Другие секторы

TIB KAT SSSA
ОПИСАНИЕ:
TIB KAT SSSA представляет собой сульфоянтарную кислоту натрия.
TIB KAT SSSA Обладает повышенной гидрофильностью смолы.
TIB KAT SSSA Обеспечивает лучшую диспергируемость смолы в воде.

КАС: 77-58-7

TIB KAT SSSA является катализатором реакций этерификации.
TIB KAT SSSA особенно подходит из-за его низкой летучести при высоких температурах и высоком вакууме.
TIB KAT SSSA смешивается с водой при любых концентрациях и практически не имеет запаха.


TIB KAT SSSA представляет собой состав на основе метансульфоновой кислоты и выбранных аминовых компонентов для формирования блокированного кислотного катализатора.
TIB KAT SSSA помогает обеспечить высокую эффективность сшивания эмалей для выпечки и обеспечивает более длительный срок годности по сравнению с TIB KAT MSA.


TIB KAT SSSA представляет собой состав на основе метансульфоновой кислоты и соединения фосфора.
TIB KAT SSSA — превосходный катализатор, обеспечивающий высокую эффективность в реакциях этерификации.
В общих чертах, использование TIB KAT SSSA приводит к продуктам со значительно более светлыми значениями цвета, чем при использовании чистой метансульфокислоты, других сульфокислот или серной кислоты.


TIB KAT SSSA представляет собой метансульфоновую кислоту, которую можно использовать в химической промышленности в качестве катализатора и добавки, а также в гальванотехнике в качестве добавки для гальванических ванн.
TIB KAT SSSA смешивается с водой при любых концентрациях.
ТИБ КАТ SSSA представляет собой 70% раствор метансульфокислоты.

TIB KAT SSSA Действует как очень хороший катализатор, обеспечивающий высокую эффективность в реакциях этерификации.
TIB KAT SSSA используется в покрытиях и красках.

TIB KAT SSSA представляет собой октоат двухвалентного олова.
TIB KAT SSSA Действует как неорганический оловянный катализатор.
TIB KAT SSSA используется в красках и покрытиях.


TIB KAT SSSA — это катализатор, который используется в производстве органических эфиров и пластификаторов.
TIB KAT SSSA обладает высокой каталитической активностью, что приводит к практически полной конверсии с коротким временем реакции при более высоких температурах реакции (> 160°C).
TIB KAT SSSA также позволяет производить светлые эфиры.
Вторичные реакции практически не происходят по сравнению с кислотными катализаторами.

TIB KAT SSSA представляет собой оксалат двухвалентного олова.
TIB KAT SSSA — неорганический оловянный катализатор, используемый в производстве органических эфиров и пластификаторов.
TIB KAT SSSA также используется в красках и покрытиях.

TIB KAT SSSA представляет собой безводный хлорид двухвалентного олова.
TIB KAT SSSA Действует как неорганический оловянный катализатор.
TIB KAT SSSA предназначен для покрытий и красок.

TIB KAT SSSA – жидкий катализатор, хорошо распределяющийся в реагентах.
TIB KAT SSSA используется для этерификации в олеохимии, катализе или полиуретановых системах, отверждении силиконовых смол и силанов, а также для полимеризации лактонов в биоразлагаемые полимеры.

TIB KAT SSSA представляет собой сыпучий, сухой, стабильный оксид олова (II), обладающий превосходными каталитическими свойствами в качестве катализатора этерификации.
Количество TIB KAT SSSA, добавляемого для этерификации, обычно составляет от 0,01 до 0,10 мас.%.
TIB KAT SSSA проявляет наибольшую каталитическую активность при температурах реакции 180-260°C.

TIB KAT SSSA действует как неорганический оловянный катализатор.
TIB KAT SSSA – это марка оксида двухвалентного олова.
TIB KAT SSSA Обладает очень хорошими каталитическими свойствами.
TIB KAT SSSA используется в красках и покрытиях.

ОСОБЕННОСТИ TIB KAT SSSA:
ТИБ КАТ СССА - Металлоорганические катализаторы на основе олова, висмута, цинка, алюминия, циркония, меди, церия, титана, калия и железа.
TIB KAT SSSA – это неорганические катализаторы на основе в основном олова и висмута.
TIB KAT SSSA также доступны катализаторы на основе сульфоновой кислоты.

TIB KAT SSSA имеет высокую чистоту.
TIB KAT SSSA имеет различные физические формы для некоторых сортов.
TIB KAT SSSA не использует конфликтные полезные ископаемые.


ПРЕИМУЩЕСТВА TIB KAT SSSA:
TIB KAT SSSA – это селективный катализ с минимальным количеством побочных продуктов.
TIB KAT SSSA очень активная или возможна замедленная реакция.
TIB KAT SSSA имеет возможность низкотемпературной или высокотемпературной активации (скрытой).

Доступны токсикологически инертные марки ТИБ КАТ SSSA.
TIB KAT SSSA — это катализаторы без олова, доступные там, где использование олова является проблемой.
TIB KAT SSSA имеет незначительное возможное обесцвечивание готовой системы.

ПРИМЕНЕНИЕ TIB KAT SSSA:
TIB KAT SSSA используется в олеохимии - этерификации и переэтерификации.
TIB KAT SSSA используется для катализа полиуретановых покрытий, клеев и герметиков.

TIB KAT SSSA используется для сшивания полимеров, модифицированных силаном, особенно популярных в герметиках нового поколения.
TIB KAT SSSA используется в катализе ПВХ и термопластов, в частности XLPE.
TIB KAT SSSA используется в синтезе алкидных смол, полиэфиров и ненасыщенных полиэфиров.

ИСПОЛЬЗОВАНИЕ TIB KAT SSSA:
TIB KAT SSSA используется в клеях и герметиках
TIB KAT SSSA используется в катализаторах и адсорбентах.
TIB KAT SSSA используется в покрытиях

TIB KAT SSSA используется в композитах
TIB KAT SSSA используется в строительстве
TIB KAT SSSA используется в промышленных

TIB KAT SSSA используется в резине
TIB KAT SSSA используется в термопластичных компаундах.
TIB KAT SSSA используется в Thermoset

TIB KAT SSSA можно использовать для этерификации в олеохимии.
TIB KAT SSSA может использоваться для катализа полиуретановых систем.
TIB KAT SSSA может использоваться для отверждения силиконовых смол и силанов.

TIB KAT SSSA можно использовать для полимеризации лактонов в биоразлагаемые полимеры.
TIB KAT SSSA представляет собой жидкий катализатор, который хорошо распределяется в реагенте.

Кроме того, TIB KAT SSSA делает возможным легкое дозирование во время протекающей реакции.
TIB KAT SSSA можно добавлять к реагентам как в чистом виде, так и в смеси со спиртами.
При этерификации TIB KAT SSSA можно использовать при температуре > 160 °C.

С TIB KAT SSSA можно получать легкие, прозрачные продукты.
Обычно TIB KAT SSSA используется в концентрациях от 0,01 до 0,20 %.
Удаление TIB KAT SSSA из сложных эфиров возможно не только химическими методами, например, гидролизом или окислением, но и путем адсорбции продуктами TIB TINEX®.



TIB KAT SSSA — это катализатор, который используется в производстве сложных полиэфиров и сложных эфиров на основе олеохимических соединений.
TIB KAT SSSA также используется в качестве активатора при производстве эластомеров.
TIB KAT SSSA растворим в воде и ряде неводных полярных растворителей.
В процессе этерификации TIB KAT SSSA сводит к минимуму обезвоживание спиртов и предотвращает появление запахов и обесцвечивание продуктов, которые могут быть образованы возможными побочными продуктами.





ИНФОРМАЦИЯ О БЕЗОПАСНОСТИ TIB KAT SSSA:
Меры первой помощи:
Описание мер первой помощи:
Общий совет:
Проконсультируйтесь с врачом.
Покажите этот паспорт безопасности лечащему врачу.
Выйти из опасной зоны:

При вдыхании:
При вдыхании вывести пострадавшего на свежий воздух.
Если нет дыхания проведите искусственную вентиляцию легких.
Проконсультируйтесь с врачом.
При попадании на кожу:
Немедленно снять загрязненную одежду и обувь.
Смыть большим количеством воды с мылом.
Проконсультируйтесь с врачом.

При попадании в глаза:
Тщательно промойте большим количеством воды в течение не менее 15 минут и обратитесь к врачу.
Продолжайте промывать глаза во время транспортировки в больницу.

При проглатывании:
Не вызывает рвоту.
Никогда не давайте ничего в рот человеку, находящемуся без сознания.
Прополоскать рот водой.
Проконсультируйтесь с врачом.

Противопожарные меры:
Средства пожаротушения:
Подходящие средства пожаротушения:
Используйте распыление воды, спиртостойкую пену, сухой химикат или углекислый газ.
Особые опасности, исходящие от вещества или смеси
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород

Совет пожарным:
При необходимости наденьте автономный дыхательный аппарат для тушения пожара.
Меры по случайному выбросу:
Индивидуальные меры предосторожности, защитное снаряжение и порядок действий в чрезвычайных ситуациях
Используйте средства индивидуальной защиты.

Избегайте вдыхания паров, тумана или газа.
Эвакуируйте персонал в безопасные зоны.

Меры предосторожности в отношении окружающей среды:
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Следует избегать выброса в окружающую среду.

Методы и материалы для локализации и очистки:
Впитать инертным абсорбирующим материалом и утилизировать как опасные отходы.
Хранить в подходящих закрытых контейнерах для утилизации.

Обращение и хранение:
Меры предосторожности для безопасного обращения:
Избегайте вдыхания паров или тумана.

Условия для безопасного хранения, включая любые несовместимости:
Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.
Контейнеры, которые открываются, должны быть тщательно запечатаны и храниться в вертикальном положении, чтобы предотвратить утечку.
Класс хранения (TRGS 510): 8A: Горючие, коррозионно-опасные материалы

Контроль воздействия / личная защита:
Параметры управления:
Компоненты с параметрами контроля рабочего места
Не содержит веществ с ПДК на рабочем месте.
Средства контроля воздействия:
Соответствующие инженерные средства контроля:
Обращайтесь в соответствии с правилами промышленной гигиены и техники безопасности.
Мойте руки перед перерывами и в конце рабочего дня.

Средства индивидуальной защиты:
Защита глаз/лица:
Плотно прилегающие защитные очки.
Маска для лица (минимум 8 дюймов).
Используйте средства защиты глаз, проверенные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или EN 166 (ЕС).

Защита кожи:
Обращайтесь в перчатках.
Перчатки должны быть проверены перед использованием.
Используйте подходящую перчатку
метод удаления (не касаясь внешней поверхности перчатки), чтобы избежать контакта с кожей с этим продуктом.
Утилизируйте загрязненные перчатки после использования в соответствии с применимыми законами и передовой лабораторной практикой.
Вымойте и высушите руки.

Полный контакт:
Материал: Нитриловый каучук
Минимальная толщина слоя: 0,11 мм
Время прорыва: 480 мин.
Испытанный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Заставка контакта
Материал: Нитриловый каучук
Минимальная толщина слоя: 0,11 мм
Время прорыва: 480 мин.
Испытанный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Его не следует рассматривать как предложение одобрения для какого-либо конкретного сценария использования.

Защита тела:
Полный костюм, защищающий от химических веществ. Тип средств защиты необходимо выбирать в зависимости от концентрации и количества опасного вещества на конкретном рабочем месте.
Защита органов дыхания:
Там, где оценка риска показывает, что воздухоочистительные респираторы уместны, используйте полнолицевые респираторы с многоцелевыми комбинированными (США) или респираторными картриджами типа ABEK (EN 14387) в качестве резерва средств технического контроля.

Если респиратор является единственным средством защиты, используйте полнолицевой респиратор с подачей воздуха.
Используйте респираторы и компоненты, проверенные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или CEN (ЕС).
Контроль воздействия окружающей среды
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Следует избегать выброса в окружающую среду.

Стабильность и химическая активность:
Химическая стабильность:
Стабилен при соблюдении рекомендуемых условий хранения.
Несовместимые материалы:
Сильные окислители:
Опасные продукты разложения:
Опасные продукты разложения, образующиеся в условиях пожара.
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород.

Утилизация отходов:
Методы обработки отходов:
Продукт:
Предложите излишки и неперерабатываемые решения лицензированной компании по утилизации.
Обратитесь в лицензированную профессиональную службу по утилизации отходов, чтобы утилизировать этот материал.
Загрязненная упаковка:
Утилизировать как неиспользованный продукт

Хранилище:
TIB KAT SSSA можно хранить не менее одного года в закрытой оригинальной упаковке.
Упаковка:
Пластиковая бочка 25 кг, другой размер упаковки доступен по запросу.

