserol esterleri
SYNONYMS E475;Yağ AsitlerininPoligliserol Esterleri (E475)- PGE
Yağ asitlerinin propilen glikol esterleri
SYNONYMS E477;Yağ asitlerin propan -1,2- diol esterleri
Yağ asitlerinin sitrik asit esterleri
SYNONYMS E472c;Yağ asitlerin monovedigliseridlerin sitrik Asit esterleri CAS NO:5949-29-1
Yağ asitlerinin sodyum, potasyum ve kalsiyum tuzları
SYNONYMS E470;Yağ asitlerinin sodyum, potasyum ve kalsiyum tuzları
Yalancı Safran Yağı
SAFFLOWER OIL; safflower oil; carthamus tinctorius l. seed oil; cropure safflower; safflower seed oil; safflower oil argentina CAS NO:8001-23-8
Yasemin Yağı
JASMINE ABSOLUTE OIL jasmin absolute (from chassis); jasminum grandiflorum absolute (from chassis); jasmin absolute morocco CAS NO:8022-96-6
YEAST EXTRACT
Extract of yeast; Yeast extract granulated cas no: 8013-01-2
YER FISTIĞI AROMASI
peanut flavor; roasted peanut flavor
Ylang-Ylang Yağı
YLANG YLANG ; ylang ylang flower oil I; ylang ylang oil I; cananga odorata flower extract; ylang I comores; cananga odorata flower oil ; essential oil; ylang ylang flower oil; ylang ylang oil I madagascar organic CAS NO:8006-81-3
Yosun Ekstrakt
Spirulina Platensis Extract; arthrospira platensis extract; extract of the alga, spirulina platensis, cyanophyceae; spirulina extract cas no: 223751-80-2
Yucca schidigera
yucca schidigera fruit; yucca californica fruit; yucca mohavensis fruit; fruit of the small soap weed, yucca schidigera, liliaceae CAS NO:90147-57-2
Yüksek Oleik ya da Rafine Ayçiçeği Yağı
SUNFLOWER OIL REFINED OR HIGH OLEIC; helianthus annuus oil; helianthus annuus oil CAS NO:8001-21-6
ZDBC (ДИБУТИЛДИТИОКАРБАМАТ ЦИНКА)
ZDBC (дибутилдитиокарбамат цинка) представляет собой дитиокарбаматную соль, которая представляет собой цинковую соль дибутилдитиокарбаминовой кислоты.
ZDBC (дибутилдитиокарбамат цинка) играет роль противогрибкового агрохимиката.
ZDBC (дибутилдитиокарбамат цинка) представляет собой соль дитиокарбамата и молекулярное соединение цинка.

КАС: 136-23-2
МФ: C18H36N2S4Zn
МВт: 474,14
ЭИНЭКС: 205-232-8

Синонимы
(дибутилдитиокарбамато)цинк(ii);accelbz;ацетозидтиокарбамат;бис(дибутилкарбамодитиоато-S,S’)-,(T-4)-цинк;вулкацитldb/c;зимат,бутил;цинкбибутилдитиокарбамат;Цинк N,N-дибутилдитиокарбамат
дибутилдитиокарбамат цинка;(Дибутилдитиокарбамато)цинк(II); Аксел БЖ; Ацето ЗДБД; бис(N,N-дибутилдитиокарбамато)цинк; бис(дибутилдитиокарбамато)цинк; Бутазат; Бутазат 50-Д; Бутилцимат; Бутилзирам; Карбаминовая кислота, дибутилдитио-, комплекс цинка; Карбамодитиоевая кислота, дибутил-, соль цинка; цинковая соль дибутилдитиокарбаминовой кислоты; Нокелер БЗ; Соксинол БЗ; Вулкакур; Вулкакур ЗБ; Вулкацит ЛДБ; Вулкацит LDB/C; Зимат, бутил; N,N-дибутилдитиокарбамат цинка; Цинк-бис(дибутилдитиокарбамат); дибутилдитиокарбамат цинка; Цинк, бис(дибутилкарбамодитиоато-S,S')-, (Т-4)-; Цинк, бис(дибутилкарбамодитиоато-каппаS,каппаS')-, (Т-4)-; Цинк, бис(дибутилдитиокарбамато)-; [ChemIDplus] ZDBC; [HSDB];136-23-2;Дибутилдитиокарбамат цинка(II);Цинк бис(дибутилдитиокарбамат);цинк;N,N-дибутилкарбамодитиоат;DTXSID0021462;Цинк, бис(дибутилкарбамодитиоато-каппаS,kappaS')-, (T-4) -;DTXCID501462;Цинк, бис(дибутилкарбамодитиоато-.каппа.S,.каппа.S')-, (T-4)-;CAS-136-23-2;Бис(дибутилдитиокарбамато)цинк;бис(дибутилкарбамодитиоат) цинка; HNM5J934VP;SCHEMBL35745;дибутилдитиокарбамат цинковая соль;ZINCDIBUTYLDITHIOCARBAMATE;CHEMBL2373108;BOXSVZNGTQTENJ-UHFFFAOYSA-L;CHEBI:144323;NSC-3880;Tox21_113038;Tox21_202601;N SC-36548;AKOS015839728;бис(дибутилтиокарбамоил)дисульфид цинка;бис(дибутилдитиокарбамоил)дисульфид цинка; Соль цинка (II) дибутилдитиокарбаминовой кислоты; NCGC00188440-01; NCGC00260149-01; бис(дибутилдитиокарбамоил)дисульфид цинка; ЦИНК ДИБУТИЛДИТИОКАРБАМАТ [INCI]; CS-0152117; D0227; NS00079390; E81950; ЦИНК, БИС(ДИБУТИЛКАРБАМОДИТИОАТО-S,S') -
;ЦИНК, БИС(ДИБУТИЛДИТИОКАРБАМАТО)-[HSDB];(T-4)-бис(дибутилкарбамодитиоато-каппаS,каппаS')цинк;Q27280015

ZDBC (дибутилдитиокарбамат цинка) содержит дибутилдитиокарбамат и цинк (2+).
ZDBC (дибутилдитиокарбамат цинка) функционально связан с дибутилдитиокарбаминовой кислотой.
Белый порошок; приятный запах.
Растворим в сероуглероде, бензоле и хлороформе; нерастворим в воде.
ZDBC (дибутилдитиокарбамат цинка) представляет собой дитиокарбаматную соль, которая представляет собой цинковую соль дибутилдитиокарбаминовой кислоты.
ZDBC (дибутилдитиокарбамат цинка) играет роль противогрибкового агрохимиката.
ZDBC (дибутилдитиокарбамат цинка) представляет собой соль дитиокарбамата и молекулярное соединение цинка.
ZDBC (дибутилдитиокарбамат цинка) содержит дибутилдитиокарбамат и цинк (2+).
ZDBC (дибутилдитиокарбамат цинка) функционально связан с дибутилдитиокарбаминовой кислотой.

ZDBC (дибутилдитиокарбамат цинка) является дерматологическим сенсибилизатором и аллергеном.
Чувствительность к дибутилдитиокарбамату цинка можно определить с помощью клинического патч-теста.
ZDBC (дибутилдитиокарбамат цинка) является стандартизированным химическим аллергеном.
Физиологический эффект ZDBC (дибутилдитиокарбамата цинка) заключается в повышенном высвобождении гистамина и клеточно-опосредованном иммунитете.
ZDBC (дибутилдитиокарбамат цинка) представляет собой химическое соединение, образующее комплекс с жирными кислотами.
ZDBC (дибутилдитиокарбамат цинка) используется в качестве абсорбента и агента для подготовки проб в УФ-спектроскопии.
ZDBC (дибутилдитиокарбамат цинка) также может вызывать аллергические реакции и токсичен для клеток в присутствии стеарата кальция.
Это химическое вещество встречается в реакционных растворах, где оно реагирует с соляной кислотой и нитридом бора с образованием ZDBC (дибутилдитиокарбамат цинка).
ZDBC (дибутилдитиокарбамат цинка) продемонстрировал свойства, подобные фактору роста, и было показано, что он увеличивает скорость роста клеток на клетках V79 в сочетании с полиеном.

ZDBC (дибутилдитиокарбамат цинка) Химические свойства
Температура плавления: 104-110°С.
Точка кипения: 318 ℃ [при 101 325 Па]
Плотность: 1,21 г/см3
Давление пара: 0 Па при 25 ℃
Температура хранения: Инертная атмосфера,Комнатная температура.
Растворимость: Нерастворим в воде.
Форма: твердая
Удельный вес: 1,21
Белый цвет
Запах: какой. порошок, приятный запах
Растворимость в воде: 100 мкг/л при 25 ℃.
Гидролитическая чувствительность 4: отсутствие реакции с водой в нейтральных условиях.
InChIKey: BOXSVZNGTQTENJ-UHFFFAOYSA-L
LogP: 2,16 при 25 ℃
Ссылка на базу данных CAS: 136-23-2 (ссылка на базу данных CAS)
Система регистрации веществ EPA: ZDBC (дибутилдитиокарбамат цинка) (136-23-2)

Использование
Ускоритель для латексных дисперсий и цементов и т.д.; ультраускоритель присадки к смазочным маслам.
ZDBC (дибутилдитиокарбамат цинка) представляет собой каучуковое химическое вещество, используемое в качестве ускорителя вулканизации.
ZDBC (дибутилдитиокарбамат цинка) также можно найти в красках, средствах для удаления клея и антикоррозионных средствах.
ZDBC (дибутилдитиокарбамат цинка) содержался в «карба-миксе».
ZDBC (дибутилдитиокарбамат цинка) используется в качестве активатора; антидеградант; ускоритель для натурального каучука, бутадиена, бутадиена-стирола, бутадиена нитрила, бутилкаучука и терполимеров этилена-пропилен-диена.

ZDBC (дибутилдитиокарбамат цинка) используется в качестве вторичного ультраускорителя для систем отверждения тиазолом и сульфенамидом в полимерах общего назначения (NR, SBR, IIR, EPDM).
ZDBC (дибутилдитиокарбамат цинка) можно использовать в качестве первичного ускорителя в специальных приложениях, а также в латексе.
В латексе ZDBC (дибутилдитиокарбамат цинка) в основном используется в прозрачных изделиях и превулканизированном латексе.
Дополнительное применение — в качестве антиоксиданта в клеевых системах.
ZDBC дает более быстрое излечение, чем ZDEC или ZDMC.
ZDMC (ДИМЕТИЛДИТИОКАРБАМАТ ЦИНКА)

Дитиокарбаматная соль, представляющая собой ZDMC (диметилдитиокарбамат цинка).
ZDMC (диметилдитиокарбамат цинка) представляет собой фунгицид широкого спектра действия и средство от птиц и животных, которое также используется для ускорения вулканизации каучука.
ZDMC (диметилдитиокарбамат цинка) — ускоритель вулканизации каучука дитиокарбаматной группы.

КАС: 137-30-4
МФ: C6H12N2S4Zn1
МВт: 305,829
ЕИНЭКС: 205-288-3

Синонимы
ТИОННЫЙ;ПОМАРСОЛ Z;ПОМАРСОЛ Z(R);МИЛБАМ(R);ААВОЛЕКС;КАРБАМ БЕЛЫЙ(R);ФУКЛАЗИН;ФУКЛАЗИН(R)
;137-30-4;Цинковая соль диметилдитиокарбамата;цинк;N,N-диметилкарбамодитиоат;DTXCID301464;DTXSID0021464;CHEBI:79736;бис(диметилкарбамодитиоат) цинка;CAS-137-30-4;SCHEMBL22004;Диметилдитиокарбамат цинка;Бис( диметилдитиокарбамато)цинк;бис(диметилкарбамотиоилтио)цинк;Бис-диметилдитиокарбамат цинка;Диметилдитиокарбамат цинка, 97%;Tox21_201910;Tox21_300503;MFCD00064797;AKOS015960834
;Бис(диметилкарбамодитиоато-S,S')цинк;Цинк бис(диметилтиокарбамоил)дисульфид;NCGC00254404-01;NCGC00259459-01;Зирам, ПЕСТАНАЛ(R), аналитический стандарт;Цинк би(диметилдитиокарбамоил)дисульфид;Цинк диметилдитиокарбамат, чистый, > =97,0% (КТ);(Т-4)-бис(диметилкарбамодитиоато-каппаS,каппаS')цинк

ZDMC (диметилдитиокарбамат цинка) представляет собой координационный комплекс цинка с диметилдитиокарбаматом.
ZDMC (диметилдитиокарбамат цинка) представляет собой бледно-желтое твердое вещество, которое используется в качестве фунгицида, при серной вулканизации каучука и в других промышленных целях.
ZDMC (диметилдитиокарбамат цинка) представляет собой комплекс цинка и диметилдитиокарбамата, который представляет собой светло-желтое твердое вещество. Он обычно используется в качестве фунгицида, а также для вулканизации каучука и других промышленных применений.
ZDMC (диметилдитиокарбамат цинка) можно получить путем смешивания и перемешивания гидрохлорида диметиламина, гидроксида натрия и сероуглерода, а затем реакции с сульфатом цинка в воде.

ZDMC (диметилдитиокарбамат цинка) Химические свойства
Температура плавления: 248-257 °C (лит.).
Точка кипения: 335,83 ℃ [при 101 325 Па]
Плотность: 1,66
Давление пара: <1 x 10-6 Па
Температура хранения: ПРИБЛ. 4°C.
Растворимость: ДМСО (умеренно), метанол (умеренно).
Форма: Порошок
Удельный вес: 1,71
Белый цвет
Запах: без запаха в чистом виде
Растворимость в воде: 0,0065 г/100 мл.
Гидролитическая чувствительность 4: отсутствие реакции с водой в нейтральных условиях.
Мерк: 14,10172
БРН: 3707008
InChIKey: DUBNHZYBDBBJHD-UHFFFAOYSA-L
LogP: 1,65 при 20 ℃
Ссылка на базу данных CAS: 137-30-4 (ссылка на базу данных CAS)
МАИР: 3 (Том Sup 7, 53) 1991 г.
Справочник по химии NIST: ZDMC (диметилдитиокарбамат цинка) (137-30-4)
Система регистрации веществ EPA: ZDMC (диметилдитиокарбамат цинка) (137-30-4)

Белый и без запаха в чистом виде.
Почти нерастворим в воде; растворим в ацетоне, сероуглероде, хлороформе, разбавленных щелочах и концентрированной соляной кислоте.

Использование
ZDMC (диметилдитиокарбамат цинка) представляет собой защитный фунгицид, наносимый на листву для борьбы с болезнями семечковых и косточковых фруктов, орехов, винограда, овощей и декоративных растений.
ZDMC (диметилдитиокарбамат цинка) используется для борьбы с паршой яблок и груш, а также монилиозом, альтернариозом, септориозом, курчавостью листьев персика, дырочками, ржавчиной, черной гнилью и антракнозом.
ZDMC (диметилдитиокарбамат цинка) также используется в качестве средства от диких животных, его намазывают в виде пасты на стволы деревьев или распыляют на декоративные растения, спящие фруктовые деревья и другие культуры.
ZDMC (диметилдитиокарбамат цинка) относится к классу дитиокарбаматов и используется в сельском хозяйстве в качестве фунгицида и в резиновой промышленности в качестве ускорителя вулканизации.
Ускоритель вулканизации резины; сельскохозяйственный фунгицид.

Известный в сельском хозяйстве как ZDMC (диметилдитиокарбамат цинка), он был представлен в Соединенных Штатах в 1960 году как фунгицид широкого спектра действия.
ZDMC (диметилдитиокарбамат цинка) использовался для лечения парши на яблоках и грушах, скручивания листьев на персиках, а также антракноза и фитофтороза на томатах.
В 1981 году были одобрены дополнительные способы применения ZDMC (диметилдитиокарбамата цинка), включая профилактику фитофтороза и парши миндаля, прострелов абрикосов, бурой гнили и пятнистости листьев вишни, а также парши и антракноза орехов пекан.
ZDMC (диметилдитиокарбамат цинка) также начал использоваться в украшениях жилых помещений в качестве средства от птиц и млекопитающих.
В качестве защитного фунгицида ZDMC (диметилдитиокарбамат цинка) активен на поверхности растения, образуя химический барьер между растением и грибком.
Защитный фунгицид не впитывается в растение и должен быть применен до заражения. ZDMC (диметилдитиокарбамат цинка) можно распылять непосредственно на листья растения или использовать для обработки почвы и семян.
Пять основных культур, на которых используется ZDMC (диметилдитиокарбамат цинка), включают миндаль, персики, нектарины, груши, а также столовый виноград и изюм.
Альтернативно, ZDMC (диметилдитиокарбамат цинка) используется в качестве добавки в промышленных клеях, герметиках и красках.
ZDMC (диметилдитиокарбамат цинка) также служит отпугивателем птиц и млекопитающих на декоративных предметах, используемых на открытом воздухе.

ZDMC (диметилдитиокарбамат цинка) для борьбы с гнилью яблонь, черной пятнистостью, мучнистой росой и т. д., хорошая дисперсия в резине, благодаря чему механические свойства резиновых изделий хорошие, подходит для шин, лент и т. д.
ZDMC (диметилдитиокарбамат цинка) может подавлять и предотвращать заболевания, вызываемые различными грибами, стимулировать рост и способствовать раннему созреванию.
Для профилактики и борьбы с болезнями риса, мискантусом, ржавчиной пшеницы, мучнистой росой, фитофторозом картофеля, черной пятнистостью, огурцом, капустой, ложной мучнистой росой капусты, антракнозом томата, фитофторозом, антракнозом дыни, фитофторозом табачного листа, яблоневой гнилью, антракнозом. , черная пятнистость, бурая пятнистость, мучнистая роса винограда, антракноз, парша груши, язва цитрусовых, парша и т. д.
Обычно с 65% смачиваемым порошком 300–500 раз обрабатывают жидкостью.
Перед началом или ранним распылением наблюдается профилактический эффект: начало заболевания каждые 5–7 дней распыляется 1 раз, непрерывно 2–4 раза.
В зависимости от различных заболеваний дозировка и частота применения препарата были разными.
фосфомецинк эффективен для борьбы с антракнозом яблони, бурой гнилью персика и бактериальной перфорацией.
Профилактика и борьба с белой гнилью винограда, антракнозом, часто в сочетании с использованием Фу Мэй.
ZDMC (диметилдитиокарбамат цинка) также используется для борьбы с ложной мучнистой росой огурцов, антракнозом дыни, фитофторозом картофеля, ложной мучнистой росой китайской капусты и антракнозом томатов.

Сельскохозяйственное использование
Фунгицид, микробиоцид, средство от животных: ZDMC (диметилдитиокарбамат цинка) — сельскохозяйственный фунгицид, зарегистрированный для борьбы с грибковыми заболеваниями широкого спектра культур, включая косточковые, семечковые, орехоплодные, овощи и коммерчески выращиваемые декоративные растения, а также для обработки почвы и семян. .
Кроме того, ZDMC (диметилдитиокарбамат цинка) разработан в качестве репеллента для птиц и кроликов для внекорневой обработки декоративных растений.
Зарегистрировано для использования в странах ЕС.
Зарегистрировано для использования в США.

Химия
ZDMC (диметилдитиокарбамат цинка) представляет собой прототип дитиокарбамата цинка, широкий класс координационных комплексов с формулами Zn(R2NCS2)2, где R можно варьировать.
Такие соединения получают путем обработки цинка и дитиокарбамата (R2NCS2-), как показано на примере диметилдитиокарбамата:

2 (CH3)2NCS2− + Zn2+ → Zn((CH3)2NCS2)2
Ежегодно используется около 1,9 миллиона фунтов активного ингредиента зирама.
ZDMC (диметилдитиокарбамат цинка) часто продается в виде порошка или гранул.
Комплексы ZDMC (диметилдитиокарбамат цинка) термически разлагаются с образованием сульфида цинка.

Состав
Соединения типа Zn(S2CNR2)2 димерны, т.е. их собственная формула — [Zn(S2CNR2)2]2. Каждый центр Zn находится в искаженном пентакоординате с четырьмя связями Zn-S длиной 2,3 Å и одним взаимодействием Zn-S длиной >2,8 Å.
Производные моноцинка получают добавлением сильных лигандов (L), таких как амины, которые дают аддукты Zn(S2CNR2)2L.

Экологические эффекты
Агентство по охране окружающей среды США пришло к выводу, что зирам представляет низкий риск токсичности для млекопитающих, умеренный риск для птиц и высокий риск для водных видов.
После анализа исследований, в которых изучалось влияние ZDMC (диметилдитиокарбамата цинка) на водные организмы, База данных по пестицидам Pesticide Action Network пришла к выводу, что его доза LC50 (количество пестицида, смертельное для 50% тестовых организмов в течение установленного времени исследования) для амфибий относит ZDMC (диметилдитиокарбамат цинка) к категории «высокотоксичных».

Реакции воздуха и воды
Тио и дитиокарбаматы медленно разлагаются в водном растворе с образованием сероуглерода и метиламина или других аминов.
Такое разложение ускоряется кислотами.
Нерастворим в воде.

Профиль реактивности
ZDMC (диметилдитиокарбамат цинка) представляет собой дитиокарбамат.
Горючие газы образуются при сочетании тиокарбаматов и дитиокарбаматов с альдегидами, нитридами и гидридами.
Тиокарбаматы и дитиокарбаматы несовместимы с кислотами, пероксидами и галогенангидридами.
ZDMC (диметилдитиокарбамат цинка) вызывает коррозию железа и меди.
ZDMC (диметилдитиокарбамат цинка) несовместим с сильными окислителями и кислотами.
ZDMC (диметилдитиокарбамат цинка) также несовместим с ртутью.

Метаболический путь
ZDMC (диметилдитиокарбамат цинка) представляет собой один из металлсодержащих дитиокарбаматов, который образует диметилдитиокарбаминовую кислоту при расщеплении в кислых условиях и в биологических средах.
Образующаяся кислота конъюгируется с глюкозой и аланином у растений и с глюкуроновой кислотой у млекопитающих.
ZDMC (диметилдитиокарбамат цинка) далее разлагается до диметиламина и CS2.
Всемирная организация здравоохранения опубликовала обширный обзор свойств дитиокарбаматных пестицидов, из которого взята большая часть следующей информации.