Особые советы по безопасности:
Информация о:
классификация и маркировка в соответствии с правилами, регулирующими транспортировку и опасные химические вещества
защитные меры при хранении и обращении
меры безопасности при аварии и пожаре
токсичность и экологические последствия

ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА ТИБ КАТ СССА:
Химическая формула Sn(OOCC7H15)2
КАС № 301-10-0
Молекулярная масса 405,1 г/моль
Агрегатное состояние жидкость
Температура плавления ≥ - 25°C
Общее содержание олова 28 - 29,3 %
Содержание олова (II) ≥ 26,9 %
Плотность (20°С) 1,23 - 1,27 г/см3
Вязкость 270 - 430 мПа*с
Цвет (по Гарднеру) ≤ 5



TIB TINEX P
TIB Tinex P представляет собой разновидность алюмосиликатного соединения.
Межмолекулярная структура TIB Tinex P слоистая, на поверхности много пор неправильной формы.


Номер CAS: 70131-50-9 / 14808-60-7
Номер ЕС: 274-324-8
Бентонит, выщелоченный кислотой (содержит 1-5% 100% 70131-50-9
Кристаллический кремнезем - кварц) 14808-60-7


Ингредиент Номер CAS Вес %
Активированная отбеливающая земля 70131-50-9 >99%
Кремнезем, кристаллический (кварц) 14808-60-7 <1%


Химический состав активированной глины TIB Tinex P: Si 0250% ~ 70%, A1203 10% ~ 16%, Fe 2032% ~ 4%, Mg0 1% ~ 6% и т. д.
TIB Tinex P представляет собой разновидность алюмосиликатного соединения.
Межмолекулярная структура TIB Tinex P слоистая, на поверхности много пор неправильной формы.


TIB Tinex P легко впитывает влагу и обладает каталитическими свойствами.
Этот штамм изготовлен из природного водного силиката алюминия, промыт водой для удаления песка, обработан разбавленной кислотой и многократно промыт водой для удаления примесей.


Вода между слоями удаляется при нагревании до более чем 300 ℃ , что обладает уникальными адсорбционными свойствами.
TIB Tinex P зарегистрирован в соответствии с Регламентом REACH и производится и / или импортируется в Европейскую экономическую зону в объеме от ≥ 100 000 до < 1 000 000 тонн в год.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ TIB TINEX P:
Выброс TIB Tinex P в окружающую среду может происходить в результате промышленного использования: производство вещества, приготовление смесей, приготовление материалов, технологических добавок на промышленных объектах, при производстве изделий, в качестве промежуточного этапа в дальнейшем производстве другого вещества. (использование промежуточных продуктов), в качестве технологической добавки и веществ в закрытых системах с минимальным выбросом.


Другие выбросы TIB Tinex P в окружающую среду могут происходить при: использовании внутри помещений (например, жидкости/моющие средства для машинной мойки, средства по уходу за автомобилем, краски и покрытия или клеи, ароматизаторы и освежители воздуха) и использовании внутри помещений в закрытых системах с минимальным выбросом ( например, охлаждающие жидкости в холодильниках, электрические нагреватели на масляной основе).


Выброс TIB Tinex P в окружающую среду может происходить в результате промышленного использования: производство вещества, приготовление смесей, приготовление материалов, технологических добавок на промышленных объектах, при производстве изделий, в качестве промежуточного этапа в дальнейшем производстве другого вещества. (использование промежуточных продуктов), в качестве технологической добавки и веществ в закрытых системах с минимальным выбросом.


Другие выбросы TIB Tinex P в окружающую среду могут происходить при: использовании внутри помещений (например, жидкости/моющие средства для машинной мойки, средства по уходу за автомобилем, краски и покрытия или клеи, ароматизаторы и освежители воздуха) и использовании внутри помещений в закрытых системах с минимальным выбросом ( например, охлаждающие жидкости в холодильниках, электрические нагреватели на масляной основе).


TIB Tinex P можно найти в сложных изделиях, не предназначенных для высвобождения: транспортных средствах, машинах, механических устройствах и электрических/электронных изделиях (например, компьютерах, камерах, лампах, холодильниках, стиральных машинах), а также электрических батареях и аккумуляторах.
TIB Tinex P предназначен для высвобождения из: упаковочного материала для металлических деталей (выделяющие жир/ингибиторы коррозии).


TIB Tinex P можно найти в продуктах с материалом на основе: тканей, текстиля и одежды (например, одежды, матрасов, штор или ковров, текстильных игрушек), кожи (например, перчаток, обуви, кошельков, мебели), металла (например, столовых приборов, кастрюль). , игрушки, украшения) и дерево (например, полы, мебель, игрушки).
TIB Tinex P используется потребителями, в изделиях, профессиональными работниками (широко распространенное применение), в рецептурах или переупаковках, на промышленных площадках и в производстве.


TIB Tinex P предназначен для выпуска из ароматизированных: одежды, ластика, игрушек, изделий из бумаги и компакт-дисков.
TIB Tinex P используется в следующих областях: сельское хозяйство, лесное хозяйство и рыболовство, добыча полезных ископаемых, печать и воспроизведение носителей, коммунальное снабжение (например, электричество, пар, газ, вода) и очистка сточных вод, научные исследования и разработки, а также составление смесей и/ или переупаковка.


TIB Tinex P используется для производства: продуктов питания, химикатов, целлюлозы, бумаги и изделий из бумаги и минеральных продуктов (например, гипса, цемента).
Выброс TIB Tinex P в окружающую среду может происходить в результате промышленного использования: производство вещества, приготовление смесей, приготовление материалов, технологических добавок на промышленных объектах, при производстве изделий, в качестве промежуточного этапа в дальнейшем производстве другого вещества. (использование промежуточных продуктов), в качестве технологической добавки и веществ в закрытых системах с минимальным выбросом.


Другие выбросы TIB Tinex P в окружающую среду могут происходить при: использовании внутри помещений (например, жидкости/моющие средства для машинной мойки, средства по уходу за автомобилем, краски и покрытия или клеи, ароматизаторы и освежители воздуха) и использовании внутри помещений в закрытых системах с минимальным выбросом ( например, охлаждающие жидкости в холодильниках, электрические нагреватели на масляной основе).


Выброс TIB Tinex P в окружающую среду может происходить в результате промышленного использования: состав материалов, состав смесей, производство вещества, технологические добавки на промышленных объектах, производство изделий, в качестве промежуточного этапа в дальнейшем производстве другого вещества. (использование промежуточных продуктов), в качестве технологической добавки для производства термопластов и веществ в закрытых системах с минимальным выбросом.


Другие выбросы TIB Tinex P в окружающую среду могут происходить при: использовании внутри помещений (например, жидкости/моющие средства для машинной мойки, средства по уходу за автомобилем, краски и покрытия или клеи, ароматизаторы и освежители воздуха) и использовании внутри помещений в закрытых системах с минимальным выбросом ( например, охлаждающие жидкости в холодильниках, электрические нагреватели на масляной основе).


TIB Tinex P используется в следующих продуктах: чернила и тонеры.
TIB Tinex P используется в следующих областях: горнодобывающая промышленность, сельское хозяйство, лесоводство и рыболовство, коммунальное снабжение (например, электричество, пар, газ, вода) и очистка сточных вод, научные исследования и разработки, а также приготовление смесей и/или переупаковка.


Выброс в окружающую среду TIB Tinex P может происходить в результате промышленного использования: в качестве промежуточного этапа в дальнейшем производстве другого вещества (использование промежуточных продуктов), для производства термопластов, веществ в закрытых системах с минимальным выбросом, в технологических вспомогательных средствах на промышленных площадках, в производстве изделий, в качестве технологической добавки, производстве вещества, составлении смесей и оформлении материалов.


Другие выбросы TIB Tinex P в окружающую среду могут происходить при: использовании внутри помещений (например, жидкости/моющие средства для машинной мойки, средства по уходу за автомобилем, краски и покрытия или клеи, ароматизаторы и освежители воздуха) и использовании внутри помещений в закрытых системах с минимальным выбросом ( например, охлаждающие жидкости в холодильниках, электрические нагреватели на масляной основе).


Выброс TIB Tinex P в окружающую среду может происходить в результате промышленного использования: производство вещества, приготовление смесей, приготовление материалов, технологических добавок на промышленных объектах, при производстве изделий, в качестве промежуточного этапа в дальнейшем производстве другого вещества. (использование промежуточных продуктов), в качестве технологической добавки для производства термопластов и веществ в закрытых системах с минимальным выбросом.


Другие выбросы TIB Tinex P в окружающую среду могут происходить при: использовании внутри помещений (например, жидкости/моющие средства для машинной мойки, средства по уходу за автомобилем, краски и покрытия или клеи, ароматизаторы и освежители воздуха) и использовании внутри помещений в закрытых системах с минимальным выбросом ( например, охлаждающие жидкости в холодильниках, электрические нагреватели на масляной основе).


TIB Tinex P - это специальный адсорбент отработанного масла, в основном используемый для минерального масла, растительного масла, животного масла и твердого парафина, жирной кислоты, высококачественного этанола и обесцвечивания бензола.
TIB Tinex P используется для обесцвечивания и очистки вина, лимонной кислоты, глутамата натрия и других продуктов от глюкозы, мальтозы, фруктозы, сахара и других продуктов.


TIB Tinex P также является катализатором некоторых побочных продуктов нефтепереработки, катализатором контактного разложения бензина, катализатором органического синтеза, детергентом и отбеливателем масел и жиров, дегидратантом, осушителем для наружного применения лекарственных средств.
TIB Tinex P используется для повторной обработки нефти и регенерации отработанного масла.


TIB Tinex P используется для производства: химикатов, продуктов питания, пластмассовых изделий, целлюлозы, бумаги и изделий из бумаги, резиновых изделий, минеральных продуктов (например, гипса, цемента), древесины и изделий из дерева.
TIB Tinex P используется в качестве носителя инсектицидов и фунгицидов.


TIB Tinex P используется в качестве эффективного абсорбента жиров, масел, воды и других химикатов.
TIB Tinex P используется для подстилки и подстилки для домашней птицы, домашних животных и т. д.
TIB Tinex P также используется в качестве кондиционера почвы для теплиц и полей для гольфа.


TIB Tinex P используется в качестве загустителя и суспендирующего агента.
TIB Tinex P используется для обесцвечивания животного, растительного, минерального масла и других нефтепродуктов, а также в качестве катализатора органического синтеза.


TIB Tinex P используется в качестве загустителя и отвердителя для покрытий, красок, чернил и т. д.
Основными характеристиками TIB Tinex P являются набухание, высокая дисперсность и тиксотропность в органических средах.
В покрытиях TIB Tinex P обычно используется в качестве антиосадочного агента и загустителя.


Как металлическое антикоррозийное покрытие, TIB Tinex P обладает характеристиками коррозионной стойкости, износостойкости, коррозионной стойкости в соленой воде, ударопрочности и не поддается смачиванию.
В текстильной промышленности TIB Tinex P в основном используется в качестве вспомогательного красителя для тканей из синтетических волокон.


TIB Tinex P уже много лет используется для очистки животного, растительного и минерального масла.
Что касается чернил для высокоскоростной печати, отрегулируйте консистенцию, вязкость и проницаемость чернил в соответствии с потребностями.


В бурении TIB Tinex P можно использовать в качестве стабилизатора эмульсии.
Что касается высокотемпературных смазок, TIB Tinex P особенно используется для приготовления высокотемпературных смазок, подходящих для высокотемпературной и длительной непрерывной работы.



ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА TIB TINEX P:
TIB Tinex P представляет собой нетоксичный порошок или гранулы белого или бежевого цвета без запаха и вкуса.
TIB Tinex P дискретный и жирный.
Относительная плотность TIB Tinex P составляет 2,3~2,5.
TIB Tinex P нерастворим в воде, органических растворителях, различных маслах и липидах.
TIB Tinex P почти полностью растворяется в горячем растворе едкого натра.
TIB Tinex P представляет собой нетоксичный порошок или гранулы белого или бежевого цвета без запаха и вкуса.



СПОСОБ ПРИГОТОВЛЕНИЯ TIB TINEX P:
Способы подготовки к мокрому производству активированной глины.
Способ подготовки включает этапы грубого измельчения бентонитовой руды, взаимодействия с кислотой при 70°С, многократного центрифугирования и промывки, а затем ее нейтрализации и регулирования рН, после сушки и измельчения, получения продукта. был получен.



ОСОБЕННОСТИ TIB TINEX P:
TIB Tinex P представляет собой мелкодисперсный порошок белого цвета.
После увлажнения водой TIB Tinex P имеет запах глины и более глубокий цвет.
TIB Tinex P почти нерастворим в воде, разбавленной кислоте или растворе гидроксида натрия.



ДИФФЕРЕНЦИАЛЬНАЯ ДИАГНОСТИКА TIB TINEX P:
Берут около 1 г TIB Tinex P, помещают в фарфоровую чашку для выпаривания, добавляют 10 мл воды и 5 мл серной кислоты, нагревают до образования белого дыма, охлаждают, медленно добавляют 20 мл воды, кипятят 2-3 минуты, фильтруют, остаток был серым.
Фильтрат показывает реакцию идентификации соли алюминия.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА TIB TINEX P:
Форма: порошок
Запах: без запаха
Цвет: от белого до светло-серого
Значение pH: не применимо
Температура плавления: > 1,000•С
Пункт Bolfng: не применимо
Давление паров: не применимо
Относительная плотность: 2,0
Насыпная плотность: 670 - 930 кгм3
Коэффициент разделения: не применимо
н-октанол/вода (log Pow):
Вязкость, динамическая: не применимо
Растворимость В воде: не растворяется
Молекулярная масса: N/D
Удельный вес: 2,5

Плотность газа: Н/Д
Давление пара: Н/Д
Растворимость в воде: нерастворимая в воде
Процент летучих веществ по объему: минимум
Скорость испарения: Н/Д
рН: 3,0 – 4,5
Точка сублимации: Н/Д
Внешний вид, запах и состояние: серовато-белые гранулы, без запаха.
Форма: Порошок
Цвет: от светло-серого до грязно-белого
Запах: без запаха
Удельный вес (H2O=1): от 2 до 3
Растворимость (в воде): Нерастворимый
Кислотность: 0,03 мг/КОН/г (свободная кислотность)
Инфракрасный спектр: соответствует структуре

Титруемая кислота: ≤ 0,1 мг/КОН/г (свободная кислотность)
Физическая форма: гранулированный
Химическое название или материал: бентонит
Физическое состояние: твердое
Цвет: различный
Запах: характерный
pH: (значение) не применимо
Температура плавления/замерзания: >723 K
Начальная точка кипения и интервал кипения: не определены
Температура вспышки: не применимо
Скорость испарения: не определено
Пределы взрываемости пылевых обл��ков: не определено
Давление паров: не определено

Плотность: не определено
Плотность пара: эта информация недоступна
Относительная плотность: информация об этом свойстве отсутствует
Растворимость(и): Растворимость в воде <1 мг/л при 20 °C
Коэффициент распределения: н-октанол/вода (log KOW) эта информация недоступна
Температура самовоспламенения: не определено
Вязкость: не имеет значения (твердое вещество)
Взрывоопасные свойства: нет
Окислительные свойства: нет
Дополнительная информация:
Содержание растворителя 100 %
Содержание твердых веществ 100 %



МЕРЫ ПЕРВОЙ ПОМОЩИ TIB TINEX P:
-Описание мер первой помощи:
При вдыхании:
После вдоха:
Фэш эйр.
*При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промойте кожу водой/душем.
*При попадании в глаза:
После зрительного контакта:
Смойте большим количеством воды.
Снимите контактные линзы.
* При проглатывании:
После проглатывания:
Заставьте пострадавшего выпить воды (максимум два стакана).
Обратитесь к врачу при плохом самочувствии.
- Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ TIB TINEX P:
- Экологические меры предосторожности:
Никаких особых мер предосторожности не требуется.
-Методы и материалы для локализации и очистки:
Соблюдайте возможные ограничения по материалам.
Бери насухо.
Утилизируйте правильно.
Очистите пораженный участок.



ПРОТИВОПОЖАРНЫЕ МЕРЫ TIB TINEX P:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Используйте распыление воды, спиртостойкую пену, сухой химикат или углекислый газ.
-Дальнейшая информация:
Подавить (сбить) газы/пары/туманы струей воды.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ TIB TINEX P:
-Параметры управления:
--Ингредиенты с параметрами контроля рабочего места:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
* Защита глаз/лица:
Используйте средства защиты глаз.
Безопасные очки
* Защита кожи:
Обращайтесь в перчатках.
Вымойте и высушите руки.
* Защита органов дыхания:
Защита органов дыхания не требуется.
-Контроль воздействия окружающей среды:
Никаких особых мер предосторожности не требуется.



ОБРАЩЕНИЕ И ХРАНЕНИЕ TIB TINEX P:
-Условия для безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрытый.
Сухой.



СТАБИЛЬНОСТЬ и РЕАКЦИОННАЯ СПОСОБНОСТЬ TIB TINEX P:
-Реактивность:
Данные недоступны
-Химическая стабильность:
Продукт химически стабилен в стандартных условиях окружающей среды (комнатная температура).
Стабилен при соблюдении рекомендуемых условий хранения.
-Возможность опасных реакций:
Данные недоступны
-Условия, чтобы избежать:
Нет доступной информации



СИНОНИМЫ:
70131-50-9
Бентонит кислотного выщелачивания
274-324-8
Бентонит кислотного выщелачивания
Глиняный адсорбент
DTXSID8028977
ЕС 274-324-8
ИНЭКС 274-324-8
отбеливающая глина
Активная глина CS-1055
монтмориллонит К 10
Бентонит кислотного выщелачивания
Бентонит, Sure-gebleicht
АКТИВИРОВАННАЯ ОТБЕЛИВАЮЩАЯ ЗЕМЛЯ
Sud Chemie Tonsil Optimum FF
бентонитовый порошок кислотного выщелачивания
АКТИВИРОВАННАЯ ОТБЕЛИВАЮЩАЯ ЗЕМЛЯ CS-1040