Метод производства
ZDMC (диметилдитиокарбамат цинка) получают путем взаимодействия диметилдитиокарбамата натрия с сульфатом цинка (или хлоридом цинка).
pH реакционного раствора доводили до 7, добавляя воду для растворения в фумарате натрия.
5~8, а затем с сульфатом цинка образуется дымящий осадок цинка, после фильтрации, сушки и измельчения для получения дымящего цинка.
Выход составил более 97%, а содержание было больше или равно 93%.
Zeliquid LP 2
Lauryl polyethylene glycol ethersulfate with 3 EO, ammonium; salt, butoxy ethanol as solvent; About 50 % Liquid Air entraining agent for concrete and mortars
ZENCEFİL AROMASI
ginger flavor
Zencefil Ekstraktı
Zingiber Officinale Root Extract ;ginger root essence ; ginger rhizomes essence; zingiber officinale root essence cas no:84696-15-1
Zencefil Yağı
GINGER OIL ;ginger root oil; zingiber officinale root oil; ginger oil rectified soluble CAS NO: 8007-08-7
Zerdeçal Ekstraktı
curcuma longa leaf powder; powder obtained from the dried, ground leaves of the tumeric, curcuma longa l., zingiberaceae; turmeric leaf powder cas no:84775-52-0
ZEYTİN AROMASI - SİYAH
olive flavor- black
ZEYTİN AROMASI - YEŞİL
olive flavor-green
Zeytin Ekstraktı
Olea Europaea Fruit Extract; extract of the wood of the olive, olea europaea l., oleaceae; olive wood extract cas no:84012-27-1
Zeytin Taşı
OLIVE STONE; OLEA EUROPAEA SEED; OLIVE STONES EXFOLIANT; olea europaea seed ; seeds of the olive, olea europaea l., oleaceae CAS NO:8001-25-0
Zeytin Vaks
OLIVE WAX; OLEA EUROPAEA FRUIT & HYDROGENATED VEGETABLE OIL (OLIVE); olea europaea wax; CAS NO:8001-25-0
ZINC
Acetic acid, zinc salt; Acetic acid, zinc(II) salt; Dicarbomethoxyzinc; Zinc Diacetate; cas no: 557-34-6
ZINC ACETATE
ZINC ACETATE What is the most important information I should know about zinc acetate? Before using zinc acetate, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use zinc acetate if you have certain medical conditions. Avoid taking this medication with foods that are high in calcium or phosphorus, which can make it harder for your body to absorb zinc acetate. Foods high in calcium or phosphorus include milk, cheese, yogurt, ice cream, dried beans or peas, lentils, nuts, peanut butter, beer, cola soft drinks, and hot cocoa. Zinc acetate can make certain antibiotics less effective. Tell your doctor about all other medications you are using before you start taking zinc acetate. What is zinc acetate? Zinc is a naturally occurring mineral. Zinc is important for growth and for the development and health of body tissues. Zinc acetate is used to treat and to prevent zinc deficiency. Zinc acetate may also be used for other purposes not listed in this medication guide. What should I discuss with my healthcare provider before taking zinc acetate? Before using zinc acetate, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use zinc acetate if you have certain medical conditions. It is not known whether zinc acetate will harm an unborn baby. Do not take zinc acetate without telling your doctor if you are pregnant or could become pregnant during treatment. It is not known whether zinc acetate passes into breast milk or if it could harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby. How should I take zinc acetate? Use exactly as directed on the label, or as prescribed by your doctor. Do not use in larger or smaller amounts or for longer than recommended. Take zinc acetate with a full glass of water. Take zinc acetate with food if it upsets your stomach. Your healthcare provider may occasionally change your dose to make sure you get the best results from zinc acetate. The recommended dietary allowance of zinc acetate increases with age. Follow your healthcare provider's instructions. You may also consult the National Academy of Sciences "Dietary Reference Intake" or the U.S. Department of Agriculture's "Dietary Reference Intake" (formerly "Recommended Daily Allowances" or RDA) listings for more information. Overdose symptoms may include nausea, severe vomiting, dehydration, and restlessness. What should I avoid while taking zinc acetate? Avoid taking this medication with foods that are high in calcium or phosphorus, which can make it harder for your body to absorb zinc acetate. Foods high in calcium or phosphorus include milk, cheese, yogurt, ice cream, dried beans or peas, lentils, nuts, peanut butter, beer, cola soft drinks, and hot cocoa. What are the possible side effects of zinc acetate? What other drugs will affect zinc acetate? The following drugs can interact with or be made less effective by zinc acetate. Tell your doctor if you are using any of these: This list is not complete and other drugs may interact with zinc acetate. Tell your healthcare provider about all medications you use. This includes prescription, over-the-counter, vitamin, and herbal products. Do not start a new medication without telling your doctor. Where can I get more information? Your pharmacist can provide more information about zinc acetate. Zinc acetate USP is used as/ an astringent in low concentrations and an irritant at high concentrations. It also has mild antibacterial actions similar to those of zinc sulfate. When applied to cuts, it exerts styptic action. Zinc acetate is a salt with the formula Zn(CH3CO2)2, which commonly occurs as the dihydrate Zn(CH3CO2)2·2H2O. Both the hydrate and the anhydrous forms are colorless solids that are commonly used in chemical synthesis and as dietary supplements. Zinc acetates are prepared by the action of acetic acid on zinc carbonate or zinc metal. When used as a food additive, it has the E number E650. Zinc is a naturally occurring mineral. Zinc is important for growth and for the development and health of body tissues. Zinc acetate is used to treat and to prevent zinc deficiency. Zinc acetate may also be used for other purposes not listed in this medication guide.Before using zinc acetate, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use zinc acetate if you have certain medical conditions. Avoid taking this medication with foods that are high in calcium or phosphorus, which can make it harder for your body to absorb zinc acetate. Foods high in calcium or phosphorus include milk, cheese, yogurt, ice cream, dried beans or peas, lentils, nuts, peanut butter, beer, cola soft drinks, and hot cocoa. Zinc acetate can make certain antibiotics less effective. Tell your doctor about all other medications you are using before you start taking zinc acetate. Before using zinc acetate, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use zinc acetate if you have certain medical conditions. It is not known whether zinc acetate will harm an unborn baby. Do not take zinc acetate without telling your doctor if you are pregnant or could become pregnant during treatment. It is not known whether zinc acetate passes into breast milk or if it could harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby.Use exactly as directed on the label, or as prescribed by your doctor. Do not use in larger or smaller amounts or for longer than recommended. Take zinc acetate with a full glass of water. Take zinc acetate with food if it upsets your stomach. Your healthcare provider may occasionally change your dose to make sure you get the best results from zinc acetate. The recommended dietary allowance of zinc acetate increases with age. Follow your healthcare provider's instructions. You may also consult the National Academy of Sciences "Dietary Reference Intake" or the U.S. Department of Agriculture's "Dietary Reference Intake" (formerly "Recommended Daily Allowances" or RDA) listings for more information. Store at room temperature away from moisture and heat. Zinc can be used for the treatment and prevention of zinc deficiency/its consequences, including stunted growth and acute diarrhea in children, and slowed wound healing. It is also utilized for boosting the immune system, treating the common cold and recurrent ear infections, as well as preventing lower respiratory tract infections 25.Zinc Acetate is a moderately water soluble crystalline Zinc source that decomposes to Zinc oxide on heating. It is generally immediately available in in most volumes, including bulk quantities. All metallic acetates are inorganic salts containing a metal cation and the acetate anion, a univalent (-1 charge) polyatomic ion composed of two carbon atoms ionically bound to three hydrogen and two oxygen atoms (Symbol: CH3COO) for a total formula weight of 59.05. Acetates are excellent precursors for production of ultra high purity compounds, catalysts, and nanoscale materials. We also produce Zinc Acetate Solution. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia)and follows applicable ASTM testing standards. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data. Please contact us for information on lead time and pricing above. In anhydrous zinc acetate the zinc is coordinated to four oxygen atoms to give a tetrahedral environment, these tetrahedral polyhedra are then interconnected by acetate ligands to give a range of polymeric structures.[5][6][7] In contrast, most metal diacetates feature metals in octahedral coordination with bidentate acetate groups. In zinc acetate dihydrate the zinc is octahedral, wherein both acetate groups are bidentate.[8][9] Heating Zn(CH3CO2)2 in a vacuum results in a loss of acetic anhydride, leaving a residue of basic zinc acetate, with the formula Zn4O(CH3CO2)6. This cluster compound has the tetrahedral structure shown below. This species closely resembles the corresponding beryllium compound, although it is slightly expanded with Zn-O distances ~1.97 vs ~1.63 Å for Be4O(OAc)6. Formulated in Type 1+ ultrapure water: 18.2 megaohm-cm resistivity at 25°C, < 5 ppb Total Organic Carbon, bacteria free (<1 Bacteria (CFU/ml)), pyrogen free (<0.03 Endotoxin (EU/ml)), RNase-free (< 0.01 ng/mL) and DNase-free (< 4 pg/µL) Zinc Acetate Dihydrate is a moderately water soluble crystalline Zinc source that decomposes to Zinc oxide on heating. It is generally immediately available in in most volumes, including bulk quantities. All metallic acetates are inorganic salts containing a metal cation and the acetate anion, a univalent (-1 charge) polyatomic ion composed of two carbon atoms ionically bound to three hydrogen and two oxygen atoms (Symbol: CH3COO) for a total formula weight of 59.05. Acetates are excellent precursors for production of ultra high purity compounds, catalysts, and nanoscale materials. We also produce Zinc Acetate Solution. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia)and follows applicable ASTM testing standards. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data. Please contact us for information on lead time and pricing above. Chemical name: Zinc acetate dihydrate; CAS Reg. No. 5970-45-6. Storage: Zinc acetate should be kept in a well-closed, non-metallic container. Labelling: The designation on the container should state that the substance is in the dihydrate form and indicate the quantity in terms of the equivalent amount of elemental zinc. Uses Dietary and medicinal applications Zinc acetate has been used in lozenges for treating the common cold.[1] Zinc acetate can also be used to treat zinc deficiencies.[2] As an oral daily supplement it is used to inhibit the body's absorption of copper as part of the treatment for Wilson's disease.[3] Zinc acetate is also sold as an astringent in the form of an ointment, a topical lotion, or combined with an antibiotic such as erythromycin for the topical treatment of acne.[4] It is commonly sold as a topical anti-itch ointment. Zinc acetate Generic Name: zinc acetate (ZINK AS e tate) What is zinc acetate? Zinc is a naturally occurring mineral. Zinc is important for growth and for the development and health of body tissues. Zinc acetate is used to treat and to prevent zinc deficiency. Zinc acetate may also be used for other purposes not listed in this medication guide. Important Information Before using zinc acetate, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use zinc acetate if you have certain medical conditions. Avoid taking this medication with foods that are high in calcium or phosphorus, which can make it harder for your body to absorb zinc acetate. Foods high in calcium or phosphorus include milk, cheese, yogurt, ice cream, dried beans or peas, lentils, nuts, peanut butter, beer, cola soft drinks, and hot cocoa. Zinc acetate can make certain antibiotics less effective. Tell your doctor about all other medications you are using before you start taking zinc acetate. Before taking this medicine Before using zinc acetate, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use zinc acetate if you have certain medical conditions. It is not known whether zinc acetate will harm an unborn baby. Do not take zinc acetate without telling your doctor if you are pregnant or could become pregnant during treatment. It is not known whether zinc acetate passes into breast milk or if it could harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby. How should I take zinc acetate? Use exactly as directed on the label, or as prescribed by your doctor. Do not use in larger or smaller amounts or for longer than recommended. Take zinc acetate with a full glass of water. Take zinc acetate with food if it upsets your stomach. Your healthcare provider may occasionally change your dose to make sure you get the best results from zinc acetate. The recommended dietary allowance of zinc acetate increases with age. Follow your healthcare provider's instructions. You may also consult the National Academy of Sciences "Dietary Reference Intake" or the U.S. Department of Agriculture's "Dietary Reference Intake" (formerly "Recommended Daily Allowances" or RDA) listings for more information. What should I avoid while taking zinc acetate? Avoid taking this medication with foods that are high in calcium or phosphorus, which can make it harder for your body to absorb zinc acetate. Foods high in calcium or phosphorus include milk, cheese, yogurt, ice cream, dried beans or peas, lentils, nuts, peanut butter, beer, cola soft drinks, and hot cocoa. Zinc acetate side effects Get emergency medical help if you have any of these signs of an allergic reaction: hives; difficulty breathing; swelling of your face, lips, tongue, or throat. Less serious side effects may include: nausea; or upset stomach. This is not a complete list of side effects and others may occur. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. See also: Zinc acetate side effects (in more detail) Zinc acetate dosing information -When patient is clinically stable, treatment with zinc acetate can begin; continue chelation therapy as clinically indicated. Health 1-5% solutions are used in the treatment of skin mucosa diseases. In addition, zinc deficiency zinc acetate is used orally at 50-150 mg / day in the developmental stage in children. farming Containing approximately 30% zinc in its structure, it can be used by adding to the feed in salt form to meet the zinc requirement of animals. Porcelain It is used to make glaze on porcelain. Basic properties and structures In anhydrous zinc acetate the zinc is coordinated to four oxygen atoms to give a tetrahedral environment, these tetrahedral polyhedra are then interconnected by acetate ligands to give a range of polymeric structures.[5][6][7] In contrast, most metal diacetates feature metals in octahedral coordination with bidentate acetate groups. In zinc acetate dihydrate the zinc is octahedral, wherein both acetate groups are bidentate.[8][9] Basic zinc acetate Heating Zn(CH3CO2)2 in a vacuum results in a loss of acetic anhydride, leaving a residue of basic zinc acetate, with the formula Zn4O(CH3CO2)6. This cluster compound has the tetrahedral structure shown below. This species closely resembles the corresponding beryllium compound, although it is slightly expanded with Zn-O distances ~1.97 vs ~1.63 Å for Be4O(OAc)6.[10] Zinc acetate is an acetate salt in which the cationic component is zinc(2+). It has a role as an astringent. It is a zinc molecular entity and an acetate salt. Zinc acetate has been used as an excipient in a variety of pharmaceutical formulations including topical gels, lotions, and solutions, and subcutaneous injections. It has also been investigated for use in an oral controlled-release formulation for water-soluble drugs in combination with sodium alginate and xanthan gum. Therapeutically, zinc acetate has been used in oral capsules for the treatment of Wilson's disease. Zinc acetate has also been demonstrated to be effective as a spermicide in vaginal contraceptives. Zinc Acetate Dihydrate is a moderately water soluble crystalline Zinc source that decomposes to Zinc oxide on heating. Acetates are excellent precursors for production of ultra high purity compounds, catalysts, and nanoscale materials. Formula Zn(C2H3O2).2H2O, 1.735 g/mL, e.n. 200 °C decay point 200, losing two mol water in 100 °C, dissolved in water and alcohol, drugs, wood protection, textile dyeing, zinc chromate synthesis, laboratories, ceramic glazing, seed additiveused in the solid substance. A discontinued use of dilute zinc acetate solutions is as an emetic. Zinc acetate is used to treat and to prevent zinc deficiency. Zinc acetate may also be used for other purposes not listed in this medication guide. Zinc acetate anhydrous is used in the synthesis of layered Zn-arylphosphonates with potential application in sorption, ion exchange or catalysis. It is utilized in the ultrasonic preparation of zinc sulfide nanoparticles coated on silica particles. It is administered orally or parenterally as a nutritional supplement. It finds an application in the field of industries such as wood preservation, manufacturing other zinc salts, polymers, manufacture of ethylene acetate, as a dye mordant, and analytical reagent. It also acts as a plating inhibitor on primary water piping. Zinc acetate may also be used for other purposes not listed in this medication guide. Important Information Before using zinc acetate, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use zinc acetate if you have certain medical conditions. Avoid taking this medication with foods that are high in calcium or phosphorus, which can make it harder for your body to absorb zinc acetate. Foods high in calcium or phosphorus include milk, cheese, yogurt, ice cream, dried beans or peas, lentils, nuts, peanut butter, beer, cola soft drinks, and hot cocoa. Zinc acetate can make certain antibiotics less effective. Tell your doctor about all other medications you are using before you start taking zinc acetate. Before taking this medicine Before using zinc acetate, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use zinc acetate if you have certain medical conditions. It is not known whether zinc acetate will harm an unborn baby. Do not take zinc acetate without telling your doctor if you are pregnant or could become pregnant during treatment. It is not known whether zinc acetate passes into breast milk or if it could harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby. How should I take zinc acetate? Use exactly as directed on the label, or as prescribed by your doctor. Do not use in larger or smaller amounts or for longer than recommended. Take zinc acetate with a full glass of water. Take zinc acetate with food if it upsets your stomach. Your healthcare provider may occasionally change your dose to make sure you get the best results from zinc acetate. The recommended dietary allowance of zinc acetate increases with age. Follow your healthcare provider's instructions. You may also consult the National Academy of Sciences "Dietary Reference Intake" or the U.S. Department of Agriculture's "Dietary Reference Intake" (formerly "Recommended Daily Allowances" or RDA) listings for more information. What should I avoid while taking zinc acetate? Avoid taking this medication with foods that are high in calcium or phosphorus, which can make it harder for your body to absorb zinc acetate. Foods high in calcium or phosphorus include milk, cheese, yogurt, ice cream, dried beans or peas, lentils, nuts, peanut butter, beer, cola soft drinks, and hot cocoa. Zinc acetate side effects Get emergency medical help if you have any of these signs of an allergic reaction: hives; difficulty breathing; swelling of your face, lips, tongue, or throat. Less serious side effects may include: nausea; or upset stomach. This is not a complete list of side effects and others may occur. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. See also: Zinc acetate side effects (in more detail) Zinc acetate dosing information -When patient is clinically stable, treatment with zinc acetate can begin; continue chelation therapy as clinically indicated. Health 1-5% solutions are used in the treatment of skin mucosa diseases. In addition, zinc deficiency zinc acetate is used orally at 50-150 mg / day in the developmental stage in children. farming Containing approximately 30% zinc in its structure, it can be used by adding to the feed in salt form to meet the zinc requirement of animals. Porcelain It is used to make glaze on porcelain. Basic properties and structures In anhydrous zinc acetate the zinc is coordinated to four oxygen atoms to give a tetrahedral environment, these tetrahedral polyhedra are then interconnected by acetate ligands to give a range of polymeric structures.[5][6][7] In contrast, most metal diacetates feature metals in octahedral coordination with bidentate acetate groups. In zinc acetate dihydrate the zinc is octahedral, wherein both acetate groups are bidentate.[8][9] Basic zinc acetate Heating Zn(CH3CO2)2 in a vacuum results in a loss of acetic anhydride, leaving a residue of basic zinc acetate, with the formula Zn4O(CH3CO2)6. This cluster compound has the tetrahedral structure shown below. This species closely resembles the corresponding beryllium compound, although it is slightly expanded with Zn-O distances ~1.97 vs ~1.63 Å for Be4O(OAc)6.[10] Zinc acetate is an acetate salt in which the cationic component is zinc(2+). It has a role as an astringent. It is a zinc molecular entity and an acetate salt. Zinc acetate has been used as an excipient in a variety of pharmaceutical formulations including topical gels, lotions, and solutions, and subcutaneous injections. It has also been investigated for use in an oral controlled-release formulation for water-soluble drugs in combination with sodium alginate and xanthan gum. Therapeutically, zinc acetate has been used in oral capsules for the treatment of Wilson's disease. Zinc acetate has also been demonstrated to be effective as a spermicide in vaginal contraceptives. Zinc Acetate Dihydrate is a moderately water soluble crystalline Zinc source that decomposes to Zinc oxide on heating. Acetates are excellent precursors for production of ultra high purity compounds, catalysts, and nanoscale materials. Formula Zn(C2H3O2).2H2O, 1.735 g/mL, e.n. 200 °C decay point 200, losing two mol water in 100 °C, dissolved in water and alcohol, drugs, wood protection, textile dyeing, zinc chromate synthesis, laboratories, ceramic glazing, seed additiveused in the solid substance. A discontinued use of dilute zinc acetate solutions is as an emetic. Zinc acetate is used to treat and to prevent zinc deficiency. Zinc acetate may also be used for other purposes not listed in this medication guide. Zinc acetate anhydrous is used in the synthesis of layered Zn-arylphosphonates with potential application in sorption, ion exchange or catalysis. It is utilized in the ultrasonic preparation of zinc sulfide nanoparticles coated on silica particles. It is administered orally or parenterally as a nutritional supplement. It finds an application in the field of industries such as wood preservation, manufacturing other zinc salts, polymers, manufacture of ethylene acetate, as a dye mordant, and analytical reagent. It also acts as a plating inhibitor on primary water piping.
ZINC ACETATE ANHYDROUS
ZINC ASPARTATE N° CAS : 36393-20-1 Nom INCI : ZINC ASPARTATE Nom chimique : Dihydrogen bis[L-aspartato(2-)-N,O1]zincate(2-) N° EINECS/ELINCS : 253-012-5 Classification : Règlementé Restriction en Europe : III/24 Ses fonctions (INCI) Agent d'entretien de la peau : Maintient la peau en bon état Produits qui en contiennent
ZINC ACETATE SOLUTION
ZINC ACETATE SOLUTION About Zinc Acetate Solution Acetate Formula StructureZinc Acetate Solutions are moderate to highly concentrated liquid solutions of Zinc Acetate Solution. They are an excellent source of Zinc Acetate Solution for applications requiring solubilized materials. Zinc Acetate Solution Solution Synonyms Zinc Diacetate, Dicarbomethoxyzinc, Galzin, Zinc Cetate Anhydrous, Zinc Acetate Solution Dihydrate, Zinc Acetate Solution [USAN], Zinc Acetate Solution, Zinc(II) Acetate, Siltex CL 4, Zinc Diacetate Dihydrate, Octan Zinecnaty, Zinc di(Acetate), Acetic Acid, Zinc Salt Zinc Acetate Solution the free encyclopedia Jump to navigationJump to search Zinc Acetate Solution Zinc Acetate Solution crystals Names IUPAC name Zinc Acetate Solution Infobox references Zinc Acetate Solution is a salt with the formula Zn(CH3CO2)2, which commonly occurs as the dihydrate Zn(CH3CO2)2·2H2O. Both the hydrate and the anhydrous forms are colorless solids that are commonly used in chemical synthesis and as dietary supplements. Zinc Acetate Solutions are prepared by the action of acetic acid on zinc carbonate or zinc metal. When used as a food additive, it Zinc Acetate Solution has been used in lozenges for treating the common cold.[1] Zinc Acetate Solution can also be used to treat zinc deficiencies.[2] As an oral daily supplement it is used to inhibit the body's absorption of copper as part of the treatment for Wilson's disease.[3] Zinc Acetate Solution is also sold as an astringent in the form of an ointment, a topical lotion, or combined with an antibiotic such as erythromycin for the topical treatment of acne.[4] It is commonly sold as a topical anti-itch ointment. Basic properties and structures In anhydrous Zinc Acetate Solution the zinc is coordinated to four oxygen atoms to give a tetrahedral environment, these tetrahedral polyhedra are then interconnected by acetate ligands to give a range of polymeric structures.[5][6][7] In contrast, most metal diacetates feature metals in octahedral coordination with bidentate acetate groups. In Zinc Acetate Solution dihydrate the zinc is octahedral, wherein both acetate groups are bidentate.[8][9] Basic Zinc Acetate Solution Heating Zn(CH3CO2)2 in a vacuum results in a loss of acetic anhydride, leaving a residue of basic Zinc Acetate Solution, with the formula Zn4O(CH3CO2)6. This cluster compound has the tetrahedral structure shown below. This species closely resembles the corresponding beryllium compound, although it is slightly expanded with Zn-O distances ~1.97 vs ~1.63 Å for Be4O(OAc)6.[10] Zinc lozenges and the common cold: a meta-analysis comparing Zinc Acetate Solution and zinc gluconate, and the role of zinc dosage. To compare the efficacy of Zinc Acetate Solution lozenges with zinc gluconate lozenges in common cold treatment and to examine the dose-dependency of the effect. Meta-analysis. Placebo-controlled zinc lozenge trials, in which the zinc dose was > 75 mg/day. The pooled effect of zinc lozenges on common cold duration was calculated by using inverse-variance random-effects method. Seven randomised trials with 575 participants with naturally acquired common colds. Duration of the common cold. The mean common cold duration was 33% (95% CI 21% to 45%) shorter for the zinc groups of the seven included trials. Three trials that used lozenges composed of Zinc Acetate Solution found that colds were shortened by 40% and four trials that used zinc gluconate by 28%. The difference between the two salts was not significant: 12 percentage points (95% CI: -12 to + 36). Five trials used zinc doses of 80-92 mg/day, common cold duration was reduced by 33%, and two trials used zinc doses of 192-207 mg/day and found an effect of 35%. The difference between the high-dose and low-dose zinc trials was not significant: 2 percentage points (95% CI: -29 to + 32). Properly composed zinc gluconate lozenges may be as effective as Zinc Acetate Solution lozenges. There is no evidence that zinc doses over 100 mg/day might lead to greater efficacy in the treatment of the common cold. Common cold patients may be encouraged to try zinc lozenges for treating their colds. The optimal lozenge composition and dosage scheme need to be investigated further. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of Zinc Acetate Solution. We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of Zinc Acetate Solution. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, Zinc Acetate Solution crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10,000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment. Zinc Acetate Solution lozenges for treating the common cold: an individual patient data meta-analysis. The aim of this study was to determine whether the allergy status and other characteristics of common cold patients modify the effects of Zinc Acetate Solution lozenges. We had available individual patient data for three randomized placebo-controlled trials in which Zinc Acetate Solution lozenges were administered to common cold patients. We used both one stage and two stage meta-analysis to estimate the effects of zinc lozenges. The total number of common cold patients was 199, the majority being females. Eighty percent of them fell into the age range 20-50 years. One third of the patients had allergies. The one stage meta-analysis gave an overall estimate of 2.73 days (95% CI 1.8, 3.3 days) shorter colds by Zinc Acetate Solution lozenge usage. The two stage meta-analysis gave an estimate of 2.94 days (95% CI 2.1, 3.8 days) reduction in common cold duration. These estimates are to be compared with the 7 day average duration of colds in the three trials. The effect of zinc lozenges was not modified by allergy status, smoking, baseline severity of the common cold, age, gender or ethnic group. Since the effects of Zinc Acetate Solution lozenges were consistent between the compared subgroups, the overall estimates for effect seemed applicable over a wide range of common cold patients. While the optimal composition of zinc lozenges and the best frequency of their administration should be further investigated, given the current evidence of efficacy, common cold patients may be encouraged to try zinc lozenges for treating their colds. © 2016 The British Pharmacological Society. Zinc Acetate Solution lozenges for treating the common cold: an individual patient data meta‐analysis Aims The aim of this study was to determine whether the allergy status and other characteristics of common cold patients modify the effects of Zinc Acetate Solution lozenges. Methods We had available individual patient data for three randomized placebo‐controlled trials in which Zinc Acetate Solution lozenges were administered to common cold patients. We used both one stage and two stage meta‐analysis to estimate the effects of zinc lozenges. Results The total number of common cold patients was 199, the majority being females. Eighty percent of them fell into the age range 20–50 years. One third of the patients had allergies. The one stage meta‐analysis gave an overall estimate of 2.73 days (95% CI 1.8, 3.3 days) shorter colds by Zinc Acetate Solution lozenge usage. The two stage meta‐analysis gave an estimate of 2.94 days (95% CI 2.1, 3.8 days) reduction in common cold duration. These estimates are to be compared with the 7 day average duration of colds in the three trials. The effect of zinc lozenges was not modified by allergy status, smoking, baseline severity of the common cold, age, gender or ethnic group. Conclusion Since the effects of Zinc Acetate Solution lozenges were consistent between the compared subgroups, the overall estimates for effect seemed applicable over a wide range of common cold patients. While the optimal composition of zinc lozenges and the best frequency of their administration should be further investigated, given the current evidence of efficacy, common cold patients may be encouraged to try zinc lozenges for treating their colds. PMID:27378206 The effectiveness of high dose Zinc Acetate Solution lozenges on various common cold symptoms: a meta-analysis. A previous meta-analysis found that high dose Zinc Acetate Solution lozenges reduced the duration of common colds by 42%, whereas low zinc doses had no effect. Lozenges are dissolved in the pharyngeal region, thus there might be some difference in the effect of zinc lozenges on the duration of respiratory symptoms in the pharyngeal region compared with the nasal region. The objective of this study was to determine whether Zinc Acetate Solution lozenges have different effects on the duration of common cold symptoms originating from different anatomical regions. We analyzed three randomized trials on Zinc Acetate Solution lozenges for the common cold administering zinc in doses of 80-92 mg/day. All three trials reported the effect of zinc on seven respiratory symptoms, and three systemic symptoms. We pooled the effects of zinc lozenges for each symptom and calculated point estimates and 95% confidence intervals (95% CI). Zinc Acetate Solution lozenges shortened the duration of nasal discharge by 34% (95% CI: 17% to 51%), nasal congestion by 37% (15% to 58%), sneezing by 22% (-1% to 45%), scratchy throat by 33% (8% to 59%), sore throat by 18% (-10% to 46%), hoarseness by 43% (3% to 83%), and cough by 46% (28% to 64%). Zinc lozenges shortened the duration of muscle ache by 54% (18% to 89%), but there was no difference in the duration of headache and fever. The effect of Zinc Acetate Solution lozenges on cold symptoms may be associated with the local availability of zinc from the lozenges, with the levels being highest in the pharyngeal region. However our findings indicate that the effects of zinc ions are not limited to the pharyngeal region. There is no indication that the effect of zinc lozenges on nasal symptoms is less than the effect on the symptoms of the pharyngeal region, which is more exposed to released zinc ions. Given that the adverse effects of zinc in the three trials were minor, Zinc Acetate Solution lozenges releasing zinc ions at doses of about 80 mg/day may be a useful treatment for the common cold Zinc Acetate Solution Lozenges May Improve the Recovery Rate of Common Cold Patients: An Individual Patient Data Meta-Analysis. A previous meta-analysis of 3 Zinc Acetate Solution lozenge trials estimated that colds were on average 40% shorter for the zinc groups. However, the duration of colds is a time outcome, and survival analysis may be a more informative approach. The objective of this individual patient data (IPD) meta-analysis was to estimate the effect of Zinc Acetate Solution lozenges on the rate of recovery from colds. We analyzed IPD for 3 randomized placebo-controlled trials in which 80-92 mg/day of elemental zinc were administered as Zinc Acetate Solution lozenges to 199 common cold patients. We used mixed-effects Cox regression to estimate the effect of zinc. Patients administered zinc lozenges recovered faster by rate ratio 3.1 (95% confidence interval, 2.1-4.7). The effect was not modified by age, sex, race, allergy, smoking, or baseline common cold severity. On the 5th day, 70% of the zinc patients had recovered compared with 27% of the placebo patients. Accordingly, 2.6 times more patients were cured in the zinc group. The difference also corresponds to the number needed to treat of 2.3 on the 5th day. None of the studies observed serious adverse effects of zinc. The 3-fold increase in the rate of recovery from the common cold is a clinically important effect. The optimal formulation of zinc lozenges and an ideal frequency of their administration should be examined. Given the evidence of efficacy, common cold patients may be instructed to try Zinc Acetate Solution lozenges within 24 hours of onset of symptoms. © The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America. Evaluation of the effect of Zinc Acetate Solution on the stratum corneum penetration kinetics of erythromycin in healthy male volunteers. Erythromycin with or without additional Zinc Acetate Solution is used topically in the treatment of acne vulgaris. A potential effect of zinc on the stratum corneum penetration of erythromycin was investigated in human volunteers. Skin surface washings and tape strippings from the skin of the back were collected after drug applications in 12 subjects for quantification of erythromycin levels. Zinc Acetate Solution increased the amount remaining on the back skin at 6 h after application from 40 +/- 19 to 56 +/- 15% of the dose and, vice versa, reduced the amount in stratum corneum strips from 22 +/- 7 to 18 +/- 7%, both with statistical significance. The effect varied with body region. Zinc Acetate Solution thus provided to prolong the residence time of erythromycin on the skin. Product Description As an ace manufacturer and trader of Zinc Acetate Solution Solution, we have marked our name very strongly in the market. It is used to treat zinc deficiencies. As an oral daily supplement it is used to inhibit the body''s absorption of copper as part of the treatment for Wilson''s disease. Zinc Acetate Solution is also sold as an astringent in the form of an ointment, a topical lotion, or combined with an antibiotic such as erythromycin for the topical treatment of acne. It is commonly sold as a topical anti-itch ointment. Zinc Acetate Solution Sciencemadness Wiki sitesinden Zinc Acetate Solution Zinc Acetate Solution dihydrate sample.jpg Sample of Zinc Acetate Solution dihydrate Names IUPAC name Zinc Acetate Solution Zinc Acetate Solution is a chemical compound with the formula Zn(CH3COO)2 the acetic acid salt of zinc, more commonly encountered as dihydrate, Zn(CH3COO)2·2 H2O. Zinc Acetate Solution reacts with bases to form insoluble zinc hydroxide: Zn(CH3COO)2 + 2 NaOH → 2 CH3COONa + Zn(OH)2 According to one paper, pyrolysis of anhydrous Zinc Acetate Solution (at reduced pressure) should yield acetic anhydride and leave behind basic Zinc Acetate Solution: Physical Zinc Acetate Solution is a solid crystalline, soluble in water. Its anhydrous form is hygroscopic and quickly turns into the dihydrate form upon standing in open air. It has a weak acetic smell. Availability Zinc Acetate Solution is available as food supplements and can be purchased online. To obtain the pure compound, you will have to dissolve the product in water and recrystallize it from the solution. Anhydrous Zinc Acetate Solution can be prepared by heating the dihydrate or refluxing it with toluene and collecting the water with a Dean-Stark apparatus. Preparation Zinc Acetate Solution can be prepared by adding zinc metal or zinc oxide to acetic acid. 2 CH3COOH + Zn → Zn(CH3COO)2 + H2 2 CH3COOH + ZnO → Zn(CH3COO)2 + H2O Vinegar can also be used as cheap source acetic acid. After all the zinc has dissolved, the solution is concentrated and cooled to crystallize solid Zinc Acetate Solution dihydrate. If vinegar was used, organic residue from the vinegar will be trapped in the Zinc Acetate Solution crystals. To remove the impurities, crush the resulting crystals and wash them thoroughly with an organic solvent. Multiple recrystallizations might be required to remove all the impurities. If anhydrous Zinc Acetate Solution is desired, you can dry the Zinc Acetate Solution dihydrate by refluxing it with toluene, and using a Dean-Stark apparatus to separate the water. Zinc Acetate Solution is slightly irritant due to the acetic acid resulting from hydrolysis, though this is not a problem when handling the compound. Storage Zinc Acetate Solution should be stored in closed bottles, away from moisture and acids, in a well ventilated place. Anhydrous Zinc Acetate Solution should be kept in air-tight containers. Disposal No special disposal is required for Zinc Acetate Solution, though it's best to dilute it strongly if you want to pour it down the drain. Alternatively, you can precipitate zinc hydroxide/oxide by adding an alkali to a solution of Zinc Acetate Solution. References Relevant Sciencemadness threads Zinc Acetate Solution Dihydrate Quick test for Zinc Acetate Solution? Separation of Cu(OAc)2 and Zn(OAc)2 FIELD: chemistry. SUBSTANCE: invention relates to a method of producing Zinc Acetate Solution dihydrate. The method is realised by dissolving powdered zinc oxide or zinc hydroxide in aqueous acetic acid solution with ratio of reactants - zinc oxide (zinc hydroxide):water:acetic acid equal to 1:(1.6-2.0):(1.8-2.2) by weight; the obtained solution is then evaporated to oversaturation, gradually cooled to 0-5°C and held for 15-20 hours. The crystalline hydrate of Zinc Acetate Solution precipitated from the solution is filtered and dried at 30-40°C. EFFECT: improved method of producing Zinc Acetate Solution dihydrate. 3 ex The invention relates to a technology for the production of salts of acetic acid, namely, two-water Zinc Acetate Solution. The invention can also be used to obtain two-water Zinc Acetate Solution depleted in the Zn 64 isotope, which is used as an additive in cooling systems of "light-water" nuclear reactors. The use of zinc dosing technology helps to reduce the radiation dose rate during scheduled repairs, reduce the accumulation of radioactive waste in equipment, improve the corrosion state and increase the life of primary pipelines, by reducing corrosion, which ultimately increases the operating life of the equipment. Two-water Zinc Acetate Solution depleted in the Zn 64 isotope is subject to more stringent requirements for chemical purity (99.8% content of the basic substance), different from the requirements for the reagent according to GOST 5823-78 of the chemically pure grade (basic content 99.5% of the substance). The disadvantage of this method is the high drying temperature of the product, in which the two-water Zinc Acetate Solution loses water, the crystals are weathering and partially decompose. The closest in technical essence and the achieved result is a method for producing two-water Zinc Acetate Solution (Yu.V. Karyakin, I.I. Engelov. Pure chemicals. - M .: Chemistry, 1976, p. 408), in which 20 ml % aqueous solution of acetic acid, heated to a temperature of 75-80 ° C, contribute 50 g of ZnO and filtered. Next, 8-10 ml of a 3% solution of H 2 O 2 is added to the solution, heated to boiling, and a 2% solution of Ba (CH 3 COO) 2 is added dropwise until insignificant amounts of SO 4 2- remain in the solution. Next, 5 g of freshly precipitated ZnCO 3 are added to the solution, the mixture is boiled for 5 minutes, then heated for another 40-50 minutes in a water bath (to coagulate the precipitate) and filtered. CH 3 COOH was poured into the filtrate to a faint odor and cooled. The precipitated crystals are sucked off on a Buchner funnel, and the mother liquor is evaporated to form a crystalline film and crystallized. The salt is dried at room temperature. The disadvantages of this method are: the multiplicity of technological operations, low chemical purity of two-water Zinc Acetate Solution. The claimed method differs from the prototype in that: zinc oxide or zinc hydroxide powder is dissolved in an aqueous solution of acetic acid, with a reagent ratio of zinc oxide (zinc hydroxide): water: acetic acid, equal to 1: (1.6-2.0) : (1.8-2.2) by weight, the resulting solution is evaporated to supersaturation, gradually cooled to a temperature of 0-5 ° C and maintained for 15-20 hours, the precipitated Zinc Acetate Solution crystalline hydrate is filtered and dried at a temperature of 30- 40 ° C. The content of the main substance in the resulting product is at least 99.8% (wt.). Example No. 1. The powder of zinc oxide or zinc hydroxide is dissolved in an aqueous solution of acetic acid with a ratio of reagents - zinc oxide (zinc hydroxide): water: acetic acid, equal to 1: 1.6: 1.8 by weight. The resulting solution was evaporated to supersaturation, smoothly cooled to a temperature of 0-5 ° C, incubated for 15 hours. The crystallized Zinc Acetate Solution hydrate precipitated from the solution is filtered and dried at a temperature of 30 ° C. The content of the main substance in the resulting product is at least 99.8% (wt.). Example No. 2. The powder of zinc oxide or zinc hydroxide is dissolved in an aqueous solution of acetic acid at a ratio of reagents - zinc oxide (zinc hydroxide): water: acetic acid, equal to 1: 1.8: 2.0 by weight. The resulting solution was evaporated to supersaturation, smoothly cooled to a temperature of 0-5 ° C, incubated for 18 hours. The Zinc Acetate Solution crystalline hydrate precipitated from the solution is filtered and dried at a temperature of 35 ° C. The content of the main substance in the resulting product is not less than 99.8% (wt.). Example No. 3. The powder of zinc oxide or zinc hydroxide is dissolved in an aqueous solution of acetic acid at a ratio of reagents - zinc oxide (zinc hydroxide): water: acetic acid, equal to 1: 2.0: 2.2 by weight. The resulting solution was evaporated to supersaturation, gradually cooled to a temperature of 0-5 ° C, kept for 20 hours. The crystallized Zinc Acetate Solution hydrate precipitated from the solution is filtered and dried at a temperature of 40 ° C. The content of the main substance in the resulting product is at least 99.8% (wt.). When crystallization is carried out from a solution with a time of less than 15 hours, the yield of Zinc Acetate Solution does not exceed 70%. Conducting crystallization over time of more than 20 hours does not have a significant effect on increasing the yield of Zinc Acetate Solution. Carrying out drying at a temperature of less than 30 ° C increases the time of this technological stage. Drying at temperatures above 40 ° C leads to partial dehydration of crystals of two-water Zinc Acetate Solution. A method of producing a two-water Zinc Acetate Solution, characterized in that the powder of zinc oxide or zinc hydroxide is dissolved in an aqueous solution of acetic acid, with a ratio of reagents - zinc oxide (zinc hydroxide): water: acetic acid, equal to 1: (1.6-2.0 ) :( 1.8-2.2) by weight, the resulting solution was evaporated to supersaturation, gradually cooled to a temperature of 0-5 ° C and held for 15-20 hours, the precipitated Zinc Acetate Solution crystalline hydrate was filtered and dried at a temperature of 30 -40 ° C, the content of the main substance in the resulting product is not less than 99, 8 wt.%. What is Zinc Acetate Solution? Zinc Acetate Solution is used to treat and to prevent zinc deficiency. Zinc Acetate Solution may also be used for other purposes not listed in this medication guide. Important Information Before using Zinc Acetate Solution, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use Zinc Acetate Solution if you have certain medical conditions. Avoid taking this medication with foods that are high in calcium or phosphorus, which can make it harder for your body to absorb Zinc Acetate Solution. Foods high in calcium or phosphorus include milk, cheese, yogurt, ice cream, dried beans or peas, lentils, nuts, peanut butter, beer, cola soft drinks, and hot cocoa. Zinc Acetate Solution can make certain antibiotics less effective. Tell your doctor about all other medications you are using before you start taking Zinc Acetate Solution. Before taking this medicine Before using Zinc Acetate Solution, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use Zinc Acetate Solution if you have certain medical conditions. It is not known whether Zinc Acetate Solution will harm an unborn baby. Do not take Zinc Acetate Solution without telling your doctor if you are pregnant or could become pregnant during treatment. It is not known whether Zinc Acetate Solution passes into breast milk or if it could harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby. How should I take Zinc Acetate Solution? Use exactly as directed on the label, or as prescribed by your doctor. Do not use in larger or smaller amounts or for longer than recommended. Take Zinc Acetate Solution with a full glass of water. Take Zinc Acetate Solution with food if it upsets your stomach. Your healthcare provider may occasionally change your dose to make sure you get the best results from Zinc Acetate Solution. The recommended dietary allowance of Zinc Acetate Solution increases with age. Follow your healthcare provider's instructions. You may also consult the National Academy of Sciences "Dietary Reference Intake" or the U.S. Department of Agriculture's "Dietary Reference Intake" (formerly "Recommended Daily Allowances" or RDA) listings for more information. What should I avoid while taking Zinc Acetate Solution? Avoid taking this medication with foods that are high in calcium or phosphorus, which can make it harder for your body to absorb Zinc Acetate Solution. Foods high in calcium or phosphorus include milk, cheese, yogurt, ice cream, dried beans or peas, lentils, nuts, peanut butter, beer, cola soft drinks, and hot cocoa. Zinc Acetate Solution side effects Zinc Acetate Solution side effects (in more detail) Zinc Acetate Solution dosing information -When patient is clinically stable, treatment with Zinc Acetate Solution can begin; continue chelation therapy as clinically indicated. -When patient is clinically stable, treatment with Zinc Acetate Solution can begin; continue chelation therapy as clinically indicated. What other drugs will affect Zinc Acetate Solution? The following drugs can interact with or be made less effective by Zinc Acetate Solution. Tell your doctor if you are using any of these:. This list is not complete and other drugs may interact with Zinc Acetate Solution. Tell your healthcare provider about all medications you use. This includes prescription, over-the-counter, vitamin, and herbal products. Do not start a new medication without telling your doctor. See also: Zinc Acetate Solution drug interactions (in more detail) What is the most important information I should know about Zinc Acetate Solution? Before using Zinc Acetate Solution, talk to your doctor, pharmacist, herbalist, or other healthcare provider. You may not be able to use Zinc Acetate Solution if you have certain medical conditions. It is not known whether Zinc Acetate Solution will harm an unborn baby. Do not take Zinc Acetate Solution without telling your doctor if you are pregnant or could become pregnant during treatment. It is not known whether Zinc Acetate Solution passes into breast milk or if it could harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby. Can I take Zinc Acetate Solution if I’m pregnant or breastfeeding? It is not known whether Zinc Acetate Solution will harm an unborn baby. Do not take Zinc Acetate Solution without telling your doctor if you are pregnant or could become pregnant during treatment. It is not known whether Zinc Acetate Solution passes into breast milk or if it could harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby. How to take Zinc Acetate Solution? Use Zinc Acetate Solution exactly as directed on the label, or as prescribed by your doctor. Do not use in larger or smaller amounts or for longer than recommended. Take Zinc Acetate Solution with a full glass of water. Take Zinc Acetate Solution with food if it upsets your stomach. Zinc Acetate Solution Uses of Zinc Acetate Solution Zinc Acetate Solution is used in the treatment of: Zinc Acetate Solution Brand Names Zinc Acetate Solution may be found in some form under the following brand names: Zinc Acetate Solution Drug Class Zinc Acetate Solution is part of the drug class: Various alimentary tract and metabolism products Zinc Acetate Solution Interactions This is not a complete list of Zinc Acetate Solutiondrug interactions. Ask your doctor or pharmacist for more information. Zinc Acetate Solution and Pregnancy Tell your doctor if you are pregnant or plan to become pregnant. The FDA categorizes medications based on safety for use during pregnancy. Five categories - A, B, C, D, and X, are used to classify the possible risks to an unborn baby when a medication is taken during pregnancy. Zinc Acetate Solution falls into category A: When pregnant women used Zinc Acetate Solution, their babies did not show any problems related to this medication. Zinc Acetate Solution Dosage Take Zinc Acetate Solution exactly as prescribed by your doctor. Follow the directions on your prescription label carefully. The Zinc Acetate Solution dose your doctor recommends will be based on the following (use any or all that apply): Zinc Acetate Solution is available in the following doses: Antipyrine/benzocaine/Zinc Acetate Solution Otic 54 Mg-10 Mg-10 Mg/ml Otic Solution Benzyl Alcohol-Zinc Acetate Solution Topical 10%-2% Topical Cream Benzyl Alcohol-Zinc Acetate Solution Topical 10%-2% Topical Lotion Chloroxylenol/pramoxine/Zinc Acetate Solution Otic 0.1%-0.5%-0.1% Otic Drops Chloroxylenol/pramoxine/Zinc Acetate Solution Otic 0.1%-1%-1% Otic Drops Diphenhydramine Topical 1% Topical Gel Diphenhydramine Topical 2% Topical Stick Diphenhydramine-Zinc Acetate Solution Topical 1%-0.1% Topical Cream Diphenhydramine-Zinc Acetate Solution Topical 2%-0.1% Topical Cream Diphenhydramine-Zinc Acetate Solution Topical 2%-0.1% Topical Spray Diphenhydramine-Zinc Acetate Solution Topical 2%-0.1% Topical Stick Pramoxine Topical Topical Lotion Pramoxine-Zinc Acetate Solution Topical 1%-0.1% Topical Lotion Zinc Acetate Solution 25 Mg Oral Capsule Zinc Acetate Solution 50 Mg Oral Capsule Zinc Acetate Solution Compounding Powder Zinc Acetate Solution Topical 2% Topical Lotion Forms of Medication Zinc Acetate Solution is available in the following forms:
ZINC ASPARTATE
Boric acid, zinc salt; Borsäure, Zinksalz (German); ácido bórico, sal de cinc (Spanish); Acide borique, sel de zinc (French); cas no: 1332-07-6
ZINC BORATE
ZINC CARBONATE N° CAS : 3486-35-9 "Bien" dans toutes les catégories. Nom INCI : ZINC CARBONATE Nom chimique : Zinc carbonate (CI 77950) N° EINECS/ELINCS : 222-477-6 Ses fonctions (INCI) Opacifiant : Réduit la transparence ou la translucidité des cosmétiques
ZINC CARBONATE
ZnCl;TRIS;ZnCl2;Zinco;8VTE 1L;TRISMAT;Zinc chL;zintrace;ai3-04470;Zinctrace CAS No.7646-85-7
ZINC CHLORIDE
Zinc Chloride Zinc chloride is the name of chemical compounds with the formula ZnCl2 and its hydrates. Zinc chlorides, of which nine crystalline forms are known, are colorless or white, and are highly soluble in water. This white salt is hygroscopic and even deliquescent. Samples should therefore be protected from sources of moisture, including the water vapor present in ambient air. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O. Properties Chemical formula ZnCl2 Molar mass 136.315 g/mol Appearance white crystalline solid hygroscopic and very deliquescent Odor odorless Density 2.907 g/cm3 Melting point 290 °C (554 °F; 563 K)[1] Boiling point 732 °C (1,350 °F; 1,005 K)[1] Solubility in water 432.0 g/ 100 g (25 °C) Solubility soluble in ethanol, glycerol and acetone Solubility in alcohol 430.0 g/100ml Magnetic susceptibility (χ) −65.0·10−6 cm3/mol Hydrates Five hydrates of zinc chloride are known: ZnCl2(H2O)n with n = 1, 1.5, 2.5, 3 and 4.[14] The tetrahydrate ZnCl2(H2O)4 crystallizes from aqueous solutions of zinc chloride. Preparation and purification Anhydrous ZnCl2 can be prepared from zinc and hydrogen chloride: Zn + 2 HCl → ZnCl2 + H2 Hydrated forms and aqueous solutions may be readily prepared similarly by treating Zn metal, zinc carbonate, zinc oxide, and zinc sulfide with hydrochloric acid: ZnS + 2 HCl + 4 H2O → ZnCl2(H2O)4 + H2S Unlike many other elements, zinc essentially exists in only one oxidation state, 2+, which simplifies purification of the chloride. Commercial samples of zinc chloride typically contain water and products from hydrolysis as impurities. Such samples may be purified by recrystallization from hot dioxane. Anhydrous samples can be purified by sublimation in a stream of hydrogen chloride gas, followed by heating the sublimate to 400 °C in a stream of dry nitrogen gas.[15] Finally, the simplest method relies on treating the zinc chloride with thionyl chloride.[16] Reactions Molten anhydrous ZnCl2 at 500–700 °C dissolves zinc metal, and, on rapid cooling of the melt, a yellow diamagnetic glass is formed, which Raman studies indicate contains the Zn2+ 2 ion.[14] A number of salts containing the tetrachlorozincate anion, ZnCl2−4, are known.[10] "Caulton's reagent", V2Cl3(thf)6Zn2Cl6 is an example of a salt containing Zn2Cl2−6. The compound Cs3ZnCl5 contains tetrahedral ZnCl2−4 and Cl− anions. No compounds containing the ZnCl4−6 ion have been characterized. Whilst zinc chloride is very soluble in water, solutions cannot be considered to contain simply solvated Zn2+ ions and Cl− ions, ZnClxH2O(4−x) species are also present. Aqueous solutions of ZnCl2 are acidic: a 6 M aqueous solution has a pH of 1.[14] The acidity of aqueous ZnCl2 solutions relative to solutions of other Zn2+ salts is due to the formation of the tetrahedral chloro aqua complexes where the reduction in coordination number from 6 to 4 further reduces the strength of the O–H bonds in the solvated water molecules.[22] In alkali solution in the presence of OH− ion various zinc hydroxychloride anions are present in solution, e.g. Zn(OH)3Cl2−, Zn(OH)2Cl2−2, ZnOHCl2−3, and Zn5(OH)8Cl2·H2O (simonkolleite) precipitates. When ammonia is bubbled through a solution of zinc chloride, the hydroxide does not precipitate, instead compounds containing complexed ammonia (ammines) are produced, Zn(NH3)4Cl2·H2O and on concentration ZnCl2(NH3)2.[24] The former contains the Zn(NH3)62+ ion,[5] and the latter is molecular with a distorted tetrahedral geometry.[25] The species in aqueous solution have been investigated and show that Zn(NH3)42+ is the main species present with Zn(NH3)3Cl+ also present at lower NH3:Zn ratio. Aqueous zinc chloride reacts with zinc oxide to form an amorphous cement that was first investigated in the 1855 by Stanislas Sorel. Sorel later went on to investigate the related magnesium oxychloride cement, which bears his name. When hydrated zinc chloride is heated, one obtains a residue of Zn(OH)Cl e.g. ZnCl2·2H2O → ZnCl(OH) + HCl + H2O The compound ZnCl2·1⁄2HCl·H2O may be prepared by careful precipitation from a solution of ZnCl2 acidified with HCl. It contains a polymeric anion (Zn2Cl5−)n with balancing monohydrated hydronium ions, H5O2+ ions. The formation of highly reactive anhydrous HCl gas formed when zinc chloride hydrates are heated is the basis of qualitative inorganic spot tests. The use of zinc chloride as a flux, sometimes in a mixture with ammonium chloride (see also Zinc ammonium chloride), involves the production of HCl and its subsequent reaction with surface oxides. Zinc chloride forms two salts with ammonium chloride: (NH4)2ZnCl4 and (NH4)3ClZnCl4, which decompose on heating liberating HCl, just as zinc chloride hydrate does. The action of zinc chloride/ammonium chloride fluxes, for example, in the hot-dip galvanizing process produces H2 gas and ammonia fumes.[31] Cellulose dissolves in aqueous solutions of ZnCl2, and zinc-cellulose complexes have been detected.[32] Cellulose also dissolves in molten ZnCl2 hydrate and carboxylation and acetylation performed on the cellulose polymer.[33] Thus, although many zinc salts have different formulas and different crystal structures, these salts behave very similarly in aqueous solution. For example, solutions prepared from any of the polymorphs of ZnCl2, as well as other halides (bromide, iodide), and the sulfate can often be used interchangeably for the preparation of other zinc compounds. Illustrative is the preparation of zinc carbonate: ZnCl2(aq) + Na2CO3(aq) → ZnCO3(s) + 2 NaCl(aq) Applications As a metallurgical flux Zinc chloride reacts with metal oxides (MO) to give derivatives of the idealized formula MZnOCl2.[34][additional citation(s) needed] This reaction is relevant to the utility of ZnCl2 solution as a flux for soldering — it dissolves passivating oxides, exposing the clean metal surface.[34] Fluxes with ZnCl2 as an active ingredient are sometimes called "tinner's fluid". In organic synthesis Zinc chloride is a useful Lewis acid in organic chemistry.[35] Molten zinc chloride catalyses the conversion of methanol to hexamethylbenzene: 15 CH3OH → C6(CH3)6 + 3 CH4 + 15 H2O Other examples include catalyzing (A) the Fischer indole synthesis,[37] and also (B) Friedel-Crafts acylation reactions involving activated aromatic rings Related to the latter is the classical preparation of the dye fluorescein from phthalic anhydride and resorcinol, which involves a Friedel-Crafts acylation. This transformation has in fact been accomplished using even the hydrated ZnCl2 sample shown in the picture above. The combination of hydrochloric acid and ZnCl2, known as the "Lucas reagent", is effective for the preparation of alkyl chlorides from alcohols. Zinc chloride also activates benzylic and allylic halides towards substitution by weak nucleophiles such as alkenes:[41] In similar fashion, ZnCl2 promotes selective NaBH3CN reduction of tertiary, allylic or benzylic halides to the corresponding hydrocarbons. Zinc chloride is also a useful starting reagent for the synthesis of many organozinc reagents, such as those used in the palladium catalyzed Negishi coupling with aryl halides or vinyl halides.[42] In such cases the organozinc compound is usually prepared by transmetallation from an organolithium or a Grignard reagent, for example: Zinc enolates, prepared from alkali metal enolates and ZnCl2, provide control of stereochemistry in aldol condensation reactions due to chelation on to the zinc. In the example shown below, the threo product was favored over the erythro by a factor of 5:1 when ZnCl2 in DME/ether was used.[43] The chelate is more stable when the bulky phenyl group is pseudo-equatorial rather than pseudo-axial, i.e., threo rather than erythro. In textile and paper processing Concentrated aqueous solutions of zinc chloride (more than 64% weight/weight zinc chloride in water) have dissolving starch, silk, and cellulose. Relevant to its affinity for these materials, ZnCl2 is used as a fireproofing agent and in fabric "refresheners" such as Febreze. Vulcanized fibre is made by soaking paper in concentrated zinc chloride. Smoke grenades The zinc chloride smoke mixture ("HC") used in smoke grenades contains zinc oxide, hexachloroethane and granular aluminium powder, which, when ignited, react to form zinc chloride, carbon and aluminium oxide smoke, an effective smoke screen.[44] Fingerprint detection Ninhydrin reacts with amino acids and amines to form a colored compound "Ruhemann's purple" (RP). Spraying with a zinc chloride solution forms a 1:1 complex RP:ZnCl(H2O)2, which is more readily detected as it fluoresces more intensely than RP.[45] Disinfectant and wood preservative Dilute aqueous zinc chloride was used as a disinfectant under the name "Burnett's Disinfecting Fluid". [46] From 1839 Sir William Burnett promoted its use as a disinfectant as well as a wood preservative.[47] The Royal Navy conducted trials into its use as a disinfectant in the late 1840s, including during the cholera epidemic of 1849; and at the same time experiments were conducted into its preservative properties as applicable to the shipbuilding and railway industries. Burnett had some commercial success with his eponymous fluid. Following his death however, its use was largely superseded by that of carbolic acid and other proprietary products. Skin cancer treatment Zinc chloride has been used in alternative medicine to cause eschars, scabs of dead tissue, in an attempt to cure skin cancers.[48] Various products, such as Cansema or "black salve", containing zinc chloride and sold as cancer cures have been listed by the U.S. Food and Drug Administration (FDA) as fake [49] with warning letters being sent to suppliers.[50] Scarring and skin damage are associated with escharotic substances. Safety Zinc chloride is a chemical irritant of the eyes, skin, and respiratory system. General description Electrodeposition of zinc on glassy carbon and nickel substrates in zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt is studied.[4] Application Zinc Chloride may be used: • as catalyst in knoevenagel condensation of carbonyl substrates with acidic methylene reagents[3] • in the preparation of porous carbon nanofibers, useful in the fabrication of efficient electrodes for supercapacitors[5] • as a catalyst in preparation of poly(propylene fumarate)[6] • in the low temperature synthesis of nanocrystalline zinc oxide films[1] • in the synthesis of zinc oxide nanoparticles with low agglomeration. Aqueous suspensions of the nanoparticles displayed high transmittance in the visible light range, but exhibited strong absorption in the UV range. Zinc Chloride is a chemical compound, which is composed of zinc and chlorine. It is a hygroscopic white crystalline ionic salt with the chemical formula ZnCl2. Zinc Chloride is soluble in mediums such as water, glycerol, ether and alcohol. Since Zinc chloride is a deliquescent, it must be protected from sources of moisture such as water vapor. Synthesis and Purification Anhydrous zinc chloride is synthesized by treating zinc with hydrogen chloride. Zn(s) + 2 HCl → ZnCl2 + H2(g) Whereas, hydrated and aqueous forms of zinc chloride are prepared by treating zinc with hydrochloric acid. Zinc metal could either be in the form of zinc sulfide or zinc oxide. ZnS(s) + 2 HCl(aq) → ZnCl2(aq) + H2S(g) There are impurities present in zinc chloride samples due to hydrolysis. The purification of chloride is simple due to the existence one oxidation state (2+) of zinc. Purification can be done through recrystallization from dioxane (hot). The purification of anhydrous zinc chloride can be done through sublimation with hydrogen chloride gas, followed by the subsequent heating of the sublimate to around 400 °C with dry nitrogen gas. Zinc chloride can also be purified by treating it with thionyl chloride. USES Zinc Chloride has numerous applications in different industries, including pharmaceuticals, health care and paper manufacturing industry. Chemical products are also formulated using zinc chloride. The uses of zinc chloride, based on the type of the industry are as follows: 1. Chemical industry - Zinc chloride is used in the manufacture of various dyes, intermediate chemicals and solvents such as ethyl acetate. 2. Organic product synthesis - Organic products are synthesized in the laboratory for Lewis acid reaction and various other reactions. It also used as a catalyst in organic processes. 3. Metallurgical Industry - It is used a metal etchant and a metallurgical flux. Zinc chloride is used a flux for the soldering process. It is also used in the manufacture of magnesia cement, which is used as an active ingredient for dental fillings and mouthwashes. 4. Printing and Textile industry - Around 64% zinc chloride in water is used to dissolve silk, cellulose and starch. It finds many other applications such as fire proofing agents and fabric refreshers. Vulcanized fibers are manufactured by soaking paper in concentrated zinc chloride. Zinc chloride is used as a mordant in dyeing and printing materials. 5. Petroleum - Zinc chloride is a powerful emulsion breaker, which separates oil from water. 6. Dry cell - Zinc chloride is used in dry cell batteries as an electrolyte. 