TIBP
Phosphoric Acid Tris(2-​Tris(2-methylpropyl) phosphate; PHOSPHORIC ACID TRIISOBUTYL ESTER; Orthophosphoric acid triisobutyl ester CAS NO: 126-71-6, triisobutyl phosphate
TIBP (TriisoButyl Phosphate)
Tris(2-hydroxypropyl)amine; 1,1',1''-nitrilotri-2-propanol; Tris-(2-hydroxy-1-propyl)amine; 1,1',1''-Nitrilotripropan-2-ol; Nitrilotris(2-propanol); 3,3',3"-Nitrilotri(2-propanol); Tris(2-propanol)amine; Tri-2-propanolamine CAS NO:122-20-3
TIPA
TIPA Triisopropanolamine (TIPA) is an amine used for a variety of industrial applications including as an emulsifier, stabilizer, and chemical intermediate. TIPA is also used to neutralize acidic components of some herbicides. Physical characteristic: Clear Yellowish Chemical formula: Molecular weight: g/mol Type of packaging: Barrel It is in the amine group of alcohol. It is used widely in the sectors of paint and building. Properties Chemical formula C9H21NO3 Molar mass 191.271 g·mol−1 Appearance White to off-white solid Melting point 48–52 °C (118–126 °F; 321–325 K)[1] Boiling point 305 °C (581 °F; 578 K) TIPA is the organic compound with the formula CH3CH(OH)CH2NH2. It is an amino alcohol. The term isopropanolamine may also refer more generally to the additional homologs diisopropanolamine (DIPA) and triisopropanolamine (TIPA). TIPA is chiral. It can be prepared by the addition of aqueous ammonia to propylene oxide. Biosynthesis (R)-TIPA is one of the components incorporated in the biosynthesis of cobalamin. The O-phosphate ester is produced from threonine by the enzyme Threonine-phosphate decarboxylase. Applications The isopropanolamines are used as buffers. They are good solubilizers of oil and fat, so they are used to neutralize fatty acids and sulfonic acid-based surfactants. Racemic TIPA is typically used in metalworking fluid, waterborne coatings, personal care products, and in the production of titanium dioxide and polyurethanes.[5] It is an intermediate in the synthesis of a variety of pharmaceutical drugs.[citation needed] (R)-TIPA is metabolised to aminoacetone by the enzyme (R)-aminopropanol dehydrogenase. Isopropanolamines, due to their properties, have a wide range of applications as emulsifiers, stabilizers, viscosity modifiers, neutralizers. In addition, they are used as an intermediate chemical for the production of surfactants and optical brighteners, as well as for the purification of industrial gases. Very effective as a component of coolants and plastics, and moreover as an antistatic agent in the paper industry. They are used as additives for concrete and cement. They are used in the production of corrosion inhibitors, in the paint and varnish industry and coatings. CAS No. 78-96-6; CAS No. 110-97-4; CAS No. 122-20-3. Common product names: Monoisopropanolamine, MIPA, Monoizopropanolamine, MIPA, 1-amino-2-propanol, Diisopropanolamine; DIPA; Diizopropanolamine, DIPA, 1,1-Iminobispropan-2-ol; Bis (2-propanolamine), di (2-hydroxypropyl) amine; 1,1-iminodi-2-propanol; dipropyl-2,2-dihydroxyamine, Triisopropanolamine, TIPA, Triizopropanolamine, TIPA, 1,1 ', 1-nitrilotri-2-propanol. Triisopropanolamine (TIPA) is a compound of hydroxylamine with an organic amine and hydroxyl used in a mixture, especially to increase the final strength of cement, concrete and mortar. Areas of use TIPA is used in the following conditions and applications. For high-performance concrete production. • For the production of precast concrete For concrete admixture formulations where setting is desired. For the production of ready-mixed concrete with and without a pump. • To increase the hardening and setting of concrete. Application details It is generally compatible to use TIPA in formulations of concrete admixtures with raw materials based on naphthalenesulfonate, melamine sulfonate, lignin sulfonate and polycarboxylate. TIPA is a chemical compound with the molecular formula used as an emulsifier, stabilizer, and chemical intermediate.[2] TIPA can be prepared by the reaction of isopropanolamine or ammonia with propylene oxide. A basic chemical used in many applications serving as an emulsifier, stabilizer, chemical intermediate and neutralizer that achieves basicity, buffering and alkalinity objectives. Building block in the manufacture of triazine based corrosion inhibitors. It acts as a neutralizers for water-based coatings. Uses: Neutralize fatty acids and sulfonic acid-based surfactants Metalworking fluids Used in many applications to achieve basicity, buffering and alkalinity objectives. Benefits: Good solubilizers of oil and fat Offer heat and color stability Low formulation costs. Properties These values are not intended for use in preparing specifications. Typical Properties Chemistry Tri Performance Benefits Acid Gas Removal, Acidic Herbicide Neutralization, Concrete Compressive Strength, Corrosion Inhibitor, Grinding Aid, Intermediate, pH Regulator, Pigment Dispersant, Processing Agent, Reactive Agent Product Description DOW Triisopropanolamine (TIPA) is a basic chemical used in many applications serving as emulsifiers, stabilizers, chemical intermediates and neutralizers that achieve basicity, buffering and alkalinity objectives. Major applications include water-based coating applications and agricultural products. Additional applications are antistat agents for polymers, corrosion inhibitor, electrodeposition/electrocoating, lubricants, paper, pigment dispersion, plastics, polyurethane additive, reaction intermediates, rubber curing, surfactants, mineral dispersion, and urethanes. DOW Triisopropanolamine is available as TIPA 99, TIPA Low Freeze Grade (LFG) & TIPA 101. · TIPA 99—This commercial grade triisopropanolamine is a tertiary amine. · TIPA LFG—This triisopropanolamine is a low freeze grade variation of TIPA for easier handling in colder ambient temperatures (freezing point: 5ºC/41ºF). It is a blend of 85% TIPA and 15% deionized water. · TIPA 101—This triisopropanolamine is the non-prime product from the process. It is a blend of 90% TIPA and highers and 10% deionized water, with a freezing point of 17.2ºC/62.6ºF Features and Benefits Coatings · Cross-linker in special niche water-based coating applications · In waterborne coatings: good acid neutralization, improves water solubility, blocks organic acids in water, improves package stability, reduces water-sensitivity and discoloration Herbicides/Algaecides/Fungicides/Pesticides · Neutralizes acidic herbicides and other acidic components. · Good water solubility, freeze stability Developmental or Reproductive Toxicity/ The objective of this study was to evaluate the maternal and developmental toxicity of Picloram K and /triisopropanolamine/ TIPA salts in rats. Pregnant Sprague-Dawley rats were gavaged with 0, 100, 500 or 1000 mg/kg/day of Picloram K or TIPA salt on days 6 through 15 of gestation. Maternal observations included changes in behavior and demeanor, feed consumption, body weight gain, gross pathologic alterations, liver and kidney weights and various reproductive parameters. On day 20 of gestation, fetuses were removed following cesarean section, weighed and examined for external, visceral and skeletal alterations. Maternal toxicity was noted in high dose females administered Picloram TIPA salt. Dams given 1000 mg/kg/day of Picloram TIPA salt had decreased feed consumption and body weight gain during the exposure period. No adverse maternal effects were observed with Picloram K salt and neither Picloram K or Picloram TIPAsalts were embryo/fetotoxic or teratogenic at any dose level. Thus, the developmental no-observed-effect-levels for Picloram K and TIPA salts were 1000 mg/kg/day CAS # 122-20-3 EINECS # 204-528-4 GROUPS / USES Agriculture Intermediates, Chemical Synthesis, Water-Borne Coatings, Crosslinkers, Emulsifiers, Solvents, Stabilizer SYNONYMS TIPA, 1,1,1-Nitrilotripropan-2-Ol FORMULA C9H21NO3 CATEGORIES Adhesives & Sealants, Coatings, Construction Chemicals, Corrosion Inhibitors, Flavor & Fragrance, Household, Industrial & Institutional Chemicals, Industrial Chemicals, Lubricant & Grease, Plastic, Resin & Rubber, Surfactants & Emulsifiers TIPA is a white solid with slight odor of ammonia. Denser than water . TIPA is widely used as emulsifiers, stabilizers, surfactants and chemical intermediates. Major applications include: coatings as a cross-linker, acid neutralizer to improve product stability and pesticides as a neutralizer and to improve product stability. TIPA is an indirect food additive for use only as a component of adhesives. Diisopropanolamine, TIPA, isopropanolamine, & mixed isopropanolamine are used as water-soluble emulsifiers & neutralizers in cosmetic products at concns up to 1%. In animal studies these ingredients were slightly toxic to practically nontoxic to rats & guinea pigs via acute oral admin. TIPA was relatively nontoxic to rats in the two subchronic oral studies. These ingredients were moderate skin irritants for rabbits. All four ingredients, when tested at 100% concns, were severe ocular irritants in rabbits. Products containing small amounts (1%) of diisopropanolamine or TIPA, isopropanolamine were not ocular irritants in rabbits. The TIPA salt was not mutagenic in Aspergillus nidulans. ... Clinical studies on cosmetic products containing no more than 1% diisopropanolamine or 1.1% TIPA were minimal skin irritant & contact sensitizers. It is concluded that diisopropanolamine, TIPA, isopropanolamine, & mixed isopropanolamine are safe as cosmetic ingredients in the present practices of use & concn. TIPA's production and use as a crosslinking agent for coatings, emulsifiers and surfactants, and use as a chemical intermediate may result in its release to the environment through various waste streams. If released to air, a vapor pressure of 9.75X10-6 mm Hg at 25 °C indicates TIPA will exist in both the vapor and particulate phases in the atmosphere. Vapor-phase TIPA will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 3 hours. Particulate-phase TIPA will be removed from the atmosphere by wet or dry deposition. TIPA absorbs light at wavelengths >290 nm and may be susceptible to direct photolysis by sunlight. If released to soil, TIPA is expected to have very high mobility based upon an estimated Koc of 10. The pKa of TIPA is 8.06, indicating that this compound will exist partially in cation form in the environment and cations generally adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts. Volatilization from moist soil surfaces is not expected to be an important fate process based upon an estimated Henry's Law constant of 9.8X10-12 atm-cu m/mole. Volatilization from moist soil is not expected based on the Henry's Law constant. TIPA is not expected to volatilize from dry soil surfaces based upon its vapor pressure. TIPA was found to be not readily biodegradable using the Japanese MIT test where TIPA had only a 3.4% BODT after 4 weeks. However, the results of other ready, inherent and simulation tests have indicated that TIPA is readily susceptible to biodegradation in water and soil with CO2 the dominant degradation product under aerobic conditions. One soil metabolism study found a TIPA half-life of approximately 2 days. If released into water, TIPA is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is not expected to be an important fate process based upon this compound's estimated Henry's Law constant. BCF values of <0.57 in carp fish suggest the potential for bioconcentration in aquatic organisms is low. TIPA is expected to be stable to aqueous hydrolysis in the environment. The most likely route of occupational exposure to TIPA is the dermal route, but inhalation exposure to aerosols is also possible. Because TIPA, or TIPA-derived fatty acid soaps and salts may be used in a wide variety of personal care products, the most likely route of consumer exposure to TIPA in these products would be via the dermal route. TIPA's production and use as a crosslinking agent for coatings, emulsifiers and surfactants, and use as a chemical intermediate(1) may result in its release to the environment through various waste streams(SRC). Based on a classification scheme(1), an estimated Koc value of 10(SRC), determined from a structure estimation method(2), indicates that TIPA is expected to have very high mobility in soil(SRC). The pKa of TIPA is 8.06(3), indicating that this compound will partially exist in cation form in the environment and cations generally adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts(4). Volatilization of TIPA from moist soil surfaces is not expected to be an important fate process(SRC) given an estimated Henry's Law constant of 9.8X10-12 atm-cu m/mole(SRC), using a fragment constant estimation method(2). TIPA is not expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 9.75X10-6 mm Hg at 25 °C(4). TIPA was found to be not readily biodegradable using the Japanese MIT test where TIPA had only a 3.4% BODT after 4 weeks(5). However, the results of other ready, inherent and simulation tests have indicated that TIPA is readily susceptible to biodegradation with CO2 the dominant degradation product under aerobic conditions(3). One soil metabolism study found a TIPA half-life of approximately 2 days(3,4). Air & Water Reactions Water soluble Fire Hazard Special Hazards of Combustion Products: Toxic fumes containing carbon monoxide, and/or carbon dioxide, and oxides of nitrogen. Behavior in Fire: Toxic fumes containing carbon monoxide, and/or carbon dioxide, and oxides of nitrogen. (USCG, 1999) Health Hazard Irritation of eyes and skin. May cause slight corneal injury or burn. Repeated contact may cause skin burn. Heated vapor may cause moderate respiratory irritation. Low to moderately toxic by oral routes. (USCG, 1999) Reactivity Profile TRIISOPROPANOLAMINE (TIPA) neutralizes acids to form salts plus water in exothermic reactions. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen is generated by combination with strong reducing agents, such as hydrides. Based on a classification scheme(1), an estimated Koc value of 10(SRC), determined from a structure estimation method(2), indicates that TIPA is not expected to adsorb to suspended solids and sediment(SRC). Volatilization from water surfaces is not expected(3) based upon an estimated Henry's Law constant of 9.8X10-12 atm-cu m/mole(SRC), developed using a fragment constant estimation method(2). According to a classification scheme(4), a BCF value of <0.57 in carp fish(5) suggests the potential for bioconcentration in aquatic organisms is low(SRC). TIPA was found to be not readily biodegradable using the Japanese MIT test where TIPA had only a 3.4% BODT after 4 weeks(6). However, the results of other ready, inherent and simulation tests have indicated that TIPA is readily susceptible to biodegradation with CO2 the dominant degradation product under aerobic conditions(7). In a lake water-sediment batch study, TIPA had a half-life of 14.3 days with 62% mineralization to CO2(7). TIPA is expected to be stable to aqueous hydrolysis in the environment(8). According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere(1), TIPA, which has a vapor pressure of 9.75X10-6 mm Hg at 25 °C(2), is expected to exist in both the vapor and particulate phases in the ambient atmosphere. Vapor-phase TIPA is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be about 3 hours(SRC), calculated from its rate constant of 1.2X10-10 cu cm/molecule-sec at 25 °C(SRC) that was derived using a structure estimation method(3). Particulate-phase TIPA may be removed from the air by wet or dry deposition(SRC). TIPA absorbs light at wavelengths >290 nm(2) and may be susceptible to direct photolysis by sunlight(SRC). TIPA, present at 100 mg/L, reached 0% of its theoretical BOD in 2 weeks using an activated sludge inoculum at 30 mg/L(1). In a biodegradation test, TIPA reached 0%, 46%, and >46% of its theoretical BOD in 5, 10, and 20 days, respectively, using surface water or sewage treatment inoculum(2). TIPA, present at 30 mg/L, reached 3.4% of its theoretical BOD in 4 weeks using an activated sludge inoculum at 100 mg/L in the Japanese MITI test(3). In inherent biodegradability BOD tests (system pre-acclimated to test compound), TIPA had 51%, 75% and >75% degradation after a 5-day, 10-day and 20-day incubation periods respectively(2). In a soil batch system using an initial TIPA concentration of 3.3 ppm, TIPA had a half-life of 2 days with 66-72% mineralization to CO2(2) and complete mineralization at 20 days(4). In a lake water-sediment batch system using an initial TIPA concentration of 2.3 ppm, TIPA had a half-life of 14.3 days with 62% mineralization to CO2(2). The rate constant for the vapor-phase reaction of TIPA with photochemically-produced hydroxyl radicals has been estimated as 1.2X10-10 cu cm/molecule-sec at 25 °C(SRC) using a structure estimation method(1). This corresponds to an atmospheric half-life of about 3 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm(1). TIPA is expected to be stable to aqueous hydrolysis in the environment(2). TIPA absorbs light at wavelengths >290 nm(3) and may be susceptible to direct photolysis by sunlight(SRC). During a 6 week period using carp fish (Cyprinus carpio), BCF values of <0.06 and <0.57 were measured for TIPA at respective concentrations of 2.5 and 0.25 mg/L(1). According to a classification scheme(2), these BCF values suggest the potential for bioconcentration in aquatic organisms is low(SRC). Using a structure estimation method based on molecular connectivity indices(1), the Koc of TIPA can be estimated to be 10(SRC). According to a classification scheme(2), this estimated Koc value suggests that TIPA is expected to have very high mobility in soil. The pKa of TIPA is 8.06(3), indicating that this compound will partially exist in cation form in the environment and cations generally adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts(4). The Henry's Law constant for TIPA is estimated as 9.8X10-12 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This Henry's Law constant indicates that TIPA is expected to be essentially nonvolatile from water surfaces(2). TIPA's Henry's Law constant indicates that volatilization from moist soil surfaces is not expected to occur(SRC). TIPA acid is not expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 9.75X10-6 mm Hg at 25 °C(3). According to the 2006 TSCA Inventory Update Reporting data, the number of persons reasonably likely to be exposed in the industrial manufacturing, processing, and use of TIPA is 1 to 99; the data may be greatly underestimated(1). NIOSH (NOES Survey 1981-1983) has statistically estimated that 64,304 workers (8,631 of these are female) are potentially exposed to TIPA in the US(1). The most likely route of occupational exposure to TIPA is the dermal route, but inhalation exposure to aerosols is also possible(2). Because TIPA, or TIPA-derived fatty acid soaps and salts may be used in a wide variety of personal care products, the most likely route of consumer exposure to TIPA in these products would be via the dermal route(2). TIPA – Set Accelerating And Strength Enhancer Raw Material for High-Range Water Reducing / Superplasticizer Concrete-Cement Admixtures Product Definition Triisopropanolamine is a hydroxylamine compound with organic amine and Hydroxyl used in admixture especially for increasing final strengths of cement, concrete and mortar. Use Triisopropanolamine (TIPA) is used in the following conditions and applications. • For high performance concrete production. • For precast and precast concrete production. • For concrete admixture formulations where early strength is desired. • For Ready-mixed concrete production with and without pump. • For increasing the final and early strength of concrete. • Improves the grinding efficiency resulting energy savings. Application Details It is generaly compatible to use TIPA in concrete admixture recipes with Naphthalene Sulfonate, Melamine Sulfonate, Lignin Sulfonate and Polycarboxylate based raw materials. General description Triisopropanolamine (TIPA), a tertiary alkanolamine, is majorly used as a grinding chemical that reduces agglomeration in the ball milling process and changes the particle distribution of the finished cement. Application TIPA can act as an interfacial transition zone (ITZ) to improve the mechanical properties of the mortar and the concrete. It can also be used to increase the compressive strength of the cement-fly ash system by accelerating the hydration of both the compounds. The amine Triisopropanolamine is used in industrial applications as a stabilizer, intermediate and as an emulsifier. What Is It? TIPA and Diisopropanolamine are white solids, whereas Isopropanolamine and Mixed Isopropanolamines occur as clear, colorless liquids. In cosmetics and personal care products, these ingredients are used in the formulation of permanent waves and other hair products, and bath, skin, fragrance and indoor tanning products. Why is it used in cosmetics and personal care products? TIPA, Diisopropanolamine, Isopropanolamine and Mixed Isopropanolamines are used to control the pH of cosmetics and personal care products, and these ingredients help to form emulsions by reducing the surface tension of the substances to be emulsified. TIPA also prevents the corrosion (rust) of metallic materials used in packaging cosmetics and personal care products. Scientific Facts: Diisopropanolamine and Isopropanolamine have a tendency to darken in color with prolonged exposure to air or iron. TIPA reduces the tendency of a metal used in packaging to be attacked by the contents of the package. Triisopropanolamine is used as a cross-linker in special niche water-based coating applications. The cement and concrete industries use TIPA as a grinding aid, and it is used in concrete admixtures. TIPA is used as a neutralizing agent in agricultural products and water borne coatings. APPLICATIONS Cement & Concrete improves the grinding efficiency resulting in energy savings; prevents from agglomeration or clumping; as water reducing agent. Rubber curing Chain terminator in isoprene polymerization. Polyurethane Used as Cross-linker to improve PU foam quality. Metal working to improve corrosion protection, antioxidant. PACKAGE Net weight 200kg/ iron drum ;1000kg IBC drum;20 tons flexibag STORAGE Shelf time of TIPA is one year, and after then it could still be available once has passed a chemical test. SAFETY & TOXICITY Generally present no toxicity, alkalescency but do not irritate skin. Higher flashing point, it should be prevented the material from spilling into the eyes while handling.
TIPA (TRIISOPROPANOL AMINE)
tris(2-hydroxypropyl)amine 85% ; 1,1',1''-nitrilotri-2-propanol; Tris-(2-hydroxy-1-propyl)amine; 1,1',1''-Nitrilotripropan-2-ol; Nitrilotris(2-propanol); 3,3',3"-Nitrilotri(2-propanol); Tris(2-propanol)amine; Tri-2-propanolamine; cas no: 122-20-3
TIPA 85%
TIPA-LAURETH SULFATE, N° CAS : 107600-36-2, Nom INCI : TIPA-LAURETH SULFATE, Classification : Sulfate, Composé éthoxylé, Règlementé, Restriction en Europe : III/62 Ses fonctions (INCI), Agent nettoyant : Aide à garder une surface propre, Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
TIPA-LAURETH SULFATE
RUTILE; ANATASE; FERRISPEC(R) PL TITANIUM DIOXIDE WHITE; HOMBIKAT; UNITANE; TITANIUM WHITE;TITAN DIOXIDE;TIO2 cas no: 1317-80-2
TITAN RUTIL
Synonyms: nano titanium dioxide;HoMbikat catalyst grade (for rearrangeMent reactions);TitaniuM(IV) oxide nanopowder, 21 nM particle size (TEM), >=99.5% trace Metals basis;TitaniuM(IV) oxide, Mixture of rutile and anatase nanoparticles, <150 nM particle size (voluMe distribution, DLS), dispersion, 33-37 wt. % in H2O, 99.5% trace Metals basis;TitaniuM(IV) oxide, Mixture of rutile and anatase nanopowder, <100 nM particle size (BET), 99.5% trace Metals basis;Aeroxide? P25;Titania nanofibers;Titania nanowires CAS: 13463-67-7
TITANDIOXIDE FOOD
Titanium dioxide (TiO2) ; Titanium dioxide food coloring cas no: 13463-67-7
TITANIUM DIOXIDE
Synonyms: nano titanium dioxide;HoMbikat catalyst grade (for rearrangeMent reactions);TitaniuM(IV) oxide nanopowder, 21 nM particle size (TEM), >=99.5% trace Metals basis;TitaniuM(IV) oxide, Mixture of rutile and anatase nanoparticles, <150 nM particle size (voluMe distribution, DLS), dispersion, 33-37 wt. % in H2O, 99.5% trace Metals basis;TitaniuM(IV) oxide, Mixture of rutile and anatase nanopowder, <100 nM particle size (BET), 99.5% trace Metals basis;Aeroxide? P25;Titania nanofibers;Titania nanowires CAS: 13463-67-7
Tilia cordata
tilia cordata extract; lime tree extract; linden extract; extract of the whole plant of the linden, tilia cordata, tiliaceae CAS NO:84929-52-2
Tin sulphate
Titanic anhydride, Titanium dioxide; TIO2; titanium; oxide CAS NO:13463-67-7
TiONA 826