7. Other Uses - It is used as a condensing agent, dehydrating agent, wood preservative, deodorant and disinfectant. Conclusion Zinc chloride finds numerous applications in various industries, and its scope will increase through research, with the course of time. However, this chemical is known to cause skin irritations, gastrointestinal distress, diarrhea, nausea and pulmonary issues, which can be averted through the adoption of apt safety measures at the chemical manufacturing laboratories and plants. Buy and Sell excess Zinc Chloride online from the best trading portal for the chemical industry. Zinc chloride had the greatest irritancy potential, causing parakeratosis, hyperkeratosis, inflammatory changes in the epidermis and superficial dermis, and acanthosis of the follicular epithelia. Receiving dissolving zinc or its oxide in hydrochloric acid, followed by evaporation of the solution; heating molten zinc in a chlorine stream. Application calico printing; making dental cements; antiseptic impregnation of wood (for example, sleepers); cleaning the surface of metals from oxides before brazing (known as "Soldering acid"); component in the production of fiber; refining of molten zinc alloys; fractional analysis of coal samples; in galvanic cells. Toxicity Zinc chloride is highly toxic and a strong irritant. Causes skin burns. Eye contact is especially dangerous. Zinc Chloride is the name of chemical compounds with the formula ZnCl 2 and its hydrates. Zinc chlorides, of which nine crystalline forms are known, are colorless or white and well soluble in water. ZnCl 2 itself is hygroscopic and even spreads. Therefore, samples must be protected from sources of moisture, including water vapor present in the ambient air. Zinc chloride is widely used in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with such a chemical composition is known, except very rare mineral of simoncolleite Zn 5 (OH) 8 Cl 2 · H 2 O. Zinc chloride is also called zinc chloride and zinc dichloride. Zinc Chloride This chemical reagent has a fairly wide range of applications. Zinc chloride (ZnCl2) is white crystals or flakes, sometimes with a yellowish tinge, capable of absorbing water vapor from the environment. Main characteristics - Complete lack of smell. - Solubility, which differs depending on the temperature of the water. For example, at a temperature of 25 ° C in 100 g of water, you can dissolve 432 g of zinc chloride, and at a temperature of 100 ° C - already 614 g. On average, the compound has 80 percent solubility in water. Along with water, acetone, ethyl alcohol, ether and glycerin are good solvents for zinc chloride. - Not flammable. - It is toxic by inhalation, in contact with the skin and mucous membranes, it causes chemical burns, therefore it is necessary to work with this substance using protective equipment. Production Industrial production of zinc chloride is carried out in two ways. In the first, zinc is dissolved in hydrochloric acid. Moreover, for this method, both pure zinc and its oxides and even zinc-containing secondary raw materials are suitable. After dissolution, the solution is evaporated. The second method involves the use of zinc in liquid or (less often) granular form. Chlorine is fed to the zinc, while the zinc is heated to a temperature of 420 ° C. Zinc chloride is purified by sublimation; production standards are prescribed in GOST 7345-78 and 4529-78. Storage and transportation Zinc dichloride The storage area must be dry and well ventilated. It is important to exclude the possibility of spillage and spillage of the compound (if it is transported in the form of a solution), for which it is recommended to use sealed containers. The shelf life, on average, is from 2 months to six months. Zinc dichloride is transported in accordance with the rules for the carriage of goods that apply to this type of transport. During transportation, the reagent must be hermetically packed, and the container must be marked in accordance with GOST 19433-88. ZnCl2 is transported and stored usually in sealed tanks or barrels. Application Zinc chloride is widely used in completely different fields of industry. The most common areas of its use: - In dentistry for the production of cements. - For printing drawings on calico, in the production of dyes, including for dyes of cotton fabrics, in the light industry. - For the production of refractory impregnations of various materials. - For oil refining. - As a dehumidifier. - In the coal industry - for conducting fractional tests of coal samples. - In woodworking for antiseptic impregnation of wood. - In metallurgy for the refining of melts, for the purification of metals from the oxide layer. - In the manufacture of batteries. In alkali solution in the presence of OH− ion various zinc hydroxychloride anions are present in solution, e.g. Zn(OH)3Cl2−, Zn(OH)2Cl2−2, ZnOHCl2−3, and Zn5(OH)8Cl2·H2O (simonkolleite) precipitates.[22] When ammonia is bubbled through a solution of zinc chloride, the hydroxide does not precipitate, instead compounds containing complexed ammonia (ammines) are produced, Zn(NH3)4Cl2·H2O and on concentration ZnCl2(NH3)2.[23] The former contains the Zn(NH3)62+ ion [4], and the latter is molecular with a distorted tetrahedral geometry.[24] The species in aqueous solution have been investigated and show that Zn(NH3)42+ is the main species present with Zn(NH3)3Cl+ also present at lower NH3:Zn ratio. Aqueous zinc chloride reacts with zinc oxide to form an amorphous cement that was first investigated in the 1855 by Stanislas Sorel. Sorel later went on to investigate the related magnesium oxychloride cement, which bears his name.When hydrated zinc chloride is heated, one obtains a residue of Zn(OH)Cl e.g. ZnCl2·2H2O → ZnCl(OH) + HCl + H2O The compound ZnCl2·1⁄2HCl·H2O may be prepared by careful precipitation from a solution of ZnCl2 acidified with HCl. It contains a polymeric anion (Zn2Cl5−)n with balancing monohydrated hydronium ions, H5O2+ ions.The formation of highly reactive anhydrous HCl gas formed when zinc chloride hydrates are heated is the basis of qualitative inorganic spot tests. The use of zinc chloride as a flux, sometimes in a mixture with ammonium chloride (see also Zinc ammonium chloride), involves the production of HCl and its subsequent reaction with surface oxides. Zinc chloride forms two salts with ammonium chloride: (NH4)2ZnCl4 and (NH4)3ClZnCl4, which decompose on heating liberating HCl, just as zinc chloride hydrate does. The action of zinc chloride/ammonium chloride fluxes, for example, in the hot-dip galvanizing process produces H2 gas and ammonia fumes. Cellulose dissolves in aqueous solutions of ZnCl2, and zinc-cellulose complexes have been detected.Cellulose also dissolves in molten ZnCl2 hydrate and carboxylation and acetylation performed on the cellulose polymer. Thus, although many zinc salts have different formulas and different crystal structures, these salts behave very similarly in aqueous solution. For example, solutions prepared from any of the polymorphs of ZnCl2, as well as other halides (bromide, iodide), and the sulfate can often be used interchangeably for the preparation of other zinc compounds. Illustrative is the preparation of zinc carbonate: ZnCl2(aq) + Na2CO3(aq) → ZnCO3(s) + 2 NaCl(aq) Applications As a metallurgical flux Zinc chloride has the ability to react with metal oxides (MO) to give derivatives of the formula MZnOCl2.[additional citation(s) needed] This reaction is relevant to the utility of ZnCl2 solution as a flux for soldering — it dissolves oxide coatings, exposing the clean metal surface.[33] Fluxes with ZnCl2 as an active ingredient are sometimes called "tinner's fluid". Typically this flux was prepared by dissolving zinc foil in dilute hydrochloric acid until the liquid ceased to evolve hydrogen; for this reason, such flux was once known as "killed spirits". Because of its corrosive nature, this flux is not suitable for situations where any residue cannot be cleaned away, such as electronic work. This property also leads to its use in the manufacture of magnesia cements for dental fillings and certain mouthwashes as an active ingredient. In organic synthesis An early use of zinc chloride (Silzic) was in building carbon skeletons by condensation of methanol molecules. Unsaturated hydrocarbons are the major products, with reaction conditions influencing the distribution of products, though some aromatic compounds were formed.[34] In 1880, it was found that molten zinc chloride catalyses an aromatization reaction generating hexamethylbenzene. At the melting point of ZnCl2 (283 °C), the reaction has a ΔG = −1090 kJ/mol and can be idealised as 15 CH3OH → C6(CH3)6 + 3 CH4 + 15 H2O The discoverers of this reaction rationalized it as involving condensation of methylene units followed by complete Friedel-Crafts methylation of the resulting benzene ring with chloromethane generated in situ.Such an alkylation transformation is an application of zinc chloride's moderate strength as a Lewis acid, which is its principal role in laboratory synthesis. Other examples include catalyzing (A) the Fischer indole synthesis,and also (B) Friedel-Crafts acylation reactions involving activated aromatic rings. Related to the latter is the classical preparation of the dye fluorescein from phthalic anhydride and resorcinol, which involves a Friedel-Crafts acylation. This transformation has in fact been accomplished using even the hydrated ZnCl2 sample shown. Hydrochloric acid alone reacts poorly with primary alcohols and secondary alcohols, but a combination of HCl with ZnCl2 (known together as the "Lucas reagent") is effective for the preparation of alkyl chlorides. Typical reactions are conducted at 130 °C. This reaction probably proceeds via an SN2 mechanism with primary alcohols but SN1 pathway with secondary alcohols. Zinc chloride also activates benzylic and allylic halides towards substitution by weak nucleophiles such as alkenes:In similar fashion, ZnCl2 promotes selective NaBH3CN reduction of tertiary, allylic or benzylic halides to the corresponding hydrocarbons. Zinc chloride is also a useful starting reagent for the synthesis of many organozinc reagents, such as those used in the palladium catalyzed Negishi coupling with aryl halides or vinyl halides.In such cases the organozinc compound is usually prepared by transmetallation from an organolithium or a Grignard reagent, for example:Zinc enolates, prepared from alkali metal enolates and ZnCl2, provide control of stereochemistry in aldol condensation reactions due to chelation on to the zinc. In the example shown below, the threo product was favored over the erythro by a factor of 5:1 when ZnCl2 in DME/ether was used.The chelate is more stable when the bulky phenyl group is pseudo-equatorial rather than pseudo-axial, i.e., threo rather than erythro. In textile and paper processing Concentrated aqueous solutions of zinc chloride (more than 64% weight/weight zinc chloride in water) have the interesting property of dissolving starch, silk, and cellulose. Thus, such solutions cannot be filtered through standard filter papers. Relevant to its affinity for these materials, ZnCl2 is used as a fireproofing agent and in fabric "refresheners" such as Febreze. Vulcanized fibre is made by soaking paper in concentrated zinc chloride. Smoke grenades The zinc chloride smoke mixture ("HC") used in smoke grenades contains zinc oxide, hexachloroethane and granular aluminium powder, which, when ignited, react to form zinc chloride, carbon and aluminium oxide smoke, an effective smoke screen. Fingerprint detection Ninhydrin reacts with amino acids and amines to form a colored compound "Ruhemann's purple" (RP). Spraying with a zinc chloride solution forms a 1:1 complex RP:ZnCl(H2O)2, which is more readily detected as it fluoresces better than Ruhemann's purple. Disinfectant Historically, a dilute aqueous solution of zinc chloride was used as a disinfectant under the name "Burnett's Disinfecting Fluid". [45] It is also used in some commercial brands of antiseptic mouthwash. Skin cancer treatment Zinc chloride has been used in alternative medicine to cause eschars, scabs of dead tissue, in an attempt to cure skin cancers.[46] Various products, such as Cansema or "black salve", containing zinc chloride and sold as cancer cures have been listed by the U.S. Food and Drug Administration (FDA) as fake [47] with warning letters being sent to suppliers. Numerous reports in medical literature describe serious scarring and damage to normal skin by escharotic substances. Given these side-effects, its use in treatment is not warranted as there are much safer and more effective alternatives, such as radiation therapy and Mohs surgery.[49][50] Safety Zinc chloride is a skin irritant. After contact of the skin, immediate removal is necessary using soap and plenty of water. After contact of the eyes, adequate measures are rinsing with plenty of water or other eye rinse and contacting an ophthalmologist as soon as possible.[51] Zinc chloride is caustic to the gastrointestinal tract, occasionally leading to hematemesis. Symptoms of acute intoxication are gastrointestinal distress, diarrhea, nausea, and abdominal pain. Vomiting occurs almost universally. The lethal dose in humans is 3–5 g.[citation needed] Decontamination of the gastrointestinal tract after oral uptake of zinc compounds is mostly unnecessary, since patients usually vomit sufficiently. Milk may be administered to decrease absorption of the metal. Zinc levels may be normalized with EDTA salts.[51] Zinc chloride is extremely detrimental to the lungs, and pulmonary exposure to zinc chloride smoke has previously resulted in fatalities.Inhalation of fumes of zinc, zinc oxide, or zinc chloride leads to pulmonary edema and metal fume fever. Onset occurs within 4–6 h and may be delayed up to 8 h. Symptoms include rapid breathing, dyspnea, cough, fever, shivering, sweating, chest and leg pain, myalgias, fatigue, metallic taste, salivation, thirst, and leukocytosis, which can last from 24 to 48 h. In cases of fume inhalation, cortisone preparations should be applied immediately (e.g., by inhalation of Auxiloson) to avoid development of lung edema. Compounds In chemical compounds, zinc exhibits almost exclusively a +2 oxidation state. A few compounds of zinc in the +1 state have been reported, but never any compounds of zinc in the +3 state or higher. Zinc chloride is a chemical compound whose formula is ZnCl2, with a molecular weight of 136.3 g / mol. This product is hygroscopic and deliquescent and therefore must be protected from moisture, even that contained in the atmosphere. Applications: One of the main applications of zinc chloride is to act as an electrolyte in dry batteries (zinc-carbon). Zinc chloride has the ability to attack the metal oxides, this property allowing its use as flux in the weld metal, dissolving the oxide layers, and leaving the metal surface clean. Zinc chloride is used in various fields such as water treatment, as a fireproofing agent in textile processing and in the manufacture of bactericides, fungicides and stabilizers for plastics. USES Dry Cell or Batteries: Zinc Chloride is commonly used in dry cell batteries as an electrolyte where it also acts as a moisture absorbent and corrosion inhibitor. ZnCl2 is an excellent water soluble Zinc source for uses compatible with chlorides. Chloride compounds can conduct electricity when fused or dissolved in water. Chloride materials can be decomposed by electrolysis to chlorine gas and the metal. They are formed through various chlorination processes whereby at least one chlorine anion (Cl-) is covalently bonded to the relevant metal or cation. the item is generally immediately available in most volumes and high purity. A zinc chloride battery is a heavy duty variation of a zinc carbon battery. It is used in applications that require moderate to heavy current drains. Zinc chloride batteries have better voltage discharge per time characteristics and better low temperature performance than carbon zinc batteries. They batteries are used in radios, flashlights, lanterns, fluorescent lanterns, motor driven devices, portable audio equipments, communications equipments, electronic games, calculators, and remote control transmitters. Electroplating : Today, there are three primary types of acid zinc plating baths: straight ammonium chloride, straight potassium chloride and mixed ammonium chloride/potassium chloride. Acid zinc plating systems have several advantages over alkaline cyanide and alkaline non-cyanide zinc plating systems except that in acid zinc plating, the electrolyte is extremely corrosive. Ammonium chloride zinc plating. The ammonium chloride bath is the most forgiving of the three major types of acid zinc plating because of its wide operating parameters. The primary drawback of this system is the high level of ammonia, which can cause problems in wastewater treatment. Ammonia acts as a chelator, and if the rinse waters are not segregated from other waste streams, removal of metals to acceptable levels using standard water treatment practices can be difficult and expensive. Ammonia is also regulated in many communities. Potassium chloride zinc plating. Potassium chloride zinc plating solutions are attractive because they contain no ammonia. The disadvantages of this system are a greater tendency to burn on extreme edges and higher operating costs. The potassium bath also requires the use of relatively expensive boric acid to buffer the solution and prevent burning in the high-current-density areas, functions performed by the ammonium chloride in the other systems. Mixed ammonium chloride/potassium chloride zinc plating. This bath combines the best of the ammonia and ammonia-free baths. Because potassium chloride is less expensive than ammonium chloride, the maintenance costs of the mixed bath are lower than the ammonia bath, and it does not require boric acid. The ammonia levels in the rinse waters are low enough that it does not significantly interfere with wastewater treatment, even if plating nickel and copper in the same plant with mixed waste streams. If local regulations restrict the level of ammonia discharged, special waste treatment equipment will be required, and the non-ammonia bath is most likely the best choice. Galvanizing, Soldering and Tinning Fluxes: Zinc Chloride is used in fluxes for galvanizing, soldering and tinning. Its ability to remove oxides and salts from metal surfaces insures good metal to metal bonding. It has the ability to attack metal oxides (MO) to give derivatives of the formula MZnOCl2. This reaction is relevant to the utility of ZnCl2 as a flux for soldering - it dissolves oxide coatings exposing the clean metal
ZINC CHLORIDE ( Chlorure de zinc)
Dichlorozinc 60% ; Zinc dichloride cas no:7646-85-7
ZINC CHLORIDE SOLUTION 60%
Zinc bis[O,O-dioctyl dithiophosphate]; zinc bis(O,O-dioctyl) bis(dithiophosphate); Bis(dithiophosphoric acid O,O-dioctyl)zinc salt; Zinc, bis(O,O-dioctyl phosphorodithioato-S,S')-, (T-4)- CAS NO:7059-16-7
ZINC CITRATE
ZINC CITRATE PREMIUM FORMULA - Our Zinc citrate Tablets are the made with high quality Zinc Citrate 3rd Part Lab Tested - Our All Best Naturals Products come with 3rd Party Independent Lab Tested Zinc citrate Supplement supports healthy immune function & Supports Enzyme Functions No Artificial Color, Flavor or Sweetener, No Preservatives, No Sugar, No Starch, No Corn, No Soy, No Egg, No Lactose, No Gluten, No Wheat, No Yeast, No Fish TOP QUALITY GMP CERTIFIED PRODUCTS - All Best Naturals products are manufactured in accordance with Good Manufacturing Practices (GMP), among the highest standards in the world -- Proudly Made in USA -- Purity & Potency. Brand Solgar Ingredients Zinc citrate (as zinc citrate) Amt Per Serving:30 mg % Daily Value :200%,,Other Ingredients: Microcrystalline cellulose, vegetable cellulose, vegetable magnesium stearate, vegetable stearic acid. Serving Description 1 Vegetable Capsule Diet Type Gluten Free, Kosher, Vegan Material type free GMO Free, Gluten Free About this item Optimal Absorption; Solgar Zinc Citrate contains the citrate form of Zinc citrate to help promote optimal absorption; The 30 mg of Zinc citrate in this formulation represents 273% of the recommended daily value Immune Support; Zinc citrate exerts antioxidant activity and can support a healthy immune system; It also supports cell growth and DNA formation, as well as normal taste and vision Collagen Support; Zinc citrate contributes to healthy skin, nails, and hair; It plays a role in the synthesis of collagen in bone tissue Non GMO, Gluten Free, And Kosher; Solgar Zinc Citrate Vegetable Capsules are suitable for vegans; Free of: gluten, wheat, dairy, soy, yeast, sugar, sodium, artificial flavor and sweetener The Gold Standard: For over 70 years Solgar has been committed to quality, health, and well-being. Our mission is to create the finest nutritional supplements in small batches, through tireless research, using only the finest raw materials What Are Zinc citrate Supplements Good For? Benefits and More Types Benefits Dosage Safety & Side Effects Bottom Line If you buy something through a link on this page, we may earn a small commission. How this works. Zinc citrate is an essential micronutrient that is crucial to almost every aspect of your health. It’s second only to iron as the most abundant trace mineral in your body (1Trusted Source). Available in many different forms, Zinc citrate supplements are often used to treat an array of ailments. Research shows that this mineral may enhance immune function, stabilize blood sugar levels, and help keep your skin, eyes, and heart healthy. This article reviews the types, benefits, dosage recommendations, and potential side effects of Zinc citrate supplements. Types of Zinc citrate Supplements When choosing a Zinc citrate supplement, you’ll likely notice that there are many different types available. These various forms of Zinc citrate impact health in distinct ways. Here are a few you might find on the market: Zinc citrate gluconate: As one of the most common over-the-counter forms of Zinc citrate, Zinc citrate gluconate is often used in cold remedies, such as lozenges and nasal sprays (2). Zinc citrate acetate: Like Zinc citrate gluconate, Zinc citrate acetate is often added to cold lozenges to reduce symptoms and speed up the rate of recovery (3Trusted Source). Zinc citrate sulfate: In addition to helping prevent Zinc citrate deficiency, Zinc citrate sulfate has been shown to reduce the severity of acne (4Trusted Source). Zinc citrate picolinate: Some research suggests that your body may absorb this form better than other types of Zinc citrate, including Zinc citrate gluconate and zinc citrate (5Trusted Source). Zinc citrate orotate: This form is bound to orotic acid and one of the most common types of Zinc citrate supplements on the market (6). Zinc citrate: One study showed that this type of Zinc citrate supplement is as well-absorbed as Zinc citrate gluconate but has a less bitter, more appealing taste (7Trusted Source). Because it’s one of the most widely available and cost-effective forms of Zinc citrate, Zinc citrate gluconate can be a good option to help bump up your intake without breaking your bank. However, if you’re able to invest a bit more, Zinc citrate picolinate may be better absorbed. Available in capsule, tablet, and lozenge form, there are plenty of options to get your daily dose of Zinc citrate — regardless of the type you choose. However, keep in mind that nasal sprays containing Zinc citrate have been linked to loss of smell and should be avoided (8Trusted Source, 9Trusted Source). SUMMARY There are several forms of Zinc citrate supplements that impact your health in unique ways. They’re generally available in capsule, tablet, and lozenge form. Zinc citrate -containing nasal sprays should be avoided. Potential Benefits Zinc citrate is vital for many aspects of health and has been associated with a variety of benefits. May Improve Immune Function Many over-the-counter medications and natural remedies feature Zinc citrate due to its ability to boost immune function and fight inflammation. One review of seven studies showed that Zinc citrate lozenges containing 80-92 mg of Zinc citrate may reduce common cold duration by up to 33% (10Trusted Source). Zinc citrate may also act as an antioxidant, helping reduce inflammation and protecting against chronic conditions, such as heart disease, cancer, and diabetes (11Trusted Source, 12Trusted Source). One study in 50 older adults found that taking 45 mg of Zinc citrate gluconate for one year decreased several markers of inflammation and reduced the frequency of infections (13Trusted Source). May Promote Blood Sugar Control Zinc citrate is well known for its role in blood sugar control and insulin secretion. Insulin is the hormone responsible for transporting sugar from your bloodstream to your tissues (14Trusted Source). Some research suggests that Zinc citrate may help keep blood sugar levels steady and improve your body’s sensitivity to insulin. One review reported that Zinc citrate supplements were effective at enhancing both short-term and long-term blood sugar control in people with diabetes (15Trusted Source). Other research shows that Zinc citrate may help reduce insulin resistance, which can improve your body’s ability to use insulin efficiently to maintain normal blood sugar levels (16Trusted Source, 17Trusted Source). Helps Fight Acne Zinc citrate supplements are often used to promote skin health and treat common skin conditions like acne (18Trusted Source). Zinc citrate sulfate has been shown to be especially useful for decreasing symptoms of severe acne (4Trusted Source). A 3-month study in 332 people found that taking 30 mg of elemental Zinc citrate — a term that refers to the actual amount of Zinc citrate found in a supplement — was effective at treating inflammatory acne (19Trusted Source). Zinc citrate supplements are also often favored over other treatment methods as they’re inexpensive, effective, and associated with far fewer side effects (18Trusted Source). May Improve Heart Health Heart disease is a serious problem, accounting for roughly 33% of deaths worldwide (20Trusted Source). Some research shows that taking Zinc citrate may improve several risk factors for heart disease and may even lower triglyceride and cholesterol levels. A review of 24 studies found that Zinc citrate supplements helped decrease levels of total and “bad” LDL cholesterol, as well as blood triglycerides, which could potentially aid in preventing heart disease (21Trusted Source). Additionally, one study in 40 young women showed that higher intakes of Zinc citrate were linked to lower levels of systolic blood pressure (the top number of a reading) (22Trusted Source). However, research evaluating the effects of supplements on blood pressure is limited (22Trusted Source). Other research suggests that low levels of serum Zinc citrate may be associated with a higher risk of coronary heart disease, but findings remain inconclusive (23Trusted Source). Slows Macular Degeneration Macular degeneration is a common eye disease and one of the leading causes of vision loss around the globe (24Trusted Source). Zinc citrate supplements are often used to slow the progression of age-related macular degeneration (AMD) and help protect against vision loss and blindness. One study in 72 people with AMD showed that taking 50 mg of Zinc citrate sulfate daily for three months slowed the progression of the disease (25Trusted Source). Similarly, another review of 10 studies reported that supplementing with Zinc citrate was effective at reducing the risk of progression to advanced macular degeneration (26Trusted Source). However, other studies in the review suggested that Zinc citrate supplements alone may not produce significant vision improvements and should be paired with other treatment options to maximize results (26Trusted Source). SUMMARY Zinc citrate may reduce the duration of cold symptoms, support blood sugar control, improve severe and inflammatory acne, decrease heart disease risk, and slow the progression of macular degeneration. Weight management options have evolved Take our quiz to learn more about techniques and tips that will help you achieve your goals. Dosage How much Zinc citrate you should take per day depends on the type, as each supplement contains a different amount of elemental Zinc citrate. For example, Zinc citrate sulfate consists of about 23% elemental Zinc citrate, so 220 mg of Zinc citrate sulfate would equate to about 50 mg of Zinc citrate (27). This amount is usually listed on the label of your supplement, making it easy to determine how much you should take to meet your daily needs. For adults, the recommended daily dosage is typically 15–30 mg of elemental Zinc citrate (4Trusted Source, 28Trusted Source). Higher doses have been used for treating certain conditions, including acne, diarrhea, and respiratory infections. However, due to the potential side effects associated with excess Zinc citrate consumption, it’s best not to exceed the upper limit of 40 mg per day — unless under medical supervision (27). SUMMARY Different Zinc citrate supplements contain varying concentrations of elemental Zinc citrate. The recommended dosage for daily supplements is 15–30 mg. Safety and Side Effects When used as directed, Zinc citrate supplements can be a safe and effective way to increase your Zinc citrate intake and improve several aspects of your health. However, they have been associated with adverse side effects, including nausea, vomiting, diarrhea, and stomach pain (29, 30Trusted Source). Exceeding 40 mg per day of elemental Zinc citrate can cause flu-like symptoms, such as fever, coughing, headache, and fatigue (31Trusted Source). Zinc citrate can also interfere with your body’s ability to absorb copper, potentially leading to a deficiency in this key mineral over time (32Trusted Source). Furthermore, Zinc citrate supplements have been shown to interfere with the absorption of certain antibiotics, reducing their effectiveness if taken at the same time (27). To reduce your risk of side effects, stick to the recommended dosage and avoid exceeding the tolerable upper limit of 40 mg per day — unless under medical supervision. If you experience any negative side effects after taking Zinc citrate supplements, decrease your dosage and consider consulting with your healthcare professional if symptoms persist. SUMMARY Zinc citrate can cause negative side effects, including digestive issues and flu-like symptoms. It may also interfere with the absorption of copper and reduce the effectiveness of certain antibiotics. Zinc citrate is a mineral essential to many aspects of health. Supplementing with 15–30 mg of elemental Zinc citrate daily may improve immunity, blood sugar levels, and eye, heart, and skin health. Be sure not to exceed the upper limit of 40 mg. Zinc citrate’s side effects include digestive issues, flu-like symptoms, and reduced copper absorption and antibiotic effectiveness. Zinc citrate supplements are widely available online, at your local health store, or pharmacy. Plus, if you want to try and increase your Zinc citrate intake through your diet, many foods are rich in this mineral, such as nuts, seeds, legumes, meat, seafood, and dairy. ZINC CITRATE 30 MG VEGETABLE CAPSULES WRITE A REVIEW Zinc citrate promotes healthy skin, supports normal taste and vision, and promotes the synthesis of collagen in bone tissue.* It also supports cell growth and DNA formation.* It exerts antioxidant activity and can support a healthy immune system.* The citrate form of Zinc citrate in this formulation helps to promote optimal absorption.* Zinc Citrate is a nutritional supplement containing the Zinc citrate salt form of citric acid for the purpose of providing Zinc citrate. As an essential trace element, Zinc citrate is of key importance in many biological processes, acts as an antioxidant and strengthens the immune system. Zinc Citrate is a nutritional supplement containing the Zinc citrate salt form of citric acid for the purpose of providing Zinc citrate. As an essential trace element, Zinc citrate is of key importance in many biological processes, acts as an antioxidant and strengthens the immune system. Although the mechanism of action is not completely known, Zinc citrate supplementation may be used to increase immunity against viruses or may interfere with the replication of certain viruses, such as the human papillomavirus (HPV). Zinc citrate is a Zinc citrate salt of citric acid. It is available as dietary supplements as a treatment of Zinc citrate deficiency and source of Zinc citrate, which is an essential trace element. Zinc citrate demonstrates effective absorption following oral administration. Zinc citrate trihydrate Drug Entry Zinc citrate Zinc citrate is a Zinc citrate salt of citric acid. It is available as dietary supplements as a treatment of Zinc citrate deficiency and source of Zinc citrate, which is an essential trace element. Zinc citrate demonstrates effective absorption following oral administration The water-soluble Zinc citrate salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent Zinc citrate deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high Zinc citrate content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure Zinc citrate absorption from zinc citrate given as supplements containing 10 mg of Zinc citrate to 15 healthy adults without food and compared absorption with that from Zinc citrate gluconate and Zinc citrate oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of Zinc citrate from zinc citrate was 61.3% (56.6–71.0) and was not different from that from Zinc citrate gluconate with 60.9% (50.6–71.7). Absorption from Zinc citrate oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from Zinc citrate oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as Zinc citrate gluconate and may thus be a useful alternative for preventing Zinc citrate deficiency and treating diarrhea. The more insoluble Zinc citrate oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. Go to: Introduction Zinc citrate is an essential trace element that has a critical role in maintaining structural and catalytic functions of >200 enzymes involved in major metabolic pathways, including nucleic acid metabolism, protein synthesis, and cell division (1). Although it remains difficult to define Zinc citrate status, Zinc citrate deficiency appears to be common among children in many developing countries, negatively affecting physical growth, immune competence, neural development, and reproductive outcomes, and increasing morbidity and mortality (2). The WHO considers Zinc citrate deficiency to be a major contributor to the burden of disease in developing countries, especially in those with a high mortality rate (3). Several factors contribute to the development of Zinc citrate deficiency, including increased requirements at certain stages of the life cycle, malabsorption, impaired utilization, and increased losses attributable to repeated diarrhea. However, most often the primary cause of Zinc citrate deficiency is inadequate dietary Zinc citrate intake and low bioavailability of Zinc citrate attributable to the consumption of plant-based diets that are high in phytic acid, thus inhibiting Zinc citrate absorption (2). Zinc citrate is lost in greater quantities during diarrhea, and Zinc citrate supplements have been successfully used to treat diarrhea (4). WHO guidelines for the treatment of diarrhea recommend Zinc citrate supplementation in combination with oral rehydration salts solution (5). The WHO recommends the use of the water-soluble compounds Zinc citrate sulfate (23% Zinc citrate), Zinc citrate acetate (30% Zinc citrate), or Zinc citrate gluconate (14% Zinc citrate) in the form of syrups or dispersible tablets for diarrhea management in infants (6). However, Zinc citrate sulfate and Zinc citrate acetate have a strong metallic, bitter, and astringent taste that needs to be masked. Moreover, the low Zinc citrate content of Zinc citrate gluconate makes this compound more expensive. Of the Zinc citrate compounds permitted in the European Union for use as supplements or for food fortification, Zinc citrate sulfate (water soluble, Zinc citrate content of 23%) and Zinc citrate oxide (water insoluble, Zinc citrate content of 80%) are the least expensive and most commonly used (2). An alternative Zinc citrate compound with promising sensory properties is Zinc citrate citrate (Markus Gerhart, Jungbunzlauer Ladenburg, Ladenburg, Germany, personal communication). This compound has a high Zinc citrate content of 31%, is slightly soluble in water, is odorless, and has a relatively low cost (2). However, there are no human absorption data to support the use of zinc citrate. Zinc citrate promotes healthy skin, supports normal taste and vision, and promotes the synthesis of collagen in bone tissue.* It also supports cell growth and DNA formation.* It exerts antioxidant activity and can support a healthy immune system.* The citrate form of Zinc citrate in this formulation helps to promote optimal absorption.* Zinc Citrate is a nutritional supplement containing the Zinc citrate salt form of citric acid for the purpose of providing Zinc citrate. As an essential trace element, Zinc citrate is of key importance in many biological processes, acts as an antioxidant and strengthens the immune system. Zinc Citrate is a nutritional supplement containing the Zinc citrate salt form of citric acid for the purpose of providing Zinc citrate. As an essential trace element, Zinc citrate is of key importance in many biological processes, acts as an antioxidant and strengthens the immune system. Although the mechanism of action is not completely known, Zinc citrate supplementation may be used to increase immunity against viruses or may interfere with the replication of certain viruses, such as the human papillomavirus (HPV). Zinc citrate is a Zinc citrate salt of citric acid. It is available as dietary supplements as a treatment of Zinc citrate deficiency and source of Zinc citrate, which is an essential trace element. Zinc citrate demonstrates effective absorption following oral administration. Zinc citrate trihydrate Drug Entry Zinc citrate Zinc citrate is a Zinc citrate salt of citric acid. It is available as dietary supplements as a treatment of Zinc citrate deficiency and source of Zinc citrate, which is an essential trace element. Zinc citrate demonstrates effective absorption following oral administration The water-soluble Zinc citrate salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent Zinc citrate deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high Zinc citrate content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure Zinc citrate absorption from zinc citrate given as supplements containing 10 mg of Zinc citrate to 15 healthy adults without food and compared absorption with that from Zinc citrate gluconate and Zinc citrate oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of Zinc citrate from zinc citrate was 61.3% (56.6–71.0) and was not different from that from Zinc citrate gluconate with 60.9% (50.6–71.7). Absorption from Zinc citrate oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from Zinc citrate oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as Zinc citrate gluconate and may thus be a useful alternative for preventing Zinc citrate deficiency and treating diarrhea. The more insoluble Zinc citrate oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. Go to: Introduction Zinc citrate is an essential trace element that has a critical role in maintaining structural and catalytic functions of >200 enzymes involved in major metabolic pathways, including nucleic acid metabolism, protein synthesis, and cell division (1). Although it remains difficult to define Zinc citrate status, Zinc citrate deficiency appears to be common among children in many developing countries, negatively affecting physical growth, immune competence, neural development, and reproductive outcomes, and increasing morbidity and mortality (2). The WHO considers Zinc citrate deficiency to be a major contributor to the burden of disease in developing countries, especially in those with a high mortality rate (3). Several factors contribute to the development of Zinc citrate deficiency, including increased requirements at certain stages of the life cycle, malabsorption, impaired utilization, and increased losses attributable to repeated diarrhea. However, most often the primary cause of Zinc citrate deficiency is inadequate dietary Zinc citrate intake and low bioavailability of Zinc citrate attributable to the consumption of plant-based diets that are high in phytic acid, thus inhibiting Zinc citrate absorption (2). Zinc citrate is lost in greater quantities during diarrhea, and Zinc citrate supplements have been successfully used to treat diarrhea (4). WHO guidelines for the treatment of diarrhea recommend Zinc citrate supplementation in combination with oral rehydration salts solution (5). The WHO recommends the use of the water-soluble compounds Zinc citrate sulfate (23% Zinc citrate), Zinc citrate acetate (30% Zinc citrate), or Zinc citrate gluconate (14% Zinc citrate) in the form of syrups or dispersible tablets for diarrhea management in infants (6). However, Zinc citrate sulfate and Zinc citrate acetate have a strong metallic, bitter, and astringent taste that needs to be masked. Moreover, the low Zinc citrate content of Zinc citrate gluconate makes this compound more expensive. Of the Zinc citrate compounds permitted in the European Union for use as supplements or for food fortification, Zinc citrate sulfate (water soluble, Zinc citrate content of 23%) and Zinc citrate oxide (water insoluble, Zinc citrate content of 80%) are the least expensive and most commonly used (2). An alternative Zinc citrate compound with promising sensory properties is Zinc citrate citrate (Markus Gerhart, Jungbunzlauer Ladenburg, Ladenburg, Germany, personal communication). This compound has a high Zinc citrate content of 31%, is slightly soluble in water, is odorless, and has a relatively low cost (2). However, there are no human absorption data to support the use of zinc citrate.
ZINC DI-OCTYL DITHIOPHOSPHATE
ZINC GLUCOHEPTONATE N° CAS : 12565-63-8 Nom INCI : ZINC GLUCOHEPTONATE Nom chimique : Zinc, bis [(2.xi.)-D-gluco-heptonato]- Ses fonctions (INCI) Agent d'entretien de la peau : Maintient la peau en bon état
ZINC GLUCOHEPTONATE
ZINC GLYCINATE N° CAS : 14281-83-5 Nom INCI : ZINC GLYCINATE Nom chimique : Glycine, Zinc Salt N° EINECS/ELINCS : 238-173-1 Classification : Règlementé Restriction en Europe : III/24 Ses fonctions (INCI) Régulateur de pH : Stabilise le pH des cosmétiques
ZINC GLYCINATE
ZINC LACTATE N° CAS : 16039-53-5 Nom INCI : ZINC LACTATE Nom chimique : Zinc dilactate N° EINECS/ELINCS : 240-178-9 Classification : Règlementé Compatible Bio (Référentiel COSMOS) Restriction en Europe : III/24 Ses fonctions (INCI) Déodorant : Réduit ou masque les odeurs corporelles désagréables
ZINC LACTATE
ZINC LAURATE N° CAS : 2452-01-9 Nom INCI : ZINC LAURATE Nom chimique : Zinc dilaurate N° EINECS/ELINCS : 219-518-5 Ses fonctions (INCI) Anti Agglomérant : Permet d'assurer la fluidité des particules solides et de limiter leur agglomération dans des produits cosmétiques en poudre ou en masse dure Opacifiant : Réduit la transparence ou la translucidité des cosmétiques Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
ZINC LAURATE
ZINC MYRISTATE N° CAS : 16260-27-8 Nom INCI : ZINC MYRISTATE Nom chimique : Zinc dimyristate N° EINECS/ELINCS : 240-369-7 Ses fonctions (INCI) Anti Agglomérant : Permet d'assurer la fluidité des particules solides et de limiter leur agglomération dans des produits cosmétiques en poudre ou en masse dure Opacifiant : Réduit la transparence ou la translucidité des cosmétiques Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
ZINC MYRISTATE
SYNONYMS Zinc white; Zinc flowers ; C.I. pigment white 4; ZnO; CAS NO. 1314-13-2
ZINC OXIDE
Zinc Oxide Zinc Oxide is a wide-band gap semiconductor of the II-VI semiconductor group. The native doping of the semiconductor due to oxygen vacancies or zinc interstitials is n-type. Other favorable properties include good transparency, high electron mobility, wide band gap, and strong room-temperature luminescence. Those properties make ZnO valuable for a variety of emerging applications: transparent electrodes in liquid crystal displays, energy-saving or heat-protecting windows, and electronics as thin-film transistors and light-emitting diodes. Chemical properties of Zinc Oxide Pure Zinc oxide is a white powder, but in nature Zinc oxide occurs as the rare mineral zincite, which usually contains manganese and other impurities that confer a yellow to red color. Crystalline zinc oxide is thermochromic, changing from white to yellow when heated in air and reverting to white on cooling. This color change is caused by a small loss of oxygen to the environment at high temperatures to form the non-stoichiometric Zn1+xO, where at 800 °C, x = 0.00007. Zinc oxide is an amphoteric oxide. It is nearly insoluble in water, but it will dissolve in most acids, such as hydrochloric acid: Zinc oxide + 2 HCl → ZnCl2 + H2O Solid zinc oxide will also dissolve in alkalis to give soluble zincates: Zinc oxide + 2 NaOH + H2O → Na2[Zn(OH)4] Zinc oxide reacts slowly with fatty acids in oils to produce the corresponding carboxylates, such as oleate or stearate. Zinc oxide forms cement-like products when mixed with a strong aqueous solution of zinc chloride and these are best described as zinc hydroxy chlorides. This cement was used in dentistry. Hopeite Zinc oxide also forms cement-like material when treated with phosphoric acid; related materials are used in dentistry. A major component of zinc phosphate cement produced by this reaction is hopeite, Zn3(PO4)2·4H2O. Zinc oxide decomposes into zinc vapor and oxygen at around 1975 °C with a standard oxygen pressure. In a carbothermic reaction, heating with carbon converts the oxide into zinc vapor at a much lower temperature (around 950 °C). Zinc oxide + C → Zn(Vapor) + CO Physical properties of Zinc oxide Zinc oxide crystallizes in two main forms, hexagonal wurtzite and cubic zincblende. The wurtzite structure is most stable at ambient conditions and thus most common. The zincblende form can be stabilized by growing Zinc oxide on substrates with cubic lattice structure. In both cases, the zinc and oxide centers are tetrahedral, the most characteristic geometry for Zn(II). Zinc oxide converts to the rocksalt motif at relatively high pressures about 10 GPa. The many remarkable medical properties of creams containing Zinc oxide can be explained by its elastic softness, which is characteristic of tetrahedral coordinated binary compounds close to the transition to octahedral structures. Hexagonal and zincblende polymorphs have no inversion symmetry (reflection of a crystal relative to any given point does not transform it into itself). This and other lattice symmetry properties result in piezoelectricity of the hexagonal and zincblende Zinc oxide, and pyroelectricity of hexagonal Zinc oxide. The hexagonal structure has a point group 6 mm (Hermann-Mauguin notation) or C6v (Schoenflies notation), and the space group is P63mc or C6v4. The lattice constants are a = 3.25 Å and c = 5.2 Å; their ratio c/a ~ 1.60 is close to the ideal value for hexagonal cell c/a = 1.633. As in most group II-VI materials, the bonding in Zinc oxide is largely ionic (Zn2+–O2−) with the corresponding radii of 0.074 nm for Zn2+ and 0.140 nm for O2−. This property accounts for the preferential formation of wurtzite rather than zinc blende structure, as well as the strong piezoelectricity of Zinc oxide. Because of the polar Zn-O bonds, zinc and oxygen planes are electrically charged. To maintain electrical neutrality, those planes reconstruct at atomic level in most relative materials, but not in Zinc oxide – its surfaces are atomically flat, stable and exhibit no reconstruction. However, studies using wurtzoid structures explained the origin of surface flatness and the absence of reconstruction at Zinc oxide wurtzite surfaces in addition to the origin of charges on Zinc oxide planes. Mechanical properties of Zinc oxide Zinc oxide is a relatively soft material with approximate hardness of 4.5 on the Mohs scale. Its elastic constants are smaller than those of relevant III-V semiconductors, such as GaN. The high heat capacity and heat conductivity, low thermal expansion and high melting temperature of Zinc oxide are beneficial for ceramics. The E2 optical phonon in Zinc oxide exhibits an unusually long lifetime of 133 ps at 10 K. Among the tetrahedrally bonded semiconductors, it has been stated that Zinc oxide has the highest piezoelectric tensor, or at least one comparable to that of GaN and AlN. This property makes it a technologically important material for many piezoelectrical applications, which require a large electromechanical coupling. Therefore Zinc oxide has been in forms of thin film one of the most studied resonator material for thin-film bulk acoustic resonators. Electrical properties of Zinc oxide Zinc oxide has a relatively large direct band gap of ~3.3 eV at room temperature. Advantages associated with a large band gap include higher breakdown voltages, ability to sustain large electric fields, lower electronic noise, and high-temperature and high-power operation. The band gap of Zinc oxide can further be tuned to ~3–4 eV by its alloying with magnesium oxide or cadmium oxide. Most Zinc oxide has n-type character, even in the absence of intentional doping. Nonstoichiometry is typically the origin of n-type character, but the subject remains controversial. An alternative explanation has been proposed, based on theoretical calculations, that unintentional substitutional hydrogen impurities are responsible. Controllable n-type doping is easily achieved by substituting Zn with group-III elements such as Al, Ga, In or by substituting oxygen with group-VII elements chlorine or iodine. Reliable p-type doping of Zinc oxide remains difficult. This problem originates from low solubility of p-type dopants and their compensation by abundant n-type impurities. This problem is observed with GaN and ZnSe. Measurement of p-type in "intrinsically" n-type material is complicated by the inhomogeneity of samples. Current limitations to p-doping limit electronic and optoelectronic applications of Zinc oxide, which usually require junctions of n-type and p-type material. Known p-type dopants include group-I elements Li, Na, K; group-V elements N, P and As; as well as copper and silver. However, many of these form deep acceptors and do not produce significant p-type conduction at room temperature. Electron mobility of Zinc oxide strongly varies with temperature and has a maximum of ~2000 cm2/(V·s) at 80 K. Data on hole mobility are scarce with values in the range 5–30 cm2/(V·s). Zinc oxide discs, acting as a varistor, are the active material in most surge arresters. Production of Zinc oxide For industrial use, Zinc oxide is produced at levels of 105 tons per year by three main processes: Indirect process of Zinc oxide In the indirect or French process, metallic zinc is melted in a graphite crucible and vaporized at temperatures above 907 °C (typically around 1000 °C). Zinc vapor reacts with the oxygen in the air to give Zinc oxide, accompanied by a drop in its temperature and bright luminescence. Zinc oxide particles are transported into a cooling duct and collected in a bag house. This indirect method was popularized by LeClaire (France) in 1844 and therefore is commonly known as the French process. Its product normally consists of agglomerated zinc oxide particles with an average size of 0.1 to a few micrometers. By weight, most of the world's zinc oxide is manufactured via French process. Direct process of Zinc oxide The direct or American process starts with diverse contaminated zinc composites, such as zinc ores or smelter by-products. The zinc precursors are reduced (carbothermal reduction) by heating with a source of carbon such as anthracite to produce zinc vapor, which is then oxidized as in the indirect process. Because of the lower purity of the source material, the final product is also of lower quality in the direct process as compared to the indirect one. Wet chemical process A small amount of industrial production involves wet chemical processes, which start with aqueous solutions of zinc salts, from which zinc carbonate or zinc hydroxide is precipitated. The solid precipitate is then calcined at temperatures around 800 °C. Laboratory synthesis The red and green colors of these synthetic Zinc oxide crystals result from different concentrations of oxygen vacancies. Numerous specialised methods exist for producing Zinc oxide for scientific studies and niche applications. These methods can be classified by the resulting Zinc oxide form (bulk, thin film, nanowire), temperature ("low", that is close to room temperature or "high", that is T ~ 1000 °C), process type (vapor deposition or growth from solution) and other parameters. Large single crystals (many cubic centimeters) can be grown by the gas transport (vapor-phase deposition), hydrothermal synthesis, or melt growth. However, because of high vapor pressure of Zinc oxide, growth from the melt is problematic. Growth by gas transport is difficult to control, leaving the hydrothermal method as a preference. Thin films can be produced by chemical vapor deposition, metalorganic vapour phase epitaxy, electrodeposition, pulsed laser deposition, sputtering, sol-gel synthesis, atomic layer deposition, spray pyrolysis, etc. Ordinary white powdered zinc oxide can be produced in the laboratory by electrolyzing a solution of sodium bicarbonate with a zinc anode. Zinc hydroxide and hydrogen gas are produced. The zinc hydroxide upon heating decomposes to zinc oxide. Zn + 2 H2O → Zn(OH)2 + H2 Zn(OH)2 → Zinc oxide + H2O Zinc oxide nanostructures Nanostructures of Zinc oxide can be synthesized into a variety of morphologies including nanowires, nanorods, tetrapods, nanobelts, nanoflowers, nanoparticles etc. Nanostructures can be obtained with most above-mentioned techniques, at certain conditions, and also with the vapor-liquid-solid method. The synthesis is typically carried out at temperatures of about 90 °C, in an equimolar aqueous solution of zinc nitrate and hexamine, the latter providing the basic environment. Certain additives, such as polyethylene glycol or polyethylenimine, can improve the aspect ratio of the Zinc oxide nanowires. Doping of the Zinc oxide nanowires has been achieved by adding other metal nitrates to the growth solution. The morphology of the resulting nanostructures can be tuned by changing the parameters relating to the precursor composition (such as the zinc concentration and pH) or to the thermal treatment (such as the temperature and heating rate). Aligned Zinc oxide nanowires on pre-seeded silicon, glass, and gallium nitride substrates have been grown using aqueous zinc salts such as zinc nitrate and zinc acetate in basic environments. Pre-seeding substrates with Zinc oxide creates sites for homogeneous nucleation of Zinc oxide crystal during the synthesis. Common pre-seeding methods include in-situ thermal decomposition of zinc acetate crystallites, spincoating of Zinc oxide nanoparticles and the use of physical vapor deposition methods to deposit Zinc oxide thin films. Pre-seeding can be performed in conjunction with top down patterning methods such as electron beam lithography and nanosphere lithography to designate nucleation sites prior to growth. Aligned Zinc oxide nanowires can be used in dye-sensitized solar cells and field emission devices. History of Zinc oxide Zinc compounds were probably used by early humans, in processed and unprocessed forms, as a paint or medicinal ointment, but their composition is uncertain. The use of pushpanjan, probably zinc oxide, as a salve for eyes and open wounds, is mentioned in the Indian medical text the Charaka Samhita, thought to date from 500 BC or before. Zinc oxide ointment is also mentioned by the Greek physician Dioscorides (1st century AD). Galen suggested treating ulcerating cancers with zinc oxide, as did Avicenna in his The Canon of Medicine. Zinc oxide is no longer used for treating skin cancer, though it is still used as an ingredient in products such as baby powder and creams against diaper rashes, calamine cream, anti-dandruff shampoos, and antiseptic ointments. The Romans produced considerable quantities of brass (an alloy of zinc and copper) as early as 200 BC by a cementation process where copper was reacted with zinc oxide. The zinc oxide is thought to have been produced by heating zinc ore in a shaft furnace. This liberated metallic zinc as a vapor, which then ascended the flue and condensed as the oxide. This process was described by Dioscorides in the 1st century AD. Zinc oxide has also been recovered from zinc mines at Zawar in India, dating from the second half of the first millennium BC. From the 12th to the 16th century zinc and zinc oxide were recognized and produced in India using a primitive form of the direct synthesis process. From India, zinc manufacture moved to China in the 17th century. In 1743, the first European zinc smelter was established in Bristol, United Kingdom. Around 1782 Louis-Bernard Guyton de Morveau proposed replacing lead white with zinc oxide. The main usage of zinc oxide (zinc white) was in paints and as an additive to ointments. Zinc white was accepted as a pigment in oil paintings by 1834 but it did not mix well with oil. This problem was solved by optimizing the synthesis of Zinc oxide. In 1845, LeClaire in Paris was producing the oil paint on a large scale, and by 1850, zinc white was being manufactured throughout Europe. The success of zinc white paint was due to its advantages over the traditional white lead: zinc white is essentially permanent in sunlight, it is not blackened by sulfur-bearing air, it is non-toxic and more economical. Because zinc white is so "clean" it is valuable for making tints with other colors, but it makes a rather brittle dry film when unmixed with other colors. For example, during the late 1890s and early 1900s, some artists used zinc white as a ground for their oil paintings. All those paintings developed cracks over the years. In recent times, most zinc oxide was used in the rubber industry to resist corrosion. In the 1970s, the second largest application of Zinc oxide was photocopying. High-quality Zinc oxide produced by the "French process" was added to photocopying paper as a filler. This application was soon displaced by titanium. Applications of Zinc oxide The applications of zinc oxide powder are numerous, and the principal ones are summarized below. Most applications exploit the reactivity of the oxide as a precursor to other zinc compounds. For material science applications, zinc oxide has high refractive index, high thermal conductivity, binding, antibacterial and UV-protection properties. Consequently, it is added into materials and products including plastics, ceramics, glass, cement, rubber, lubricants, paints, ointments, adhesive, sealants, concrete manufacturing, pigments, foods, batteries, ferrites, fire retardants, etc. Rubber manufacture of Zinc oxide Between 50% and 60% of Zinc oxide use is in the rubber industry. Zinc oxide along with stearic acid is used in the vulcanization of rubber Zinc oxide additive also protect rubber from fungi (see medical applications) and UV light. Ceramic industry Ceramic industry consumes a significant amount of zinc oxide, in particular in ceramic glaze and frit compositions. The relatively high heat capacity, thermal conductivity and high temperature stability of Zinc oxide coupled with a comparatively low coefficient of expansion are desirable properties in the production of ceramics. Zinc oxide affects the melting point and optical properties of the glazes, enamels, and ceramic formulations. Zinc oxide as a low expansion, secondary flux improves the elasticity of glazes by reducing the change in viscosity as a function of temperature and helps prevent crazing and shivering. By substituting Zinc oxide for BaO and PbO, the heat capacity is decreased and the thermal conductivity is increased. Zinc in small amounts improves the development of glossy and brilliant surfaces. However, in moderate to high amounts, it produces matte and crystalline surfaces. With regard to color, zinc has a complicated influence. Medicine Zinc oxide as a mixture with about 0.5% iron(III) oxide (Fe2O3) is called calamine and is used in calamine lotion. Two minerals, zincite and hemimorphite, have been historically called calamine. When mixed with eugenol, a ligand, zinc oxide eugenol is formed, which has applications as a restorative and prosthodontic in dentistry. Reflecting the basic properties of Zinc oxide, fine particles of the oxide have deodorizing and antibacterial properties and for that reason are added into materials including cotton fabric, rubber, oral care products, and food packaging. Enhanced antibacterial action of fine particles compared to bulk material is not exclusive to Zinc oxide and is observed for other materials, such as silver. This property results from the increased surface area of the fine particles. Zinc oxide is used in mouthwash products and toothpastes as an anti-bacterial agent proposed to prevent plaque and tartar formation, and to control bad breath by reducing the volatile gases and volatile sulphur compounds (VSC) in the mouth. Along with zinc oxide or zinc salts, these products also commonly contain other active ingredients, such as cetylpyridinium chloride, xylitol, hinokitiol, essential oils and plant extracts. Zinc oxide is widely used to treat a variety of skin conditions, including atopic dermatitis, contact dermatitis, itching due to eczema, diaper rash and acne. Zinc oxide is also often added into sunscreens. It is used in products such as baby powder and barrier creams to treat diaper rashes, calamine cream, anti-dandruff shampoos, and antiseptic ointments. It is also a component in tape (called "zinc oxide tape") used by athletes as a bandage to prevent soft tissue damage during workouts. Zinc oxide can be used in ointments, creams, and lotions to protect against sunburn and other damage to the skin caused by ultraviolet light (see sunscreen). It is the broadest spectrum UVA and UVB absorber that is approved for use as a sunscreen by the U.S. Food and Drug Administration (FDA), and is completely photostable. When used as an ingredient in sunscreen, zinc oxide blocks both UVA (320–400 nm) and UVB (280–320 nm) rays of ultraviolet light. Zinc oxide and the other most common physical sunscreen, titanium dioxide, are considered to be nonirritating, nonallergenic, and non-comedogenic. Zinc from zinc oxide is, however, slightly absorbed into the skin. Many sunscreens use nanoparticles of zinc oxide (along with nanoparticles of titanium dioxide) because such small particles do not scatter light and therefore do not appear white. The nanoparticles are not absorbed into the skin more than regular-sized zinc oxide particles are, and are only absorbed into the outermost layer of the skin but not into the body. Zinc oxide nanoparticles can enhance the antibacterial activity of ciprofloxacin. It has been shown that nano Zinc oxide that has an average size between 20 nm and 45 nm can enhance the antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli in vitro. The enhancing effect of this nanomaterial is concentration dependent against all test strains. This effect may be due to two reasons. First, zinc oxide nanoparticles can interfere with NorA protein, which is developed for conferring resistance in bacteria and has pumping activity that mediate the effluxing of hydrophilic fluoroquinolones from a cell. Second, zinc oxide nanoparticles can interfere with Omf protein, which is responsible for the permeation of quinolone antibiotics into the cell. Cigarette filters Zinc oxide is a component of cigarette filters. A filter consisting of charcoal impregnated with zinc oxide and iron oxide removes significant amounts of hydrogen cyanide (HCN) and hydrogen sulfide (H2S) from tobacco smoke without affecting its flavor. Food additive Zinc oxide is added to many food products, including breakfast cereals, as a source of zinc, a necessary nutrient. (Zinc sulfate is also used for the same purpose.) Some prepackaged foods also include trace amounts of Zinc oxide even if it is not intended as a nutrient. Zinc oxide was linked to dioxin contamination in pork exports in the 2008 Chilean pork crisis. The contamination was found to be due to dioxin contaminated zinc oxide used in pig feed. Pigment Zinc white is used as a pigment in paints and is more opaque than lithopone, but less opaque than titanium dioxide. It is also used in coatings for paper. Chinese white is a special grade of zinc white used in artists' pigments. The use of zinc white (zinc oxide) as a pigment in oil painting started in the middle of 18th century. It has partly replaced the poisonous lead white and was used by painters such as Böcklin, Van Gogh, Manet, Munch and others. It is also a main ingredient of mineral makeup (CI 77947). UV absorber Micronized and nano-scale zinc oxide and titanium dioxide provide strong protection against UVA and UVB ultraviolet radiation, and are used in suntan lotion, and also in UV-blocking sunglasses for use in space and for protection when welding, following research by scientists at Jet Propulsion Laboratory (JPL). Coatings Paints containing zinc oxide powder have long been utilized as anticorrosive coatings for metals. They are especially effective for galvanized iron. Iron is difficult to protect because its reactivity with organic coatings leads to brittleness and lack of adhesion. Zinc oxide paints retain their flexibility and adherence on such surfaces for many years. Zinc oxide highly n-type doped with aluminium, gallium, or indium is transparent and conductive (transparency ~90%, lowest resistivity ~10−4 Ω·cm). Zinc oxide:Al coatings are used for energy-saving or heat-protecting windows. The coating lets the visible part of the spectrum in but either reflects the infrared (IR) radiation back into the room (energy saving) or does not let the IR radiation into the room (heat protection), depending on which side of the window has the coating. Plastics, such as polyethylene naphthalate (PEN), can be protected by applying zinc oxide coating. The coating reduces the diffusion of oxygen with PEN. Zinc oxide layers can also be used on polycarbonate in outdoor applications. The coating protects polycarbonate from solar radiation, and decreases its oxidation rate and photo-yellowing. Corrosion prevention in nuclear reactors Zinc oxide depleted in 64Zn (the zinc isotope with atomic mass 64) is used in corrosion prevention in nuclear pressurized water reactors. The depletion is necessary, because 64Zn is transformed into radioactive 65Zn under irradiation by the reactor neutrons. Methane reforming Zinc oxide (ZnO) is used as a pretreatment step to remove hydrogen sulfide (H2S) from natural gas following hydrogenation of any sulfur compounds prior to a methane reformer, which can poison the catalyst. At temperatures between about 230–430 °C (446–806 °F), H2S is converted to water by the following reaction: H2S + Zinc oxide → H2O + ZnS The zinc sulfide (ZnS) is replaced with fresh zinc oxide when the zinc oxide has been consumed. Potential applications of Zinc oxide Electronics Zinc oxide has wide direct band gap (3.37 eV or 375 nm at room temperature). Therefore, its most common potential applications are in laser diodes and light emitting diodes (LEDs). Some optoelectronic applications of Zinc oxide overlap with that of GaN, which has a similar band gap (~3.4 eV at room temperature). Compared to GaN, Zinc oxide has a larger exciton binding energy (~60 meV, 2.4 times of the room-temperature thermal energy), which results in bright room-temperature emission from Zinc oxide. Zinc oxide can be combined with GaN for LED-applications. For instance as transparent conducting oxide layer and Zinc oxide nanostructures provide better light outcoupling. Other properties of Zinc oxide favorable for electronic applications include its stability to high-energy radiation and its possibility to be patterned by wet chemical etching. Radiation resistance makes Zinc oxide a suitable candidate for space applications. Zinc oxide is the most promising candidate in the field of random lasers to produce an electronically pumped UV laser source. The pointed tips of Zinc oxide nanorods result in a strong enhancement of an electric field. Therefore, they can be used as field emitters. Aluminium-doped Zinc oxide layers are used as transparent electrodes. The components Zn and Al are much cheaper and less toxic compared to the generally used indium tin oxide (ITO). One application which has begun to be commercially available is the use of Zinc oxide as the front contact for solar cells or of liquid crystal displays. Transparent thin-film transistors (TTFT) can be produced with Zinc oxide. As field-effect transistors, they even may not need a p–n junction, thus avoiding the p-type doping problem of Zinc oxide. Some of the field-effect transistors even use Zinc oxide nanorods as conducting channels. Zinc oxide nanorod sensor Zinc oxide nanorod sensors are devices detecting changes in electric current passing through zinc oxide nanowires due to adsorption of gas molecules. Selectivity to hydrogen gas was achieved by sputtering Pd clusters on the nanorod surface. The addition of Pd appears to be effective in the catalytic dissociation of hydrogen molecules into atomic hydrogen, increasing the sensitivity of the sensor device. The sensor detects hydrogen concentrations down to 10 parts per million at room temperature, whereas there is no response to oxygen. Zinc oxide have been used as immobilization layers in imunosensors enabling the distribution of antibodies across the entire region probed by the measuring electric field applied to the microelectrodes. Spintronics Zinc oxide has also been considered for spintronics applications: if doped with 1–10% of magnetic ions (Mn, Fe, Co, V, etc.), Zinc oxide could become ferromagnetic, even at room temperature. Such room temperature ferromagnetism in Zinc oxide:Mn has been observed, but it is not clear yet whether it originates from the matrix itself or from secondary oxide phases. Piezoelectricity The piezoelectricity in textile fibers coated in Zinc oxide have been shown capable of fabricating "self-powered nanosystems" with everyday mechanical stress from wind or body movements. In 2008 the Center for Nanostructure Characterization at the Georgia Institute of Technology reported producing an electricity generating device (called flexible charge pump generator) delivering alternating current by stretching and releasing zinc oxide nanowires. This mini-generator creates an oscillating voltage up to 45 millivolts, converting close to seven percent of the applied mechanical energy into electricity. Researchers used wires with lengths of 0.2–0.3 mm and diameters of three to five micrometers, but the device could be scaled down to smaller size. Zinc oxide as anode of Li-ion battery In form of a thin film Zinc oxide has been demonstrated in miniaturised high frequency thin film resonators, sensors and filters. Li-ion battery Zinc oxide is a promising anode material for lithium-ion battery because it is cheap, biocompatible, and environmentally friendly. Zinc oxide has a higher theoretical capacity (978 mAh g−1) than many other transition metal oxides such as CoO (715 mAh g−1), NiO (718 mAh g−1) and CuO (674 mAh g−1). Safety of Zinc oxide As a food additive, zinc oxide is on the U.S. FDA's list of generally recognized as safe, or GRAS, substances. Zinc oxide itself is non-toxic; it is hazardous, however, to inhale zinc oxide fumes, such as generated when zinc or zinc alloys are melted and oxidized at high temperature. This problem occurs while melting alloys containing brass because the melting point of brass is close to the boiling point of zinc.Exposure to zinc oxide in the air, which also occurs while welding galvanized (zinc plated) steel, can result in a malady called metal fume fever. For this reason, typically galvanized steel is not welded, or the zinc is removed first. Zinc oxide is an inorganic compound used in a number of manufacturing processes. It can be found in rubbers, plastics, ceramics, glass, cement, lubricants, paints, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, and first-aid tapes. It occurs naturally as the mineral zincite, but most zinc oxide is produced synthetically. It is also widely used to treat a variety of other skin conditions, in products such as baby powder and barrier creams to treat diaper rashes, calamine cream, anti-dandruff shampoos, and antiseptic ointments. Zinc oxide is mildly astringent and is used topically as a soothing and protective application in eczema and slight excoriations, in wounds, and for hemorrhoids. It is also used with coal tar or ichthammol in the treatment eczema. Zinc oxide is used as the basis for the production of a number of dental cements. Mixed with phosphoric acid it forms a hard material composed largely of zinc phosphate; mixed with clove oil or eugenol, it is used as temporary dental filling. Pharmacologic levels of zinc as zinc oxide have consistently been found to increase pig performance during the postweaning period. In some instances, high levels of zinc oxide have been reported to reduce the incidence and severity of postweaning diarrhea. Responses to zinc oxide and antibiotics seem to be additive in nature, much like the responses to high copper and antibiotics; however, there is no advantage in including high copper and high zinc in the same diet. Zinc oxide accounts for the largest use of zinc compounds, and is used primarily by the rubber industry as a vulcanization activator and accelerator and to slow rubber aging by neutralizing sulfur and organic acids formed by oxidation. It also acts in rubber as a reinforcing agent, a heat conductor, a white pigment, and an absorber of UV light. In paints, zinc oxide serves as a mildewstat, acid buffer, and a pigment. It is used in animal feed as a zinc supplement and as a fertilizer additive for zinc-deficient soils. Zinc oxide is used in cosmetics and drugs primarily for its fungicide properties, and in dentistry in dental cements. It is also used in ceramics, in glass manufacture, as a catalyst in organic synthesis, and in coated photocopy paper. Two processes are used to produce metallic zinc from the ore concentrates that are not subjected to caustic soda leaching. In one process, the ore concentrate containing zinc sulfide is roasted in the presence of air to produce zinc oxide, which is combined with coke or coal and retorted to approximately 1,100 °C to produce metallic zinc. In the other process, the roasted zinc oxide is leached with sulfuric acid, and the solution is electrolyzed to produce zinc of >99.9% purity. Zinc oxide is also produced industrially from purified solutions of zinc sulfate or chloride by precipitating the basic carbonate, which is then washed, filtered, and finally calcined. This method produces a grade of zinc oxide with a high specific surface area. Products of this type are also obtained from waste hydroxides which are purified by a chemical route and then calcined. Residues of zinc oxide are exempted from the requirement of a tolerance when used as a coating agent in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops or to raw agricultural commodities after harvest.
ZINC PEROXIDE
Zinc orthophosphate; Phosphoric acid, zinc salt (2:3); Zinc Phosphate; Trizinc bis(orthophosphate); Trizinkbis(orthophosphat) (German); Bis(ortofosfato) de tricinc (Spanish); Bis(orthophosphate) de trizinc (French); cas no: 7779-90-0
ZINC PHOSPHATE
Zinc; Zn; Zinc dust; cinc cas no: 7440-66-6
ZINC POWDER
Zinc bis-(2-Pyridinethiol-1-oxide); ZNPT; ZPT; Zinc, bis(2-pyridylthio)-, N,N'-dioxide; 1-Hydroxy-2-pyridinethione, zinc salt; 2(1H)-Pyridinethione, 1-hydroxy-, zinc complex; 2-Mercaptopyridine 1-oxide Zinc Salt; 2-Pyridinethiol N-oxide zinc salt; 2-Pyridinethiol, 1-oxide, zinc salt; Zinc, Bis(2-pyridinylthio)-, N,N'-dioxide; Zinc, Bis(2-pyridylthio)-, 1,1'-dioxide; Zinc, Bis(2-pyridylthio)-, N,N'-dioxide; Zincpolyanemine; Zinksalz Des 1-hydroxi-2-pyridinthion CAS NO:13463-41-7
ZINC PYRITHIONE 48%
ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) IUPAC name bis(2-pyridylthio)zinc 1,1'-dioxide ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Other names ZnP, Pyrithione Zinc, Zinc OMADINE, ZnPT , ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) CAS Number 13463-41-7 ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) monomer: Interactive image ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) dimer: Interactive image ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) ECHA InfoCard 100.033.324 ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) 3005837 ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) UNII R953O2RHZ5 ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) CompTox Dashboard (EPA DTXSID7026314 Edit this at Wikidata ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Properties ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Chemical formula C10H8N2O2S2Zn ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Molar mass 317.70 g/mol ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Appearance colourless solid ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Melting point 240 °C (464 °F; 513 K) (decomposition)[1] ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Boiling point decomposes ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Solubility in water 8 ppm (pH 7) ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 )(or pyrithione zinc) is a coordination complex of zinc. It has fungistatic (that is, it inhibits the division of fungal cells) and bacteriostatic (inhibits bacterial cell division) properties and is used in the treatment of seborrhoeic dermatitis.[2] Contents 1.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Structure of the compound 2.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Uses 2.1.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Medical 2.2.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) In paint 2.3.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) In sponges 2.4.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) In clothing 3.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Mechanism of action 4.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Health effects 5.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) See also 6.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) References 7.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) External links ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Structure of the compound The pyrithione ligands, which are formally monoanions, are chelated to Zn2+ via oxygen and sulfur centers. In the crystalline state, zinc pyrithione exists as a centrosymmetric dimer (see figure), where each zinc is bonded to two sulfur and three oxygen centers. In solution, however, the dimers dissociate via scission of one Zn-O bond.This compound was first described in the 1930s.Pyrithione is the conjugate base derived from 2-mercaptopyridine-N-oxide (CAS# 1121-31-9), a derivative of pyridine-N-oxide. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Uses Medical ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) is best known for its use in treating dandruff and seborrhoeic dermatitis, particularly in dandruff shampoos. It also has antibacterial properties and is effective against many pathogens from the Streptococcus and Staphylococcus genera. Its other medical applications include treatments of psoriasis, eczema, ringworm, fungus, athletes foot, dry skin, atopic dermatitis, tinea, and vitiligo. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) In paint Due to its low solubility in water (8 ppm at neutral pH), zinc pyrithione is suitable for use in outdoor paints and other products that provide protection against mildew and algae. It is an effective algaecide. It is chemically incompatible with paints relying on metal carboxylate curing agents. When used in latex paints with water containing high amount of iron, a sequestering agent that will preferentially bind the iron ions is needed. Its decomposition by ultraviolet light is slow, providing years of protection even against direct sunlight. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) In sponges ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) is also used as an antibacterial treatment for household sponges, most notably by the 3M Corporation. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) In clothing A process to apply ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) to cotton with washable results was patented in the United States in 1984.ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) is now used to prevent microbe growth in polyester.Textiles with applied zinc pyrithione ( ÇİNKO PİRİTİON %48 ) protect against odor-causing microorganisms. Export of antimicrobial textiles reached US$497.4 million in 2015. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Mechanism of action Its antifungal effect is thought to derive from its ability to disrupt membrane transport by blocking the proton pump that energizes the transport mechanism. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Health effects ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) is approved for over-the-counter topical use in the United States as a treatment for dandruff and is the active ingredient in several antidandruff shampoos. In its industrial forms and strengths, it may be harmful by contact or ingestion. Zinc pyrithione ( ÇİNKO PİRİTİON %48 ) can trigger a variety of responses, such as DNA damage in skin cells. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) See also Selenium disulfide, an active ingredient used in shampoos such as Selsun Blue.Ketoconazole, another antifungal agent used in shampoos.Piroctone olamine, another antifungal agent used in shampoos.ZPT (ZINC PYRITHIONE 48%) ( ÇİNKO PİRİTİON %48 ) is best known for its use in treating dandruff and seborrhoeic dermatitis. It also has antibacterial properties and is effective against many pathogens from the streptococcus and staphylococcus class. Its other medical applications include treatments of psoriasis, eczema, ringworm, fungus, athletes foot, dry skin, atopic dermatitis, tinea, and vitiligo.ZINC PYRITHIONE 48%( ÇİNKO PİRİTİON %48 ) is approved for over-the-counter topical use in the United States as a treatment for dandruff. It is the active ingredient in several anti-dandruff shampoos such as Head & Shoulders. However, in its industrial forms and strengths, it may be harmful by contact or ingestion. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Function 1. Used in shampoo dandruff, it can effectively kill produce dandruff of fungi, to play a role of dusting. 2. Also used as a cosmetic preservative agent. 3. Used for Coating biocide. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) CAS: 13463-41-7 ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Chemical Formula: C10H8N2O2S2Zn ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Molecular Weight: 317.70 ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Test Specification WHITE SLIGHTLY VISCOUS LIQUID. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) PH 5% solution = 7.2 (use meter) ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Solubility MISCIBLE IN WATER, BUT LIQUID DOES NOT BECOME CLEAR; INSOLUBLE IN ALCOHOL AND ACETONE; SOLUBLE IN DILUTE NAOH. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Specific gravity Z1025, 13463-41-7 SpectrumTM ZINC PYRITHIONE 48%( ÇİNKO PİRİTİON %48 ), 48 Percent Aqueous Suspension is a fungistatic and baceriostatic compound that has a variety of uses. It is used in outdoor paint and other products that provide protection against mildew and algae due to its low solubility in water (8 ppm at neutral pH). It is also often used in kitchen sponges as an antibacterial treatment. 48 Percent Aqueous Suspension. Zinc OmadineTM Fine Particle Size (FPS) Fungicide-Algaecide Dispersion (zinc pyrithione)( ÇİNKO PİRİTİON %48 ) Zinc OmadineTM 48% Aqueous Dispersion FPS (Fine Particle Size) offers bactericide-fungicide efficacy in shampoos, conditioners and leave-on products.Zinc OmadineTM products are highly active, broad spectrum antimicrobial agents that are registered around the world for use in both personal care as well as industrial product applications. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) solution for Cosmetic/Antidandruff Additive Product Name: ZINC PYRITHIONE 48%-50% solution( ÇİNKO PİRİTİON %48 - %50 ) ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) CAS No.:13463-41-7 ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Alias: Zinc Pyrithione; Zinc Omadine; Lunacide ZPT 48% Aqueous Dispersion ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Chemical Name: Zinc bis(2-pyridinethiol-1-oxide); Zinc salt of 2-mercaptopyridine-N-oxide ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Biocides, ZPT 48% with the main active ingredient zince pyrithione is effective inhibitors of the growth of fungi and bacteria and also inhibit the growth of molds and yeasts in cosmetic preparations. In addition to this, they exhibit high growth inhibiting activity against a broad spectrum of gram-positive and gram-negative bacteria in cosmetic prepareations. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Lunacide ZPT 48% is 48% aqueous dispersion of Zinc Pyrithione as an active ingredient that has ultra-fine particle of zice pyrithione, a dispersant and a stabilizing agent. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) is a superordinary anti-scale agent and anti-lipid overflow agent. It can effectively eliminate eumycete which produces dandruff, and result in relieving itching, removing dandruff, diminishing phalacrosis and deferring poliosis. Therefore, it is considered as a highly effective and safe product. It will add the value of shampoo and meet the high demands from consumers. For this reason, ZPT is widely used in the production of shampoo. Moreover, as a fine, broad-spectrum, environment-friendly and low toxic antiseptics, it can be used in civil coating, adhesive and carpet. The mixture of ZPT and Cu2O also can be used as marine antifouling coating to prevent adhering of shells, seaweeds and aquatic organisms to hulls. ZPT and its relative products enjoy tremendous potential and broad space in pesticide field with properties of high-efficiency, environmental protection, hypotoxicity and broad-spectrum. General Properties: Lunacide ZINC PYRITHIONE 48%( ÇİNKO PİRİTİON %48 ): -is a mixture in water of very fine particles of zinc pyrithione( ÇİNKO PİRİTİON %48 ), a dispersant, and a viscosity control agent. -is and effective antidandruff agent. -exhibits pronounced growth inhibiting activity against a broad spectrum of both Gram positive and Gram negative bacteria in cosmetic preparations. -inhibits the growth of fungi, both yeast and mold, in cosmetic preparations. Specifications: Spec. Lunacide ZINC PYRITHIONE 48%( ÇİNKO PİRİTİON %48 ) Appearance Off-white aqueous dispersion Odor Mild Assay(%) 48-50% Zinc(%) 9.3-11.3% PH(5% In PH 7 water) 6.5-9.0 Bulk Density(gr/ml) 1.2-1.25 Particle Size D90 ≤1um D100≤5um Function: 1. Used in shampoo dandruff, it can effectively kill produce dandruff of fungi, to play a role of dusting. 2. Also used as a cosmetic preservative agent. 3. Used for Coating biocid Dosage: Antidandruff shampoo:1.0~4.0% depending on customer requirements.Marine paint: 3.0~10.0% by weight depending on paint formulation of customer. It can be used together with cuprous oxide or cuprous thiocyanate as a perfect formulation in marine paint. Therapy Nonprescription antiseborrheic shampoos containing zinc pyrithione( ÇİNKO PİRİTİON %48 ) (Head & Shoulders), selenium sulfide (Head & Shoulders Intensive Treatment), or ketoconazole (Nizoral) are the mainstay of treatment. The shampoo must be rubbed into the wet scalp, rinsed, and then reapplied for 3 to 5 minutes before the final rinse. Patients with inflammatory seborrheic dermatitis that has not responded to shampoos benefit from a topical steroid lotion or gel. High-potency steroids should be used sparingly, particularly on the face. Tacrolimus ointment 0.1% or pimecrolimus cream can be used as steroid sparing agents. Therapy for Seborrheic Dermatitis Initial Shampoos - two or three times per week Zinc pyrithione 1% Selenium sulfide 1% or 2.5% Ketoconazole 1% or 2% Hydrocortisone cream 1% or 2.5% b.i.d. as needed ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Alternative Tacrolimus ointment 0.1% or pimecrolimus cream ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Shampoos The two mainstays of topical treatment of SD are tar shampoos and antiyeast shampoos. Antiyeast shampoos consist, in order of potency, of zinc pyrithione, selenium sulfide 1% (over-the-counter shampoos), selenium sulfide 2.5% (prescription), and ketoconazole shampoos (available over the counter in some countries). Tar shampoos have antiinflammatory and antiyeast activity. Children with seborrheic dermatitis If the child has seborrheic dermatitis and curly thick hair, even blond or red, there is a difficulty in applying a medical shampoo. Zinc pyrithione is the most acceptable antidandruff substance for curly hair, because it leads to less drying and stiffness. Avoid ketoconazole shampoo because it causes more friction between the fibers. Sometimes increasing the frequency of shampooing is enough to treat scalp desquamation, even with a regular product. If a medicated shampoo is needed, alternating regiments may be tried first: 1 day with zinc pyrithione and the next day with regular shampoo. It is necessary to apply a conditioner in both situations and rinse it thoroughly. In some countries, scalp solutions with zinc or salicylic acid are available and may be applied as a seborrheic dermatitis treatment instead of a shampoo. When corticosteroids are needed, lotions or creams are better choices than alcoholic solutions vehicles. Avoid conditioning shampoos for those who present with seborrheic dermatitis. The use of astringents or dry shampoos is popular in some countries and may be an option for those who wear hair locks or braids for long periods. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) for Optimization The procedure presented above illustrates a method for imaging cellular zinc that has been optimized in our lab for a particular dye and a cell type. The variety among biological specimens and subtle differences between different probes necessitate optimization of many parameters, in particular, dye concentration and loading time. Among others properties, the permeability of a dye has a pronounced effect. For example, ZPP1, which is less permeable than ZP1, requires 1- to 3-h incubation to achieve full fluorescence turn-on in HeLa cells following treatment with zinc/pyrithione (Buccella et al., 2011). Additionally, it is desirable to use minimum dye concentration to reduce background fluorescence. During live-cell imaging, reduced illumination is preferred both to maintain cell health and to prevent dye photobleaching. ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) complex is constituted in situ by combining high-purity zinc salt with sodium pyrithione. When a low-affinity probe such as QZ2 is used for imaging intracellular zinc, a substoichiometric amount of ionophore may be used to avoid its competitive binding with zinc inside cells (Nolan et al., 2005).Although it is convenient to apply directly zinc/pyrithione and TPEN stock solutions in DMSO to the culture dish, mixing DMSO and aqueous media generates heat and the slow diffusion of DMSO often causes nonuniform delivery of mobile zinc. In addition, direct addition of the zinc/pyrithione solution to some media such as Neurobasal may result in precipitation (Nolan et al., 2006). To avoid these issues, DMSO solutions can be first diluted into serum-free medium or PBS before addition to the specimen. For example, one may combine DMSO solutions of ZnCl2 and sodium pyrithione in a 1:2 ratio and dilute 10-fold with DMEM; adding 200 μL of this solution to the dish gives a final zinc concentration of 50 μM. Similarly, diluting 20 mM TPEN stock solution 10-fold with serum-free DMEM and adding 100 μL to the stage yield 100 μM final concentration (Nolan et al., 2006). Moreover, we have observed that dye loading by incubation in DMEM containing only 1% FBS gave better imaging results. Treatment Infantile seborrheic dermatitis spontaneously resolves by the end of the 1st year of life. For infants with disfiguring or symptomatic disease, there are several therapeutic alternatives. Topical agents effective against P. ovale include topical ketoconazole in a cream or shampoo base (Cutsem et al, 1990), shampoos containing 1% zinc pyrithione or 1% to 2.5% selenium sulfide, and propylene glycol (Faergemann, 1988). Propylene glycol is a hygroscopic preservative, with antimycotic activity against P. ovale, that has been widely used for more than a century in foods and cosmetics, but can also rarely cause a contact dermatitis. The safety and efficacy of these products have not been established in infants. Nevertheless, widespread availability and popular use have not produced reports of toxicity. Brief application with daily bathing usually is effective and limits excessive percutaneous absorption. Daily application of 0.5% to 1% hydrocortisone cream is another short-term alternative. Topical zinc in the form of ZINC PYRITHIONE 48%( ÇİNKO PİRİTİON %48 ), a common ingredient found in antidandruff shampoos, has also been studied for treatment of hair loss. Zinc pyrithione releases zinc ions, which has anti-inflammatory and antioxidant properties. Zinc ions also inhibit 5α-reductase in the skin.45 A RCT compared 5% minoxidil (twice daily), 1% zinc pyrithione (once daily), a combination of both, and placebo in 200 patients with AGA. In the group treated with zinc pyrithione alone, there was a significant increase in total visible hair count by fiber optic microscopy and computer-assisted hair counts after 9 weeks. However, there was no clinically meaningful global improvement noted by either the investigator or the patients. Minoxidil alone or in combination with zinc was more efficacious than zinc shampoo alone.There is a mixture in many shampoo or dandruff products called ZINC PYRITHIONE 48%( ÇİNKO PİRİTİON %48 ). This mixture comes from zinc nitrogen oxygen and sulfur and carries antibacterial. It has been used in the world for about eighty years for dandruff and similar scalp ailments.The antibacterial and anti-fugal mixture that prevents oily on the scalp thus consumes the dandruff in the hair to a large extent. This content has a certain frequency according to the density and hair. If it is used more intensively in this use, it may cause serious harm.For this situation, you should consult a dermatologist when your primary comfort appears. After a recommendation from a specialist physician, the situation regarding the frequency and intensity of use becomes clear.ZINC PYRITHIONE 48% content is used against conditions such as dandruff and scaling with its ability to inhibit the growth of mold, fungi and bacteria. There is a wide variety of products that contain this content and although it is not sold with great creep, it is available from many places. It is not possible to find the product that will emerge in an environment with such freedom. Therefore, when determining such a product, the advice you will receive from a specialist doctor may be more beneficial for you as you know that your situation has been reviewed and you have a certain experience. Measures Before using this medicine, you should inform your doctor about the medicines you are currently using, the medicines you are using without a prescription (e.g. vitamins, herbal supplements, etc.), allergies, your past illnesses and your current health condition (e.g. pregnancy, upcoming surgery, etc.) inform. Certain health conditions can make you more susceptible to the side effects of the medication. Take the steps as directed by your doctor or pay attention to what is written on the product. The dosage depends on your condition. If your condition persists or worsens, notify your doctor. Key issues to consult are listed below. Planning to get pregnant, pregnant or breastfeeding If you use other drugs or over the counter products at the same time, the effects of ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) may change. This may increase the risk of side effects or cause the drug to not work properly. Tell your doctor about all medications, vitamins, and herbal supplements you use so your doctor can avoid drug interactions. Zinc Pyrithione( ÇİNKO PİRİTİON %48 ) may interact with the following drugs and products:Sodium calcium edetate Hypersensitivity to ZINC PYRITHIONE 48%( ÇİNKO PİRİTİON %48 ) is a contraindication. In addition, ZINC PYRITHIONE 48%( ÇİNKO PİRİTİON %48 )should not be used if you have the following conditions: Allergic reactions storage of ZINC PYRITHIONE 48%( ÇİNKO PİRİTİON %48 ) Store medicines at room temperature, away from heat and light. Do not freeze medicines unless it is written on the package insert. Keep medicines out of the reach of children and pets.Do not pour medicines into the toilet or sink unless you are told to do so in the package insert. Drugs disposed in this way can pollute the nature. Please consult your pharmacist or doctor for more details on how to safely discard Zinc Pyrithione. Expired ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 ) Taking a single dose of expired ZINC PYRITHIONE 48% ( ÇİNKO PİRİTİON %48 )is likely to cause an adverse event. Consult your family doctor or pharmacist for appropriate advice or if you feel unwell. Expired drugs will not be effective in treating the conditions on your prescription. In order to stay safe, it is very important not to use expired medications. If you have a chronic illness that requires constant medication, such as heart disease, seizures, and life-threatening allergies, it is even more important to stay in touch with your GP so that you can replace expired medications immediately.Zinc pyrithione (or pyrithione zinc) is a coordination complex of zinc. It has fungistatic (that is, it inhibits the division of fungal cells) and bacteriostatic (inhibits bacterial cell division) properties and is used in the treatment of seborrhoeic dermatitis.The pyrithione ligands, which are formally monoanions, are chelated to Zn2+ via oxygen and sulfur centers. In the crystalline state, zinc pyrithione exists as a centrosymmetric dimer (see figure), where each zinc is bonded to two sulfur and three oxygen centers. In solution, however, the dimers dissociate via scission of one Zn-O bond.This compound was first described in the 1930s.Zinc pyrithione can be used to treat dandruff and seborrhoeic dermatitis.[medical citation needed] It also has antibacterial properties and is effective against many pathogens from the Streptococcus and Staphylococcus genera.[medical citation needed] Its other medical applications include treatments of psoriasis, eczema, ringworm, fungus, athletes foot, dry skin, atopic dermatitis, tinea versicolor, and vitiligo.Due to its low solubility in water (8 ppm at neutral pH), zinc pyrithione is suitable for use in outdoor paints and other products that provide protection against mildew and algae. It is an effective algaecide. It is chemically incompatible with paints relying on metal carboxylate curing agents. When used in latex paints with water containing high amount of iron, a sequestering agent that will preferentially bind the iron ions is needed. Its decomposition by ultraviolet light is slow, providing years of protection even against direct sunlight.Zinc pyrithione is also used as an antibacterial treatment for household sponges, most notably by the 3M Corporation.A process to apply zinc pyrithione to cotton with washable results was patented in the United States in 1984.Zinc pyrithione is now used to prevent microbe growth in polyester.Textiles with applied zinc pyrithione protect against odor-causing microorganisms. Export of antimicrobial textiles reached US$497.4 million in 2015.Its antifungal effect is thought to derive from its ability to disrupt membrane transport by blocking the proton pump that energizes the transport mechanism.Zinc pyrithione is approved for over-the-counter topical use in the United States as a treatment for dandruff and is the active ingredient in several antidandruff shampoos and body wash gels. In its industrial forms and strengths, it may be harmful by contact or ingestion. Zinc pyrithione can trigger a variety of responses, such as DNA damage in skin cells.1. Zinc pyrithione 48 is high-efficiency, environmental protection, hypotoxicity and broad-spectrum. Pyrithione zinc is mixture in water of very fine particles of zinc pyrithione, a dispersant, and a viscosity control agent.3. Exhibits pronounced growth inhibiting activity against a broad spectrum of both Gram positive and Gram negative bacteria in cosmetic preparations.4. ZPT 48 inhibits the growth of fungi, both yeast and mold, in cosmetic preparations.An international questionnaire completed by 722 dermatologists assessed the belief of tachyphylaxis incidence with pyrithione zinc (PTZ)-based shampoos, time course, occurrence relative to active ingredients, and effect of switching products. Two double-blind, randomized, clinical evaluations were conducted, 24- and 48-week studies, whereby a 1% PTZ shampoo, a 2% PTZ shampoo, or a matched placebo control shampoo was used by each subject for the duration of the study. Dermatologists assessed the adherent scalp flaking (scale of 0-10) at baseline and at specified intervals. 64% of responding dermatologists believed tachyphylaxis occurred with PTZ products, and most felt that tachyphylaxis occurred within 3 months of use. Evaluation of mean treatment responses vs. placebo and individual responses as a function of study duration showed a consistent benefit for all products at all time points; therefore, no evidence for tachyphylaxis was found (within 48 weeks of treatment) .Dandruff results from at least three etiologic factors: Malassezia fungi, sebaceous secretions, and individual sensitivity ... Of the three etiologic factors implicated in dandruff, Malassezia, sebaceous triglycerides, and individual susceptibility, Malassezia are the easiest to control. Pyrithione zinc kills Malassezia and all other fungi, and is highly effective against the Malassezia species actually found on scalp. Reduction in fungi reduces free fatty acids, thereby reducing scalp flaking and itch.The efficacy and safety of ketoconazole (KET) 2% and zinc pyrithione (ZPT) 1% in shampoo formulations for the alleviation of severe dandruff and seborrheic dermatitis /were compared/. This open randomized, parallel-group trial began with a 2-week run-in phase during which subjects applied a neutral non-antidandruff shampoo. It was followed by a 4-week randomized treatment phase and a subsequent 4-week follow-up phase without treatment. Shampooing during the treatment period was carried out twice weekly for the KET group and at least twice weekly for the ZPT group in accordance with the label instructions. A total of 343 subjects were recruited to enter the trial. Of the 331 eligible volunteers, 171 were randomized to KET 2% and 160 to ZPT 1%. ... Beneficial effects were evidenced for both medicated shampoos, but the effect was significantly better for KET 2%, which achieved a 73% improvement in the total dandruff severity score compared with 67% for ZPT 1% at week 4 (p < 0.02). The recurrence rate of the disease was also significantly lower following KET 2% treatment than following ZPT 1% treatment ... Both formulations were well tolerated.A patient had had stable psoriasis for 25 years and no any other skin disease. Within 20 days, she developed an aggravated scaly erythematous patch on the scalp, where /an antidandruff/ shampoo had been applied, and simultaneously developed pustular psoriasis on both forearms. Patch testing showed a relevant sensitization to zinc pyrithione, and ... symptomatic aggravation by provocation testing with zinc pyrithione shampoo /was observed/...A case of allergic contact dermatitis to a shampoo containing zinc pyrithione associated with an eruption of pustular psoriasis is reported. The patient had had stable psoriasis for 5 years, and never any other skin disease. Within 1 week she developed severe generalized pustular psoriasis with many lesions where the shampoo was applied. Treatment with cyclosporin, 200 to 300 mg daily, cleared the eruption within 4 weeks, except for psoriasis of the scalp. Extensive patch testing revealed a relevant sensitization to zinc pyrithione ...4. 4= very toxic: probable oral lethal dose (human) 50-500 mg/kg, between 1 teaspoon & 1 oz for 70 kg person (150 lb). ... It appears unlikely that the toxicity of this substance can be attributed solely to its zinc content.Twenty-six mature Yorkshire pigs were used in this study. Radiolabeled zinc pyrithione was applied /dermally/ for 8 hr either as a single dose (50,100, and 400 mg/kg) or as a 5 day repeated dose (100 mg/kg). Serial samples of blood, urine, and feces were taken after dosing. Radioassay of necropsy material, urine, blood, and feces showed recovery of 86.8-98.2% of applied radioactivity. Greater than 90% of recovery was obtained from washings of the application site. Urinary excretion was 3% in animals with intact skin. Levels of radioactivity in blood, urine, and feces returned to background by 48 hours post-application. Dermal Absorption Factor: 3%.After IV admin in rabbits (14)C disappeared from blood rapidly, within 6 hr, 75% was excreted into urine while concentration of (65)Zn remained relatively constant with only 0.5% excreted into urine. Tissue concentration of (65)Zn were about 10 times higher than (14)C. Eight hr after dermal application, 0.5% of (14)C was excreted into urine, and same amount was found in major organs of rabbit. Less than 0.002% of applied (65)Zn was found in urine and 0.008% was found in major organs.Zinc pyridinethione was biotransformed in rabbits, rats, monkeys, and dogs after oral dosing into 2-pyridinethiol 1-oxide S-glucuronide and 2-pyridinethiol S-glucuronide.For zinc 2-pyridinethiol-1-oxide (USEPA/OPP Pesticide Code: 088002) ACTIVE products with label matches. /SRP: Registered for use in the U.S. but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses./EYES: First check the victim for contact lenses and remove if present. Flush victim's eyes with water or normal saline solution for 20 to 30 minutes while simultaneously calling a hospital or poison control center. Do not put any ointments, oils, or medication in the victim's eyes without specific instructions from a physician. IMMEDIATELY transport the victim after flushing eyes to a hospital even if no symptoms (such as redness or irritation) develop. SKIN: IMMEDIATELY flood affected skin with water while removing and isolating all contaminated clothing. Gently wash all affected skin areas thoroughly with soap and water. If symptoms such as redness or irritation develop, IMMEDIATELY call a physician and be prepared to transport the victim to a hospital for treatment. INHALATION: IMMEDIATELY leave the contaminated area; take deep breaths of fresh air. If symptoms (such as wheezing, coughing, shortness of breath, or burning in the mouth, throat, or chest) develop, call a physician and be prepared to transport the victim to a hospital. Provide proper respiratory protection to rescuers entering an unknown atmosphere. Whenever possible, Self-Contained Breathing Apparatus (SCBA) should be used; if not available, use a level of protection greater than or equal to that advised under Protective Clothing. INGESTION: Some heavy metals are VERY TOXIC POISONS, especially if their salts are very soluble in water (e.g., lead, chromium, mercury, bismuth, osmium, and arsenic). IMMEDIATELY call a hospital or poison control center and locate activated charcoal, egg whites, or milk in case the medical advisor recommends administering one of them. Also locate Ipecac syrup or a glass of salt water in case the medical advisor recommends inducing vomiting. Usually, this is NOT RECOMMENDED outside of a physician's care. If advice from a physician is not readily available and the victim is conscious and not convulsing, give the victim a glass of activated charcoal slurry in water or, if this is not available, a glass of milk, or beaten egg whites and IMMEDIATELY transport victim to a hospital. If the victim is convulsing or unconscious, do not give anything by mouth, assure that the victim's airway is open and lay the victim on his/her side with the head lower than the body. DO NOT INDUCE VOMITING. IMMEDIATELY transport the victim to a hospital. (NTP, 1992)
ZINC RICINOLEATE
ZINC SALICYLATE N° CAS : 16283-36-6 Nom INCI : ZINC SALICYLATE Nom chimique : Zinc Disalicylate N° EINECS/ELINCS : 240-380-7 Classification : Règlementé Restriction en Europe : III/24 Ses fonctions (INCI) Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes
ZINC STEARATE
ZINC STEARATE; N° CAS : 557-05-1; Nom INCI : ZINC STEARATE; Nom chimique : Zinc dioctadecanoate; N° EINECS/ELINCS : 209-151-9. Classification : Règlementé; Compatible Bio Ses fonctions (INCI): Anti Agglomérant : Permet d'assurer la fluidité des particules solides et de limiter leur agglomération dans des produits cosmétiques en poudre ou en masse dure Colorant cosmétique : Colore les cosmétiques et/ou confère une couleur à la peau. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques; Noms français : OCTADECANOIC ACID, ZINC SALT; STEARATE DE ZINC; Stéarate de zinc; ZINC DISTEARATE; ZINC OCTADECANOATE; Zinc, stéréate de; ZINC-STEARATE; Noms anglais : STEARIC ACID ZINC SALT; STEARIC ACID, ZINC SALT; Zinc stearate; Utilisation et sources d'émission: Fabrication de produits pharmaceutiques, fabrication de lubrifiants; Zinc distearate; Zinc stearate; CAS names: Octadecanoic acid, zinc salt (2:1); IUPAC names : Octadecanoic acid, zinc salt; zinc dioctadecanoate; zinc disteatare; Zinc Disterate; Zinc octadecanoate ; zinc octadecaonate; Zinc steareate; zinc(2+) dioctadecanoate; Zinc distearate; 209-151-9 [EINECS]; 3919706; 557-05-1 [RN]; Dioctadécanoate de zinc [French]; çinko stearat, çinkostearat; MFCD00013031 [MDL number]; Octadecanoic acid, zinc salt (2:1) [ACD/Index Name]; stearic acid zinc salt; ZH5200000; Zinc dioctadecanoate [ACD/IUPAC Name]; Zinc stearate; Zinkdioctadecanoat [German] [ACD/IUPAC Name]; (OCTADECANOYLOXY)ZINCIO OCTADECANOATE; [557-05-1]; 144188-98-7 [RN]; 257-363-5 [EINECS]; 51731-04-5 [RN] ; 72535-55-8 [RN]; 8028-87-3 [RN]; afco-disper ZD; Coad; D06370; demarone; Dermarone; Dibasic zinc stearate; EINECS 209-151-9; EINECS 257-363-5; elektol MZ 2; Hidorin D 523 ; Hydense; Hymicron Z; Hytech; Mathe; Metallac; Metasap 576; Octadecanoic acid, zinc salt; Octadecanoic acid, zinc salt, basic; Petrac ZN-41; Stavinor ZN-E; STEARIC ACID, ZINC SALT ; Stearic acid, zinc salt (8CI); Witco Zinc Stearate USP ; zinc and octadecanoate; Zinc distearate, pure; ZINC OCTADECANOATE; Zinc salt of stearic acid; Zinc stearate (USP); Zinc stearate ; zinc stearate G; zinc stearate GP; Zinc Stearate NF EP Kosher; Zinc stearate W. S; zinc stearate(Zn-St); Zinc stearate, respirable fraction; Zinc stearate, total dust; Zinc stearate, ZnO 12.5-14% ; ZINC(2+) DIOCTADECANOATE; ZINC(2+) ION BIS(N-OCTADECANOATE); zinc(2+) ion bis(octadecanoate); Zinc(II) stearate; zinc;octadecanoate; Zinci stearas; zincstearate; Zincum stearinicum ; Zink distearat; Zn Stearate; 硬脂酸锌 [Chinese]
ZINC SULFATE
ZIRCONIUM DIOXIDE N° CAS : 1314-23-4 Nom INCI : ZIRCONIUM DIOXIDE N° EINECS/ELINCS : 215-227-2 Ses fonctions (INCI) Opacifiant : Réduit la transparence ou la translucidité des cosmétiques
ZIRCONIUM DIOXIDE
Zirconium dioxide Zirconium dioxide (ZrO2, zirkonyum dioksit), sometimes known as zirconia (not to be confused with zircon), is a white crystalline oxide of zirconium dioxide(zirkonyum dioksit). Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant stabilized cubic structured zirconia, cubic zirconia, is synthesized in various colours for use as a gemstone and a diamond simulant.[1] Production, chemical properties, occurrence Zirconia is produced by calcining zirconium dioxide(zirkonyum dioksit). compounds, exploiting its high thermal stability.[2] Structure Three phases are known: monoclinic below 1170 °C, tetragonal between 1170 °C and 2370 °C, and cubic above 2370 °C.[3] The trend is for higher symmetry at higher temperatures, as is usually the case. A small percentage of the oxides of calcium or yttrium stabilize in the cubic phase.[2] The very rare mineral tazheranite, (Zr,Ti,Ca)O2, is cubic. Unlike TiO2, which features six-coordinated titanium in all phases, monoclinic zirconia consists of seven-coordinated zirconium dioxide (zirkonyum dioksit). centres. This difference is attributed to the larger size of the zirconium dioxide (zirkonyum dioksit). atom relative to the titanium atom.[4] Chemical reactions Zirconia is chemically unreactive. It is slowly attacked by concentrated hydrofluoric acid and sulfuric acid. When heated with carbon, it converts to zirconium dioxide (zirkonyum dioksit). carbide. When heated with carbon in the presence of chlorine, it converts to zirconium dioxide (zirkonyum dioksit). tetrachloride. This conversion is the basis for the purification of zirconium dioxide (zirkonyum dioksit). metal and is analogous to the Kroll process. Engineering properties Bearing balls Zirconium dioxide (zirkonyum dioksit). is one of the most studied ceramic materials. ZrO2 adopts a monoclinic crystal structure at room temperature and transitions to tetragonal and cubic at higher temperatures. The change of volume caused by the structure transitions from tetragonal to monoclinic to cubic induces large stresses, causing it to crack upon cooling from high temperatures.[5] When the zirconia is blended with some other oxides, the tetragonal and/or cubic phases are stabilized. Effective dopants include magnesium oxide (MgO), yttrium oxide (Y2O3, yttria), calcium oxide (CaO), and cerium(III) oxide (Ce2O3).[6] Zirconia is often more useful in its phase 'stabilized' state. Upon heating, zirconia undergoes disruptive phase changes. By adding small percentages of yttria, these phase changes are eliminated, and the resulting material has superior thermal, mechanical, and electrical properties. In some cases, the tetragonal phase can be metastable. If sufficient quantities of the metastable tetragonal phase is present, then an applied stress, magnified by the stress concentration at a crack tip, can cause the tetragonal phase to convert to monoclinic, with the associated volume expansion. This phase transformation can then put the crack into compression, retarding its growth, and enhancing the fracture toughness. This mechanism is known as transformation toughening, and significantly extends the reliability and lifetime of products made with stabilized zirconia.[6][7] The ZrO2 band gap is dependent on the phase (cubic, tetragonal, monoclinic, or amorphous) and preparation methods, with typical estimates from 5–7 eV.[8] A special case of zirconia is that of tetragonal zirconia polycrystal, or TZP, which is indicative of polycrystalline zirconia composed of only the metastable tetragonal phase. Uses High translucent Zirconia bridge layered by porcelain and stained with luster paste The main use of zirconia is in the production of hard ceramics, such as in dentistry,[9] with other uses including as a protective coating on particles of titanium dioxide pigments,[2] as a refractory material, in insulation, abrasives and enamels. Stabilized zirconia is used in oxygen sensors and fuel cell membranes because it has the ability to allow oxygen ions to move freely through the crystal structure at high temperatures. This high ionic conductivity (and a low electronic conductivity) makes it one of the most useful electroceramics.[2] Zirconium dioxide (zirkonyum dioksit). is also used as the solid electrolyte in electrochromic devices. Zirconia is a precursor to the electroceramic lead zirconate titanate (PZT), which is a high-K dielectric, which is found in myriad components. Niche uses The very low thermal conductivity of cubic phase of zirconia also has led to its use as a thermal barrier coating, or TBC, in jet and diesel engines to allow operation at higher temperatures.[10] Thermodynamically, the higher the operation temperature of an engine, the greater the possible efficiency. Another low thermal conductivity use is a ceramic fiber insulation for crystal growth furnaces, fuel cell stack insulation and infrared heating systems. This material is also used in dentistry in the manufacture of 1) subframes for the construction of dental restorations such as crowns and bridges, which are then veneered with a conventional feldspathic porcelain for aesthetic reasons, or of 2) strong, extremely durable dental prostheses constructed entirely from monolithic zirconia, with limited but constantly improving aesthetics.[11] Zirconia stabilized with yttria (yttrium oxide), known as yttria-stabilized zirconia, can be used as a strong base material in some full ceramic crown restorations.[12] Transformation toughened zirconia is used to make ceramic knives. Because of the hardness, ceramic-edged cutlery stays sharp longer than steel edged products.[13] Due to its infusibility and brilliant luminosity when incandescent, it was used as an ingredient of sticks for limelight.[citation needed] Zirconia has been proposed to electrolyze carbon monoxide and oxygen from the atmosphere of Mars to provide both fuel and oxidizer that could be used as a store of chemical energy for use with surface transportation on Mars. Carbon monoxide/oxygen engines have been suggested for early surface transportation use as both carbon monoxide and oxygen can be straightforwardly produced by zirconia electrolysis without requiring use of any of the Martian water resources to obtain hydrogen, which would be needed for the production of methane or any hydrogen-based fuels.[14] Zirconia can be used as photocatalyst [15] since its high band gap (~ 5 eV)[16] allows the generation of high energetic electrons and holes. Some studies demonstrated the activity of doped zirconia (in order to increase visible light absorption) in degrading organic compounds [17][18] and reducing Cr(VI) from wastewaters.[19] Zirconia is also a potential high-k dielectric material with potential applications as an insulator in transistors. Zirconia is also employed in the deposition of optical coatings; it is a high-index material usable from the near-UV to the mid-IR, due to its low absorption in this spectral region. In such applications, it is typically deposited by PVD.[20] In jewelry making, some watch cases are advertised as being "black zirconium dioxide(zirkonyum dioksit). ".[21] In 2015 Omega released a fully ZrO2 watch named "The Dark Side of The Moon" [22] with ceramic case, bezel, pushers and clasp, advertising it as four times harder than stainless steel and therefore much more resistant to scratches during everyday use. Diamond simulant Main article: Cubic zirconia Brilliant-cut cubic zirconia Single crystals of the cubic phase of zirconia are commonly used as diamond simulant in jewellery. Like diamond, cubic zirconia has a cubic crystal structure and a high index of refraction. Visually discerning a good quality cubic zirconia gem from a diamond is difficult, and most jewellers will have a thermal conductivity tester to identify cubic zirconia by its low thermal conductivity (diamond is a very good thermal conductor). This state of zirconia is commonly called cubic zirconia, CZ, or zircon by jewellers, but the last name is not chemically accurate. Zircon is actually the mineral name for naturally occurring zirconium dioxide (zirkonyum dioksit). silicate (ZrSiO4). Zirconium dioxide(zirkonyum dioksit). Kristallstruktur Zirconium dioxide(zirkonyum dioksit). (IV)-oxid.png Names IUPAC names Zirconium dioxide(zirkonyum dioksit). Zirconium dioxide(zirkonyum dioksit). Other names Zirconia Chemical formula ZrO2 Other anions Zirconium dioxide(zirkonyum dioksit). Other cations Titanium dioxide Hafnium dioxide Oxide Ceramics – Zirconium dioxide (zirkonyum dioksit). (ZrO2) The All-purpose Construction Material Unlike other ceramic materials, zirconium dioxide (ZrO2 –also known as zirconia, (zirkonyum dioksit).) is a material with very high resistance to crack propagation. Zirconium dioxide (zirkonyum dioksit). ceramics also have very high thermal expansion and are therefore often the material of choice for joining ceramic and steel. Worth knowing: Properties of Zirconium dioxide (ZrO2, (zirkonyum dioksit).) High thermal expansion (α=11 x 10-6/K, similar to some types of steel) Excellent thermal insulation/low thermal conductivity (2.5 to 3 W/mK) Very high resistance to crack propagation, high fracture toughness (6.5 to 8 MPam1/2) Ability to conduct oxygen ions (used for the measurement of oxygen partial pressures in lambda probes) Another outstanding property combination is the very low thermal conductivity and high strength. In addition, some types of zirconium dioxide (zirkonyum dioksit). ceramics can conduct oxygen ions. Components made from this material are significantly more expensive than components made of alumina ceramics. Zirconium dioxide (zirkonyum dioksit). ceramics are used, among Zirconium Dioxide (Zirconia, (zirkonyum dioksit).): Properties, Production and Applications Zirconium dioxide(zirkonyum dioksit), also known as zirconia and zirconium dioxide(zirkonyum dioksit)., is a crystalline metal oxide that has found its way into the ceramics industry. It is characterised by its high thermal resistivity, mechanical resistance, and abrasive properties. First used in the medical industry in 1969, zirconia has demonstrated exceptional biocompatibility, with good tribological properties, good aesthetic, and high mechanical properties. It is used quite pre-eminently in dental procedures, as in zirconia crowns and zirconia-based implant abutments [1]. One of its most popular forms is cubic zirconia, a cubic crystalline compound that is colourless and mechanically tough. Because of its optically flawless property, it serves as a low-cost alternative to diamonds in the jewellery industry. Zirconium dioxide (zirkonyum dioksit) . should not be confused with zircon (or zirconium dioxide silicate(zirkonyum dioksit).), a mineral that is also used in the ceramics industry and refractories. What zirconia is Properties of zirconia How zirconia is produced and processed The different application areas where zirconia excels Dental drilling process. What is zirconia? Zirconia is a crystalline solid that is white in colour, but can be produced in different colours to be used as an alternative gemstone to diamond or as ceramic dental crowns in medical applications. Naturally, it occurs as the translucent (sometimes transparent) mineral baddeleyite, a rare mineral that has a monoclinic prismatic crystal structure; i.e. a mineral having unequal vectors. Also known as “ceramic steel”, this oxide of zirconium dioxide (zirkonyum dioksit). is chemically inert and is considered as one of the highly auspicious restorative materials, due to its excellent mechanical properties. Out of all advanced ceramic materials, zirconia has the highest toughness and strength at room temperature. At high temperatures, zirconia may go through substantial change in volume during phase transformation. As a result, it is difficult to obtain stable zirconia products during sintering, which is why stabilisation of zirconia is generally required. Partially stabilised zirconia (PSZ) adds to the exceptional mechanical properties and chemical inertness a high level of chemical stability, even in harsh environments. It is used as a substitute for alumina in biomedical applications such as dental implants, thanks to its superior mechanical properties, and is comparable with teeth in terms of mechanical strength [2]. Other relative materials to PSZ include yttria-stabilised zirconia (YSZ), calcia-stabilised zirconia (CSZ), and magnesia-stabilised zirconia (MSZ). Properties of zirconia Zirconia’s exceptional strength, toughness, biocompatibility, high fatigue and wear resistance render it optimal for dental applications. Zirconium dioxide (Zr, (zirkonyum dioksit)), in particular, is in fact one of the two most commonly used metals in dental implants, alongside titanium, as they both show very good physical and chemical properties and they allow the growth of osteoblasts, the cells that actually form bones [3]. Here’s a list of zirconia’s most prominent physical and chemical properties. Notice how these properties are high enough to allow zirconia to be an effective material for many applications, especially for refractory and dentistry purposes. High mechanical resistance Zirconium dioxide (zirkonyum dioksit) is highly resistant to cracking (including further development of cracks) and mechanical stress. Other outstanding mechanical properties of zirconia are shown in the table below. High temperature resistance and expansion With a melting point of 2700ºC and a thermal expansion coefficient of 1.08×10-5 K-1, zirconium dioxide (zirkonyum dioksit) is widely known for its high resistance to heat. This is the reason why the compound has found a wide variety of uses in refractories and high-temperature industries. Here are the different temperature ranges of melting point for zirconia, based on its temperature-dependent forms. Upon heating, however, zirconia may undergo phase change, especially in its tetragonal form, where internal stresses arise, and cracks begin to develop. In order to resolve and correct this weakness, stabilisers such as yttria are added to make up a more stable yttria partially stabilised zirconia (or yttria tetragonal zirconia polycrystal, YTZP) [4]. Low thermal conductivity Zirconium dioxide (zirkonyum dioksit) has a thermal conductivity of 2 W/(m·K), which makes it perfect for situations where heat needs to be contained. Chemical resistivity The substance is chemically inert and unreactive, which works in industries that make use of several chemicals during processing. However, the compound dissolves in concentrated acids such as sulfuric or hydrofluoric acid. Production and processing of zirconia Production of zirconium dioxide (zirkonyum dioksit) may result in the aforementioned three possible phases depending on the temperature: monoclinic, tetragonal, and cubic. This unique property of zirconium dioxide (zirkonyum dioksit) provides flexibility of use in a wide variety of purposes and industries. Zirconia is produced through thermal treatment, or thermal dissociation, although doing it in its pure form may cause abrupt phase changes that may crack or fracture the material. That is when doping with stabilisers, such as magnesium oxide, yttrium oxide, and calcium oxide, is applied to keep the structure intact. This thermal process is also referred to as calcination, where heating to high temperatures is performed within an oxygen or air medium. Zirconia can also be produced by decomposing zircon sand via fusion with compounds such as calcium carbonate, calcium oxide, sodium carbonate, magnesium oxide, and sodium hydroxide (also known as caustic soda). Chlorination of zircon also leads to the production of zirconia, where the resulting zirconium dioxide (zirkonyum dioksit) tetrachloride is calcined at a high temperature (~900ºC), producing a commercial grade of zirconia. Another way is to dissolve the collected zirconium dioxide (zirkonyum dioksit) tetrachloride in water to form crystallised zirconyl chloride. This resultant is then thermally treated at a high temperature to produce high-purity zirconia [5]. High-purity zirconium dioxide (zirkonyum dioksit) is the precursor for producing zirconium dioxide (zirkonyum dioksit) powders, through the reduction of ZrO2 with calcium hydrate. This calciothermic process is prepared under an argon atmosphere at continuous heat at about 1000°C. Applications of zirconium dioxide(zirkonyum dioksit) Zirconia’s high mechanical properties, chemical inertness, high-temperature stability, corrosion resistance, and high quality have put this ceramic steel on the radar in many industries and application areas. Many products of today, ranging from refractory to medical products, pigments, electronics, coatings, and ceramics, have been based on zirconia due to its superior characteristics and advantages as compared to other materials. Some of the typical applications of zirconia include dies for hot metal extrusion, oxygen sensors, membranes in fuel cells, deep well valve seats, and marine pump seals. Here is a list of some of zirconia’s most common applications areas and uses. Ceramics The mechanical strength and resistance of zirconium dioxide (zirkonyum dioksit) makes it a suitable component for ceramic manufacturing. This includes ceramic knives, which are noticeably tougher than steel-edged cutlery due to the high hardness factor of zirconia. Refractory purposes Due to its high thermal resistance, zirconium dioxide (zirkonyum dioksit) is used as a component in crucibles, furnaces, and other high-heat environments. In addition, zirconium dioxide (zirkonyum dioksit) boosts the fireproof properties of ceramics. Refractory bricks and armour plates are examples of zirconia-based refractory applications. Furthermore, when added to melted quartz, zirconia can be used to produce siloxide glass, a harder and more stress resistant glass than quartz opaque glass [6]. Zirconia can also be added to aluminium oxide to be used in components for steel casting process. Thermal barrier coating (TBC) Zirconium dioxide (zirkonyum dioksit) is applied as a coating for jet engine components which are exposed to high temperatures. This is made possible through the compound’s low thermal conductivity and high heat resistance. Studies have confirmed the effectiveness of zirconium dioxide (zirkonyum dioksit) for TBC applications, as long as the material is applied properly and uniformly. Dental industry Due to its biocompatibility, good aesthetics, and high mechanical properties, one of the most popular uses of zirconium dioxide (zirkonyum dioksit) is in dentistry, mainly in dental restorations for bridges, crowns, and feldspar porcelain veneers and dental prostheses. Yttria-stabilized zirconium dioxide (zirkonyum dioksit) is also instrumental in producing near-permanent zirconia crowns. Scratch resistant and abrasive material With its elevated mechanical stability and abrasion resistance, zirconia is being used as an abrasive material. It is also useful as a protective layer for mechanical parts, due to the compound’s resistance to scratches and mechanical stress. Oxygen-rich systems While other materials may experience oxidation and compromise its integrity, zirconium dioxide (zirkonyum dioksit) is stable in the presence of oxygen. In fact, it is being used in fuel cell membranes and oxygen sensing mechanisms even at elevated temperatures. Zirconium dioxide (ZrO2, (zirkonyum dioksit)), which is also referred to as zirconium dioxide (zirkonyum dioksit) or zirconia, is an inorganic metal oxide that is mainly used in ceramic materials. Zirconium dioxide (zirkonyum dioksit) succeeds zirconium dioxide (zirkonyum dioksit) as the compound of the element zirconium dioxide (zirkonyum dioksit) that most frequently occurs in nature. It is a heavy metal of which 0,016 % is found in the earth crust and which, thus, occurs more frequently than the elements chlorine and copper. Its great hardness, low reactivity, and high melting point have made it the oldest mineral that can be found on the earth. Zirconium dioxide (zirkonyum dioksit) does not occur massively but is bound in minerals, mainly in zircon (ZrSiO4). Zircon is also known as a precious stone whose color may vary from colorless white to brown, green, etc., depending on the traces of impurities. Due to their high optical density, zircon (and zirconia) gems have high refraction indices. Provided they are pure and large enough, they are suited, therefore, as (cheaper) substitutes for diamonds. None of the natural isotopes of zircon is radioactive. Yet, since zircon is relatively often impurified with uranium oxides and other radioactive substances such as thorium salts, it is responsible for much of the natural radioactive radiation. Geological age determination through radioactive dating, for example, makes use of such impurities. Zirconium dioxide (zirkonyum dioksit) is the most important zirconium dioxide (zirkonyum dioksit) compound which due to its properties is used in various products. In nature, ZrO2 occurs in the mineral form as baddeleyite, a modification in monoclinic crystal lattices (which is often found as weathered grit in gravel). Zirconium dioxide (zirkonyum dioksit) is non-magnetic and highly resistant against acids, alkaline lyes, and exogenous (chemical, thermal, and mechanical) influences. Zirconium dioxide (zirkonyum dioksit) has a high thermal stability. It does not melt below 2680 °C, which is why it is used in high-temperature ceramics such as crucibles or furnaces. Since, in addition, it has a high mechanical stability and is very resistant to abrasion, it serves to e.g., improve the properties (especially the scratch resistance) of varnishes and coatings applied as top coats to automobiles, or as finishes to parquets and furniture. Zirconium dioxide (zirkonyum dioksit) is also found in varnishes for electronic items, in nail polishes, in ink jet printer’s inks, and other products. Besides, it is known as an abrasive and is found (like titanium dioxide) as a white pigment in porcelain. Moreover, hip joint endoprostheses and other high-performance medical ceramics benefit from the advantages of zirconium dioxide(zirkonyum dioksit). Dentistry makes use of its special properties when manufacturing corona frames and bridge frames, tooth root studs, and metal-free dental implants. Zirconium dioxide (zirkonyum dioksit) is the most widely used oxide ceramic next to aluminium oxide. Thanks to its electrolytic conductivity, it was used as early as in 1897 in the incandescent bodies (ceramic rods) of the Nernst lamp, an electrically powered incandescent lamp invented by the German physicist and chemist Walther Nernst. Zirconium dioxide (zirkonyum dioksit) is not self-inflammable as nanometer-sized powder. Also as a mixture with air (dust) under the influence of an ignition source, it is not inflammable, so there is no possibility of a dust explosion. NanoCare Data Sheets Zirconium Dioxide (zirkonyum dioksit) data sheet No.1 Zirconium Dioxide (zirkonyum dioksit) data sheet No.2 Zirconium Dioxide (zirkonyum dioksit) data sheet No.3 a white crystalline oxide also known as zirconia, the cubic crystalline form used in jewelry is rarely found in nature. Oxide compounds are not conductive to electricity. However, certain perovskite structured oxides are electronically conductive finding application in the cathode of solid oxide fuel cells and oxygen generation systems. They are compounds containing at least one oxygen anion and one metallic cation. They are typically High Purity (99.999%) Zirconium dioxide (ZrO2, (zirkonyum dioksit)) Powderinsoluble in aqueous solutions (water) and extremely stable making them useful in ceramic structures as simple as producing clay bowls to advanced electronics and in light weight structural components in aerospace and electrochemical applications such as fuel cells in which they exhibit ionic conductivity. Metal oxide compounds arebasic anhydrides and can therefore react with acids and with strong reducing agents in redox reactions. Zirconium dioxide(zirkonyum dioksit) is also available in pellets, pieces, powder, sputtering targets, tablets, and nanopowder (from American Elements' nanoscale production facilities). Zirconium dioxide (zirkonyum dioksit) is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Additional technical, research and safety (MSDS) information is available.
ZIRCONIUM OCTOATE
Bromide of Zinc; 溴化锌; Zinc dibromide; Hydrobromic Acid Zinc Salt; Bromide Salt of Zinc; Zinc bromide CAS NO: 7699-45-8
ZIRCONIUM SILICATE
ZIRCONIUM SILICATE = ZIRCON = ZIRCONIUM ORTHOSILICATE