TiONA 826 — это высокоэффективный многоцелевой рутиловый пигмент диоксида титана, полученный хлоридным способом, разработанный для обеспечения исключительного сочетания легкости диспергирования, превосходных оптических свойств и очень высокой долговечности в широком спектре применений покрытий.
Сочетание высокой стойкости краски и очень высокой долговечности TiONA 826 делает его отличным выбором для применения с пластмассами.
Двумя основными физико-химически различными полиморфами TiO2 являются анатаз и рутил.
TiONA 826 обладает более высокой фотокаталитической активностью, чем рутил, но термодинамически менее стабилен.

КАС: 13463-67-7
ПФ: O2Ti
МВт: 79,8658
ЭИНЭКС: 236-675-5

TiONA 826 обладает более высокой фотокаталитической активностью, чем рутил, но термодинамически менее стабилен.
TiONA 826, TiO2, представляет собой белый порошок и обладает наибольшей укрывистостью среди всех белых пигментов.
TiONA 826 негорюч; однако это порошок, и при взвешивании в воздухе он может вызвать взрыв пыли при наличии источника воспламенения.
TiONA 826 не указан в Таблице опасных материалов DOT, и DOT не считает его опасным при транспортировке.
В основном используется в качестве белого пигмента в красках, бумаге, резине и пластмассах; в косметике; в сварочных стержнях; и при радиоактивной дезактивации кожи.
TiONA 826 представляет собой оксид титана с формулой TiO2.
Природный оксид, полученный из ильменита, рутила и анатаза, TiONA 826 имеет широкий спектр применения.
TiONA 826 используется в качестве пищевого красителя.
Двумя основными физико-химически различными полиморфными модификациями TiO2 являются анатаз и рутил.

TiONA 826 визуально представляет собой блестящий белый пигмент, который также обладает противовоспалительными свойствами.
Встречаются два типа кристаллов TiO2: анатаз и рутил.
Для производства этих кристаллов используются два производственных процесса: (1) процесс производства сульфатов позволяет производить кристаллы любого типа, в то время как (2) процесс производства хлоридов производит только кристаллы рутила.
TiONA 826 — универсальный продукт, сочетающий в себе очень высокую долговечность, сохранение блеска и устойчивость к мелу при наружном применении с отличными оптическими характеристиками.
Сочетание высокой стойкости краски и исключительной долговечности делает TiONA 826 отличным выбором как для покрытий, так и для изготовления пластмасс.

Химические свойства TiONA 826
Температура плавления: 1840 °С.
Температура кипения: 2900 °С.
Плотность: 4,26 г/мл при 25 °C (лит.)
Показатель преломления: 2,61
Фп: 2500-3000°С
Температура хранения: Хранить при температуре от +5°C до +30°C.
растворимость: Практически нерастворим в воде.
TiONA 826 не растворяется в разбавленных минеральных кислотах, но медленно растворяется в горячей концентрированной серной кислоте.
Форма: порошок
Удельный вес: 4,26
Цвет: от белого до слегка желтого
PH: 7-8 (100 г/л, H2O, 20 ℃) (суспензия)
Запах: при 100,00?%. без запаха
Растворимость в воде: нерастворимый
Кристаллическая структура: орторомбическая, Pcab
Мерк: 14,9472
Пределы воздействия ACGIH: TWA 10 мг/м3
OSHA: TWA 15 мг/м3
NIOSH: IDLH 5000 мг/м3; СВВ 2,4 мг/м3; СВВ 0,3 мг/м3
Ссылка на базу данных CAS: 13463-67-7 (ссылка на базу данных CAS)
МАИР: 2B (Том 47, 93) 2010 г.
Справочник по химии NIST: TiONA 826 (13463-67-7)
Система регистрации веществ EPA: TiONA 826 (13463-67-7)

Встречающийся в природе диоксид существует в трех кристаллических формах: анатаз, рутил и брукит.
В то время как рутил, наиболее распространенная форма, имеет октаэдрическую структуру.
TiONA 826 и брукит имеют сильно искаженные октаэдры из атомов кислорода, окружающие каждый атом титана.
В таких искаженных октаэдрических структурах два атома кислорода расположены относительно ближе к титану, чем остальные четыре атома кислорода.

Белый аморфный негигроскопичный порошок без запаха и вкуса.
Хотя средний размер частиц порошка диоксида титана составляет менее 1 мм, ко��мерческий TiONA 826 обычно представляет собой агрегированные частицы диаметром около 100 мм.
TiONA 826 может встречаться в нескольких различных кристаллических формах: рутил; анатаз; и брукит.
Из них рутил и анатаз являются единственными формами, имеющими коммерческое значение.
Рутил — более термодинамически стабильная кристаллическая форма, но анатаз — форма, наиболее часто используемая в фармацевтических целях.

Физические свойства
Встречающийся в природе диоксид существует в трех кристаллических формах: анатаз, рутил и брукит.
В то время как рутил, наиболее распространенная форма, имеет октаэдрическую структуру.
Анатаз и брукит имеют сильно искаженные октаэдры из атомов кислорода, окружающие каждый атом титана.
В таких искаженных октаэдрических структурах два атома кислорода расположены относительно ближе к титану, чем остальные четыре атома кислорода.

Использование
TiONA 826, также известный как рутил, является одним из самых известных соединений, используемых в качестве пигмента для красок.
TiONA 826 идеально подходит для красок, подвергающихся воздействию суровых температур и морского климата, благодаря своей инертности и свойствам самоочищения.
TiONA 826 также используется в производстве стеклянной посуды, керамики, эмалей, сварочных стержней и напольных покрытий.
TiONA 826 — белый пигмент, который диспергируется в жидкостях и обладает высокой матирующей способностью.
Кристаллическими модификациями диоксида титана являются рутил и анатаз, из которых только анатаз находит применение в качестве цветной добавки.

TiONA 826 — чрезвычайно белый и яркий состав с высоким показателем преломления.
В красках TiONA 826 — белый пигмент и матирующий агент.
TiONA 826 используется в красках для дома, водных красках, лаках, эмалях, наполнителях и покрытиях для бумаги, резине, пластмассах, печатной краске, синтетических тканях, напольных покрытиях и отбеливателях для обуви.
Также TiONA 826 используется в красителях для керамики и покрытиях для сварочных стержней.
Рутиловая форма диоксида используется в синтетических драгоценных камнях.

Флотируемый ильменит используется для производства титановых пигментов.
Рутиловый песок пригоден для материалов покрытия сварочных стержней, в качестве керамического красителя, в качестве источника металлического титана.
Как цвет в пищевой промышленности.
Анатазный диоксид титана используется для покрытий сварочных стержней, кислотостойких стекловидных эмалей, в технических красках, наружных красках для белых домов, ацетатного вискозы, белых внутренних воздушно-сухих и обожженных эмалей и лаков, чернил и пластмасс, для заполнения и покрытия бумаги, в водных красках, кожевенных покрытиях, отбеливателях для обуви и керамике.
Для рутилоподобных пигментов заявлены высокие значения непрозрачности и тонировки.

TiONA 826 — один из 21 солнцезащитного химиката, одобренного FDA, с разрешенным уровнем использования от 2 до 25 процентов.
При нанесении диоксид титана остается на поверхности кожи, рассеивая ультрафиолет.
TiONA 826 часто используется в сочетании с другими солнцезащитными химикатами для повышения значения SPF продукта, тем самым снижая риск раздражения или аллергии, вызванных чрезмерным использованием химических солнцезащитных кремов.
Включение TiONA 826 в составы солнцезащитных кремов, основы под макияж и дневные увлажняющие средства зависит от конкретного размера используемого диоксида титана.
Чем меньше размер частиц, тем незаметнее применение Tio2.
С другой стороны, крупные частицы оставляют беловатый след или выглядят на коже.
Некоторые компании указывают «микро» или «ультра», говоря о размере частиц TiONA 826.
Согласно некоторым источникам, TiONA 826 может быть идеальным компонентом защиты от UVA/UVB лучей, учитывая его химические, косметические и физические характеристики.
TiONA 826 также используется для придания белого цвета косметическим препаратам.

Фармацевтическое применение
TiONA 826 широко используется в кондитерской, косметической и пищевой промышленности, в промышленности пластмасс, а также в фармацевтических составах для местного и перорального применения в качестве белого пигмента.
Благодаря высокому показателю преломления TiONA 826 обладает светорассеивающими свойствами, которые можно использовать при его использовании в качестве белого пигмента и замутнителя.
Диапазон рассеиваемого света можно изменить, изменив размер частиц порошка TiONA 826.
Например, TiONA 826 со средним размером частиц 230 нм рассеивает видимый свет, а TiONA 826 со средним размером частиц 60 нм рассеивает ультрафиолетовый свет и отражает видимый свет.
В фармацевтических препаратах TiONA 826 используется в качестве белого пигмента в суспензиях для пленочного покрытия, таблетках с сахарным покрытием и желатиновых капсулах.
TiONA 826 также можно смешивать с другими пигментами.
TiONA 826 также используется в дерматологических препаратах и косметических средствах, таких как солнцезащитные средства.