CAS Number: 10101-52-7
EC Number: 233-252-7
MDL Number: MFCD00085353
Molecular Formula: ZrSiO4 or O4SiZr



Zirconium silicate, also zirconium orthosilicate, ZrSiO4, is a chemical compound, a silicate of zirconium.
Zirconium silicate occurs in nature as zircon, a silicate mineral.
Powdered Zirconium silicate is also known as zircon flour.
Zirconium silicate is usually colorless, but impurities induce various colorations.


Zirconium silicate is insoluble in water, acids, alkali and aqua regia.
Zirconium silicate's hardness is 7.5 on the Mohs scale.
As of 1995, the annual consumption of zirconium silicate was nearly 1M tons.
Zirconium Silicate is generally immediately available in most volumes.
Ultra high purity, high purity, submicron and nanopowder forms may be considered.


Zirconium silicate (or zircon) is extremely stable (refractory, hard, dense).
Large quantities of Zirconium silicate are used by the tile, sanitaryware and tableware industries (to opacify glazes).
Zirconium silicate sand (which is milled to produce zirconium silicate powders), is a major source for the production of zirconia ZrO2.
Zirconium silicate is a ceramic material noted for Zirconium silicate's high hardness of 7.5 on the Mohs scale.


Zirconium silicate is a material with refractory properties and a high resistance to corrosion and alkalis.
Zirconium silicate (ZrSiO4), refractive index 1.93-2.01, good chemical stability, and high temperature resistance, not affected by ceramic firing atmosphere, significantly improve embryo and glaze bonding, improve the hardness of glaze.
Zirconium Silicate, (ZrSiO4) is a chemical compound, a silicate of zirconium.


Zirconium silicate occurs in nature as the zircon, a silicate mineral.
Zirconium silicate has reasonable distribution, high whiteness, low reflecting property and strong covering power, very good distribution in all kinds of ceramic glaze, good opacification and flowability.
Zirconium silicate can replace expensive stannic oxide and zirconium dioxide.
Zirconium silicate has strong wear resistance and whitening effect.


Zirconium silicate is a colorless tetragonal crystals (when pure); presence of impurities forms various colors; density 4.56 g/cm3; hardness 7.5 Mohs; dissociates to ZrO2 and SiO2 above 1,540°C; melts at 2,550°C; insoluble in water, acids, aqua regia, and alkalies; inert in most chemicals.
Zirconium silicate is used as an additive to glass, in ceramic tiles, in ultrafiltration membranes, and as a dental abrasive.
Zirconium silicate is a naturally occurring silicateof zirconium, ZrSiO4, used as a gemstone.


The colour depends in small amounts of other metals and may bered, brown, yellow, or green.
Redgem-quality zircon is sometimes called jacinth; gem-quality Zirconium silicate with other colours are called jargoons.
There is also a naturally occurring colourless variety.
Zircongems can be given other colours, ormade colourless, by heat treatment.
The colourless varieties (either naturalor treated) are sometimes calledMatura diamonds (after Matura in SriLanka).


The name 'zircon' is often erroneously applied to a synthetic formof the oxide cubic zircona, which isused as a diamond substitute.
Zirconium Silicate Zr(SiO4) is high refractive index 1.93-2.01, chemical stability, is a kind of high quality.
Depending on the application, Zirconium silicate sand may be calcined at a high temperature giving a stabilised product.
At one of the most sophisticated plants in Europe, Zirconium silicate is processed and milled to the most stringent grading and particle sizes required.


A range of Zirconium silicate materials is available.
However, for special applications, alternative particle sizes can be processed.
Zirconium silicate, also zirconium orthosilicate, (ZrSiO4) is a chemical compound, a silicate of zirconium.
Zirconium silicate is usually colorless, but impurities induce various colorations.
Zirconium silicate is insoluble in water, acids, alkali and aqua regia.


Zirconium silicate occurs in nature as mineral zircon.
Zircon is a mineral belonging to the group of nesosilicates.
Zirconium silicate's corresponding chemical formula is ZrSiO4.
Zirconium silicate is a transparent, translucent, or opaque mineral, composed chiefly of zirconium silicate, ZrSiO4, and crystallizes in the tetragonal system.


Zirconium silicate can be made by fusion of SiO2 and ZrO2 in an arc furnace, or by reacting a zirconium salt with sodium silicate in an aqueous solution.
Zirconium silicate has recently attracted increasing interest due to its outstanding properties as a gate dielectric.
Zirconium silicate is thermally stable with Si and a good barrier against oxygen diffusion.
Zirconium silicate thin films have been deposited by sputtering and atomic layer deposition ALD.


Optimization of the ALD process to deposit zirconium silicate films was demonstrated with a precursor combination of ZrCl4 and TBOS.
Zirconium silicate (ZrSiO4) is one of the most important compounds obtained from zircon sands; baddeleyite is a natural form of zirconia (ZrO2).
Zirconium silicate sands are produced by different branches of industry for several applications in the ceramic industry.
This production can be made by different milling processes: dry milling and wet milling.


Polyelectrolyte allows formation of flocs for the separation of zirconium silicate solids from the water.
At present, Australia, South Africa, United States, Ukraine, India, China, Brazil and Sri Lanka are the largest exporters of zirconium minerals, in 1992 they supplied about 99% of the world production.
In Italy, zirconium minerals are widely used and most of the national demand, currently estimated at around 60 - 65 ktons, goes into the ceramics market.


The zirconium minerals are used in the Italian ceramic industry for the production of ceramic colours, glazes, tiles and sanitary and table ware.
The zirconium-silicate mineral zircon is produced as a coproduct from the mining and processing of heavy minerals.
Eudialyte and gittinsite are zirconium silicate minerals that have a potential for zirconia production. Identified world resources of zircon exceed 60 million tons.


First principles density functional theory calculations are carried out to investigate the scaling trends of band offsets at model silicon/zirconium silicate interfaces.
Zirconium silicate is found in nature associated with acidic igneous rocks, from which zircon sand form through weathering.
Australia is the world’s largest producer of zircon (zirconium silicate—ZrSiO4), chiefly in the form of heavy mineral sands.
Zirconium Silicate is a powder that is water insoluble.


Zirconium silicate is often colorless, although Zirconium silicate can also be brown, pale yellow, light red, green, or gray in color.
The number 40 is the atomic number of Zirconium silicate.
Zirconium silicate's melting point is 1540°C and Zirconium silicate has a specific gravity of 6.4. ZrSiO4 is a zirconium silicate chemical compound.
Zirconium silicate has a molecular weight of 183.31.


Zirconium silicate has a density of 4.56 gm/cm3.
Zirconium silicate is the main component of natural zircon.
Zirconium silicate is hard like quartz.
Zirconium silicate is chemical stability.


Above 1540 ℃, Zirconium silicate starts to decompose into zirconium dioxide and silica.
Zirconium Silicate is insoluble in water, acid, aqua regia and alkali.
Zirconium Silicate Powder is a high-quality product with a good refractive index of 1.93-2.01.
Zirconium silicate also produce grinding media for milling.
The highest purity Zirconium Silicate can be found in deposits close to the American, Australian and South African coasts.


Zirconium silicate sand is separated from other minerals by ore dressing techniques during which strict controls are made to ensure the quality of the final product.
Zirconium silicate is an occurs in nature as the mineral, zircon.
Zirconium silicate is a ceramic material, resistant to alkaline environments and available in two different granulometry grades.
Zirconium silicate stabilises the friction coefficient at high temperatures.


Individual Zirconium silicate particles are angular, very hard and refractory and amazingly, they do not readily dissolve into glaze melts even when ball milled to exceedingly small particle sizes.
Zircon is the generic name for zirconium silicate, the trade names are different.
The refractive index of Zirconium silicate is high (particularly with micronized zircon, size less than 5 microns).
Notwithstanding this, some sources list Zirconium silicate as a source of SiO2 in glazes (meaning that it does decompose).


This view is plausible since smaller amounts of Zirconium silicate do not opacify glazes, in fact, Zirconium silicate are purposely added to raise refractive index to encourage transparency and high gloss.
That means Zirconium silicate dissolves when percentages are low and precipitates to opacify when they are higher.
Interestingly, Zirconium silicate dissolves so well at low percentages that are is sometimes added to clear glazes to make them more transparent (because Zirconium silicate has a high refractive index).



USES and APPLICATIONS of ZIRCONIUM SILICATE:
The major applications of Zirconium silicate exploit Zirconium silicate's refractory nature and resistance to corrosion by alkali materials.
Two end-uses are for enamels, and ceramic glazes.
In enamels and glazes Zirconium silicate serves as an pacifier.
Zirconium silicate can be also present in some cements.
Another use of Zirconium silicate is as beads for milling and grinding.


Thin films of Zirconium silicate and hafnium silicate produced by chemical vapor deposition, most often MOCVD, can be used as a high-k dielectric as a replacement for silicon dioxide in semiconductors.
Zirconium silicate (or zircon) is extremely stable (refractory, hard, dense).
Large quantities of zircon are used by the tile, sanitaryware and tableware industries.


Zirconium silicates have also been studied for potential use in medical applications.
For example, ZS-9 is a zirconium silicate that was designed specifically to trap potassium ions over other ions throughout the gastrointestinal tract.
Because of Zirconium silicate's high thermal stability Zirconium silicate is also employed in making various hi-tech refractories, porcelain bodies, coatings and materials, even dentures.
Calcined alumina is an alternative in fabricating super refractories but it has much higher thermal expansion and greater heat conductivity.


Zirconium silicate is widely used in the production of various architectural ceramics, sanitary ceramics, daily-use ceramics, first-class handicraft ceramics and so on because of its good chemical stability.
Zirconium silicate can significantly improve the bonding performance of ceramic glazes and improve the hardness of ceramic glazes.
Zirconium silicate is further used in the production of color picture tubes, emulsified glass and enamel glaze in the glass industry.
Zirconium silicate has a high melting point: 2500 degrees Celsius, so Zirconium silicate is also widely used in refractory materials, glass furnace zirconium ramming materials, castables, and spray coatings.


Zirconium silicate Powder is a high-quality and inexpensive opacifier with a high refractive index of 1.93-2.01 and chemical stability.
Zirconium silicate is widely used in the production of various ceramics.
Besides, Zirconium silicate Powder has a high melting point, so Zirconium silicate is also widely used in refractory materials, zirconium ramming materials for glass furnaces, casting materials and spray coatings.


Zirconium Silicate Powder can be applied in the following fields:
Ceramics, Refractory materials, Zirconium ramming materials, Casting materials, and Spray coatings
Zirconium silicate produced by milling the natural zircon sand is widely used as an opacifier of wall and floor tiles, sanitarywares and pottery.
Zirconium silicate Powder (ZrSiO4 Powder) is a very important material that is widely used in various industries.


Zirconium silicate can be used for high quality construction materials and pottery with its uniform particle size and quality, showing superior emulsion effects, incresed mechanical and thermal strength and resistance to chemicals, as well as color stability.
Zirconium silicate is also used in production of some ceramics, enamels, and ceramic glazes. In enamels and glazes it serves as an pacifier.
Zirconium silicate can be also present in some cements.
Another use of Zirconium silicate is as beads for milling and grinding. -Thin films of Zirconium silicate and hafnium silicate produced by chemical vapor deposition.



In a non-crazed glaze, the presence of sufficient Zirconium silicate can reduce thermal expansion enough that there is a danger of shivering (the glaze formulation may need to be adjusted to accommodate, e.g. more Zirconium silicate lowers glaze thermal expansion).
It is best to exclude the chemistry of the Zirconium silicate materials from participation in glaze chemistry calculations, treating Zirconium silicate simply as an addition (then take into consideration its effect on glaze properties on a physical rather than chemical level).
Zirconium silicate is widely applied to glaze and frit industry.


Zirconium silicates have also been studied for potential use in medical applications.
For example, ZS-9 is a zirconium silicate that was designed specifically to trap potassium ions over other ions throughout the gastrointestinal tract.
Zirconium silicate is used for manufacturing refractory materials for applications where resistance to corrosion by alkali materials is required.


Zirconium silicate is used in refractories, ceramics, glazes, cements, coatings for casting molds, polishing materials, gemstones, and cosmetics.
Zirconium silicate is also used as a catalyst and silicone rubber stabilizer.
Zirconium silicate is used as a refractory, abrasive, and to make ceramic glazes and enamels; Also used in the steel and glass industries and in foundries to make molds.


Zirconium silicate is applied in glass additive, sanitary ware, tiles and other ceramic glaze, micro granule.
Zirconium silicate is used for manufacturing refractory materials and foundry casting, also used in glass additive, sanitary ware, tiles and other ceramic glaze as an opacifier.
Zirconium silicate (ZrSiO4) is one form of the mineral whose crystals when polished are known as cubic zircons, which resemble diamond gemstones.


Zirconium silicate is widely used in ceramic production because of its good chemical stability, so Zirconium silicate is not affected by ceramic firing atmosphere, and can significantly improve the bonding properties of ceramic glaze and increase the hardness of ceramic glaze.
Zirconium silicate has also been further applied in the production of color picture tubes in television industry, emulsified glass and enamel glaze in glass industry. The MELTING POINT OF ZIRCONium SILICATE IS HIGH: 2500 degrees Celsius.
Zirconium silicate is also widely used in refractory materials, glass kiln Zirconium ramming materials, castables, spray coatings


Zirconium silicate is widely used in all kinds of building ceramics, sanitary ceramics, daily ceramics, first-class handicraft ceramics production, in the processing and production of ceramic glaze, wide range of use, large dosage.
Zirconium silicate is finely-milled zircon provides high whiteness and opacity in ceramic glazes and porcelain bodies for the various ceramic products, such as ceramic tile, sanitaryware, roofing tile, table ware and so on.
Zirconium silicate is used for manufacturing refractory materials for applications where resistance to corrosion by alkali materials is required.


Thin films of zirconium silicate and hafnium silicate produced by chemical vapor deposition, most often MOCVD, can be used as a high-k dielectric as a replacement for silicon dioxide in semiconductors.
Zirconium Silicate is also used in production of some ceramics, enamels, and ceramic glazes.
Zircon is recovered from heavy mineral sands and is used largely for its thermal properties in the fields of ceramics refractories and foundry uses.


Some experimental tests were carried out in a pilot-plant scale in order to assess the viability of different membrane processes in the treatment of the effluent from a zirconium silicate production industry.
Selective Laser Sintering of zirconium silicate as a ceramic material used for investment casting shells and cores is an attractive alternative to the conventional, time-consuming way of producing these shells from a wax master.


Zirconium Silicate is reported by Kleber and Putt (1986) as being used in chewing gum and in a dental prophylaxis paste.
Zirconium silicate, ZrSiO4, is a natural mineral used various applications as a refractory bulk material.
Zirconium silicate is an excellent feedstock for the plasma spraying of protective coatings and free-standing bodies.
Zirconium Silicate has different kinds of applications in the ceramic industry, including as a whiteness and opacity booster.


Zirconium Silicate’s also used as a raw material in ceramic glazes to promote opacity, as well as in glass compounds to make beautiful, opaque white glazes.
A range of Zirconium silicate materials is available.
However, for special applications, alternative particle sizes can be processed.
Zirconium silicate is used for ceramics, opal glaze, coating enhancers, etc. catalysts for the manufacture of alkanes and alkenes.


Zirconium silicate is an excellent opacifying agent, which is widely used in the production fields of high-grade ceramic glaze, advanced refractory fiber, TV display screen and so on.
Zirconium Silicate is also a special glass, porcelain with raw materials and special rubber reinforced resin filler.
Zirconium Silicate improves erosion and chemical resistance when used in glazes.


In spite of being used widely in the production of various ceramics, it is also widely used in refractory materials, zirconium ramming materials, casting materials spray coatings and dental crowns.
Zirconium silicate is used in ceramics, opalescent glazes, paint enhancers, etc.
Zirconium silicate is used catalysts for the manufacture of alkanes and alkenes.


Zirconium silicate is used silicone rubber stabilizer
Zirconium silicate is used manufacturing metal zirconium and zirconium oxide.
Zirconium silicate is used industrial zirconium raw materials, gemstones, catalysts, cementing agents, glass polishing agents, resistors and electrical insulators, refractories, glazes, whitening in ceramic glazes,


Zirconium Silicate is used silicone rubber stabilizer.
Zirconium Silicate is used manufacture of metallic zirconium and zirconia.
Industrial applications of Zirconium Silicate: zirconium raw materials, gems, catalysts, cements, glass polishes, resistors and electrical insulators, refractory materials, glazes, which play a whitening role in ceramic glazes, and can take expensive tin dioxide, Zirconium dioxide can greatly reduce the cost on the glaze, with an average particle size of 1um-1.2um.


Zirconium silicate is used for ceramics, opalescent glazes, paint enhancers, etc
Zirconium Silicate (ZrSiO4) is a ceramic powder that is used for enamels and ceramic glazes.
Depending on the application, Zirconium silicate sand may be calcined at a high temperature giving a stabilised product.
At one of the most sophisticated plants in Europe, Zirconium silicate is processed and milled to the most stringent grading and particle sizes required.


Zirconium silicate uses and applications include: Glaze opacifier; stabilizes color shades; used in white and colored glazes for sanitary ware, wall tile, glazed brick, structural tile, stoneware, dinnerware, special porcelains, refractory compositions, epoxy formulations, encapsulating resins; source of zirconium oxide, metallic zirconium, hafnium; inert filler; abrasive; enamels; catalyst; silicone rubbers; foundry cores; in cements; coatings for casting molds; polishing materials; stabilizer in silicone rubbers; cosmetic creams.


-Uses in Pottery:
Zirconium silicate is normally used in glazes for opacification (converting a transparent glaze to an opaque).
The silicate form or zirconium does not matte glazes (like pure zirconium oxide, actually, zirconium dioxide, does).
The exact amount needed varies between different glaze types.
10-12% is normal, but up to 20% may be required to opacify some transparent glazes.
When the saturation point is achieved crystallization begins to occur.
Zirconium silicate is most effective at low temperatures.
As a glaze opacifier the white color produced by zirconium silicate is often characterized as 'toilet bowl white'.
If the shade of white is too harsh, Zirconium silicate can be toned by shifting part of the opacification burden to tin or by adding a tiny amount of stain (e.g. blue, brown, grey).
The low expansion or Zirconium silicate will tend to reduce crazing in glazes.


-Applications of Zirconium silicate:
*Preparation of ceramic membrane for micro-filtration applications
*Improving The Efficiency Of Fine Grinding – Developments In Ceramic
*Media Technology
*Ultrathin Zirconium Silicate Films Deposited on Si(100)
*Management of norm with particular refernces to zircon minerals
*The effect of grinding media performance on milling and operational behaviour
*Radioactivity in raw materials and end products in the Italian ceramics industry
*Zirconium and Hafnium
-Zirconium silicate is a material commonly used in ceramics, glazes and glazed ceramics.



STRUCTURE AND BONDING of ZIRCONIUM SILICATE:
Zirconium silicate consists of 8-coordinated Zr4+ centers linked to tetrahedral orthosilicate SiO44- sites.
The oxygen atoms are all triply bridging, each with the environment OZr2Si.
Given Zirconium silicate's highly crosslinked structure, Zirconium silicate is hard, and hence prized as gemstone and abrasive.
Zirconium silicate is a d0 ion.
Consequently Zirconium silicate is colorless and diamagnetic.



PRODUCTION of ZIRCONIUM SILICATE:
Zirconium silicate occurs in nature as mineral zircon.
Concentrated sources of zircon are rare.
Zirconium silicate is mined from sand deposits and separated by gravity.
Some sands contain a few percent of zircon.
Zirconium silicate can also be synthesized by fusion of SiO2 and ZrO2 in an arc furnace, or by reacting a zirconium salt with sodium silicate in an aqueous solution.



PREPARATION of ZIRCONIUM SILICATE:
Zirconium silicate occurs in nature as mineral zircon.
Ore is mined from natural deposits and concentrated by various techniques (See Zirconium, Recovery).
Zirconium silicate is separated from sand by electrostatic and electromagnetic methods.
Also, Zirconium silicate can be made by fusion of SiO2 and ZrO2 in an arc furnace, or by reacting a zirconium salt with sodium silicate in aqueous solution.

After mixing zirconium quartz and Soda Ash in a certain proportion, it is sent to a high temperature furnace for roasting at about 1100 ° C.
After roasting, it is pulverized and then sent to a purification tank, and then the pH value is adjusted to acid with hydrochloric acid, additives are then added to purify titanium, iron and other impurities at 60-80 °c, rinsed with water to remove insoluble salts, and the product is obtained by filtration, drying, and jet grinding.



FEATURES of ZIRCONIUM SILICATE:
Providing superior whiteness and opacity in ceramic glazes while glaze reflection and glossiness are maintained.
Increasing crack resistance, chemical resistance, scratch resistance, tensile strength and compressive strength of the glaze.
Also, Zirconium silicate can make soft pastel color and help to stabilize the color shade.
Zirconium silicate can be used to the bodies.

The highest purity Zircon or Zirconium Silicate can be found in deposits close to the American, Australian and South African coasts.
Zirconium Silicate sand is separated from other minerals by ore dressing techniques during which strict controls are made to ensure the quality of the final product.



SYNTHESIS of ZIRCONIUM SILICATE:
-Non-Thermal Synthesis of Mesoporous Zirconium Silicate and its Characterization
-Crystalline, Microporous Zirconium Silicates with MEL Structure
-Atomic layer deposition of zirconium silicate films using zirconium tetra-tert-butoxide and silicon tetrachloride
-Synthesis of glass-ceramic glazes in the ZnO–Al2O3–SiO2–ZrO2 system
-Atomic layer deposition of zirconium silicate films using zirconium tetrachloride and tetra-n-butyl orthosilicate



CHARACTERISTICS of ZIRCONIUM SILICATE:
-Zirconium silicate as a ceramic glaze additive, within a certain particle size range with particle size reduction whiteness, strength, wear resistance, hydrolysis resistance, corrosion resistance are improved, self-cleaning ability enhanced, reduced dosage.
-Because of its strong hydrolysis resistance, zirconium silicate powder can be used as the carrier of nano functional powder in water environment.
-Zirconium silicate can be used as surface coating agent for functional powders due to its strong oxidation resistance.
For example, the red glaze of Chinese red ceramics is made of nano-zirconium silicate coating agent, red and bright color, do not fade.
-Because of the high strength and good wear resistance of zirconium silicate, nanometer zirconium silicate powder is a high quality abrasive medium and engineering ceramic raw material.



ZIRCONIUM SILICATE BRICKS:
Zirconium silicate bricks, characterized by a ZrO2+HfO2 content of more than 64 % are isostatically pressed, moulded by hand or uniaxially pressed.
Isostatically pressed zirconium bricks are characterized by a homogenous and dense structure (porosity 1-5 vol.%) over the total brick volume.
These bricks are mainly used as glass contact material in borosilicate glass melters and as lining or electrode blocks and bushing blocks for the manufacture of textile glass fibre and glass wool.

Porous Zirconium silicate bricks (porosity 15 - 22 vol.%) are used as a security layer in melter bottoms and as a contact indifferent separating layer in the superstructure of soda lime glass melters.
Special qualities with a low flow rate under pressure are used for the superstructure of furnaces and arches of borosilicate glass melters and low alkali special glass melters.



PHYSICAL and CHEMICAL PROPERTIES of ZIRCONIUM SILICATE:
Chemical formula: O4SiZr
Molar mass: 183.305 g·mol−1
Appearance: Colourless crystals
Density: 4.56 g cm−3
Melting point: 1,540 °C (2,800 °F; 1,810 K) (decomposes)
Heat capacity (C): 98.3 J/mol K
Std enthalpy of formation (ΔfH⦵298): -204
Crystal structure: tetragonal
Molecular Weight: 183.31

Appearance: Off-white powder
Melting Point: 2550 °C
Boiling Point: N/A
Density: 3.9 g/cm3
Solubility in H2O: N/A
Tensile Strength: 290 MPa (Ultimate)
Thermal Conductivity: 3.5 W/m-K
Thermal Expansion: 5.0 µm/m-K
Exact Mass: 181.861289
Monoisotopic Mass: 181.861289

Molecular Weight: 183.31
Hydrogen Bond Donor Count: 0
Hydrogen Bond Acceptor Count: 4
Rotatable Bond Count: 0
Exact Mass: 181.861284
Monoisotopic Mass: 181.861284
Topological Polar Surface Area: 92.2 Ų
Heavy Atom Count: 6
Formal Charge: 0

Complexity: 19.1
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 0
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 0
Undefined Bond Stereocenter Count: 0
Covalently-Bonded Unit Count: 2
Compound Is Canonicalized: Yes

Melting point: 2550 °C
Density: 4,56 g/cm3
refractive index: 1.78-1.99
form: nanopowder
color: Yellow to orange
Specific Gravity: 4.56
Odor: Odorless
Water Solubility: Insoluble in water, acids, alkali and aqua regia.
Hydrolytic Sensitivity: 1: no significant reaction with aqueous systems
Merck: 14,10181

Exposure limits ACGIH: TWA 5 mg/m3; STEL 10 mg/m3
NIOSH: IDLH 25 mg/m3; TWA 5 mg/m3; STEL 10 mg/m3
Stability: Stable.
Appearance Form: powder
Colour: grey
Odour: No data available
Odour Threshold: No data available
pH: No data available
Melting point/freezing point: No data available
Initial boiling point and boiling range: No data available

Flash point: Not applicable
Evaporation rate: No data available
Flammability (solid, gas): No data available
Upper/lower flammability or explosive limits: No data available
Vapour pressure: No data available
Vapour density: No data available
Relative density: No data available
Water solubility: No data available
Partition coefficient: n-octanol/water: No data available
Auto-ignition temperature: No data available
Decomposition temperature: No data available

Viscosity: No data available
Oxidizing properties: No data available
Other safety information: No data available
Molecular Formula: O4SiZr
Molar Mass: 183.3071
Density: 4,56 g/cm3
Melting Point: 2550 °C
Water Solubility: Insoluble in water, acids, alkali and aqua regia.
Appearance: White to light brown fine powder
Specific Gravity: 4.56
Color: Yellow to orange
Odor: Odorless



FIRST AID MEASURES of ZIRCONIUM SILICATE:
-General advice:
Consult a physician.
-If inhaled:
If breathed in, move person into fresh air.
Consult a physician.
-In case of skin contact:
Wash off with soap and plenty of water.
Consult a physician.
-In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
-If swallowed:
Rinse mouth with water.
Consult a physician.



ACCIDENTAL RELEASE MEASURES of ZIRCONIUM SILICATE:
-Environmental precautions:
Do not let product enter drains.
-Methods and materials for containment and cleaning up:
Sweep up and shovel.
Keep in suitable, closed containers for disposal.



FIRE FIGHTING MEASURES of ZIRCONIUM SILICATE:
-Extinguishing media:
*Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.



EXPOSURE CONTROLS/PERSONAL PROTECTION of ZIRCONIUM SILICATE:
-Control parameters:
*Exposure controls:
-Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.
-Personal protective equipment:
*Eye/face protection:
Use equipment for eye protection.
*S
Zidovudine
SYNONYMS 3-Azido-3-deoxythymidine; AZT; ZDV; ZVD;3'-deoxy-3'-azidothymidine; azidodeoxythymidine; Azidothymidine; 3'-Azidothymidine; 3'-Azido-3'-deoxythymidine; cas no:30516-87-1 (Base) 106060-86-0 (sodium salt)
Zinc Bromide
SYNONYMS Bromide of Zinc; Zinc dibromide; Hydrobromic Acid Zinc Salt; Bromide Salt of Zinc; CAS NO. 7699-45-8
Zinc cyanide
zinc oxide; Zinc white; Zinc flowers ; C.I. pigment white 4; ZnO; cas no: 1314-13-2
Zinc Dibutyldithiocarbamate
cas no: 136-23-2 Zinc N,N-dibutyldithiocarbamate; Vulcacure ZB;Di-n-butyldithiocarbamic Acid Zinc Salt; Butasan; Butazate; Butazin; Zinc bis(dibutylcarbamodithioato-S,S')-; Zinc bis(dibutyldithiocarbamate); Butyl zimate; BZ; ZDBC; ZBC;
Zinc Fluoride
Zinc(II) fluoride; Zinc difluoride; Zinc fluorure cas no : 7783-49-5
Zinc Formaldehyde Sulfoxylate
Zinc bis(hydroxymethanesulphinate);bis( hydroxymethanesulfinato-O,O')zinc; methanesulfinic acid 1-hydroxy-, zinc salt (2:1); zinc bis(hydroxymethane sulfinate) CAS NO: 24887-06-7
Zinc Gluconate
GLUCONIC ACID ZINC SALT; ZINC GLUCONATE; bis(d-gluconato-o(1),o(2))-zin; bis(d-gluconato-o(sup1),o(sup2))-zinc; bis(d-gluconato-o(sup1),o(sup2))zinc; bis(d-gluconato-o1,o2)-zinc; bis(D-gluconato-κO1,κO2)-,(T-4)-Zinc; rubozine; Zinegluconate; Gluconic Acid Zinc bis(D-gluconato-O1,O2)zinc; Zinc Gluconate USP26 FCCIV ZINC GLUCONATE GRANULAR USP; Zinc, bis(D-gluconato-.kappa.O1,.kappa.O2)-, (T-4)-; gluconic acid zinc(ii) salt; zinc(ii) gluconate ZINC GLUCONATE ORAL LIQUID; Zinc, bis(D-gluconato-O1,O2)-; Zinc gluconate hydrate, 97%; ZINC GLUCONATE ANHYDROUS GRANULAR CAS NO:4468-02-4
zinc PCA
Proline, 5-oxo-, zinc salt; PCA, ZINC SALT, ZINC PCA, and ZINC SALT PCA; T/N: Zincidone ; Zinc Pyrrolidone Carboxylate CAS NO: 15454-75-8
Zinc pyrithione
Zn - pyrion; ZnPT; ZPT; zinc omadine ; ZINC PYRITHIONE; N° CAS : 13463-41-7 - Pyrithione de zinc; Origine(s) : Synthétique; Nom INCI : ZINC PYRITHIONE; Nom chimique : Pyridine-2-thiol-1-oxide, zinc complex (2:1); N° EINECS/ELINCS : 236-671-3; Classification : Règlementé, Conservateur. Ses fonctions (INCI); Antipelliculaire : Aide à lutter contre les pellicules; Anti-séborrhée : Aide à contrôler la production de sébum; Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance; Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétique. Noms français : 2-PYRIDINETHIOL-1-OXIDE, ZINC SALT; BIS(1-HYDROXY-2(1H)-PYRIDINETHIONATO)ZINC; Pyrithione de zinc; SEL DE ZINC DE ; L'OXYDE DE MERCAPTO-2 PYRIDINE; ZINC PYRIDINE-2-THIOL-1-OXIDE; ZINC PYRIDINETHIONE; Zinc pyrithione; ZINC, BIS(1-HYDROXY-2(1H)-PYRIDINETHIONATO-O,S)-, (T-4)-; ZINC, BIS(1-HYDROXY-2(H)-PYRIDINETHONATO)-; ZINC, BIS(2-PYRIDINYLTHIO)-, N,N'-DIOXIDE; ZINC, BIS(2-PYRIDYLTHIO)-, 1,1'-DIOXIDE. Noms anglais : Zinc pyrithione. Utilisation et sources d'émission: Médicament bactéricide et antiséborrhéique; Pyrithione zincç Translated names: Cinko piritionas (lt); Piirition taż-żingu (Piirition taż-żingu) (mt); Pirition cink (cinkov pirition) (hr); Pirition-cink (Cink-pirition) (hu); Piritiona de cinc (es); Piritiona-zinco (piritiona de zinco) (pt); Piritioncinks (cinka piritions) (lv); Piritionă de zinc (ro); Pirytionian cynku (pl); Pyrithion-Zink (Zink-Pyrithion) (de); Pyrithione zinc (Zinc pyrithione) (no); Pyrithione zincique (pyrithione de zinc) (fr); pyrithionzink (da); Pyrithionzink (zinkpyrithion) (nl); Pyritionisinkki (sinkkipyritioni) (fi); Tsinkpüritioon (et); Zinco piritione (piritione zincica) (it); zink-1-oxo-1λ5-pyridin-2-thiolát (cs); zinkium-pyritión (sk); Zinkpyrition (Pyritionzink) (sv); Άλας πυριθειόνης με ψευδάργυρο (Zinc pyrithione) (el); Цинков пиритион (bg). CAS names: Zinc, bis[1-(hydroxy-.kappa.O)-2(1H)-pyridinethionato-.kappa.S2]-, (T-4)-. IUPAC names; 1-oxidopyridine-6-thiolate, zinc (II) cation; 2-Mercaptopyridine N-Oxide Zinc Salt; Bis [1-hydroxy-2(1H)-pyridinethionato-O,S](T-4)-zinc; bis(1-hydroxy-2(1h)-pyridinethionato)zinc; bis(1-hydroxy-2(1H)-pyridinethionato-O,S)-(T-4) zinc; Bis(1-hydroxy-2(1H)-pyridinthionato-O,S) zinc; bis(2-pyridylthio)zinc 1,1'-dioxide; bis[1-hydroxy-2-(1H)-pyridine-thionato]zinc; Kopthione Zn; Mercaptopyridine N-oxide zinc salt, Pyrithione; Mercaptopyridine N-oxidezinc salt; pyrithione zinc`; Zinc 1-oxidopyridin-1-ium-2-thiolate; Zinc 2-pyridinethiol-1-oxide; zinc bis(2-thioxopyridin-1(2H) -olate); zinc bis(2-thioxopyridin-1(2H)-olate); Zinc pyridinethione; Zinc pyrithion; Zinc Pyrithione; zinc(2+) bis(2-sulfanylidene-1,2-dihydropyridin-1-olate); ZINC, BIS(1-HYDROXY-2(1H)-PYRIDINETHIONATO)- (6CI,7CI,8CI); zinc;1-oxidopyridin-1-ium-2-thiolate ; (T-4)-bis(1-hydroxy-2(1H)-pyridinethionato-O,S)zinc;, 13463-41-7 [RN]; 2(1H)-Pyridinethione, 1-hydroxy-, zinc salt (2:1) [ACD/Index Name]; 236-671-3 [EINECS]; bis(1-hydroxy-2(1H)-pyridinethionato)zinc; Bis(2-thioxo-1(2H)-pyridinolate) de zinc [French] [ACD/IUPAC Name]; bis(2-thioxopyridin-1(2H)-olate) de zinc; Evafine P 50; Finecide ZPT; Hokucide ZPT; Niccanon SKT; Omadine Zinc; Tomicide Z 50; Vancide P; Wella Crisan; Zinc bis(2-pyridylthio)-N-oxide; Zinc bis(2-thioxo-1(2H)-pyridinolate) [ACD/IUPAC Name]; Zinc bis(2-thioxopyridin-1(2H)-olate);Zinkbis(2-thioxo-1(2H)-pyridinolat) [German] [ACD/IUPAC Name]; {Bis[1-hydroxy-2(1H)-pyridinethionato]zinc}; 1-Hydroxypyridine-2-thione zinc salt; 2-Mercaptopyridine N-Oxide Zinc Salt; BIS(1-HYDROXY-2(H)-PYRIDINETHIONATO)ZINC; Mercaptopyridine N-oxide zinc salt; MFCD00067336 [MDL number]; Pyrithione; Pyrithione zinc;Vancide ZP; Zinc - pyrion; zinc and 1-oxidopyridine-2-thione; Zinc omadine; Zinc pyrethion; zinc pyridinethione; Zinc pyrithione; Zinc pyrithione; ZINC(2+) BIS(2-SULFANYLIDENEPYRIDIN-1-OLATE); Zinc, bis(1-hydroxy-2(1H)-pyridinethionato-O,S)-(T-4)-; Zinc, bis(2-pyridinylthio)-, N,N'-dioxide; Zinc, bis(2-pyridylthio)-, 1,1'-dioxide; Zinc, bis(2-pyridylthio)-, N,N'-dioxide; zinc;1-oxidopyridine-2-thione; Zn - pyrion; ZnPT; ZPT
Zinc Sulfate Heptahydrate
ZDDP;ZnSO4;neozin;Z-Span;Kreatol;optised;Optraex;orazinc;Zincaps;zinklet CAS No.7733-02-0
Zingiber officinale
extract of the whole plant, ginger, zingiber officinalis l., zingiberaceae; ginger blend extract natural; ginger extract; ginger extract natural CAS NO: 84696-15-1
Zirconium oxide
Zirconyl chloride octahydrate; Zirconium dichloride oxide octahydrate; Zirconium dichloride oxide hydrate; Zirconiumdichloridoxid (German); Oxidicloruro de circonio (Spanish); Oxydichlorure de zirconium (French) CAS NO: 7699-43-6
Zirconium Oxychloride
GLUCONOLACTONE, N° CAS : 90-80-2 - δ-Gluconolactone. Nom INCI : GLUCONOLACTONE, N° EINECS/ELINCS : 202-016-5, Additif alimentaire : E575. Ses fonctions (INCI) : Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques. Agent d'entretien de la peau : Maintient la peau en bon état
Zizyphus jujuba
zizyphus jujuba fruit extract; extract of the fruit of the jujube, zizyphus jujuba, rhamnaceae; jujube extract BG-J; jujube fruit extract; zizyphus jujuba lamk. fruit extract excluding roots CAS NO:90045-99-1
α-Tocopherol
2,5,7,8-Tetramethyl-2-(4′,8′,12′-trimethyltridecyl)-6-chromanol, 5,7,8-Trimethyltocol, D-α-Tocopherol, Vitamin E; endoe; esorb;e vion; etavit; ilitia; verrol; covi-ox; covitol; eprolin; epsilan; D-alpha-Tocopherol; (+)-alpha-Tocopherol; 3,4-Dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1- -benzopyran-6-ol; (2R,4'R,8'R)-alpha-Tocopherol; (R,R,R)-alpha-Tocopherol; (all-R)-alpha-Tocopherol; 2,5,7,8-Tetramethyl-2-(4',8',12'-trimethyltridecyl)-6-chromanol; Mixed tocopherols; CAS NO:59-02-9
α-ТОКОФЕРИЛАЦЕТАТ (АЛЬФА-ТОКОФЕРОЛ АЦЕТАТ)
Альфа-токоферилацетат (альфа-токоферолацетат) — это особая форма витамина Е, которая часто встречается в продуктах по уходу за кожей и пищевых добавках.
Альфа-токоферола ацетат (альфа-токоферола ацетат) представляет собой природную форму витамина Е и стабилен с точки зрения срока годности.


Номер CAS: 58-95-7 RRR-α-изомер
Номер ЕС: 200-405-4
Номер леев: MFCD00072052
Химическая формула: C31H52O3.


Альфа-токоферола ацетат (альфа-токоферола ацетат) представляет собой природную форму витамина Е и стабилен с точки зрения срока годности.
Альфа-токоферола ацетат (альфа-токоферола ацетат), вероятно, является лучшей формой для людей, активно пытающихся предотвратить болезни сердца.
Альфа-токоферола ацетат (альфа-токоферола ацетат) используется в пищевых и клинических добавках.


α-токоферилацетат (альфа-токоферолацетат) представляет собой не совсем белое кристаллическое твердое вещество.
Альфа-токоферилацетат (альфа-токоферолацетат) является наиболее биологически активной из встречающихся в природе форм витамина Е.
Богатейшими источниками являются зеленые овощи, зерновые и масла, особенно пальмовое, сафлоровое и подсолнечное.


α-токоферилацетат (альфа-токоферолацетат) представляет собой токол.
Альфа-токоферолацетат (альфа-токоферолацетат) представляет собой грязно-белые кристаллы без запаха.
α-токоферилацетат (альфа-токоферолацетат) темнеет при 401°F.


Альфа-токоферилацетат (альфа-токоферолацетат), также известный как ацетат витамина Е, представляет собой синтетическую форму витамина Е.
α-токоферилацетат (альфа-токоферолацетат) представляет собой сложный эфир уксусной кислоты и α-токоферола.
Альфа-токоферилацетат (альфа-токоферолацетат) имеет множество предлагаемых применений, в первую очередь из-за его антиоксидантных свойств, которые, как считается, защищают клетки от свободных радикалов.


Альфа-токоферола ацетат (альфа-токоферола ацетат), также известный как ацетат витамина Е, представляет собой распространенную витаминную добавку с молекулярной формулой C31H52O3 (для формы «α»).
α-токоферилацетат (альфа-токоферолацетат) представляет собой сложный эфир уксусной кислоты и токоферола (витамина Е).


Хотя существует множество исследований потенциальных преимуществ АТ, исследования преимуществ альфа-токоферола ацетата (альфа-токоферола ацетата) ограничены.
Результаты этих исследований альфа-токоферола ацетата (альфа-токоферола ацетата) неоднозначны.
Альфа-токоферола ацетат (альфа-токоферола ацетат) обычно необходимо использовать с другими витаминами и минералами для достижения положительного эффекта.


Альфа-токоферилацетат (альфа-токоферолацетат) принадлежит к классу органических соединений, известных как соединения витамина Е.
Это группа жирорастворимых соединений, содержащих токофероловый или токотриеноловый скелет или полученных из него.
Альфа-токоферолацетат (альфа-токоферолацетат), также известный как альфа-токоферолуксусная кислота, принадлежит к классу органических соединений, известных как соединения витамина Е.


Это группа жирорастворимых соединений, содержащих токофероловый или токотриеноловый скелет или полученных из него.
Альфа-токоферола ацетат (альфа-токоферола ацетат) основан на обзоре литературы, по альфа-токоферола ацетату было опубликовано значительное количество статей.


Альфа-токоферилацетат (альфа-токоферолацетат), также известный просто как токоферилацетат, представл��ет собой синтетическую форму витамина Е, содержащуюся в пищевых добавках и средствах по уходу за кожей.
α-токоферилацетат (альфа-токоферолацетат) выглядит как грязно-белые кристаллы без запаха.


α-токоферилацетат (альфа-токоферолацетат) темнеет при 401 °F.
Ацетат альфа-токоферола (альфа-токоферолацетат) представляет собой токол.
Альфа-токоферилацетат (альфа-токоферолацетат) является основной формой витамина Е, которая преимущественно используется организмом человека для удовлетворения соответствующих диетических потребностей.


В частности, стереоизомер RRR-альфа-токоферола (или иногда называемый стереоизомером d-альфа-токоферола) считается естественным образованием альфа-токоферола и обычно демонстрирует наибольшую биодоступность из всех стереоизомеров альфа-токоферола.
Более того, RRR-альфа-токоферола ацетат представляет собой относительно стабилизированную форму альфа-токоферола ацетата (ацетат альфа-токоферола), которая чаще всего используется в качестве пищевой добавки при необходимости.


Альфа-токоферола ацетат впоследствии чаще всего назначается в качестве пищевой добавки людям, у которых может наблюдаться настоящий дефицит альфа-токоферола ацетата (альфа-токоферола ацетата).
Большинство людей получают адекватное потребление альфа-токоферола ацетата (альфа-токоферола ацетата) из своего рациона; настоящий дефицит витамина Е считается редким явлением.


Тем не менее, альфа-токоферолацетат (альфа-токоферолацетат) известен как жирорастворимый антиоксидант, обладающий способностью нейтрализовать эндогенные свободные радикалы.
Это биологическое действие α-токоферола ацетата (альфа-токоферола ацетата), следовательно, продолжает вызывать постоянный интерес и изучение того, можно ли использовать его антиоксидантные способности для предотвращения или лечения ряда различных состояний, таких как сердечно-сосудистые заболевания, заболевания глаз. , диабет, рак и многое другое.


Однако на данный момент существует недостаток официальных данных и доказательств в поддержку каких-либо дополнительных показаний к использованию альфа-токоферилацетата (альфа-токоферолацетата).
Альфа-токоферилацетат (альфа-токоферолацетат) — это натуральный продукт, обнаруженный в Senegalia catechu, Myriactis humilis и Senegalia Polyacantha, по имеющимся данным.


Альфа-токоферола ацетат (альфа-токоферола ацетат) представляет собой природный токоферол и один из самых мощных антиоксидантных токоферолов.
α-Токоферилацетат (альфа-токоферолацетат) проявляет антиоксидантную активность благодаря наличию фенольного водорода в ядре 2H-1-бензопиран-6-ола.
α-токоферилацетат (альфа-токоферолацетат) имеет четыре метильные группы в ядре 6-хроманола.


Природная d-форма α-токоферолацетата (ацетат альфа-токоферола) более активна, чем его синтетическая рацемическая смесь dl-альфа-токоферола.
Альфа-токоферилацетат (альфа-токоферолацетат) — это особая форма витамина Е, которая часто встречается в продуктах по уходу за кожей и пищевых добавках.
Альфа-токоферолацетат (альфа-токоферолацетат) также известен как токоферилацетат, ацетат токоферола или ацетат витамина Е.


Альфа-токоферилацетат (альфа-токоферолацетат) известен своими антиоксидантными свойствами.
Антиоксиданты помогают защитить организм от вредных соединений, называемых свободными радикалами.
Обычно свободные радикалы образуются, когда ваш организм преобразует пищу в энергию.


Однако свободные радикалы также могут поступать из ультрафиолетового излучения, сигаретного дыма и загрязнения воздуха.
В природе α-токоферилацетат (альфа-токоферолацетат) встречается в форме токоферила или токотриенола.
И токоферил, и токотриенол имеют четыре формы, известные как альфа, бета, гамма и дельта.


Альфа-токоферола ацетат (альфа-токоферола ацетат) является наиболее активной формой витамина Е у человека.
Альфа-токоферилацетат (альфа-токоферолацетат) более стабилен, чем АТ, а это означает, что он может лучше противостоять стрессам окружающей среды, таким как тепло, воздух и свет.
Это делает ацетат альфа-токоферола (ацетат альфа-токоферола) идеальным для использования в добавках и обогащенных продуктах, поскольку он имеет более длительный срок хранения.


Альфа-токоферол — это основная форма витамина Е, которая преимущественно используется организмом человека для удовлетворения соответствующих диетических потребностей.
В частности, стереоизомер RRR-альфа-токоферола (или иногда называемый стереоизомером d-альфа-токоферола) считается естественным образованием альфа-токоферола и обычно демонстрирует наибольшую биодоступность из всех стереоизомеров альфа-токоферола.


Альфа-токоферилацетат (альфа-токоферолацетат), также известный как ацетат витамина Е, представляет собой синтетическую форму витамина Е.
α-токоферилацетат (альфа-токоферолацетат) представляет собой сложный эфир уксусной кислоты и α-токоферола.



ИСПОЛЬЗОВАНИЕ и ПРИМЕНЕНИЕ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
Альфа-токоферола ацетат (альфа-токоферола ацетат) используется для профилактики и лечения дефицита витамина Е.
Альфа-токоферилацетат (альфа-токоферолацетат) используется в качестве компонента питательной среды для клеточных линий сетчатки.
Альфа-токоферолацетат (альфа-токоферолацетат) используется в качестве внешнего стандарта в высокоэффективной жидкостной хроматографии (ВЭЖХ) для изучения его состава в листовых овощах.


α-Токоферилацетат (альфа-токоферолацетат) используется при получении липидных наноносителей, инкапсулированных в транс-ресвератрол (R-нано).
Альфа-токоферола ацетат (альфа-токоферола ацетат) часто используется в дерматологических продуктах, таких как кремы для кожи.
α-Токоферилацетат (альфа-токоферолацетат) не окисляется и может проникать через кожу в живые клетки, где около 5% превращается в свободный токоферол.


Утверждаются полезные антиоксидантные эффекты.
Альфа-токоферолацетат (альфа-токоферолацетат) используется в качестве альтернативы самому токоферолу, поскольку фенольная гидроксильная группа блокируется, что обеспечивает менее кислый продукт с более длительным сроком хранения.


Альфа-токоферолацетат (альфа-токоферолацетат) считается, что ацетат медленно гидролизуется после впитывания в кожу, регенерируя токоферол и обеспечивая защиту от солнечных ультрафиолетовых лучей.
Хотя альфа-токоферилацетат (альфа-токоферолацетат) широко используется в качестве лекарства для местного применения с заявлениями об улучшении заживления ран и уменьшении рубцовой ткани, обзоры неоднократно приходили к выводу, что доказательств в поддержку этих утверждений недостаточно.


Имеются сообщения об аллергическом контактном дерматите, вызванном витамином Е, в результате использования производных витамина Е, таких как токофериллинолеат и α-токоферилацетат (альфа-токоферолацетат), в средствах по уходу за кожей.
Заболеваемость низкая, несмотря на широкое использование.


Косметическое применение α-токоферола ацетата (альфа-токоферола ацетата): антиоксиданты и кондиционирование кожи.
Альфа-токоферола ацетат (альфа-токоферола ацетат) считается наиболее стабильной и активной формой витамина Е и лучшим вариантом в целом для лечения дефицита витамина Е.


Альфа-токоферола ацетат (альфа-токоферола ацетат) продается для предотвращения некоторых состояний здоровья или заболеваний.
Альфа-токоферилацетат (альфа-токоферолацетат) сам по себе естественным образом содержится в различных продуктах питания, добавляется к другим или используется в коммерчески доступных продуктах в качестве пищевой добавки.


Более того, α-токоферилацетат (альфа-токоферолацетат) представляет собой относительно стабилизированную форму витамина Е, которая чаще всего используется в качестве пищевой добавки при необходимости6.
Альфа-токоферола ацетат (альфа-токоферола ацетат) впоследствии чаще всего назначается в качестве пищевой добавки людям, у которых может наблюдаться настоящий дефицит витамина Е.


Это биологическое действие α-токоферола ацетата (альфа-токоферола ацетата), следовательно, продолжает вызывать постоянный интерес и изучение того, можно ли использовать его антиоксидантные способности для предотвращения или лечения ряда различных состояний, таких как сердечно-сосудистые заболевания, заболевания глаз. , диабет, рак и многое другое.


Однако на данный момент существует недостаток официальных данных и доказательств в поддержку каких-либо дополнительных показаний к использованию альфа-токоферола ацетата (альфа-токоферола ацетата).
Альфа-токоферола ацетат (альфа-токоферола ацетат), известный своей антиоксидантной активностью, защищает от сердечно-сосудистых заболеваний и некоторых форм рака, а также продемонстрировал иммуностимулирующее действие.


Тем не менее, альфа-токоферолацетат (альфа-токоферолацетат) и��вестен как жирорастворимый антиоксидант, обладающий способностью нейтрализовать эндогенные свободные радикалы.
Альфа-токоферола ацетат (альфа-токоферола ацетат) может иметь ограниченную пользу у некоторых больных астмой и ревматоидным артритом.


Альфа-токоферола ацетат (альфа-токоферола ацетат) может быть полезен при некоторых неврологических заболеваниях, включая болезнь Альцгеймера, некоторых глазных заболеваниях, включая катаракту, а также диабете и предменструальном синдроме.
Альфа-токоферола ацетат (альфа-токоферола ацетат) также может помочь защитить кожу от ультрафиолетового облучения, хотя утверждения о том, что он обращает вспять старение кожи, повышает мужскую фертильность и физическую работоспособность, плохо подтверждаются.


Альфа-токоферола ацетат (альфа-токоферола ацетат) может помочь облегчить некоторые мышечные спазмы.
Альфа-токоферола ацетат (альфа-токоферола ацетат) часто используется в дерматологических продуктах, таких как кремы для кожи.
α-Токоферилацетат (альфа-токоферолацетат) не окисляется и может проникать через кожу в живые клетки, где около 5% превращается в свободный токоферол.


Утверждаются полезные антиоксидантные эффекты.
Альфа-токоферолацетат (альфа-токоферолацетат) используется в качестве альтернативы самому токоферолу, поскольку фенольная гидроксильная группа блокируется, что обеспечивает менее кислый продукт с более длительным сроком хранения.


Считается, что α-токоферилацетат (ацетат альфа-токоферола) после впитывания в кожу медленно гидролизуется, регенерируя токоферол и обеспечивая защиту от солнечных ультрафиолетовых лучей.
Альфа-токоферилацетат (альфа-токоферолацетат) был впервые синтезирован в 1963 году сотрудниками компании Hoffmann-La Roche.


Хотя альфа-токоферилацетат (альфа-токоферолацетат) широко используется в качестве лекарства для местного применения с заявлениями об улучшении заживления ран и уменьшении рубцовой ткани, обзоры неоднократно приходили к выводу, что доказательств в поддержку этих утверждений недостаточно.


Имеются сообщения об аллергическом контактном дерматите, вызванном витамином Е, в результате использования производных α-токоферилацетата (альфа-токоферолацетата), таких как токофериллинолеат и токоферолацетат, в средствах по уходу за кожей.
Распространенность α-токоферола ацетата (альфа-токоферола ацетата) низкая, несмотря на широкое использование.



ИСПОЛЬЗОВАНИЕ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ) В КОСМЕТИКЕ
Альфа-токоферола ацетат (альфа-токоферола ацетат) обычно используется в дерматологических продуктах, таких как кремы для кожи.
α-Токоферилацетат (альфа-токоферолацетат) не окисляется и проникает через кожу в живые клетки, где около 5% превращается в свободный токоферол.
Заявлены полезные антиоксидантные эффекты.
Альфа-токоферолацетат (альфа-токоферолацетат) используется в качестве альтернативы самому токоферолу, поскольку фенольная гидроксильная группа блокируется, в результате чего получается продукт с более низкой кислотностью и более длительным сроком хранения.
Ацетат медленно гидролизуется после впитывания в кожу и, как полагают, регенерирует токоферолы и защищает их от солнечных ультрафиолетовых лучей.
α-Токоферилацетат (альфа-токоферолацетат) был впервые синтезирован в 1963 году сотрудником компании Hoffmann-La Roche.
Альфа-токоферола ацетат (альфа-токоферола ацетат) широко используется в качестве средства местного применения, утверждая, что оно улучшает заживление ран и уменьшает рубцовую ткань, но обзоры неоднократно приходили к выводу, что доказательств в поддержку этого недостаточно.
Сообщалось об аллергическом контактном дерматите, вызванном витамином Е, когда производные витамина Е, такие как токофериллинолеат и α-токоферилацетат (альфа-токоферолацетат), использовались в средствах по уходу за кожей.
Несмотря на широкое использование альфа-токоферола ацетата (альфа-токоферола ацетата), частота его возникновения низка.



ФАРМАКОДИНАМИКА, α-ТОКОФЕРИЛАЦЕТАТ (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
α-Токоферилацетат (альфа-токоферолацетат) обладает антиоксидантной активностью.
Альфа-токоферилацетат (альфа-токоферолацетат) также может оказывать антиатерогенное, антитромботическое, антикоагулянтное, нейропротекторное, противовирусное, иммуномодулирующее, стабилизирующее клеточные мембраны и антипролиферативное действие.

Альфа-токоферолацетат (альфа-токоферолацетат) — это собирательный термин, используемый для описания восьми отдельных форм, наиболее известной формой является альфа-токоферол.
Альфа-токоферола ацетат (альфа-токоферола ацетат) представляет собой жирорастворимый витамин и важный антиоксидант.
Альфа-токоферола ацетат (альфа-токоферола ацетат) защищает клетки от воздействия свободных радикалов, которые являются потенциально вредными побочными продуктами метаболизма организма.

Альфа-токоферола ацетат (альфа-токоферола ацетат) часто используется в кремах и лосьонах для кожи, поскольку считается, что он способствует заживлению кожи и уменьшению рубцов после травм, таких как ожоги.
Существует три конкретные ситуации, когда может возникнуть дефицит альфа-токоферола ацетата (альфа-токоферола ацетата).

Альфа-токоферилацетат (альфа-токоферолацетат) наблюдается у людей, которые не могут усваивать пищевые жиры, был обнаружен у недоношенных детей с очень низкой массой тела при рождении (вес при рождении менее 1500 граммов или 3½ фунта) и наблюдается у людей с редкие нарушения жирового обмена.
Дефицит альфа-токоферола ацетата (альфа-токоферола ацетата) обычно характеризуется неврологическими проблемами из-за плохой нервной проводимости.

Симптомы могут включать бесплодие, нервно-мышечные нарушения, проблемы с менструальным циклом, выкидыш и деградацию матки.
Предварительные исследования привели к широко распространенному мнению, что α-токоферола ацетат (альфа-токоферола ацетат) может помочь предотвратить или задержать ишемическую болезнь сердца.
Антиоксиданты, такие как α-токоферилацетат (альфа-токоферолацетат), помогают защитить от разрушительного воздействия свободных радикалов, которые могут способствовать развитию хронических заболеваний, таких как рак.

Альфа-токоферола ацетат (альфа-токоферола ацетат) также защищает другие жирорастворимые витамины (витамины группы А и В) от разрушения кислородом.
Низкие уровни альфа-токоферола ацетата (альфа-токоферола ацетата) связаны с увеличением заболеваемости раком молочной железы и толстой кишки.



ХИМИЯ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
α-токоферилацетат (альфа-токоферолацетат) представляет собой жирорастворимую жидкость при комнатной температуре.
α-токоферилацетат (альфа-токоферолацетат) имеет 3 хиральных центра и, следовательно, 8 стереоизомеров.
Альфа-токоферолацетат (альфа-токоферолацетат) получают путем этерификации альфа-токоферола уксусной кислотой.

Альфа-токоферилацетат (альфа-токоферолацетат) является наиболее распространенным изомером, используемым для различных целей.
Это связано с тем, что α-токоферол в природе существует в основном как RRR-α-токоферол.
Альфа-токоферилацетат не кипит при атмосферном давлении и начинает разлагаться при 240°С.

Возможна вакуумная перегонка ацетата альфа-токоферола (ацетата альфа-токоферола).
Кипение α-токоферилацетата (альфа-токоферолацетата) происходит при 184 °C, 0,01 мм рт.ст., 194 °C (0,025 мм рт.ст.) и 224 °C (0,3 мм рт.ст.).
Фактически, α-токоферилацетат (альфа-токоферолацетат) не особенно разлагается под воздействием воздуха, видимого или ультрафиолетового света.

Показатель преломления α-токоферилацетата (альфа-токоферолацетата) при 20 °C составляет от 1,4950 до 1,4972.
Альфа-токоферилацетат (альфа-токоферолацетат) гидролизуется до альфа-токоферола и уксусной кислоты в соответствующих условиях или при приеме внутрь человеком.
α-Токоферилацетат (альфа-токоферолацетат) проявляет антиоксидантную активность благодаря наличию фенольного водорода в ядре 2H-1-бензопиран-6-ола.

α-токоферилацетат (альфа-токоферолацетат) имеет четыре метильные группы в ядре 6-хроманола.
Природная d-форма α-токоферолацетата (альфа-токоферолацетат)l более активна, чем его синтетическая рацемическая смесь dl-альфа-токоферола.



АЛЬТЕРНАТИВНЫЕ РОДИТЕЛИ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
*Дитерпеноиды
*1-бензопираны
*Алкилариловые эфиры
*Бензеноиды
*Эфиры карбоновых кислот
*Оксациклические соединения
*Монокарбоновые кислоты и производные.
*Органические оксиды
*Производные углеводородов
*Карбонильные соединения



ЗАМЕСТИТЕЛИ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
*Дитерпеноид
*Хроман
*Бензопиран
*1-бензопиран
*Алкилариловый эфир
*Бензеноид
*Эфир карбоновой кислоты
*Производное карбоновой кислоты
*Оксацикл
*Органогетероциклическое соединение.
*Эфир
*Монокарбоновая кисл��та или ее производные.
*Органическое кислородное соединение
*Органический оксид
*Производное углеводородов
*Карбонильная группа
*Кислородорганическое соединение
*Ароматическое гетерополициклическое соединение.



РЕАКЦИИ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ) В ВОЗДУХЕ И ВОДЕ:
Альфа-токоферола ацетат (альфа-токоферола ацетат) может быть чувствителен к длительному воздействию света и воздуха.
α-токоферилацетат (альфа-токоферолацетат) нерастворим в воде.



ПРОФИЛЬ РЕАКЦИОННОЙ СПОСОБНОСТИ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
α-токоферилацетат (альфа-токоферолацетат) представляет собой сложный эфир.
Эфиры реагируют с кислотами, выделяя тепло вместе со спиртами и кислотами.
Сильные окисляющие кислоты могут вызвать бурную реакцию, достаточно экзотермическую, чтобы воспламенить продукты реакции.
Тепло также выделяется при взаимодействии сложных эфиров с щелочными растворами.
Легковоспламеняющийся водород образуется при смешивании сложных эфиров с щелочными металлами и гидридами.



ПОТЕНЦИАЛЬНЫЕ ПРЕИМУЩЕСТВА α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
Использование АТ на коже, особенно с витамином С, помогает предотвратить повреждение кожи ультрафиолетом.
В обзоре исследований Институт Лайнуса Полинга при Университете штата Орегон обнаружил, что использование АТ с витамином С на коже уменьшает количество солнечных ожогов, повреждение ДНК и пигментацию кожи после воздействия ультрафиолета.

Однако АТ менее стабилен в окружающей среде, чем α-токоферилацетат (альфа-токоферолацетат), что затрудняет его хранение.
Хотя α-токоферилацетат (альфа-токоферолацетат) менее чувствителен к теплу и свету, чем АТ, в коже происходит меньшее преобразование α-токоферилацетата (альфа-токоферолацетат) в активную форму АТ.

Это связано с тем, что клетки верхнего слоя кожи гораздо менее метаболически активны.
В результате использование на коже косметических продуктов, содержащих α-токоферилацетат (ацетат альфа-токоферола), может быть не очень эффективным.
Это подтверждается исследованием 2011 года, опубликованным в журнале «Медицинские принципы и практика».

Используя несколько коммерческих продуктов по уходу за кожей, исследователи изучили превращение ацетата альфа-токоферола (ацетата альфа-токоферола) в активную форму АТ в коже живых крыс.
Они обнаружили, что, хотя после использования продукта на верхних уровнях кожи присутствовал α-токоферилацетат (альфа-токоферолацетат), активной АТ не было.



ХИМИЯ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
При комнатной температуре α-токоферилацетат (альфа-токоферолацетат) представляет собой жирорастворимую жидкость.
α-токоферилацетат (альфа-токоферолацетат) имеет 3 хиральных центра и, следовательно, 8 стереоизомеров.
Альфа-токоферолацетат (альфа-токоферолацетат) получают путем этерификации альфа-токоферола уксусной кислотой.

2R,4R,8R-изомер, также известный как α-токоферилацетат (ацетат альфа-токоферола), является наиболее распространенным изомером, используемым для различных целей.
Это связано с тем, что α-токоферилацетат (альфа-токоферолацетат) встречается в природе преимущественно как RRR-α-токоферол.
Ацетат альфа-токоферола не кипит при атмосферном давлении и начинает разлагаться при 240°С.

Альфа-токоферилацетат (альфа-токоферолацетат) можно перегонять в вакууме: он кипит при 184 °C при 0,01 мм рт.ст., при 194 °C (0,025 мм рт.ст.) и при 224 °C (0,3 мм рт.ст.).
На практике α-токоферилацетат (альфа-токоферолацетат) не подвергается заметному разложению под воздействием воздуха, видимого света или УФ-излучения.
Альфа-токоферилацетат (альфа-токоферолацетат) имеет показатель преломления 1,4950–1,4972 при 20 ° C.
α-токоферилацетат (альфа-токоферолацетат) гидролизуется до α-токоферола и уксусной кислоты в подходящих условиях или при приеме внутрь человеком.



ГДЕ Я МОГУ НАЙТИ α-ТОКОФЕРИЛАЦЕТАТ (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ)?
Косметика и добавки:
Вы найдете α-токоферилацетат (альфа-токоферолацетат) в различных средствах по уходу за кожей.
Антиоксидантные свойства α-токоферола ацетата (альфа-токоферола ацетата) могут помочь предотвратить повреждение кожи, вызванное свободными радикалами от воздействия ультрафиолета.
Альфа-токоферола ацетат (альфа-токоферола ацетат) также может оказывать противовоспалительное действие на кожу.

Благодаря своей более высокой стабильности α-токоферилацетат (альфа-токоферолацетат) также используется в пищевых добавках с витамином Е.
При пероральном приеме α-токоферилацетат (альфа-токоферолацетат) превращается в АТ в кишечнике.
Альфа-токоферола ацетат (альфа-токоферола ацетат) входит в состав большинства поливитаминов, поэтому обязательно проверьте, сколько его содержится в вашем поливитамине, если вы его принимаете, прежде чем добавлять добавку.



ПИЩЕВЫЕ ПРОДУКТЫ, α-ТОКОФЕРИЛАЦЕТАТ (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
Помимо пищевых добавок и косметических продуктов, витамин Е можно найти в следующих продуктах:
*зеленые листовые овощи, такие как брокколи и шпинат.
*масла, такие как подсолнечное масло, масло зародышей пшеницы и кукурузное масло.
*семена подсолнечника
*орехи, такие как миндаль и арахис
*цельнозерновые
*фрукты, такие как киви и манго

Альфа-токоферолацетат (альфа-токоферолацетат) также добавляется в обогащенные продукты, такие как крупы, фруктовые соки и многие спреды.
Вы можете проверить этикетки на продуктах, чтобы узнать, был ли добавлен альфа-токоферолацетат (альфа-токоферолацетат).
Если вы хотите увеличить потребление альфа-токоферола ацетата (альфа-токоферола ацетата), вам следует начать с увеличения потребления этих продуктов.




МЕХАНИЗМ ДЕЙСТВИЯ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
Хотя все формы альфа-токоферолацетата (альфа-токоферолацетата) проявляют антиоксидантную активность, известно, что антиоксидантная активность витамина Е недостаточна для объяснения биологической активности витамина.

Антиатерогенная активность альфа-токоферола ацетата (альфа-токоферола ацетата) включает ингибирование окисления ЛПНП и накопления оксЛПНП в артериальной стенке.
Альфа-токоферилацетат (альфа-токоферолацетат), по-видимому, также снижает индуцированный oxLDL апоптоз в эндотелиальных клетках человека.