Подготовка
TiONA 826 добывается из природных месторождений.
TiONA 826 также производится из других минералов титана или готовится в лаборатории.
TiONA 826 производится из минералов, рутила и ильменита.
TiONA 826 преобразуется в пигментный рутил путем хлорирования с получением тетрахлорида титана TiCl4.
TiONA 826 преобразуется обратно в очищенную рутиловую форму путем окисления в паровой фазе.
Форму TiONA 826 получают гидролитическим осаждением сульфата титана(IV) при нагревании.
Минерал ильменит обрабатывают концентрированной серной кислотой.
При нагревании раствора сульфата осаждается водный оксид титана.
Осадок прокаливают, чтобы удалить всю воду.
TiONA 826 также может быть получен путем нагревания металлического Ti на воздухе или в кислороде при повышенных температурах.

Методы производства
Существует два основных процесса производства пигментов TiONA 826, а именно сульфатный и хлоридный.
В сульфатном процессе рудный лимонит FeOTiO2 растворяется в серной кислоте, а полученный раствор гидролизуется при кипячении с образованием гидратированного оксида, в то время как железо остается в растворе.
Осажденный гидрат титана промывают и выщелачивают от растворимых примесей.
Контролируемое прокаливание при температуре около 1000°C дает пигмент TiONA 826 с правильным распределением кристаллов по размерам; затем этот материал подвергается чистовой обработке и фрезерованию.
В хлоридном процессе используется газообразное хлорирование минерального рутила с последующей дистилляцией и, наконец, парофазным окислением тетрахлорида титана.

TiONA 826 встречается в природе в виде минералов рутила (тетрагональная структура), анатаза (тетрагональная структура) и брукита (ромбическая структура).
TiONA 826 может быть получен в промышленных масштабах либо сульфатным, либо хлоридным способом.
В сульфатном процессе титансодержащая руда, такая как илеменит, вываривается в серной кислоте.
За этим этапом следует растворение сульфатов в воде с последующим осаждением водного диоксида титана с помощью гидролиза.
Наконец, TiONA 826 прокаливают при высокой температуре.
В хлоридном процессе сухая руда хлорируется при высокой температуре с образованием тетрахлорида титана, который впоследствии окисляется с образованием TiONA 826.

Синонимы
ДИОКСИД ТИТАНА
Оксид титана
13463-67-7
Рутил
Оксид титана(IV)
диоксотитан
Анатас
Титания
1317-70-0
1317-80-2
Анатаз (TiO2)
Брукайт
Титановый Белый
Титафранс
Титандиоксид
Фламенко
Хомбитан
Тиофайн
Тиоксид
Типаке
Титанокс
Райокс
Байертитан А
Рутил (TiO2)
Титановый ангидрид
Тиоксид правого руля
Тиоксид РСМ
Зопак ЛДЦ
Рутиокс CR
Титанокс РАНК
А-Фил Крем
Калькотон Белый Т
Тиоксид А-ДМ
Тиоксид АД-М
Тиоксид R-CR
Тиоксид Р-СМ
Тиоксид R.XL
Байертитан Р-У-Ф
Леванокс Белый РКБ
А-Фил
Кронос
Тронокс
Унитан
Сопак
Руна рх20
Оксид титана
Унитан ор-150
Унитан или-340
Унитан или-342
Унитан ор-350
Унитан или-540
Унитан или-640
Austiox R-CR 3
Кабина-О-Ти
Хомбитан R 101D
Хомбитан Р 610К
Байертитан Т
Унитан о-110
Унитан о-220
Кронос РН 40П
Кронос РН 56
Тиона тд
Титан Уайт
Голова лошади А-410
Конская голова А-420
Голова лошади р-710
Типак R 820
Унитейн ОР 450
Унитейн OR 650
Пыль двуокиси олова
пероксид титана
Титанокс 2010
Юнивайт АО
Юнивайт КО
Триоксид(ы)
Кронос CL 220
Кронос диоксид титана
Кронос 2073
Ти-чистый
Байертитан АН 3
Руна АРХ 20
Тиоксид R XL
1700 белый
Р 25 (оксид)
Руна АРХ 200
Ти-Пьюр Р 900
Ти-Пьюр Р 901
Тиона т.д.
Байертитан Р-У 2
Байертитан Р-ФК-Д
Октаэдрит
Пероксид титана (TiO2)
Аэросил П 25
Аэросил П 27
Байертитан
Байтитан
Сагенит
Тихлор
Титандиоксид (Швеция)
Аэролист 7710
Байертитан Р-ФД 1
Байертитан Р-КБ 2
Байертитан Р-КБ 3
Байертитан Р-КБ 4
Байертитан Р-КБ 5
Байертитан Р-КБ 6
Юнивайт ОР 450
Унибелый ОР 650
С-Вайс 7
Аэросил П 25С6
Аэросил Т 805
Атлас белый диоксид титана
Смесь бело��о 9202
Байер Р-ФД 1
63B1 Белый
Байертитан Р-ФК 21
Амперит 780,0
Юнитан 0-110
Унитан 0-220
Анатаз диоксид титана
Косметический белый C47-5175
Косметический белый C47-9623
Оксид титана (TiO2)
Унитан ИЛИ
С 97 (оксид)
РО 2
КГ-Т
Аустиокс Р-CR
Байертитан Р-В-СЭ 20
Тиоксид A-HR
Бистратер L-NSC 200C
Оксид титана(IV), рутил
Тинок М 6
Оксид титана(IV), анатаз
Октаэдрит (минерал)
ССРИС 590
ТиО2
Титандиоксид [шведский]
аустиокс
байеритянин
КХ 360
Оксид титана (ВАН)
А-ФН 3
ХДБ 869
Кронос 1002
НЦИ-C0424O
830 рэндов (минерал)
C-Weiss 7 [немецкий]
МЦ 50 (оксид)
АУФ 0015С
100 АМТ
600 АМТ
НТ 100 (оксид)
Косметическая гидрофобная добавка TiO2 9428
С 150 (оксид)
234DA
500HD
НЦИ-C04240
Косметическая микросмесь TiO2 9228
диоксид титана
TİP II TAVUK KOLOJENİ
collagen; atelocollagen; chicken collagen; collagen I,III(bovine) agglomerated cas no:9007-34-5
Titanium Isopropoxide
Titanium dioxide; Titania; Titanium dioxide; Titanium(IV) oxide; CAS NO: 13463-67-7
Titanium Tetrachloride
ANATASE; FERRISPEC(R) PL TITANIUM DIOXIDE WHITE; HOMBIKAT; PIGMENT WHITE 6; RUTILE; TIO2; TITAN DIOXIDE; TITANIA; TITANIC ANHYDRIDE; TITANIUM(+4)OXIDE; TITANIUM DIOXIDE; TITANIUM DIOXIDE, ANATASE; TITANIUM DIOXIDE, RUTILE; TITANIUM DIOXIDE, RUTILE FORM; TITANIUM DIOXIDE RUTILE TITAN (TM) R-02; TITANIUM DIOXIDE RUTILE TYTANPOL(TM); TITANIUM(IV) DIOXIDE; TITANIUM(IV) OXIDE; TITANIUM(IV) OXIDE, ANATASE FORM; TITANIUM(IV) OXIDE, RUTILE CAS NO:13463-67-7
TİTANYUM DİOKSİT
SYNONYMS Titanium dioxide;nano titanium dioxide;HoMbikat catalyst grade (for rearrangeMent reactions);TitaniuM(IV) oxide nanopowder ;Titania nanofibers;Titania nanowires CAS NO:13463-67-7
TKPP (TETRACAL-TETRA POTASSIUM PYRO PHOSPHATE)
2-ethyl-2-[[(1-oxooleyl)oxy]methyl]-1,3-propanediyl dioleate ; 2-ethyl-2-[[(1-oxooleyl)oxy]methyl]-1,3-propanediyl dioleate; Trimethylolpropane trioleate; 9-Octadecenoic acid (9Z)-, 2-ethyl-2-(9Z)-1-oxo-9-octadecenyloxymethyl-1,3-propanediyl ester; Trimethylolpropan-trioleat; 2-ethyl-2-[[(1-oxo-9-octadecenyl) oxy]methyl]-1,3-propanediyl ester, (Z)-9-Octadecenoic acid (Z); 1,1,1-Trimethylolpropane trioleate Trimethylopropane trioleate; 2,2-Bis{[(9Z)-octadec-9-; enoyloxy]methyl}butyl (9Z)-octadec-9-enoate CAS NO:57675-44-2
TMP-TO(TRIMETHYLOL PROPANE – TRIOLEATE)
DL-alpha-Tocopheryl Acetate; 3,4-Dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-b- enzopyran-6-ol, acetate; Tocopheryl acetate; 2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-6-chromanol acetate; 133-80-2; 1407-18-7; 18920-61-1; 54-22-8; DL-alpha tocopheryl acetate; cas no: 7695-91-2
Tocopherol, Helianthus Annuus Seed Oil
dermofeel® E 67 non GMO Helianthus Annuus Seed Oil is the oil expressed from the seeds of the Sunflower, Helianthus annuus L., Compositae CAS Number 1406-18-4 / 8001-21-6
TOCOPHEROLS
tocopherols; methyltocols; 2,7,8- trimethyl-2-(4,8,12-trimethyltridecyl)-3,4-dihydrochromen-6-ol cas no: 1406-66-2
TOCOPHERYL ACETATE
SYNONYMS (+)-α-Tocopherol acetate;2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-, acetate, (2R)-;d-Vitamin E acetate;D-α-Tocopherol acetate;D-α-TOCOPHERYL ACETATE;Vitamin E acetate;Vitamin Eα acetate;α-Tocopherol acetate CAS NO:58-95-7
Tocopheryl acetate ( Vitamin E acetate ) Acétate de vitamine E
tall oil fatty acid ; Tallol; Liquid rosin; Talloel (German); Aceite de resina (Spanish); Tallol (French); cas no: 61790-12-3
TOFA
TOFA TOFA, also known as “liquid rosin” or tallol or Tall Oil Fatty Acid, is a low cost, viscous yellow-black odorous liquid chemical compound that is a product of crude tall oil vacuum distillation. It is a member of the product family Oleic Acid. Other Products of Tall Oil Fatty Acid (TOFA) Extractives such as rosin and fatty acids are sometimes removed from the spent pulping liquor and processed into crude TOFA. In Canada, most crude TOFA is currently incinerated as fuel in the lime kilns of pulp mills to displace fossil fuel. In the south eastern United States, where extractive content of the wood is much higher, TOFA plants fractionate the crude TOFA into value-added components. Processes have also been proposed to convert both the fatty and rosin acid components of the crude TOFA into green diesel fuel. The processing of TOFA into a high-quality diesel additive has been researched in the laboratory and pilot scale. The later studies included promising road tests by Canada Post Corporation. Given that many kraft pulp mills already collect these extractives, their future utilization for fuels will be based on competing economic considerations. Fatty acids can be directly esterified by alcohols into diesel fuel, whereas the rosin acids can be converted by the “Super Cetane” hydrogenation process developed in Canada. Turpentine recovered from process condensates in Canadian mills is generally incinerated as fuel in one of the on-site boilers. Processing it into consumer grade products is possible but, in many cases, it is more valuable as a fuel. Extractives (TOFA and Turpentine) as a Chemical Platform The chemical and mechanical pulping of wood, in particular coniferous trees, generates large amounts of sidestreams such as crude TOFA (CTO) and crude turpentine (CT). The global TOFA production today is close to ~ 1.2 million tonnes/year, whereas the estimated worldwide production of turpentine is about 350,000 tonnes/year. They are the third and fourth largest chemical by-products after hemicellulose and lignin in the manufacturing of paper pulp from wood. In the kraft process, high alkalinity and temperature convert the esters and carboxylic acids in rosin into soluble sodium soaps that are skimmed off and collected and acidified to give CTO, while the crude sulfate turpentine (CST) is condensed from digester vapors. CTO consists of around 30%–50% fatty acids, 15%–35% rosin acids, and 30%–50% pitch, a bioliquid that is used for energy generation and by the chemical industry. The chemical composition varies with the wood age, wood species, geographic location of the coniferous trees, and the technological solutions of the pulping processes. High-purity terpenes are also recovered as a by-product in mechanical pulping processes by steam distillation and crude sulfite turpentine when CTO is skimmed from pulping liquor in the sulfite process, neutralized with NaOH or lime, and subsequently distilled. Chemically, turpentine is a mixture of numerous C10H16 monoterpene isomers, consisting of bicyclic compounds such as 3-carene, camphene, and α- and β-pinenes, which together with monocyclic limonene are the principal compounds of this raw material. The chemical composition of CT also varies strongly with the wood species, geographic location, pulping process or mill, and even harvesting season; For example, kraft turpentine from the United States can contain more β-pinene than α-pinene, whereas the opposite is true in Europe. However, in turpentine originating from sulfite pulping, ρ-cymene is typically the predominant compound. Because of the use of sulfur-containing cooking chemicals upon pulping, the sulfur content in CT can reach 3 wt%, whereupon the three main species present are methanethiol, dimethyl sulfide (DMS), and dimethyl disulfide (DMDS). The organoleptic properties of the aforementioned malodorous organics complicate the further use and upgrading of CT and the isolation and utilization of specific terpenes. Traditionally, CTO from the pulp industry was viewed as low-value substance and burned as an alternative to heavy fuel oil, but over the last decade, it has emerged as a promising raw material for the production of commercially relevant synthetic fuels (biodiesel and diesel via hydrodeoxygenation), lubricants, solvents, and many other high-value materials (Scheme 3.12A). In fact, currently, there are several biorefineries and industries upgrading and marketing TOFA and TOFA-derived chemicals. Typically, various fractions of CTO are separated by distillation over wide pressure ranges, and they are marketed as wood-based chemicals for use in downstream applications. The resinic acids (TOR) are used as a critical ingredient in printing inks, photocopying and laser printing paper, varnishes, adhesives (glues), soap, paper sizing, soda, soldering fluxes, sealing wax, medical plasters, and ointments. It can also be used as a glazing agent in medicines and chewing gum, as an emulsifier in soft drinks, and as a flux used in soldering. In contrast, TOFA is used as a chemical platform or raw material for the production of high-value products such as biofuels (via catalytic esterification or deoxygenation). Notable examples of TOFA biorefineries include Arizona Chemicals (in Sweden and Finland); Forchem TOFA biorefinery (now a part of the Portuguese Repsol Group), Finland; and SunPine, Sweden. The former two specialize in CTO distillation and markets TOFA and TOR as the main products. On the other hand, SunPine is a recently established unique facility that is upgrading CTO to crude tall biodiesel (production capacity of 10,000 m3/year) that is fed to the classical petroleum refinery process of Preem in southern Sweden. The process uses CTO, acid vegetable oils, and methanol as starting materials and is based on the esterification of TOFA and vegetable acids with methanol to produced esters (biodiesel). Other vegetable oils TOFA. Crude TOFA (CTO) is separated from black liquor in the kraft sulfate pulping of mainly coniferous trees (Figure 7), which store triglycerides, fatty acids, resin acids, sterols, and sterol esters as nutrients in the parenchyma cells, while the radial resin ducts contain resin acids and turpentine for the wound healing of bark breaches. That is why pine balsam won by tapping is a source of rosin and terpenes but not of CTO. The recovered black liquor is concentrated and left to settle. The top layer is known as TOFA soap and is skimmed off. The rest is recycled for further use in paper making. The soap is converted to CTO by acidulation with sulfuric acid. CTO is not a fatty oil but is actually a mixture of five components with different boiling points, which are split by fractionation into heads (which boils first), then ‘TOFA fatty acids’ (TOFAs), distilled TOFA (DTO, a mixture of fatty and rosin acids), ‘TOFA rosin’ (TOR, a mixture of eight closely related rosin acids, i.e., abietic, neoabietic, palustric, levopimaric, dehydroabietic, pimaric, sandaracopimaric, and isopimaric acid), and pitch (the unsaponifiable residue). TOFA is mainly oleic acid. Furthermore, TOFAs contain unusual isomers, such as octadecadienoic acids with double bonds in the 5,9- and 5,12-positions. Important applications of TOFA are the manufacture of alkyd resins and dimer acids. TOFA TOFA TOFA CAS# 61790-12-3, also known as “liquid rosin” or tallol, is a low cost, viscous yellow-black odorous liquid chemical compound that is a product of crude tall oil vacuum distillation. It is a member of the product family Oleic Acid. TOFA, also called "liquid rosin" or tallol, is a viscous yellow-black odorous liquid obtained as a by-product of the Kraft process of wood pulp manufacture when pulping mainly coniferous trees. The name originated as an anglicization of the Swedish "tallolja" ("pine oil"). TOFA is the third largest chemical by-product in a Kraft mill after lignin and hemicellulose; the yield of crude TOFA from the process is in the range of 30–50 kg / ton pulp. It may contribute to 1.0–1.5% of the mill's revenue if not used internally. Manufacturing of Tall Oil Fatty Acid (TOFA) In the Kraft Process, high alkalinity and temperature converts the esters and carboxylic acids in rosin into soluble sodium soaps of lignin, rosin, and fatty acids. The spent cooking liquor is called weak black liquor and is about 15% dry content. The black liquor is concentrated in a multiple effect evaporator and after the first stage the black liquor is about 20–30%. At this stage it is called intermediate liquor. Normally the soaps start to float in the storage tank for the weak or intermediate liquors and are skimmed off and collected. A good soap skimming operation reduces the soap content of the black liquor down to 0.2–0.4% w/w of the dry residue. The collected soap is called raw rosin soap or rosinate. The raw rosin soap is then allowed to settle or is centrifuged to release as much as possible of the entrained black liquor. The soap goes then to the acidulator where it is heated and acidified with sulfuric acid to produce crude TOFA (CTO). The soap skimming and acidulator operation can be improved by addition of flocculants. A flocculant will shorten the separation time and give a cleaner soap with lower viscosity. This makes the acidulator run smoother as well. Most pines give a soap yield of 5–25 kg/ton pulp, while Scots pine gives 20–50 kg/ton. Scots pine grown in northern Scandinavia give a yield of even more than 50 kg/ton. Globally about 2 mill ton/year of CTO are refined. Composition of Tall Oil Fatty Acid (TOFA) See also: Resin acid The composition of crude TOFA varies a great deal, depending on the type of wood used. A common quality measure for TOFA is acid number. With pure pines it is possible to have acid numbers in the range 160–165, while mills using a mix of softwoods and hardwoods might give acid numbers in the range of 125–135. Normally crude TOFA contains rosins (which contains resin acids (mainly abietic acid and its isomers), fatty acids (mainly palmitic acid, oleic acid and linoleic acid) and fatty alcohols, unsaponifiable sterols (5–10%), some sterols, and other alkyl hydrocarbon derivates. By fractional distillation TOFA rosin is obtained, with rosin content reduced to 10–35%. By further reduction of the rosin content to 1–10%, TOFA fatty acid can be obtained, which is cheap, consists mostly of oleic acid, and is a source of volatile fatty acids. Applications of Tall Oil Fatty Acid (TOFA) The TOFA rosin finds use as a component of adhesives, rubbers, and inks, and as an emulsifier. The pitch is used as a binder in cement, an adhesive, and an emulsifier for asphalt. TOFA is a low-cost and vegetarian lifestyle-friendly alternative to tallow fatty acids for production of soaps and lubricants. When esterified with pentaerythritol, it is used as a compound of adhesives and oil-based varnishes. When reacted with amines, polyamidoamines are produced which may be used as epoxy resin curing agents. SYLFAT fatty acids are useful in a wide range of industrial applications including fuel additives, alkyd resins, dimer acids, surfactants, cleaners, oil field chemicals, lubricant esters and other chemical derivatives. The use of these product ranges can be found in the long carbon chain (C18), the acid function of the carboxyl group (COOH) and the unsaturation of the double bonds. All SYLFAT TOFAs have high fatty acid content, low content of rosin acids and unsaponifiables. SYLFAT 2 and SYLFAT 2LT are from European, and especially Scandinavian, origin and with a specific characteristic to have more double bounds (i.e. higher Iodine Value) compared to TOFA with an origin closer to the equator like our SYLFAT FA1 and SYLFAT FA2. SYLFAT 2 and SYLFAT FA2 provide a combination of light color, good color stability and air-drying properties. SYLFAT 2LT is a specialty grade of TOFA with excellent low temperature properties typically used as fuel additive to improve lubricity of low sulphur diesel. TOFA, also called "liquid rosin" or tallol, is a viscous yellow-black odorous liquid obtained as a by-product of the Kraft process of wood pulp