Окисление ЛПНП является ключевым ранним этапом атерогенеза, поскольку оно запускает ряд событий, которые приводят к образованию атеросклеротических бляшек.
Кроме того, α-токоферилацетат (альфа-токоферолацетат) ингибирует активность протеинкиназы C (PKC).

ПКС играет роль в пролиферации гладкомышечных клеток, и, таким образом, ингибирование ПКС приводит к ингибированию пролиферации гладкомышечных клеток, которая участвует в атерогенезе.

Антитромботическое и антикоагулянтное действие α-токоферола ацетата (альфа-токоферола ацетата) включает подавление экспрессии молекулы внутриклеточной клеточной адгезии (ICAM)-1 и молекулы сосудистой клеточной адгезии (VCAM)-1, что снижает адгезию компонентов к эндотелий

Кроме того, α-токоферилацетат (альфа-токоферолацетат) усиливает экспрессию цитозольной фосфолипазы А2 и циклооксигеназы (ЦОГ)-1, что, в свою очередь, усиливает высвобождение простациклина.
Простациклин является сосудорасширяющим фактором и ингибитором агрегации и высвобождения тромбоцитов.

Альфа-токоферолацетат (альфа-токоферолацетат) также известен тем, что агрегация тромбоцитов опосредована механизмом, включающим связывание фибриногена с гликопротеиновым комплексом IIb/IIIa (GPIIb/IIIa) тромбоцитов.

GPIIb/IIIa является основным белком мембранного рецептора, который играет ключевую роль в реакции агрегации тромбоцитов.
GPIIb представляет собой альфа-субъединицу этого мембранного белка тромбоцитов.

Альфа-токоферол подавляет активность промотора GPIIb, что приводит к снижению экспрессии белка GPIIb и уменьшению агрегации тромбоцитов.
В культуре также было обнаружено, что α-токоферилацетат (альфа-токоферолацетат) снижает выработку в плазме тромбина, белка, который связывается с тромбоцитами и индуцирует агрегацию.

Метаболит α-токоферилацетата (альфа-токоферолацетат), называемый хиноном витамина Е или альфа-токоферилхиноном (TQ), является мощным антикоагулянтом.
Этот метаболит ингибирует витамин К-зависимую карбоксилазу, которая является основным ферментом каскада свертывания крови.

Нейропротекторное действие α-токоферола ацетата (альфа-токоферола ацетата) объясняется его антиоксидантным действием.
Многие расстройства нервной системы вызваны окислительным стрессом.
α-токоферилацетат (альфа-токоферолацетат) защищает от этого стресса, тем самым защищая нервную систему.

Иммуномодулирующее действие альфа-токоферола ацетата (альфа-токоферола ацетата) было продемонстрировано in vitro, где альфа-токоферол увеличивает митогенный ответ Т-лимфоцитов старых мышей.

Механизм этого ответа на α-токоферолацетат (альфа-токоферолацетат) недостаточно изучен, однако было высказано предположение, что сам витамин Е может обладать митогенной активностью, независимой от его антиоксидантной активности.

Наконец, механизм противовирусного действия α-токоферолацетата (альфа-токоферолацетата) (в первую очередь против ВИЧ-1) включает его антиоксидантную активность.

Альфа-токоферола ацетат (альфа-токоферола ацетат) снижает окислительный стресс, который, как считается, способствует патогенезу ВИЧ-1, а также патогенезу других вирусных инфекций.
Альфа-токоферола ацетат (альфа-токоферола ацетат) также влияет на целостность и текучесть мембраны, и, поскольку ВИЧ-1 представляет собой мембранный вирус, изменение текучести мембран ВИЧ-1 может влиять на его способность связываться с участками клеточных рецепторов, тем самым снижая его способность к связыванию с клеточными рецепторами. заразность



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
Химическая формула: C31H52O3.
Молярная масса: 472,743 g/mol
Внешний вид: бледно-желтая вязкая жидкость.
Температура плавления: –27,5 °C.
Точка кипения: 240 °C, разлагается без кипения.
Растворимость в воде: нерастворим.
Растворимость: растворим в ацетоне, хлороформе, диэтиловом эфире; плохо растворим в этаноле
Молекулярный вес: 472,7 г/моль
XLogP3-AA: 10,8
Количество доноров водородной связи: 0
Количество акцепторов водородной связи: 3
Количество вращающихся облигаций: 14
Точная масса: 472,39164552 г/моль.

Моноизотопная масса: 472,39164552 г/моль.
Топологическая площадь полярной поверхности: 35,5 Å ²
Количество тяжелых атомов: 34
Официальное обвинение: 0
Сложность: 602
Количество атомов изотопа: 0
Определенное количество стереоцентров атомов: 3
Неопределенное количество стереоцентров атома: 0
Определенное количество стереоцентров связи: 0
Неопределенное количество стереоцентров связи: 0
Количество единиц ковалентной связи: 1
Соединение канонизировано: Да
Формула: C31H52O3
Молекулярная масса: 472,74 г/моль.
CAS-номер. : 58-95-7
EC-номер. : 200-405-4

Физическое состояние: жидкость
Цвет: Нет данных
Запах: Нет данных
Точка плавления/точка замерзания:
Температура плавления: -28 °С.
Начальная точка кипения и диапазон кипения: 300 °C при 1,013 гПа.
Горючесть (твердого тела, газа): Данные отсутствуют.
Верхний/нижний пределы воспламеняемости или взрывоопасности: данные отсутствуют.
Температура вспышки: данные отсутствуют.
Температура самовоспламенения: Нет данных.
Температура разложения: Данные отсутствуют.
pH: данные отсутствуют
вязкость
Вязкость, кинематическая: Нет данных.
Вязкость, динамическая: 2,94 мПа·с при 25 °C.

Растворимость в воде, нерастворимый
Коэффициент распределения: н-октанол/вода:
log Pow: 12,26 при 25 °C
Давление пара: данные отсутствуют.
Плотность: 0,94–0,95 г/см3 при 20 °C.
Относительная плотность: данные отсутствуют.
Относительная плотность пара: данные отсутствуют.
Характеристики частиц: данные отсутствуют.
Взрывоопасные свойства: данные отсутствуют.
Окислительные свойства: Нет данных.
Другая информация по безопасности: данные отсутствуют.
Растворимость в воде: 2,9e-06 г/л.
журналP: 9.19
логП: 10.42
журналS: -8,2

pKa (самый сильный базовый): -4,9
Физиологический заряд: 0
Количество акцепторов водорода: 2
Количество доноров водорода: 0
Площадь полярной поверхности: 35,53 Ų
Количество вращающихся облигаций: 14
Рефракция: 144,53 м³·моль⁻¹
Поляризуемость: 60,23 ų
Количество колец: 2
Биодоступность: Нет
Правило пяти: Нет
Фильтр Гхоша: Нет
Правило Вебера: нет
Правило, подобное MDDR: Нет
Химическая формула: C31H52O3.

Название IUPAC: 2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-3,4-дигидро-2H-1-бензопиран-6-илацетат.
Идентификатор InChI: InChI=1S/C31H52O3/c1-21(2)13-10-14-22(3)15-11-16-23(4)17-12-19-31(9)20-18-28 -26(7)29(33-27(8)32)24(5)25(6)30(28)34-31/ч21-23Н,10-20Н2,1-9Н3
Ключ InChI: ZAKOWWREFLAJOT-UHFFFAOYSA-N
Изомерные УЛЫБКИ: CC(C)CCCC(C)CCCC(C)CCCC1(C)CCC2=C(C)C(OC(C)=O)=C(C)C(C)=C2O1
Средний молекулярный вес: 472,7428
Моноизотопная молекулярная масса: 472,39164553.
Молекулярный вес: 472,7 г/моль
XLogP3-AA: 10,8
Количество доноров водородной связи: 0
Количество акцепторов водородной связи: 3
Количество вращающихся облигаций: 14
Точная масса: 472,39164552 г/моль.
Моноизотопная масса: 472,39164552 г/моль.
Топологическая площадь полярной поверхности: 35,5 Å ²
Количество тяжелых атомов: 34
Официальное обвинение: 0

Сложность: 602
Количество атомов изотопа: 0
Определенное количество стереоцентров атома: 2
Неопределенное количество стереоцентров атомов: 1
Определенное количество стереоцентров связи: 0
Неопределенное количество стереоцентров связи: 0
Количество единиц ковалентной связи: 1
Соединение канонизировано: Да
Номер CB: CB5241875
Молекулярная формула: C31H52O3
Молекулярный вес: 472,74
Номер лея:MFCD00072052
Файл MOL:58-95-7.mol
Температура плавления: ~25 °C (лит.)
альфа: 3 º (c=2, в этаноле 25 ºC)

Точка кипения: 224 °C0,3 мм рт.ст.(лит.)
Плотность: 0,953 г/мл при 25 °C (лит.)
показатель преломления: n20/D 1,496(лит.)
Температура вспышки: >230 °F
температура хранения: комнатная температура
растворимость: Практически нерастворим в воде, легко растворим в ацетоне,
в безводном этаноле и в жирных маслах, растворимых в этаноле (96 процентов).
форма: масло или полутвердое
цвет: желтый
Запах: кристалл., без запаха
Растворимость в воде: <0,1 г/100 мл при 17 ºC.
Мерк: 14,9495
Стабильность: Стабильная.
Несовместим с сильными окислителями.

LogP: 12,260 (оценка)
Справочник по базе данных CAS 58-95-7 (Справочник по базе данных CAS)
FDA 21 CFR: 182.8892
Вещества, добавляемые в пищу (ранее EAFUS): АЛЬФА-ТОКОФЕРОЛАЦЕТАТ
SCOGS (Специальный комитет по веществам GRAS): альфа-токоферола ацетат.
FDA UNII: A7E6112E4N
Справочник по химии NIST: ацетат витамина Е (58-95-7)
Система регистрации веществ EPA: D-альфа-токоферилацетат (58-95-7)
Молекулярная форма: C31H52O3 .
Внешний вид: от светло-желтого маслянистого до почти белого легкоплавкого твердого вещества.
Крот. Вес: 430,71
Хранение: Холодильник при температуре 2–8°C.
Условия доставки: окружающая среда
Приложения: нет данных



МЕРЫ ПЕРВОЙ ПОМОЩИ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
-Описание мер первой помощи:
*При вдыхании:
После ингаляции:
Свежий воздух.
*При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промойте кожу водой/душем.
*В случае зрительного контакта:
После зрительного контакта:
Промойте большим количеством воды.
Снимите контактные линзы.
*При проглатывании:
После глотания:
Заставьте пострадавшего выпить воды (максимум два стакана).
При плохом самочувствии обратитесь к врачу.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Соблюдайте возможные ограничения по материалам
Собрать материалом, впитывающим жидкость.
Утилизируйте должным образом.
Очистите пораженный участок.



МЕРЫ ПОЖАРОТУШЕНИЯ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Углекислый газ (CO2)
мыло
сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дальнейшая информация:
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
безопасные очки
*Защита кожи:
Полный контакт:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Всплеск контакта:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
*Защита органов дыхания:
Не требуется.
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ С α-ТОКОФЕРИЛАЦЕТАТОМ (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
* Стабильность хранения:
Рекомендуемая температура хранения: 2–8 °C.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ α-ТОКОФЕРИЛАЦЕТАТА (АЛЬФА-ТОКОФЕРОЛАЦЕТАТ):
-Реактивность:
Данные недоступны
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура).
-Условия, чтобы избежать:
Нет доступной информации



СИНОНИМЫ:
(2R)-2,5,7,8-Тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-3,4-��игидро-2H-1-бензопиран-6-илацетат
α-токоферола ацетат
Витамин Е ацетат
Витамин Е ацетат
альфа-токоферола ацетат
58-95-7
Токоферола ацетат
Альфакол
D-альфа-токоферола ацетат
D-АЛЬФА-ТОКОФЕРИЛ АЦЕТАТ
экофрол
Контоферон
Тофаксин
экономика
Эфинал ацетат
(+)-альфа-токоферола ацетат
Токоферола ацетат
Эвиферол
токоферекс
Токофрин
Эревит
Витамин Е ацетат
альфа-токоферола ацетат
58-95-7
Токоферола ацетат
Альфакол
Токоферилацетат
D-альфа-токоферола ацетат
D-АЛЬФА-ТОКОФЕРИЛ АЦЕТАТ
экофрол
Контоферон
Тофаксин
экономика
Эфинал ацетат
Токоферола ацетат
Эвиферол
Фертилвит
токоферекс
Токофрин
Эревит
гевекс
Токоферилацетат
Комбинация Е
Эпсилан-М
Э-Топлекс
Э-Ферол
Эндо Э Домпе
Спондивит
альфа-токоферилацетат
Коферол 1250
Ковитол 1100
Ковитол 1360
Витамин Е-альфа ацетат
Витамин Е ацетат, d-
нанотопы
гевекс
(+)-альфа-токоферола ацетат
Комбинация Е
Эпсилан-М
Э-Топлекс
Э-Ферол
Эндо Э Домпе
Эфинал
Спондивит
ювела
альфа-токоферилацетат
Коферол 1250
Ковитол 1100
Ковитол 1360
Витамин Е-альфа ацетат
Витамин Е ацетат, d-
нанотопы
Симмёнсенгмосу
НАТАК
Тинодерм Э
Натур-Э гранулят
DL-альфа-токоферилацетат
Лутавит Е 50
(+)-альфа-токоферилацетат
ССРИС 4389
(R,R,R)-альфа-токоферилацетат
C31H52O3
ЭИНЭКС 200-405-4
UNII-A7E6112E4N
(+-)-альфа-токоферола ацетат
52225-20-4
D-альфа-токоферилацетат
альфа-токоферола ацетат, все рац
(2R,4'R,8'R)-альфа-токоферилацетат
A7E6112E4N
DL-альфа-токоферилацетат
d-альфа-токоферилацетат
альфа-токоферола ацетат
альфа-токоферола ацетат, (2R,4'R,8'R)-
ЭИНЭКС 231-710-0
MFCD00072052
RRR-альфа-токоферилацетат
(+)-альфа-токоферола ацетат
альфа-токоферилацетат, D-
D-альфа-токоферола ацетат
Токоферилацетат, D-альфа-
Витамин Е ацетат (D-форма)
UNII-9E8X80D2L0
Вектан (Теннесси)
БРН 0097512
ССРИС 6054
54-22-8
Симмёнсенгмосу
НАТАК
Тинодерм Э
Фертилвит
Натур-Э гранулят
DL-альфа-токоферилацетат
Лутавит Е 50
Эфинал
ювела
(+)-альфа-токоферилацетат
ССРИС 4389
(R,R,R)-альфа-токоферилацетат
ЭИНЭКС 200-405-4
UNII-A7E6112E4N
52225-20-4
D-альфа-токоферилацетат
(2R,4'R,8'R)-альфа-токоферилацетат
A7E6112E4N
DL-альфа-токоферилацетат
d-альфа-токоферилацетат
альфа-токоферола ацетат, (2R,4'R,8'R)-
RRR-альфа-токоферилацетат
(+)-альфа-токоферола ацетат
альфа-токоферилацетат, D-
54-22-8
DTXSID1031096
ЧЕБИ:32321
9Е8Х80Д2Л0
D-|A-токоферола ацетат
Токоферолацетат, альфа-
DL-альфа-токоферилацетат
ЭИНЭКС 257-757-7
MFCD00072042
Т-3376
d-витамин Е ацетат
Токоферола ацетат [ЯНВАРЬ]
альфа-токоферилацетат
Токоферола ацетат (JP17)
Токоферилацетат, d-альфа
ХЕМБЛ1047
NCGC00166253-02
СХЕМБЛ22298
2,5,7,8-Тетраметил-2-(4,8,12-триметилтридецил)-6-кроманилацетат, (+)-
6-хроманол, 2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (+)-
6-кроманол, 2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (+)-
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат
MLS001335985
MLS001335986
DTXCID601356
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (2R-(2*(4R* ) ,8R*)))-
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, [2R-[2R*(4R* ,8R*)]]-
3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-1-бензопиран-6-илацетат, (2R-(2*(4R*,8R) ) *)))-
DTXSID3021356
(+)-альфа-токоферола ацетат
(+)-альфа-токоферилацетат
DL-альфа-токоферилацетат (ацетат витамина Е)
ЭК 231-710-0
Синтоферола ацетат
ХМС2230C20
5-17-04-00169 (Справочник Beilstein)
Tox21_111491
Tox21_111564
Tox21_113467
Tox21_303444
АЛЬФА-ТОКОФЕРОЛАЦЕТАТ, D-
АЛЬФА-ТОКОФЕРОЛАЦЕТАТ. Д-
ЛС-245
Ровимикс Е 50SD
(R,R,R)-альфа-токоферилацетат
3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-бензопиран-6-илацетат
АКОС025117621
НСК 755840
НСК-755840
Tox21_113467_1
[(2R)-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-3,4-дигидрохромен-6-ил]ацетат
1406-70-8
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-((4R,8R)-4,8,12-триметилтридецил)-, ацетат, (2R) -
АЛЬФА-ТОКОФЕРОЛАЦЕТАТ, D-
КАС-58-95-7
NCGC00095255-08
NCGC00166253-01
NCGC00257504-01
DL-токоферола ацетат
АС-13784
J24.807J
LS-39402
LS-53371
DTXSID1031096
ЧЕБИ:32321
9Е8Х80Д2Л0
D-|A-токоферола ацетат
Т-3376
d-витамин Е ацетат
Токоферилацетат, d-альфа
NCGC00166253-02
2,5,7,8-Тетраметил-2-(4,8,12-триметилтридецил)-6-кроманилацетат, (+)-
6-хроманол, 2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (+)-
6-кроманол, 2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (+)-
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат
DTXCID601356
альфа-токоферола ацетат, все рац
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (2R-(2*(4R* ) ,8R*)))-
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, [2R-[2R*(4R* ,8R*)]]-
3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-1-бензопиран-6-илацетат, (2R-(2*(4R*,8R) ) *)))-
DTXSID3021356
DL-альфа-токоферилацетат (ацетат витамина Е)
D-альфа-токоферола ацетат
АЛЬФА-ТОКОФЕРОЛАЦЕТАТ, D-
АЛЬФА-ТОКОФЕРОЛАЦЕТАТ. Д-
Вектан (Теннесси)
НСК 755840
НСК-755840
SMR000857327
КАС-52225-20-4
О-ацетил-альфа-токоферол
(2R,4'R,8'R)-альфа-токоферилацетат
DL-альфа-токоферола ацетат, >=96% (ВЭЖХ)
Витамин Е ацетат dl-формы
6-хроманол, 2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат
C13202
D01735
DL-альфа-токоферола ацетат, аналитический стандарт
[(2R)-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]хроман-6-ил]ацетат
3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-b-энзопиран-6-ол, ацетат
d,l-альфа-токоферилацетат
Эусовит
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-((4R,8R)-4,8,12-триметилтридецил)-,6-ацетат, ( 2Р)-
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-((4R,8R)-4,8,12-триметилтридецил)-, ацетат, (2R) -rel-
D-альфа-токоферилацетат
Альфа-токоферола ацетат, дл-
Q-201933
ацетат витамина Е, (2R-(2R*(4R*,8R*)))-изомер
W-109259
ECA8C22F-B5D3-4B88-A9B7-AF6C600001BB
ацетат витамина Е, ((2R*(4R*,8R*))-(+-))-изомер
Ацетат DL-альфа-токоферола, протестирован в соответствии с Ph.Eur.
DTXCID60196594
ОптоВит Е
СинАК
Ровимикс Е 50
Альфа-токоферилацетат, эталонный стандарт Фармакопеи США (USP)
альфа-токоферола ацетат, эталонный стандарт Европейской Фармакопеи (EP)
Ацетат DL-альфа-токоферола, сертифицированный эталонный материал, TraceCERT(R)
DL-альфа-токоферилацетат (ацетат витамина Е) 10 мкг/мл в ацетонитриле
(+)-альфа-токоферола ацетат, биореагент, подходит для культуры клеток насекомых, ~ 1360 МЕ/г
(R)-2,5,7,8-тетраметил-2-((4R,8R)-4,8,12-триметилтридецил)хроман-6-илацетат
2,5,7,8-Тетраметил-2-(4,8,12-триметилтридецил)-3,4-дигидро-2H-хромен-6-илацетат #
Токоферилацетат, фармацевтический вторичный стандарт; Сертифицированный эталонный материал
(2R)-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-3,4-дигидро-2H-1-бензопиран-6-илацетат
(2R)-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-3,4-дигидро-2H-хромен-6-илацетат
(2R*(4R*,8R*))-(1)-3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-бензопиран-6- илацетат
[2R-[2R*(4R,8R*)]]-3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-1-бензопиран-6 -ол ацетат
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-,6-ацетат
2H-1-бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат,
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (2R-(2R*(4R* ,8R*)))-
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат,(2R*(4R*,8R* ))-(+-)-
All-rac-альфа-токоферилацетат для идентификации пиков, эталонный стандарт Европейской Фармакопеи (EP)
Токоферилацетат, альфа
Альфа-токоферилацетат
D-АЛЬФА ТОКОФЕРИЛАЦЕТАТ (МАРТ.)
D-АЛЬФА ТОКОФЕРИЛАЦЕТАТ [МАРТ.]
UNII-WR1WPI7EW8
Коферол 12250
d-|ATокоферил ацетат
[(2R)-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-3,4-дигидрохромен-6-ил]ацетат
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-((4R,8R)-4,8,12-триметилтридецил)-, ацетат, (2R) -
DL-токоферола ацетат
J24.807J
SMR000857327
КАС-52225-20-4
MFCD00072042
альфа-токоферилацетат
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-((4R,8R)-4,8,12-триметилтридецил)-,6-ацетат, ( 2Р)-
D-альфа-токоферилацетат
(+)-альфа-токоферола ацетат
(+)-альфа-токоферилацетат
DTXCID60196594
(R,R,R)-альфа-токоферилацетат
DL-альфа-токоферилацетат (ацетат витамина Е) 10 мкг/мл в ацетонитриле
(R)-2,5,7,8-тетраметил-2-((4R,8R)-4,8,12-триметилтридецил)хроман-6-илацетат
ЭИНЭКС 231-710-0
MFCD00072052
(2R)-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-3,4-дигидро-2H-1-бензопиран-6-илацетат
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (2R-(2R*(4R* ,8R*)))-
Токоферилацетат, альфа
Витамин Е ацетат (D-форма)
Токоферилацетат, D-альфа-
Альфа-токоферилацетат
D-АЛЬФА ТОКОФЕРИЛАЦЕТАТ (МАРТ.)
D-АЛЬФА ТОКОФЕРИЛАЦЕТАТ [МАРТ.]
UNII-9E8X80D2L0
БРН 0097512
О-ацетил-|А-токоферол
альфа-токоферилис ацетас
AC1L3BMH
DL-|A-токоферилацетат
альфа-токоферола ацетат, дл-
AC1Q1PB2
(+)-|A-токоферола ацетат
(+)-|A-токоферилацетат
all-rac-|A-токоферилацетат
DL-АЛЬФА-ТОКОФЕРОЛацетат
C31-H52-O3
(R,R,R)-|A-токоферилацетат
(2R,4'R,8'R)-альфа-токоферола ацетат
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-, ацетат, (2R) -
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-, ацетат, (2R) -rel-
Токоферол, ацетат
ацетат, токоферол
ЦИНК4172337
альфа-токоферилацетат
FT-0624407
альфа-токоферилацетат
D-токоферола ацетат
(2R,4'R,8'R)-|A-токоферола ацетат
(2R,4'R,8'R)-|A-токоферилацетат
СК-16401
СК-18242
альфа-токоферола ацетат
DSSTox_CID_1356
d альфа-токоферилацетат
DL-альфа-токоферола ацетат, 50% порошок.
J10308
DL-альфа-токоферола ацетат, класс EP/USP/FCC
DSSTox_RID_76104
DSSTox_RID_78863
DSSTox_GSID_21356
DSSTox_GSID_31096
Ацетат витамина Е (без маркировки)
ВИТАМИН Е АЛЬФА-АЦЕТАТ
(+)- альфа-токоферола ацетат
ТОКОФЕРИЛАЦЕТАТ, D-АЛЬФА
D-альфа-токоферилацетат, 97%
МолПорт-003-928-528
DL-альфа-токоферилацетат, 98%
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат
3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-бензопиран-6-илацетат
HY-B1278
ТОКОФЕРИЛАЦЕТАТ [ВОЗ-DD]
Ацетат витамина Е, неуточненная форма
ТОКОФЕРИЛАЦЕТАТ, альфа, D-
с3681
Витамин Е (альфа-токоферола ацетат)
2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-6-хроманол ацетат
CCG-269474
CS-O-00415
ДБ14002
АЛЬФА-ТОКОФЕРОЛАЦЕТАТ. Д-
Эфир (+-)-альфа-токоферола ацетатной кислоты
.АЛЬФА.-ТОКОФЕРОЛАЦЕТАТ [MI]
ТОКОФЕРИЛАЦЕТАТ, .АЛЬФА., D-
(2R)-3,4-Дигидро-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-2H-1-бензопиран-6-ол 6-ацетат
[2R*(4R*,8R*)]-()-3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-бензопиран-6-ил ацетат
133-80-2
2H-1-Бензопиран-6-ол,3,4-дигидро-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-,6-ацетат, ( 2Р)-
АК176402
all-rac-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-3,4-дигидро-2H-1-бензопиран-6-илацетат
АЛЬФА-ТОКОФЕРИЛАЦЕТАТ (USP-RS)
РРР-АЛЬФА-ТОКОФЕРИЛАЦЕТАТ [FCC]
ТОКОФЕРИЛАЦЕТАТ, D-АЛЬФА [VANDF]
CS-0013056
Т2322
ВИТАМИН Е (АЛЬФА-ТОКОФЕРИЛ АЦЕТАТ)
А11606
Д70796
альфа-ТОКОФЕРОЛАЦЕТАТ, НЕУКАЗАННАЯ ФОРМА
EN300-7398027
А865381
Q364160
Z2681891483
(2R,4'R,8'R)-альфа-токоферилацетат
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-((4R,8R)-4,8,12-триметилтридецил)-, ацетат, (2R) -rel-
Токоферолацетат, альфа-
Токоферола ацетат [ЯНВАРЬ]
Токоферола ацетат (JP17)
ХЕМБЛ1047
СХЕМБЛ22298
MLS001335985
MLS001335986
DL-АЛЬФА-ТОКОФЕРОЛацетат
2,5,7,8-Тетраметил-2-(4,8,12-триметилтридецил)-3,4-дигидро-2H-хромен-6-илацетат #
ЭК 231-710-0
ХМС2230C20
(2R,4'R,8'R)-альфа-токоферола ацетат
[2R-[2R*(4R,8R*)]]-3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-1-бензопиран-6 -ол ацетат
5-17-04-00169 (Справочник Beilstein)
ацетат, токоферол
Tox21_111491
Tox21_111564
Tox21_113467
Tox21_303444
3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-бензопиран-6-илацетат
АКОС025117621
Tox21_113467_1
D-токоферола ацетат
АЛЬФА-ТОКОФЕРОЛАЦЕТАТ, D-
КАС-58-95-7
NCGC00095255-08
NCGC00166253-01
NCGC00257504-01
АС-13784
альфа-токоферола ацетат
d альфа-токоферилацетат
DL-альфа-токоферола ацетат, >=96% (ВЭЖХ)
6-хроманол, 2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат
D01735
DL-альфа-токоферола ацетат, аналитический стандарт
[(2R)-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]хроман-6-ил]ацетат
3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-b-энзопиран-6-ол, ацетат
Q-201933
Ацетат витамина Е (без маркировки)
W-109259
ВИТАМИН Е АЛЬФА-АЦЕТАТ
ECA8C22F-B5D3-4B88-A9B7-AF6C600001BB
(+)- альфа-токоферола ацетат
Ацетат DL-альфа-токоферола, протестирован в соответствии с Ph.Eur.
ТОКОФЕРИЛАЦЕТАТ, D-АЛЬФА
HY-B1278
ТОКОФЕРИЛАЦЕТАТ [ВОЗ-DD]
Ацетат витамина Е, неуточненная форма
ТОКОФЕРИЛАЦЕТАТ, альфа, D-
с3681
Витамин Е (альфа-токоферола ацетат)
Альфа-токоферилацетат, эталонный стандарт Фармакопеи США (USP)
альфа-токоферола ацетат, эталонный стандарт Европейской Фармакопеи (EP)
Ацетат DL-альфа-токоферола, сертифицированный эталонный материал, TraceCERT(R)
CCG-269474
ДБ14002
(+)-альфа-токоферола ацетат, биореагент, подходит для культуры клеток насекомых, ~ 1360 МЕ/г
АЛЬФА-ТОКОФЕРОЛАЦЕТАТ. Д-
Токоферилацетат, фармацевтический вторичный стандарт; Сертифицированный эталонный материал
.АЛЬФА.-ТОКОФЕРОЛАЦЕТАТ [MI]
ТОКОФЕРИЛАЦЕТАТ, .АЛЬФА., D-
(2R)-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-3,4-дигидро-2H-хромен-6-илацетат
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-,6-ацетат
All-rac-альфа-токоферилацетат для идентификации пиков, эталонный стандарт Европейской Фармакопеи (EP)
АЛЬФА-ТОКОФЕРИЛАЦЕТАТ (USP-RS)
РРР-АЛЬФА-ТОКОФЕРИЛАЦЕТАТ [FCC]
ТОКОФЕРИЛАЦЕТАТ, D-АЛЬФА [VANDF]
CS-0013056
Т2322
ВИТАМИН Е (АЛЬФА-ТОКОФЕРИЛ АЦЕТАТ)
А11606
Д70796
альфа-ТОКОФЕРОЛАЦЕТАТ, НЕУКАЗАННАЯ ФОРМА
EN300-7398027
А865381
Q364160
Z2681891483
Ацетат витамина Е (диметил-13С2, ацетил-13С2, 99%; диметил-D6, 98%)
(+)-2,5,7,8-ТЕТРАМЕТИЛ-2-(4,8,12-ТРИМЕТИЛТРИДЕЦИЛ)-6-ХРОМАНОЛАЦЕТАТ
(2R-(2R*(4R*,8R*)))-3,4-ДИГИДРО-2,5,7,8-ТЕТРАМЕТИЛ-2-(4,8,12-ТРИМЕТИЛТРИ-ДЕЦИЛ)-2H-1- БЕНЗОПИРАН-6-ОЛ АЦЕТАТ
2H-1-Бензопиран-6-ол,3,4-дигидро-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-,ацетат, (2R) -
Компонент UNII-WR1WPI7EW8 ZAKOWWREFLAJOT-CEFNRUSXSA-N
Ацетат витамина Е (диметил-13С2, ацетил-13С2, 99%; диметил-D6, 98%)
(+)-2,5,7,8-ТЕТРАМЕТИЛ-2-(4,8,12-ТРИМЕТИЛТРИДЕЦИЛ)-6-ХРОМАНОЛАЦЕТАТ
(2R-(2R*(4R*,8R*)))-3,4-ДИГИДРО-2,5,7,8-ТЕТРАМЕТИЛ-2-(4,8,12-ТРИМЕТИЛТРИ-ДЕЦИЛ)-2H-1- БЕНЗОПИРАН-6-ОЛ АЦЕТАТ
[2R*(4R*,8R*)]-(+-)-3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-бензопиран-6 -илацетат
12741-00-3
1407-18-7
26243-95-8
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-,6-ацетато, ( 2R)-отн-
2H-1-бензопирано-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-,6-ацетат, ( 2Р)-
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, [2R-[2R(4R,8R) )]]-
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, [2R*(4R*,8R* )]-
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, [2R*(4R*,8R* )]-(.+.)-
2H-1-Бензопиран-6-ол,3,4-дигидро-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-,ацетат, (2R) -
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, [2R-[2R*(4R* ,8R*)]]-
ацетат витамина Е; 6-хроманол, 2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (+)-
α-токоферола ацетат
(+)-α-токоферола ацетат
(+)-α-токоферилацетат
D-α-токоферола ацетат
D-α-токоферилацетат
Альфакол
Комбинация Е
Контоферон
Э-Ферол
Э-Топлекс
экофрол
экономика
Эндо Э Домпе
Эфинал ацетат
Эпсилан-М
Эревит
Эвиферол
Фертилвит
гевекс
ювела
токоферекс
Токофрин
Тофаксин
Токоферола ацетат
[2R-[2R*(4R,8R*)]]-3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-1-бензопиран-6 -ол ацетат
d-витамин Е ацетат
Э-викотрат
Спондивит
(2R,4'R,8'R)-α-токоферилацетат
(R,R,R)-α-токоферилацетат
Коферол 1250
Ковитол 1100
Ковитол 1360
Токоферилацетат
Витамин Е-альфа ацетат
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат
Витамин Е ацетат
dl-α-токоферилацетат
(+)-альфа-Токоферол, О-ацетил-
(+)-α-токоферола ацетат
2,5,7,8-Тетраметил-2-(4,8,12-триметилтридецил)-3,4-дигидро-2Н-хромен-6-илацетат
3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-бензопиран-6-илацетат
(+)-альфа-токоферола ацетат
(+)-альфа-токоферилацетат
(+)-альфа-токоферола ацетат
(+)-альфа-токоферола ацетат
(+)-альфа-токоферилацетат
(+)-альфа-токоферилацетат
(+)-α-токоферола ацетат
(+)-α-токоферилацетат
(+-)-альфа-токоферола ацетат
(+-)-альфа-токоферола ацетат
альфа-токоферола ацетат
альфа-токоферол уксусная кислота
альфа-токоферол уксусная кислота
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, [2R-[2R*(4R* ,8R*)]]-
ацетат витамина Е; 6-хроманол, 2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (+)-
α-токоферола ацетат
(+)-α-токоферола ацетат
(+)-α-токоферилацетат
D-α-токоферола ацетат
D-α-токоферилацетат
Альфакол
Комбинация Е
Контоферон
Э-Ферол
Э-Топлекс
экофрол
экономика
Эндо Э Домпе
Эфинал ацетат
Эпсилан-М
Эревит
Эвиферол
Фертилвит
гевекс
ювела
токоферекс
Токофрин
Тофаксин; Токоферола ацетат
[2R-[2R*(4R,8R*)]]-3,4-Дигидро-2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-2H-1-бензопиран-6 -ол ацетат
d-витамин Е ацетат
Э-викотрат
Спондивит
(2R,4'R,8'R)-α-токоферилацетат
(R,R,R)-α-токоферилацетат
Коферол 1250
Ковитол 1100
Ковитол 1360
Токоферилацетат
Витамин Е-альфа ацетат
(+)-альфа-токоферола ацетат
(+)-альфа-токоферилацетат
(+)-альфа-токоферола ацетат
(+)-альфа-токоферола ацетат
(+)-альфа-токоферилацетат
(+)-альфа-токоферилацетат
(+)-α-токоферола ацетат
(+)-α-токоферилацетат
(+-)-альфа-токоферола ацетат
(+-)-альфа-токоферола ацетат
альфа-токоферола ацетат
Токоферилацетат
Токоферилацетат, альфа
Альфа-токоферилацетат
Токоферил
Джин витамин е
Унивит-е ацетат
О-ацетил-токоферол
Коферол 1250c
Аэк токоферилацетат
Ковитол 1100с
ЧЕМБЛ3989859
2,5,7,8-Тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]хроман-6-ол ацетат
[2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-3,4-дигидрохромен-6-ил]ацетат
D-α-токоферилацетат
D-АЛЬФА-ТОКОФЕРОЛАЦЕТАТ
Эвиферол;dl-альфа-токоферил
α-токоферола ацетат
ДА-ТОКОФЕРИЛАЦЕТАТ
D-α-токоферола ацетат
D-альфа-токоферилацетат, 98%
экономика
гевекс
α-токоферола ацетат
(2R)-2,5,7,8-Тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-3,4-дигидро-2H-1-бензопиран-6-илацетат
(R)-2,5,7,8-тетраметил-2-((4R,8R)-4,8,12-триметилтридецил)хроман-6-илацетат
(2R)-3,4-Дигидро-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-2H-1-бензопиран-6-ол 6-ацетат
Эфинал ацетат
(+)-α-токоферола ацетат
(+)-α-токоферилацетат
2H-1-Бензопиран-6-ол, 3,4-дигидро-2,5,7,8-тетраметил-2-[(4R,8R)-4,8,12-триметилтридецил]-,6-ацетат, ( 2Р)
ацетат витамина Е; D-альфа-токоферилацетат
Да-токоферола ацетат
(R,R,R)-а-токоферилацетат
d-витамин Е ацетат
6-хроманол, 2,5,7,8-тетраметил-2-(4,8,12-триметилтридецил)-, ацетат, (+)-


АДДОВАТЕ 3240
Addovate 3240 обычно используется в сочетании с Addovate SM и, при необходимости, Addovate LM.
Addovate 3240 используется для улучшения смешивания и гомогенизации компонентов реакции при производстве пенопласта, обеспечивая однородную ячеистую структуру и предотвращая дефекты.
Addovate 3240 - это неионогенный диспергатор и эмульгатор, используемый в производстве эластичной пены на основе полиэстера.

Номер CAS: 1344-28-1
Номер EINECS: 215-691-6

Синонимы: Абрамант, Компалокс, Фазертон, Мартоксин, Пораминар, Абрамакс, Абразит, Алмит, Алоксит, Алундум, Конопал, Диадур, Лукалокс, Саффи, дельта глинозема, Дюраль, Алюминиевое озеро, Диспал глинозем, Тета глинозем, Эта-глинозем, Катапал С, Джубенон Р, Микрогрит WCA, Необид С, Алюмит (оксид), Диспал М, Кетчен Б, Каб-О-Грип, Фибра FP, Людокс CL, Алюминит 37, Алон С, Катапал SB глинозем, Алунд 600, Дотмент 324

Addovate 3240 используется в сочетании с Addovate SM и, при необходимости, Addovate LM (предотвращает обесцвечивание сердцевины).
Addovate 3240 приведет к ухудшению твердости при сжатии.
Недостаточная дозировка Addovate 3240 приводит к плохой гомогенизации каталитической смеси, что приводит к серьезным повреждениям клеточной структуры.

Addovate 3240 используется в сочетании с любым другим эмульгатором или добавкой, желательно провести проверку на совместимость в лаборатории перед обработкой, в противном случае несовместимость может привести к повреждениям клеточной структуры.
Addovate 3240 - это неионогенный диспергатор и эмульгатор, используемый в производстве эластичной пены на основе полиэстера.
Addovate 3240 помогает эмульгировать воду, парафиновое масло и нерастворимые в воде катализаторы в полиэфирполиолах.

Этот эмульгатор используется для обеспечения однородной смеси компонентов, что имеет решающее значение для производства высококачественной пены с однородной ячеистой структурой.
Облегчает смешивание воды, парафинового масла и катализаторов в полиэфирполиолах.
Производство полиэфирной пены Slabstock: Используется в производстве эластичной пенопласта Slabstock с TDI (Толуол Диизоцианат) 65.

Комбинация с другими добавками: Часто используется вместе с Addovate SM и, при необходимости, Addovate LM для предотвращения обесцвечивания сердцевины и поддержания желаемых свойств пены.
Аддоват 3240 добавляют к 100.б.л. полиэфирполиола.
Чрезмерная дозировка (> 4,0.б.т.) может привести к снижению жесткости сжатия, в то время как недостаточная дозировка может привести к плохой гомогенизации и повреждению клеточной структуры.

Addovate 3240 является продуктом компании Lanxess, специализирующейся на химическом производстве.
В основном используется в производстве эластичного пенопласта на основе полиэстера.

Addovate 3240 эмульгирует воду, парафиновое масло и нерастворимые в воде катализаторы в полиэфирполиолах.
Addovate 3240 широко используется в производстве эластичного полиэфирного пенопласта.
Этот тип пены обычно используется в различных областях, таких как мебель, матрасы, автомобильные сиденья и упаковочные материалы.

Addovate 3240 играет важную роль в эмульгировании нерастворимых в воде катализаторов, таких как Addocat DB, обеспечивая равномерное распределение этих катализаторов в пенной матрице.
Обеспечивая однородную смесь, Addovate 3240 помогает в производстве пены с однородной ячеистой структурой, что приводит к постоянным физическим свойствам по всей пене.
Надлежащая эмульгация компонентов снижает количество проблем и дефектов при обработке, что приводит к повышению эффективности производства и сокращению отходов.

Совместим с различными полиэфирными полиолами и может быть отрегулирован в сочетании с другими добавками в соответствии с конкретными требованиями к обработке и продукту.
Обычно выпускается в жидкой форме для удобства смешивания и обработки.

Утилизируйте в соответствии с местными, региональными и национальными нормами, как указано в MSDS.
Необходим для обеспечения однородной клеточной структуры и стабильных физических свойств пены.
Обеспечивает равномерное распределение нерастворимых в воде катализаторов, что имеет решающее значение для качества пены.

Уменьшает количество проблем и дефектов обработки, что приводит к повышению эффективности производства и сокращению отходов.
Предоставляет техническую поддержку, чтобы помочь клиентам оптимизировать рецептуры и решить проблемы обработки.
Производится в соответствии со строгими стандартами контроля качества для обеспечения стабильных эксплуатационных характеристик продукта.

Подробно описано в Addovate 3240, включая потенциальную опасность для окружающей среды и безопасные методы утилизации.
Соответствует соответствующим отраслевым стандартам и нормам, задокументированным в MSDS и TDS.
Доступно через Addovate 3240 и у авторизованных дистрибьюторов.

Это обеспечивает однородную и однородную смесь, что имеет решающее значение для производства пены с однородными свойствами.
Подходит для полиэфирполиолов со значением OH около 60 мг KOH/г.

Помогает достичь стабильной структуры пены, предотвращая появление дефектов, которые могут возникнуть из-за плохой эмульгации.
Как правило, 1,0 - 2,0 весовых частей (p.b.w.) Addovate 3240 добавляют к 100 p.b.w. полиэфирполиола.
Добавление более 4,0.б.в. может привести к снижению прочности пены на сжатие.

Недостаточное количество может привести к плохой гомогенизации каталитической смеси, что приведет к серьезному повреждению ячеистой структуры пены.
Часто используется с Addovate SM и, при необходимости, Addovate LM для предотвращения обесцвечивания сердцевины и повышения стабильности пены.
Если силиконовый стабилизатор недостаточно эмульгирует Addocat DB (катализатор), рекомендуется добавить 0,5 - 1,0 p.b.w. Addovate 3240.

Правильная дозировка и условия смешивания имеют решающее значение для достижения желаемых свойств пены и предотвращения дефектов.
Addovate 3240 производится Lanxess, глобальной компанией по производству специальной химии, которая предлагает широкий ассортимент химической продукции для различных отраслей промышленности.
В компании Lanxess можно получить подробные технические паспорта (TDS) и паспорта безопасности материалов (MSDS), которые содержат исчерпывающую информацию о свойствах продукта, его обращении и безопасности.

Addovate 3240 является сильным эмульгатором и диспергатором, предотвращает дефекты клеточной структуры.
Addovate 3240 действует как диспергатор и эмульгатор для производства эластичной пенопласта на основе полиэстера.
Как правило, 1,0 - 2,0.б.л. аддовата 3240 следует добавлять к 100.б.л. полиэфирполиола.

Addovate 3240 является неионогенным эмульгатором.
Чрезмерная дозировка (> 4,0 p.b.w.) приведет к ухудшению прочности сжатия.
Недостаточная дозировка приводит к образованию плохо гомогенизированной каталитической смеси, что приводит к серьезным повреждениям клеточной структуры.

Addovate 3240 имеет срок годности 12 месяцев.
Addovate 3240 является диспергатором и эмульгатором для производства эластичной пенопласта на основе полиэстера.
Addovate 3240 является эмульгатором для воды, парафинового масла и нерастворимых в воде катализаторов (например, Addocat DB) в полиэфирполиолах с OH-значением прибл.

Свойство: Номинальная стоимость
Плотность при 20 °C: ок. 0,95/г/см³
Гидроксильное число: ок. 98/мг (KOH)/г
Цвет йода: значение/макс. 10
Температура вспышки: ок. 175/°C
Температура застывания: ок. - 16/°C
Точка помутнения: 55 - 60/%
Вязкость при 20 °C: около 79/мПа·с
Содержание воды: макс. 0,2/%

Addovate 3240 используется для производства полиэфирного пенопласта с TDI 65.
Addovate 3240 — неионогенный эмульгатор для воды, парафинового масла и нерастворимых в воде катализаторов в полиэфирполиолах для производства эластичной пенопласта.
Удельные значения плотности и вязкости указаны в техническом паспорте продукта (TDS), который может быть использован д��я определения оптимальных условий обработки.

Кислотное число, измеряемое в мг КОН/г, указывает на количество свободной кислотности в продукте, что имеет решающее значение для понимания его реакционной способности и совместимости с другими компонентами.
Срок годности Addovate 3240 при определенных условиях хранения указан в MSDS, что позволяет пользователям соответствующим образом планировать свои запасы и использование.
Подробные инструкции по безопасному обращению и условиям хранения приведены в MSDS.

Addovate 3240 важно хранить Addovate 3240 в прохладном, сухом месте вдали от прямых солнечных лучей и источников возгорания.
При работе с Addovate 3240 следует надевать соответствующие СИЗ, такие как перчатки, очки и защитная одежда, чтобы предотвратить попадание на кожу и в глаза.
Утилизация Addovate 3240 должна проводиться в соответствии с местными, региональными и национальными нормами.

Паспорт безопасности (MSDS) содержит рекомендации по безопасной утилизации продукта и любых загрязненных материалов.
Addovate 3240 совместим с полиэфирполиолами, улучшая их технологические характеристики.
Addovate 3240 часто используется в сочетании с другими добавками, такими как Addovate SM и Addovate LM, для достижения определенных эксплуатационных характеристик и предотвращения таких проблем, как обесцвечивание сердцевины.

Точное измерение и смешивание имеют решающее значение для оптимальной производительности.
Следует придерживаться рекомендуемых дозировок, а любые корректировки должны производиться на основе конкретных требований к рецептуре и результатов работы.
Lanxess гарантирует, что Addovate 3240 производится в соответствии со строгими стандартами контроля качества для поддержания стабильной производительности и надежности.

Addovate 3240 предоставляет техническую поддержку клиентам, помогая им оптимизировать свои рецептуры и решать любые проблемы обработки.
Подробно описано в техническом паспорте, имеет решающее значение для определения условий смешивания и обработки.
Указывает на уровень свободной кислотности в продукте, измеряемый в мг KOH/г.

Addovate 3240 помогает диспергировать воду, парафиновое масло и нерастворимые в воде катализаторы внутри полиэфирполиолов.
В случае обработки силиконовым стабилизатором, который недостаточно эмульгирует Addocat DB, рекомендуется добавить достаточное количество Addovate 3240 (около 0,5 - 1,0 p.b.w.).

Аддоват 3240 следует добавить к 100.б.л. полиэфирполиола.
Addovate 3240 является неионогенным эмульгатором.

Использует:
Addovate 3240 улучшил энергоэффективность и снижение шума в зданиях с высококачественными изоляционными и звукоизоляционными материалами.
Повышенный комфорт и производительность при изготовлении мягкой одежды и мягкой мебели.
Addovate 3240 преимущественно используется в производстве эластичного пенопласта на основе полиэстера.

Этот вид пены используется в самых разных отраслях промышленности благодаря своей универсальности и полезным свойствам.
Addovate 3240 используется для подушек, матрасов и обивки.
Addovate 3240 используетсяавтомобильный: сиденья, подголовники и внутренняя обивка.

Addovate 3240 используется в качестве матрасов, наматрасников и подушек.
Addovate 3240 используется в качестве защитной пенопластовой упаковки для деликатных предметов.
В Addovate 3240 используются изоляционные материалы и звукоизоляционные панели.

Addovate 3240 используется в качестве набивки для одежды и мягких предметов интерьера.
Addovate 3240 эмульгирует нерастворимые в воде катализаторы, такие как Addocat DB, обеспечивая равномерное распределение внутри полиэфирполиолов.
Равномерное распределение катализатора Addovate 3240 имеет решающее значение для поддержания постоянной скорости реакции и получения пены с однородной структурой ячеек и физическими свойствами.

Выступает в качестве диспергатора для различных компонентов, в том числе воды и парафинового масла, в составе пены.
Правильное диспергирование этих компонентов имеет важное значение для получения однородной смеси, что приводит к более высокому качеству пены.
Обеспечивая тщательную эмульгацию и диспергирование, Addovate 3240 сводит к минимуму проблемы с обработкой и дефекты, что приводит к повышению эффективности производства.

Сокращает отходы и потребность в доработках, делая производственный процесс более экономичным.
Часто используется в сочетании с другими добавками, такими как Addovate SM и Addovate LM, для достижения определенных свойств и предотвращения таких проблем, как обесцвечивание сердцевины.
Может быть адаптирован к различным рецептурам в соответствии с конкретными требованиями, что обеспечивает гибкость для производителей.

Гарантирует, что пена имеет однородную ячеистую структуру, что важно для ее механических свойств и внешнего вида.
Помогает достичь равномерной плотности, твердости при сжатии и других важных физических свойств по всей пене.
Улучшает общую долговечность и эксплуатационные характеристики изделий из пенопласта.

Используется в НИОКР для разработки новых рецептур пен и совершенствования существующих.
Помогает оптимизировать производственный процесс и достичь желаемых характеристик пенопласта за счет экспериментальной корректировки.
Addovate 3240 имеет решающее значение в производстве мягких, но прочных подушек и обивочных материалов, которые сохраняют свою форму и комфорт в течение долгого времени.

Используется при создании высококачественных матрасов из пенопласта, которые обеспечивают отличную поддержку и комфорт.
Обеспечивает производство удобных и упругих автокресел и подголовников.
Используется в различных областях набивки салонов автомобилей для повышения комфорта и безопасности.

Помогает в изготовлении изделий, обеспечивающих дополнительный комфорт и поддержку в постельном белье.
Производит упаковку из пенопласта, которая защищает хрупкие предметы во время транспортировки и обработки, обеспечивая их безопасную доставку.
Addovate 3240 используется в производстве компонентов из пенопласта для таких предметов, как подушки и подушки.

Обеспечивает равномерное распределение катализаторов в полиэфирполиолах, что имеет важное значение для стабильного качества пены.
Правильная эмульгация предотвращает такие проблемы, как неравномерная структура клеток и слабые места пены.
Способствует равномерному диспергированию воды и парафинового масла в составе пены, что имеет решающее значение для достижения желаемых характеристик пены.

Помогает в достижении определенных физических свойств, обеспечивая равномерное распределение всех компонентов.
Сводит к минимуму распространенные проблемы обработки, такие как разделение фаз и неравномерное смешивание, что приводит к более плавным производственным циклам.
Снижает потери материала и потребность в корректирующих мерах, тем самым экономя затраты и время.

При использовании с Addovate SM и Addovate LM он помогает предотвратить обесцвечивание сердцевины, сохраняя эстетические качества пены.
Позволяет производителям настраивать составы пенопласта в соответствии с конкретными требованиями, такими как различная плотность или твердость.
Обеспечивает однородную ячеистую структуру, что приводит к превосходным механическим свойствам и долговечности пены.

Обеспечивает однородность по таким критически важным свойствам, как плотность, остаточная деформация при сжатии и упругость при отскоке.
Способствует производству прочных изделий из пенопласта, которые выдерживают длительную эксплуатацию без существенной деградации.
Помогает в производстве пенопластов, соответствующих экологическим нормам и нормам.

Обеспечивает соответствие пенопластовых изделий нормам безопасности для использования в потребительских и промышленных целях.
Комфорт, долговечность и эстетические качества повышаются в таких продуктах, как матрасы, подушки и обивка.

Addovate 3240 безопасность, комфорт и устойчивость в сиденьях и внутренней обивке.
Защита чувствительных предметов с амортизацией, поглощающей удары и удары.

Профиль безопасности
Воздействие пыли, паров или тумана Addovate 3240 может вызвать раздражение дыхательных путей, кашель и затрудненное дыхание.
Длительное воздействие или воздействие в высоких дозах может привести к более тяжелым респираторным заболеваниям.
Может вызвать раздражение кожи, покраснение и сухость.

Длительный или повторный контакт может привести к дерматиту или аллергическим реакциям.
Может вызвать раздражение глаз, покраснение и боль. Серьезное воздействие может привести к повреждению глаз.
Аддоват 3240 вреден при проглатывании.

Может вызвать раздражение желудочно-кишечного тракта, тошноту, рвоту и боль в животе.
Addovate 3240 может быть стабильным в нормальных условиях, но может стать нестабильным при высоких температурах или при контакте с несовместимыми веществами.

Addovate 3240 может вступать в реакцию с другими химическими веществами, что приводит к опасным реакциям, таким как выделение токсичных газов или взрывные реакции.
Addovate 3240 может быть легковоспламеняющимся или горючим при определенных условиях.
Addovate 3240 может выделять токсичные пары при горении.


АДДОВАТЕ DD 1092
Addovate DD 1092 действует как диспергатор и эмульгатор для производства эластичной пенопласта на основе полиэстера.
Addovate DD 1092 – добавка для производства ячеистых эластомеров на основе технологии NDI/Polyester.
Addovate DD 1092 является неионогенным эмульгатором.

Номер CAS: 1344-28-1
Номер EINECS: 215-691-6

Синонимы: Абрамант, Компалокс, Фазертон, Мартоксин, Пораминар, Абрамакс, Абрахит, Алмит, Алоксит, Алундум, Конопал, Диадур, Лукалокс, Саффи, дельта глинозема, Дюраль, Алюминиевое озеро, Диспал глинозем, Тета глинозем, Эта-глинозем, Катапал С, Джубенон Р, Микрогрит WCA, Необид С, Алюмит (оксид), Диспал М, Кетчен Б, Каб-о-грип, Фибра FP, Людокс CL, Алюминит 37, Алон С, Катапал SB глинозем, Алундум 600, Дотмент 324, Дотмент 358, Алкоа Ф 1, ГК (оксид), Экзолон XW 60, А 1 (сорбент), ПС 1 (глинозем), диалюминий; кислород (2-), F 360 (оксид алюминия), G 0 (оксид), G 2 (оксид), Брокман, оксид алюминия, Q-Loid A 30, оксид алюминия (Брокман).

Addovate DD 1092 – жидкий эмульгатор и пеностабилизаторы, используемые для производства ячеистых эластомеров на основе технологии NDI/полиэфира.
При обработке силиконовым стабилизатором, который недостаточно эмульгирует Addocat DB, рекомендуется добавить достаточное количество Addovate DD 1092 (около 0,5 - 1,0 p.b.w.).
Если Addovate DD 1092 используется в сочетании с любым другим эмульгатором или добавкой, рекомендуется провести проверку на совместимость в лаборатории перед обработкой, в противном случае несовместимость может привести к повреждению клеточной структуры.

Addovate DD 1092 — неионогенный эмульгатор для воды, парафинового масла и нерастворимых в воде катализаторов в полиэфирных полиолах для производства эластичной пенопласта.
Addovate DD 1092 является жидким эмульгатором и замедляет реакцию пенообразования.
Как правило, к 100 полиэфирполиолу следует добавить 1,0 - 2,0.б.л. Addovate DD 1092.

После того, как был изготовлен преполимер на основе полиэфирполиола, NDI и добавок (например, лимонной кислоты, касторового масла и стабаксола),
Завершается реакция добавлением сшивающего агента.
Сшивание достигается путем равномерного перемешивания сшивающего агента в преполимере, охлажденном примерно до 90 °C.

Для изготовления сшивающего агента Vulkollan 2001 KS нагревают до 40 - 50 °C и энергично перемешивают указанные добавки.
Эту смесь необходимо хранить в герметичных емкостях при температуре 45 - 50 °C и использовать в течение 8 часов.
Addovate DD 1092 является добавкой для производства клеточного Vulkollan.

Обратитесь к паспорту безопасности материала (MSDS) для получения дополнительной информации об обращении с Addovate DD 1092.
Addovate DD 1092 является неионогенным диспергатором и эмульгатором, используемым при производстве эластичного пенопласта на основе полиэстера.
Addovate DD 1092 помогает диспергировать воду, парафиновое масло и нерастворимые в воде катализаторы в полиэфирполиолах.

Addovate DD 1092 обычно используется в сочетании с Addovate SM и, при необходимости, Addovate LM.
Addovate DD 1092 используется для улучшения смешивания и гомогенизации компонентов реакции при производстве пенопласта, обеспечивая однородную ячеистую структуру и предотвращая появление дефектов.
Addovate DD 1092 является неионогенным диспергатором и эмульгатором, используемым при производстве эластичного пенопласта на основе полиэстера.

В частности, Addovate DD 1092 помогает эмульгировать воду, парафиновое масло и нерастворимые в воде катализаторы в полиэфирполиолах.
Этот эмульгатор используется для обеспечения однородной смеси компонентов, что имеет решающее значение для производства высококачественной пены с однородной ячеистой структурой.
Облегчает смешивание воды, парафинового масла и катализаторов в полиэфирполиолах.

Производство полиэфирной пены Slabstock: Используется в производстве эластичной пенопласта Slabstock с TDI (Толуол Диизоцианат) 65.
Часто используется вместе с Addovate SM и, при необходимости, Addovate DD 1092 для предотвращения обесцвечивания сердцевины и поддержания желаемых свойств пены.
Аддоват DD 1092 добавляют к 100.б.м. полиэфирполиола.

Чрезмерная дозировка (> 4,0.б.т.) может привести к снижению жесткости сжатия, в то время как недостаточная дозировка может привести к плохой гомогенизации и повреждению клеточной структуры.
Addovate DD 1092 является продуктом компании Lanxess, специализирующейся на химическом производстве.
В основном используется в производстве эластичного пенопласта на основе полиэстера.

Addovate DD 1092 эмульгирует воду, парафиновое масло и нерастворимые в воде катализаторы в полиэфирполиолах.
Это обеспечивает однородную и однородную смесь, что имеет решающее значение для производства пены с однородными свойствами.
Подходит для полиэфирполиолов со значением OH около 60 мг KOH/г.

Помогает достичь стабильной структуры пены, предотвращая появление дефектов, которые могут возникнуть из-за плохой эмульгации.
Как правило, 1,0 - 2,0 весовых частей (p.b.w.) Addovate DD 1092 добавляют к 100 p.b.w. полиэфирполиола.
Добавление более 4,0.б.в. может привести к снижению прочности пены на сжатие.

Недостаточное количество может привести к плохой гомогенизации каталитической смеси, что приведет к серьезному повреждению ячеистой структуры пены.
Часто используется с Addovate SM и, при необходимости, Addovate LM для предотвращения обесцвечивания сердцевины и повышения стабильности пены.
Если силиконовый стабилизатор недостаточно эмульгирует Addocat DB (катализатор), рекомендуется добавить 0,5 - 1,0 p.b.w. Addovate DD 1092.

Правильная дозировка и условия смешивания имеют решающее значение для достижения желаемых свойств пены и предотвращения дефектов.
Addovate DD 1092 производится Lanxess, глобальной компанией по производству специальной химии, которая предлагает широкий ассортимент химической продукции для различных отраслей промышленности.
В компании Lanxess можно получить подробные технические паспорта (TDS) и паспорта безопасности материалов (MSDS), которые содержат исчерпывающую информацию о свойствах продукта, его обращении и безопасности.

Для получения конкретных запросов, технической поддержки или закупок рекомендуется связаться с Lanxess напрямую или посетить их официальный сайт.
Addovate DD 1092 широко используется в производстве эластичного полиэфирного пенопласта.
Этот тип пены обычно используется в различных областях, таких как мебель, матрасы, автомобильные сиденья и упаковочные материалы.

Addovate DD 1092 играет важную роль в эмульгировании нерастворимых в воде катализаторов, таких как Addocat DB, обеспечивая равномерное распределение этих катализаторов в пенной матрице.
Обеспечивая однородную смесь, Addovate DD 1092 помогает в производстве пены с однородной ячеистой структурой, что приводит к постоянным физическим свойствам по всей пене.
Надлежащая эмульгация компонентов снижает количество проблем и дефектов при обработке, что приводит к повышению эффективности производства и сокращению отходов.

Совместим с различными полиэфирными полиолами и может быть отрегулирован в сочетании с другими добавками в соответствии с конкретными требованиями к обработке и продукту.
Обычно выпускается в жидкой форме для удобства смешивания и обработки.
Удельные значения плотности и вязкости указаны в техническом паспорте продукта (TDS), который может быть использован для определения оптимальных условий обработки.

Кислотное число, измеряемое в мг КОН/г, указывает на количество свободной кислотности в продукте, что имеет решающее значение для понимания его реакционной способности и совместимости с другими компонентами.
Срок годности Addovate DD 1092 при определенных условиях хранения указан в MSDS, что позволяет пользователям соответствующим образом планировать свои запасы и использование.
Подробные инструкции по безопасному обращению и условиям хранения приведены в MSDS.

Addovate DD 1092 важно хранить Addovate DD 1092 в прохладном, сухом месте вдали от прямых солнечных лучей и источников возгорания.
При работе с Addovate DD 1092 следует надевать соответствующие СИЗ, такие как перчатки, очки и защитная одежда, чтобы предотвратить попадание на кожу и в глаза.
Утилизация Addovate DD 1092 должна проводиться в соответствии с местными, региональными и национальными нормами.

Паспорт безопасности (MSDS) содержит рекомендации по безопасной утилизации продукта и любых загрязненных материалов.
Addovate DD 1092 совместим с полиэфирполиолами, улучшая их технологические характеристики.
Addovate DD 1092 часто используется в сочетании с другими добавками, такими как Addovate SM и Addovate LM, для достижения определенных эксплуатационных характеристик и предотвращения таких проблем, как обесцвечивание сердцевины.

Точное измерение и смешивание имеют решающее значение для оптимальной производительности.
Следует придерживаться рекомендуемых дозировок, а любые корректировки должны производиться на основе конкретных требований к рецептуре и результатов работы.
Lanxess гарантирует, что Addovate DD 1092 производится в соответствии со строгими стандартами контроля качества для поддержания стабильной производительности и надежности.

Addovate DD 1092 имеет срок годности 4 месяца.
Addovate DD 1092 является неионогенным эмульгатором.
Addovate DD 1092 является сильным эмульгатором и диспергатором, предотвращает дефекты клеточной структуры.

Addovate DD 1092 замедляет реакцию пенообразования.
Addovate DD 1092 приведет к ухудшению твердости при сжатии.
Addovate DD 1092 является диспергатором и эмульгатором для производства эластичной пенопласта на основе полиэстера.

Addovate DD 1092 является эмульгатором для воды, парафинового масла и нерастворимых в воде катализаторов (например, Addocat DB) в полиэфирполиолах с числом OH прибл. 60 мг КОН/г.
Addovate DD 1092 используется для производства полиэфирного пенопласта с TDI 65.

Addovate DD 1092 используется в сочетании с Addovate SM и при необходимости Addovate LM (предотвращает обесцвечивание сердцевины).
Addovate DD 1092 следует добавить к 100.б.л. полиэфирполиола.
Чрезмерная дозировка (> 4,0.б.т.) Addovate DD 1092 приведет к ухудшению прочности при сжатии.

Недостаточная дозировка приводит к образованию плохо гомогенизированной каталитической смеси, что приводит к серьезным повреждениям клеточной структуры.
Сшивание Addovate DD 1092 достигается путем равномерного перемешивания сшивающего агента в предварительном полимере, охлажденном примерно до 90°C.

Внешний вид: коричневатый, вязкий жидкий
Плотность (20 °C): ок. 1,04 г/см³
Вязкость (25 °C): ок. 1 200 мПа.
Начальная температура кипения: > 200 °C при разложении
Температура застывания: < - 10 °C
Температура вспышки: ок. 240 °C
Содержание воды: макс. 1,5 %

Addovate DD 1092 следует хранить в прохладном и сухом месте.
При хранении Addovate DD 1092 в плотно закрытой оригинальной упаковке срок годности 4 месяца с даты изготовления при pH 7 - 9 можно ожидать только при температуре < 6 °C.
Более высокие температуры хранения снижают значение pH Addovate DD 1092.

Перед использованием содержимое должно быть тщательно гомогенизировано.
Контейнеры должны быть плотно закрыты после использования, чтобы предотвратить загрязнение загрязнениями и воздействие влаги.
Часто используется с Addovate SM и Addovate LM для предотвращения обесцвечивания сердцевины и улучшения качества пены.

Хранить в прохладном, сухом месте, защищенном от прямых солнечных лучей и источников возгорания.
Используйте перчатки, очки и защитную одежду для предотвращения попадания на кожу и в глаза.
Следуйте указаниям в MSDS для безопасной очистки и утилизации разливов.

Утилизируйте в соответствии с местными, региональными и национальными нормами, как указано в MSDS.
Необходим для обеспечения однородной клеточной структуры и стабильных физических свойств пены.
Обеспечивает равномерное распределение нерастворимых в воде катализаторов, что имеет решающее значение для качества пены.

Уменьшает количество проблем и дефектов обработки, что приводит к повышению эффективности производства и сокращению отходов.
Предоставляет техническую поддержку, чтобы помочь клиентам оптимизировать рецептуры и решить проблемы обработки.
Производится в соответствии со строгими стандартами контроля качества для обеспечения стабильных эксплуатационных характеристик продукта.

Подробно описано в Addovate DD 1092, включая потенциальные опасности для окружающей среды и безопасные методы утилизации.
Соответствует соответствующим отраслевым стандартам и нормам, задокументированным в MSDS и TDS.
Доступно через Addovate DD 1092 и у авторизованных дистрибьюторов.

Использует:
Addovate DD 1092 используется в производстве изоляционной пены, повышающей энергоэффективность и тепловой комфорт в зданиях.
Addovate DD 1092 безопасность, комфорт и устойчивость в сиденьях и внутренней обивке.
Защита чувствительных предметов с амортизацией, поглощающей удары и удары.

Addovate DD 1092 улучшил энергоэффективность и снижение шума в зданиях с высококачественными изоляционными и звукоизоляционными материалами.
Повышенный комфорт и производительность при изготовлении мягкой одежды и мягкой мебели.

Addovate DD 1092 преимущественно используется в производстве эластичных пенопластов на основе полиэстера.
Этот вид пены используется в самых разных отраслях промышленности благодаря своей универсальности и полезным свойствам.
Addovate DD 1092 используется в подушках, матрасах и обивке.

Addovate DD 1092 используетсяавтомобильная: сиденья, подголовники и внутренняя обивка.
Addovate DD 1092 используется в качестве матрасов, наматрасников и подушек.
Addovate DD 1092 используется в качестве защитной пенопластовой упаковки для деликатных предметов.

В Addovate DD 1092 используются изоляционные материалы и звукоизоляционные панели.
Addovate DD 1092 используется в качестве набивки для одежды и мягких предметов интерьера.
Addovate DD 1092 эмульгирует нерастворимые в воде катализаторы, такие как Addocat DB, обеспечивая равномерное распределение в полиэфирполиолах.

Равномерное распределение катализатора Addovate DD 1092 имеет решающее значение для поддержания постоянной скорости реакции и получения пены с однородной структурой ячеек и физическими свойствами.
Выступает в качестве диспергатора для различных компонентов, в том числе воды и парафинового масла, в составе пены.
Правильное диспергирование этих компонентов имеет важное значение для получения однородной смеси, что приводит к более высокому качеству пены.

Обеспечивая тщательную эмульгацию и диспергирование, Addovate DD 1092 сводит к минимуму проблемы с обработкой и дефекты, что приводит к повышению эффективности производства.
Сокращает отходы и потребность в доработках, делая производственный процесс более экономичным.
Часто используется в сочетании с другими добавками, такими как Addovate SM и Addovate LM, для достижения определенных свойств и предотвращения таких проблем, как обесцвечивание сердцевины.

Может быть адаптирован к различным рецептурам в соответствии с конкретными требованиями, что обеспечивает гибкость для производителей.
Гарантирует, что пена имеет однородную ячеистую структуру, что важно для ее механических свойств и внешнего вида.
Помогает достичь равномерной плотности, твердости при сжатии и других важных физических свойств по всей пене.

Улучшает общую долговечность и эксплуатационные характеристики изделий из пенопласта.
Используется в НИОКР для разработки новых рецептур пен и совершенствования существующих.
Помогает оптимизировать производственный процесс и достичь желаемых характеристик пенопласта за счет экспериментальной корректировки.

Addovate DD 1092 имеет решающее значение в производстве мягких, но прочных подушек и обивочных материалов, которые сохраняют свою форму и комфорт в течение долгого времени.
Используется при создании высококачественных матрасов из пенопласта, которые обеспечивают отличную поддержку и комфорт.
Обеспечивает производство удобных и упругих автокресел и подголовников.

Помогает создавать звукоизоляционные материалы, снижающие передачу шума в жилых и коммерческих помещениях.
Используется в набивке для одежды, такой как куртки и бюстгальтеры, для повышения комфорта.

Addovate DD 1092 используется в производстве компонентов из пенопласта для таких предметов, как подушки и подушки.
Обеспечивает равномерное распределение катализаторов в полиэфирполиолах, что имеет важное значение для стабильного качества пены.
Правильная эмульгация предотвращает такие проблемы, как неравномерная структура клеток и слабые места пены.

Способствует равномерному диспергированию воды и парафинового масла в составе пены, что имеет решающее значение для достижения желаемых характеристик пены.
Помогает в достижении определенных физических свойств, обеспечивая равномерное распределение всех компонентов.
Сводит к минимуму распространенные проблемы обработки, такие как разделение фаз и неравномерное смешивание, что приводит к более плавным производственным циклам.

Снижает потери материала и потребность в корректирующих мерах, тем самым экономя затраты и время.
При использовании с Addovate SM и Addovate LM он помогает предотвратить обесцвечивание сердцевины, сохраняя эстетические качества пены.
Позволяет производителям настраивать составы пенопласта в соответствии с конкретными требованиями, такими как различная плотность или твердость.

Обеспечивает однородную ячеистую структуру, что приводит к превосходным механическим свойствам и долговечности пены.
Обеспечивает однородность по та��им критически важным свойствам, как плотность, остаточная деформация при сжатии и упругость при отскоке.
Способствует производству прочных изделий из пенопласта, которые выдерживают длительную эксплуатацию без существенной деградации.

Помогает в производстве пенопластов, соответствующих экологическим нормам и нормам.
Обеспечивает соответствие пенопластовых изделий нормам безопасности для использования в потребительских и промышленных целях.
Комфорт, долговечность и эстетические качества повышаются в таких продуктах, как матрасы, подушки и обивка.

Профиль безопасности:
Addovate DD 1092 Чтобы точно определить опасность Addovate DD 1092, необходимо обратиться к паспорту безопасности продукта (SDS).
SDS предоставит подробную информацию о потенциальных рисках для здоровья, пожаре, реактивности и окружающей среде продукта.
Воздействие пыли, паров или тумана может вызвать раздражение дыхательных путей.

Длительное воздействие или воздействие в высоких дозах может привести к более серьезным респираторным заболеваниям.
Addovate DD 1092 может вызвать раздражение кожи, покраснение и сухость. Длительный или повторный контакт может привести к дерматиту или аллергическим реакциям.
Может вызвать раздражение глаз, покраснение и боль. Сильное воздействие может привести к повреждению глаз.
ТЮ

АДДОВЕЙТ, ТЕХАС
Addovate TX — неионогенный эмульгатор для воды, парафинового масла и нерастворимых в воде катализаторов в полиэфирных полиолах для производства эластичной пенопласта.
Addovate TX должен быть тщательно гомогенизирован путем прокатывания или переворачивания барабанов или перемешивания содержимого.
Addovate TX обычно используется в сочетании с Addovate EM при производстве полиэфирного пенопласта. С помощью комбинации Addovate TX можно добиться хорошего контроля пенообразования, что приводит к образованию тонкой ячеистой структуры.

Номер CAS: 1344-28-1
Номер EINECS: 215-691-6

Синонимы: Абрамант, Компалокс, Фазертон, Мартоксин, Пораминар, Абрамакс, Абрахит, Алмит, Алоксит, Алундум, Конопал, Диадур, Лукалокс, Саффи, дельта глинозема, Дюраль, Алюминиевое озеро, Диспал глинозем, Тета глинозем, Эта-глинозем, Катапал С, Джубенон Р, Микрогрит WCA, Необид С, Алюмит (оксид), Диспал М, Кетчен Б, Каб-о-грип, Фибра FP, Людокс CL, Алюминит 37, Алон С, Катапал SB глинозем, Алундум 600, Дотмент 324, Дотмент 358, Алкоа Ф 1, ГК (оксид), Экзолон XW 60, А 1 (сорбент), ПС 1 (глинозем), диалюминий; кислород (2-), F 360 (глинозем), G 0 (оксид), G 2 (оксид), Брокман, оксид алюминия, Q-Loid A 30, оксид алюминия (Брокман), KHP 2, RC 172DBM, оксид алюминия (волокнистые формы), CCRIS 6605, HSDB 506, LA 6, озеро алюминия, оксид алюминия (2:3), оксид алюминия (воспламененный), оксид алюминия (брокман) (форма), оксид алюминия G, EINECS 215-691-6, KA 101, UNII-LMI26O6933, оксид алюминия (II), AI3-02904, LMI26O6933, Оксид алюминия, безводный, БЕТА-ОКСИД АЛЮМИНИЯ, A1-3438 T 1/8'', ГАММА-ОКСИД АЛЮМИНИЯ, A1-0104 T 3/16'', A1-1404 T 3/16'', A1-3945 E 1/16'', A1-3980 T 5/32'', A1-402888 T 3/16'', A1-4126 E 1/16''', EC 215-691-6, 12522-88-2, 12737-16-5, Оксид алюминия, Оксид алюминия, Мезопористый, Триоксид алюминия, Hypalox II, Диалюминий триоксид, Оксид алюминия (Al2O3), Алюминий сесквиоксид, Оксид алюминия, монокристалл, ОКСИД АЛЮМИНИЯ (MART.), ОКСИД АЛЮМИНИЯ [MART.], Оксид, Алюминий, Бета-Оксид Алюминия, Оксид Алюминия [NF], Оксид Алюминия, Безводный (Примесь EP), Оксид алюминия, Безводный [Примесь EP], A1-1401 P(MS), оксид алюминия.

Addovate TX предоставляет техническую поддержку клиентам, помогая им оптимизировать свои рецептуры и решать любые проблемы с обработкой.
Подробно описано в техническом паспорте, имеет решающее значение для определения условий смешивания и обработки.
Указывает на уровень свободной кислотности в продукте, измеряемый в мг KOH/г.

Пропорции, которые следует использовать, составляют 1,0-3,0 фунта массы.
Добавьте TX к 100,0.б.л. полиэфирполиола.
Addovate TX является сильным эмульгатором и диспергатором, предотвращает дефекты клеточной структуры.

Удельные значения плотности и вязкости приведены в техническом паспорте Addovate TX (TDS), который можно использовать для определения оптимальных условий обработки.
Кислотное число, измеряемое в мг КОН/г, указывает на количество свободной кислотности в Addovate TX, что имеет решающее значение для понимания его реакционной способности и совместимости с другими компонентами.
При работе с Addovate TX следует надевать соответствующие СИЗ, такие как перчатки, очки и защитная одежда, чтобы предотвратить попадание на кожу и в глаза.

Addovate TX имеет срок годности 6 месяцев.
Addovate TX является неионогенным эмульгатором.
Паспорт безопасности (MSDS) содержит рекомендации по безопасной утилизации продукта и любых загрязненных материалов.

Addovate TX совместим с полиэфирполиолами, улучшая их технологические характеристики.
Подробные инструкции по безопасному обращению и условиям хранения приведены в MSDS.
Addovate TX часто используется в сочетании с другими добавками, такими как Addovate SM и Addovate LM, для достижения определенных эксплуатационных характеристик и предотвращения таких проблем, как обесцвечивание сердцевины.

Addovate TX является продуктом компании Lanxess, специализирующейся на химическом производстве.
В основном используется в производстве эластичного пенопласта на основе полиэстера.
Addovate TX эмульгирует воду, парафиновое масло и нерастворимые в воде катализаторы в полиэфирполиолах.

Это обеспечивает однородную и однородную смесь, что имеет решающее значение для производства пены с однородными свойствами.
Подходит для полиэфирполиолов со значением OH около 60 мг KOH/г.
Помогает достичь стабильной структуры пены, предотвращая появление дефектов, которые могут возникнуть из-за плохой эмульгации.

Как правило, 1,0 - 2,0 весовых частей (p.b.w.) Addovate TX добавляют к 100 p.b.w. полиэфирполиола.
Добавление более 4,0.б.в. может привести к снижению прочности пены на сжатие.
Недостаточное количество может привести к плохой гомогенизации каталитической смеси, что приведет к серьезному повреждению ячеистой структуры пены.

Часто используется с Addovate SM и, при необходимости, Addovate LM для предотвращения обесцвечивания сердцевины и повышения стабильности пены.
Если силиконовый стабилизатор недостаточно эмульгирует Addocat DB (катализатор), рекомендуется добавить 0,5 - 1,0 p.b.w. Addovate TX.
Точное измерение и смешивание имеют решающее значение для оптимальной производительности.

Следует придерживаться рекомендуемых дозировок, а любые корректировки должны производиться на основе конкретных требований к рецептуре и результатов работы.
Lanxess гарантирует, что Addovate TX производится в соответствии со строгими стандартами контроля качества для поддержания стабильной производительности и надежности.

Следующая последовательность добавления отдельных компонентов доказала свою эффективность при изготовлении каталитических соединений: вода, катализатор, Addovate EM, Addovate TX.
Получается прозрачная, однородная смесь.
Addovate TX Plastic Additives Business предлагает продукты для всех видов пластиковых решений.

Высококачественные химикаты Addovate TX и отделочные химикаты в бизнес-линии Plastic Addovate TX улучшают технологичность ингредиентов и особенно свойства конечных продуктов.
Addovate TX действует как диспергатор и эмульгатор для производства эластичной пенопласта на основе полиэстера.
Addovate TX является неионогенным эмульгатором.

Чрезмерная дозировка (> 4,0 p.b.w.) приведет к ухудшению прочности сжатия.
Недостаточная дозировка приводит к образованию плохо гомогенизированной каталитической смеси, что приводит к серьезным повреждениям клеточной структуры.
Addovate TX имеет срок годности 12 месяцев.

Addovate TX является диспергатором и эмульгатором для производства эластичной пенопласта на основе полиэстера.
Addovate TX является эмульгатором для воды, парафинового масла и нерастворимых в воде катализаторов (например, Addocat DB) в полиэфир-полиолах со значением OH прибл. 60 мг КОН/г.
Addovate TX используется для производства полиэфирного пенопласта SLSTOCK с TDI 65.

Addovate TX используется в сочетании с Addovate SM и при необходимости Addovate LM (предотвращает обесцвечивание сердцевины).
Как правило, 1,0 - 2,0.б.л. Addovate TX следует добавить к 100.б.л. полиэфирполиола.
Чрезмерная дозировка (> 4,0.б.л.) Addovate TX приведет к ухудшению прочности при сжатии.

Недостаточная дозировка Addovate TX приводит к образованию плохо гомогенизированной каталитической смеси, что приводит к серьезным повреждениям клеточной структуры.
В случае обработки силиконовым стабилизатором, который недостаточно эмульгирует Addocat DB, рекомендуется добавить достаточное количество Addovate TX (около 0,5 - 1,0 p.b.w.).
Если Addovate TX используется в сочетании с любым другим эмульгатором или добавкой, р��комендуется провести проверку на совместимость в лаборатории перед обработкой, в противном случае несовместимость может привести к повреждению клеточной структуры.

Срок годности: 12 месяцев в изначально закрытой, влагонепроницаемой таре.
Температура хранения: от +10 °C до + 30 °C (оптимально).
Хранение Addovate TX при более низких температурах приводит к повышению вязкости или застыванию продукта в точке застывания.

Это не оказывает негативного влияния на его деятельность и не повреждает его.
В этом случае мы рекомендуем хранить продукт при комнатной температуре в течение 2 недель или кратковременно разжижать его при температуре макс. 50 °C в нагревательной печи.
Перед использованием содержимое должно быть тщательно гомогенизировано.

Обратитесь к паспорту безопасности материала (MSDS) для получения дополнительной информации о работе с Addovate TX.
Addovate TX – это неионогенный диспергатор и эмульгатор, используемый при производстве эластичной пенопласта на основе полиэстера.
Addovate TX помогает диспергировать воду, парафиновое масло и нерастворимые в воде катализаторы в полиэфирполиолах.

Addovate TX обычно используется в сочетании с Addovate SM и, при необходимости, Addovate LM.
Addovate TX используется для улучшения смешивания и гомогенизации компонентов реакции при производстве пенопласта, обеспечивая однородную структуру клеток и предотвращая появление дефектов.

Химический состав: Получение сульфированных углеводородов
Внешний вид: жидкость коричневого цвета
Плотность (20 °C): ок. 0,99 г/см³
Начальная температура кипения: ок. > 100 °C
Температура застывания: ок. - 5 °C
Температура вспышки: > 100 °C
(ASTM-D 93, DIN EN 22719)
Смешиваемость с водой: диспергируемая
Кислотное число: 7,0 ± 1,0 мг KOH/г
Содержание воды: макс. 1,0 %
Вязкость (25 °C): 350 ± 100 мПа·с

Addovate TX – это неионогенный диспергатор и эмульгатор, используемый при производстве эластичной пенопласта на основе полиэстера.
В частности, Addovate TX помогает эмульгировать воду, парафиновое масло и нерастворимые в воде катализаторы в полиэфирполиолах.
Этот эмульгатор используется для обеспечения однородной смеси компонентов, что имеет решающее значение для производства высококачественной пены с однородной ячеистой структурой.

Облегчает смешивание воды, парафинового масла и катализаторов в полиэфирполиолах.
Производство полиэфирной пены Slabstock: Используется в производстве эластичной пенопласта Slabstock с TDI (Толуол Диизоцианат) 65.
Комбинация с другими добавками: Часто используется вместе с Addovate SM и, при необходимости, Addovate LM для предотвращения обесцвечивания сердцевины и поддержания желаемых свойств пены.

Addovate TX добавляются к 100.б.л. полиэфирполиола.
Addovate TX играет решающую роль в эмульгировании нерастворимых в воде катализаторов, таких как Addocat DB, обеспечивая равномерное распределение этих катализаторов в пенной матрице.
Обеспечивая однородную смесь, Addovate TX помогает в производстве пены с однородной клеточной структурой, что приводит к постоянным физическим свойствам по всей пене.

Надлежащая эмульгация компонентов снижает количество проблем и дефектов при обработке, что приводит к повышению эффективности производства и сокращению отходов.
Совместим с различными полиэфирными полиолами и может быть отрегулирован в сочетании с другими добавками в соответствии с конкретными требованиями к обработке и продукту.
Addovate TX обычно выпускается в жидкой форме для удобства смешивания и обработки.

Срок годности Addovate TX при определенных условиях хранения указан в MSDS, что позволяет пользователям соответствующим образом планировать свои запасы и использование.
Addovate TX представляет собой препирование сульфированных углеводородов. Действует как эмульгатор/стабилизатор для производства полиуретанового полиэфирного эластичного пенопласта.
Перед обработкой его необходимо тщательно гомогенизировать путем прокатывания или переворачивания барабанов или перемешивания содержимого.

С помощью комбинации Addovate TX можно добиться хорошего контроля пенообразования, что приводит к образованию тонкой ячеистой структуры.
Addovate TX важно хранить Addovate TX в прохладном, сухом месте вдали от прямых солнечных лучей и источников возгорания.
Addovate TX должна проводиться в соответствии с местными, региональными и национальными нормами.

Использует:
При использовании с Addovate SM и Addovate LM он помогает предотвратить обесцвечивание сердцевины, сохраняя эстетические качества пены.
Обеспечивая тщательную эмульгацию и диспергирование, Addovate TX сводит к минимуму проблемы с обработкой и дефекты, что приводит к повышению эффективности производства.
Сокращает отходы и потребность в доработках, делая производственный процесс более экономичным.

Часто используется в сочетании с другими добавками, такими как Addovate SM и Addovate LM, для достижения определенных свойств и предотвращения таких проблем, как обесцвечивание сердцевины.
Может быть адаптирован к различным рецептурам в соответствии с конкретными требованиями, что обеспечивает гибкость для производителей.
Гарантирует, что пена имеет однородную ячеистую структуру, что важно для ее механических свойств и внешнего вида.

Помогает достичь равномерной плотности, твердости при сжатии и других важных физических свойств по всей пене.
Улучшает общую долговечность и эксплуатационные характеристики изделий из пенопласта.
Используется в НИОКР для разработки новых рецептур пен и совершенствования существующих.

Помогает оптимизировать производственный процесс и достичь желаемых характеристик пенопласта за счет экспериментальной корректировки.
Addovate TX имеет решающее значение в производстве мягких, но прочных подушек и обивочных материалов, которые сохраняют свою форму и комфорт с течением времени.
Позволяет производителям настраивать составы пенопласта в соответствии с конкретными требованиями, такими как различная плотность или твердость.

Обеспечивает однородную ячеистую структуру, что приводит к превосходным механическим свойствам и долговечности пены.
Обеспечивает однородность по таким критически важным свойствам, как плотность, остаточная деформация при сжатии и упругость при отскоке.
Способствует производству прочных изделий из пенопласта, которые выдерживают длительную эксплуатацию без существенной деградации.

Помогает в производстве пенопластов, соответствующих экологическим нормам и нормам.
Обеспечивает соответствие пенопластовых изделий нормам безопасности для использования в потребительских и промышленных целях.
Комфорт, долговечность и эстетические качества повышаются в таких продуктах, как матрасы, подушки и обивка.

Безопасность, комфорт и устойчивость Addovate TX в сиденьях и внутренней обивке.
Защита чувствительных предметов с амортизацией, поглощающей удары и удары.
Addovate TX повысил энергоэффективность и снижение шума в зданиях благодаря высококачественным изоляционным и звукоизоляционным материалам.

Повышенный комфорт и производительность при изготовлении мягкой одежды и мягкой мебели.
Addovate TX преимущественно используется в производстве эластичной пенопласта на основе полиэстера.
Этот вид пены используется в самых разных отраслях промышленности благодаря своей универсальности и полезным свойствам.

Addovate TX – это используемые подушки, матрасы и обивка.
Addovate TX используетсяавтомобильная: сиденья, подголовники и внутренняя обивка.

Addovate TX используется в качестве матрасов, наматрасников и подушек.
Addovate TX используется в качестве защитной пенопластовой упаковки для деликатных предметов.

В Addovate TX используются изоляционные материалы и звукоизоляционные панели.
Addovate TX используется набивка для одежды и мягких предметов интерьера.
Addovate TX эмульгирует нерастворимые в воде катализаторы, такие как Addocat DB, обеспечивая равномерное распределение в полиэфирных полиолах.

Равномерное распределение катализатора Addovate TX имеет решающее значение для поддержания постоянной скорости реакции и производства пены с однородной клеточной структурой и физическими свойствами.
Выступает в качестве диспергатора для различных компонентов, в том числе воды и парафинового масла, в составе пены.
Правильное диспергирование этих компонентов имеет важное значение для получения однородной смеси, что приводит к более высокому качеству пены.

Используется при создании высококачественных матрасов из пенопласта, которые обеспечивают отличную поддержку и комфорт.
Обеспечивает производство удобных и упругих автокресел и подголовников.
Используется в различных областях набивки салонов автомобилей для повышения комфорта и безопасности.

Помогает в изготовлении изделий, обеспечивающих дополнительный комфорт и поддержку в постельном белье.
Производит упаковку из пенопласта, которая защищает хрупкие предметы во время транспортировки и обработки, обеспечивая их безопасную доставку.
Addovate TX используется в производстве изоляционной пены, повышающей энергоэффективность и тепловой комфорт в зданиях.

Помогает создавать звукоизоляционные материалы, снижающие передачу шума в жилых и коммерческих помещениях.
Используется в набивке для одежды, такой как куртки и бюстгальтеры, для повышения комфорта.
Addovate TX используется в производстве компонентов из пенопласта для таких предметов, как подушки и подушки.

Обеспечивает равномерное распределение катализаторов в полиэфирполиолах, что имеет важное значение для стабильного качества пены.
Правильная эмульгация предотвращает такие проблемы, как неравномерная структура клеток и слабые места пены.
Способствует равномерному диспергированию воды и парафинового масла в составе пены, что имеет решающее значение для достижения желаемых характеристик пены.

Помогает в достижении определенных физических свойств, обеспечивая равномерное распределение всех компонентов.
Сводит к минимуму распространенные проблемы обработки, такие как разделение фаз и неравномерное смешивание, что приводит к более плавным производственным циклам.
Снижает потери материала и потребность в корректирующих мерах, тем самым экономя затраты и время.

Профиль безопасности:
Некоторые полимерные добавки могут выделять опасные химические вещества во время обработки или нанесения.
Это могут быть респираторные раздражители или сенсибилизаторы.
Пожар и взрыв: в зависимости от химического состава, некоторые добавки могут быть легковоспламеняющимися или представлять опасность возгорания при определенных условиях.

Длительное или повторное воздействие определенных добавок может вызвать раздражение кожи или глаз, проблемы с дыханием или другие последствия для здоровья.
При отсутствии надлежащего управления утилизация продуктов на основе полимеров может привести к загрязнению окружающей среды.