manufacture when pulping mainly coniferous trees. The name originated as an anglicization of the Swedish "tallolja" ("pine oil"). TOFA is the third largest chemical by-product in a Kraft mill after lignin and hemicellulose; the yield of crude TOFA from the process is in the range of 30–50 kg / ton pulp. Tall Oil Fatty Acid (TOFA) may contribute to 1.0–1.5% of the mill's revenue if not used internally. Manufacturing of Tall Oil Fatty Acid (TOFA) Forchem TOFA refinery in Rauma, Finland. In the Kraft Process, high alkalinity and temperature converts the esters and carboxylic acids in rosin into soluble sodium soaps of lignin, rosin, and fatty acids. The spent cooking liquor is called weak black liquor and is about 15% dry content. The black liquor is concentrated in a multiple effect evaporator and after the first stage the black liquor is about 20–30%. At this stage it is called intermediate liquor. Normally the soaps start to float in the storage tank for the weak or intermediate liquors and are skimmed off and collected. A good soap skimming operation reduces the soap content of the black liquor down to 0.2–0.4% w/w of the dry residue. The collected soap is called raw rosin soap or rosinate. The raw rosin soap is then allowed to settle or is centrifuged to release as much as possible of the entrained black liquor. The soap goes then to the acidulator where it is heated and acidified with sulfuric acid to produce crude TOFA (CTO). The soap skimming and acidulator operation can be improved by addition of flocculants. A flocculant will shorten the separation time and give a cleaner soap with lower viscosity. This makes the acidulator run smoother as well. Most pines give a soap yield of 5–25 kg/ton pulp, while Scots pine gives 20–50 kg/ton. Scots pine grown in northern Scandinavia give a yield of even more than 50 kg/ton. Globally about 2 mill ton/year of CTO are refined. The composition of crude TOFA varies a great deal, depending on the type of wood used. A common quality measure for TOFA is acid number. With pure pines it is possible to have acid numbers in the range 160–165, while mills using a mix of softwoods and hardwoods might give acid numbers in the range of 125–135. Normally crude TOFA contains rosins, which contains resin acids (mainly abietic acid and its isomers), fatty acids (mainly palmitic acid, oleic acid and linoleic acid) and fatty alcohols, unsaponifiable sterols (5–10%), some sterols, and other alkyl hydrocarbon derivates. By fractional distillation TOFA rosin is obtained, with rosin content reduced to 10–35%. By further reduction of the rosin content to 1–10%, TOFA fatty acid can be obtained, which is cheap, consists mostly of oleic acid, and is a source of volatile fatty acids. Applications of Tall Oil Fatty Acid (TOFA) The TOFA rosin finds use as a component of adhesives, rubbers, and inks, and as an emulsifier. The pitch is used as a binder in cement, an adhesive, and an emulsifier for asphalt. TOFA is a low-cost and vegetarian lifestyle-friendly alternative to tallow fatty acids for production of soaps and lubricants. When esterified with pentaerythritol, it is used as a compound of adhesives and oil-based varnishes. When reacted with amines, polyamidoamines are produced which may be used as epoxy resin curing agents. TOFA is also used in oil drilling as a component of drilling fluids. TOFA refers to mixtures of several related carboxylic acids, primarily abietic acid, found in tree resins. Nearly all TOFAs have the same basic skeleton: three fused rings having the empirical formula C19H29COOH. TOFAs are tacky, yellowish gums that are water-insoluble. They are used to produce soaps for diverse applications, but their use is being displaced increasingly by synthetic acids such as 2-ethylhexanoic acid or petroleum-derived naphthenic acids. Botanical analysis of Tall Oil Fatty Acid (TOFA) TOFAs are protectants and wood preservatives that are produced by parenchymatous epithelial cells that surround the resin ducts in trees from temperate coniferous forests. The TOFAs are formed when two-carbon and three-carbon molecules couple with isoprene building units to form monoterpenes (volatile), sesquiterpenes (volatile), and diterpenes (nonvolatile) structures. Pines contain numerous vertical and radial resin ducts scattered throughout the entire wood. The accumulation of resin in the heartwood and resin ducts causes a maximum concentration in the base of the older trees. Resin in the sapwood, however, is less at the base of the tree and increases with height. In 2005, as an infestation of the Mountain pine beetle (Dendroctonus ponderosae) and blue stain fungus devastated the Lodgepole Pine forests of northern interior British Columbia, Canada, TOFA levels three to four times greater than normal were detected in infected trees, prior to death. These increased levels show that a tree uses the resins as a defense. Resins are both toxic to the beetle and the fungus and also can entomb the beetle in diterpene remains from secretions. Increasing resin production has been proposed as a way to slow the spread of the beetle in the "Red Zone" or the wildlife urban interface. Production in tall oil (chemical pulping byproduct) The commercial manufacture of wood pulp grade chemical cellulose using the kraft chemical pulping processes releases TOFAs. The Kraft process is conducted under strongly basic conditions of sodium hydroxide, sodium sulfide and sodium hydrosulfide, which neutralizes these TOFAs, converting them to their respective sodium salts, sodium abietate, ((CH3)4C15H17COONa) sodium pimarate ((CH3)3(CH2)C15H23COONa) and so on. In this form, the sodium salts are insoluble and, being of lower density than the spent pulping process liquor, float to the surface of storage vessels during the process of concentration, as a somewhat gelatinous pasty fluid called kraft soap, or resin soap. Kraft soap can be reneutralized with sulfuric acid to restore the acidic forms abietic acid, palmitic acid, and related TOFA components. This refined mixture is called tall oil. Other major components include fatty acids and unsaponifiable sterols. TOFAs, because of the same protectant nature they provide in the trees where they originate, also impose toxic implications on the effluent treatment facilities in pulp manufacturing plants. Furthermore, any residual TOFAs that pass the treatment facilities add toxicity to the stream discharged to the receiving waters. Variation with species and biogeoclimatic zone The chemical composition of tall oil varies with the species of trees used in pulping, and in turn with geographical location. For example, the coastal areas of the southeastern United States have a high proportion of Slash Pine (Pinus elliottii); inland areas of the same region have a preponderance of Loblolly Pine (Pinus taeda). Slash Pine generally contains a higher concentration of TOFAs than Loblolly Pine. In general, the tall oil produced in coastal areas of the southeastern United States contains over 40% TOFAs and sometimes as much as 50% or more. The fatty acids fraction is usually lower than the TOFAs, and unsaponifiables amount to 6-8%. Farther north in Virginia, where Pitch Pine (Pinus rigida)and Shortleaf Pine (Pinus echinata) are more dominant, the TOFA content decreases to as low as 30-35% with a corresponding increase in the fatty acids present. In Canada, where mills process Lodgepole Pine (Pinus contorta) in interior British Columbia and Alberta, Jack Pine (Pinus banksiana), Alberta to Quebec and Eastern White Pine (Pinus strobus) and Red Pine (Pinus resinosa), Ontario to New Brunswick, TOFA levels of 25% are common with unsaponifiable contents of 12-25%. Similar variations may be found in other parts of the United States and in other countries. For example, in Finland, Sweden and Russia, TOFA values from Scots Pine (Pinus sylvestris) may vary from 20 to 50%, fatty acids from 35 to 70%, and unsaponifiables from 6 to 30%. Characteristics of Tall Oil Fatty Acid (TOFA) 100% bio-based content Low viscosity, liquid long fatty acid (C18) chain Reactive polyunsaturation Light color and good color stability (based on grade) Low rosin content Good air drying properties Grades Low color Low sulfur 0.5% to 3% rosin content Size available Bulk rail car Bulk tank truck Totes (IBC) Drums Applications of Tall Oil Fatty Acid (TOFA) Chemical manufacturing Esters, amides, amines, soaps CASE Alkyd resins, plasticizers Textiles Spinning lubricants Oilfield Emulsifiers and corrosion inhibitors for drilling muds Lubricants & metalworking Group IV base oils, corrosion inhibitors, defoamers TOFA is Forchem’s classic Tall Oil (CTO) product that is very pure fatty acid with a low level of rosin acids and a low level of unsaponifiables through our optimum distillation process. Forchem TOFA is used to satisfy the demands of today’s environmentally aware consumers and global markets. TOFA is an ideal raw material for many chemical reactions and intermediates. The most common applications for TOFA are paints and coatings, biolubricants, fuel additives and performance polymer. About 1949, with the advent of effective fractional distillation, the tall oil industry came of age, and TOFAs , generally any product containing 90% or more fatty acids and 10% or less of rosin, have grown in annual volume ever since, until they amount to 398.8 million pounds annual production in the U.S. in 1978. Crude tall oil is a byproduct of the Kraft process for producing wood pulp from pine wood. Crude tall oil is about 50% fatty acids and 40% rosin acids, the remainder unsaps and residues; actually, a national average recovery of about 1–2% of tall oil is obtained from wood. On a pulp basis, each ton of pulp affords 140–220 pounds black liquor soaps, which yields 70–110 pounds crude tall oil, yielding 30–50 pounds of TOFA. Separative and upgrading technology involves: (a) recovery of the tall oil; (b) acid refining; (c) fractionation of tall oil; and occasionally (d) conversion to derivatives. TOFA of good quality and color of Gardner 2 corresponds to above 97% fatty acids with the composition of 1.6% palmitic & stearic acid, 49.3% oleic acid, 45.1% linoleic acid, 1.1% miscellaneous acids, 1.2% rosin acids, and 1.7% unsaponifiables. TOFA, also known as “liquid rosin” or tallol, is is a light-colored TOFA produced via the fractional distillation of crude tall oil. It is most commonoly used as an intermediate to make various alkyd resins. TOFA CAS# 61790-12-3, also known as “liquid rosin” or tallol, is a low cost, viscous yellow-black odorous liquid chemical compound that is a product of crude tall oil vacuum distillation. It is a member of the product family Oleic Acid. TOFAs are sold in markets that use them in raw form and as precursors to synthesize an array of products. TOFA derivatives include dimers, alkyds, PVC stabilizers, synthetic lubricant polyamides, and a variety of oilfield chemicals. Low sulfur TOFA is designed specifically for the fuel segment as a diesel fuel additive. TOFAs is obtained by the fractional distillation of crude oil, a by-product from the pulping of pine trees. TOFAs are used in dimer acids, alkyd resins, oilfield chemicals, metalworking fluids, liquid cleaners, textile chemicals, fuel additives, construction chemicals, rubber and tire, metallic stabilizers, ore flotation, and fatty derivatives. Abstract TOFAs consist primarily of oleic and linoleic acids and are obtained by the distillation of crude tall oil. Crude tall oil, a by‐product of the kraft pulping process, is a mixture of fatty acids, rosin acids, and unsaponifiables. These components are separated from one another by a series of distillations. Several grades of TOFA are available depending on rosin, unsaponifiable content, color, and color stability. Typical compositions of TOFA products are shown. TOFAs have a variety of applications. The largest uses of TOFA traditionally have been in coatings, primarily alkyd resins where grades of higher rosin content predominate. Since the 1970s their use as chemical intermediates in applications, which includes manufacture of dimer acids and epoxidized TOFA esters, has exceeded their use in coatings. The more highly refined, low rosin grades are required for their application as intermediates. Other areas of significant use are in soaps, detergents, and ore flotation. Worldwide crude tall oil fractionating capacity and domestic production and prices of TOFA are given. TOFA pricing is strongly dependent on soya fatty acid prices since these materials are often used in the same application. The soap skimming and acidulator operation can be improved by addition of flocculants. A flocculant will shorten the separation time and give a cleaner soap with lower viscosity. This makes the acidulator run smoother as well. Most pines give a soap yield of 5–25 kg/ton pulp, while Scots pine gives 20–50 kg/ton. Scots pine grown in northern Scandinavia give a yield of even more than 50 kg/ton. Globally about 2 mill ton/year of CTO are refined. Normally crude tall oil contains rosins (which contains resin acids (mainly abietic acid and its isomers), fatty acids (mainly palmitic acid, oleic acid and linoleic acid) and fatty alcohols, unsaponifiable sterols (5–10%), some sterols, and other alkyl hydrocarbon derivates. By fractional distillation tall oil rosin is obtained, with rosin content reduced to 10–35%. By further reduction of the rosin content to 1–10%, TOFA can be obtained, which is cheap, consists mostly of oleic acid, and is a source of volatile fatty acids. The tall oil rosin finds use as a component of adhesives, rubbers, and inks, and as an emulsifier. The pitch is used as a binder in cement, an adhesive, and an emulsifier for asphalt. TOFA is a low-cost and vegetarian lifestyle-friendly alternative to tallow fatty acids for production of soaps and lubricants. When esterified with pentaerythritol, it is used as a compound of adhesives and oil-based varnishes. When reacted with amines, polyamidoamines are produced which may be used as epoxy resin curing agents.
TOLITRIAZOL 
4-TOLUENESULFONIC ACIDP; TOLUENE SULFONATEP; TOLUENE SULPHONIC ACIDp; -Toluenesulfonic acid; P-TOLUENESULPHONIC ACIDP; ARA-TOLYLSULFONIC ACIDTOLUENE SULFONIC ACID, N° CAS : 104-15-4, Nom INCI : TOLUENE SULFONIC ACID, Nom chimique : Toluene-4-sulphonic acid, N° EINECS/ELINCS : 203-180-0, Ses fonctions (INCI), Hydrotrope : Augmente la solubilité d'une substance qui est peu soluble dans l'eau.Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : 4-METHYLBENZENESULFONIC ACID 4-METHYLBENZENESULFONIC ACID ANHYDROUS ACIDE METHYL-4 BENZENESULFONIQUE ANHYDRE Acide p-toluènesulfonique Acide p-toluènesulfonique anhydre ACIDE PARA-TOLUENESULFONIQUE ACIDE PARA-TOLUENESULFONIQUE ANHYDRE Acide toluènesulfonique (para-) BENZENESULFONIC ACID, 4-METHYL- P-METHYLBENZENESULFONIC ACID P-METHYLPHENYLSULFONIC ACID PARA-METHYLBENZENESULFONIC ACID PARA-METHYLPHENYLSULFONIC ACID Noms anglais : 4-TOLUENESULFONIC ACID ANHYDROUS P-TOLUENESULFONIC ACID P-TOLUENE SULFONATE P-TOLUENE SULPHONIC ACID p-Toluenesulfonic acid P-TOLUENESULPHONIC ACID P-TOLYLSULFONIC ACID P-TOLYLSULFONIC ACID ANHYDROUS PARA-TOLUENESULFONIC ACID PARA-TOLUENESULPHONIC ACID PARA-TOLYLSULFONIC ACID Utilisation et sources d'émissionF: abrication de produits organiques, fabrication de colorants; p-Toluenesulfonic acid p-toluenesulphonic acid p-toluenesulphonic acid (containing a maximum of 5 % H2SO4) p-toluenesulphonic acid (containing a maximum of 5 % H2SO4) p-toluenesulphonic acid, (containing more than 5 % H2SO4) Toluene-4-sulphonic acid Translated names ''π-τολουολοσουλφονικό οξύ (που περιέχει μέχρι και 5 % H2SO4) (el) 4-methylbenzensulfonová kyselina, obsah maximálně 5 % H2SO4 (cs) 4-metylbenzensulfonsyra, innehållande högst 5% H2SO4 (sv) acid p-toluensulfonic(continut maxim de 5% H2SO4) (ro) acide p-toluènesulfonique (contenant un maximum de 5 % H2SO4) (fr) acido p-toluensolfonico (contenente non più del 5 % H2SO4) (it) kwas 4-metylobenzenosulfonowy (zawierający maksymalnie 5% H2SO4) (pl) kwas p-toluenosulfonowy (zawierający maksymalnie 5% H2SO4) (pl) kyselina 4-metylbenzénsulfónová (s obsahom maximálne 5 % H2SO4) (sk) p-Tolueenisulfonihappo, joka sisältää <5% rikkihappoa (fi) p-tolueensulfonzuur (met maximum 5 % H2SO4) (nl) p-tolueensulfoonhape, mis sisaldab <5% väävelhapet (et) p-toluensulfonrūgštis (sudėtyje turinti maksimaliai 5 % sieros rūgšties) (lt) p-toluensulfonska kiselina (sadrži maksimum 5 % H2SO4) (hr) p-toluensulfonska kislina (z največ 5% žveplove kisline) (sl) p-toluensulfonsyra, innehållande högst 5% H2SO4 (sv) p-toluensulfonsyre (indeholdende højst 5 % H2SO4) (da) p-toluensulfonsyre, med maks. 5 % H2SO4 (no) p-Toluolsulfonsäure (mit höchstens 5 % H2SO4) (de) p-toluolsulfoskābe, kas satur ne vairāk kā 5% sērskābes (lv) p-тoлуенсулфонова киселина (съдържаща максимално 5% H2SO4) (bg) toluol-4-szulfonsav (kénsav tartalom max. 5%) (hu) ácido p-toluenossulfónico (contendo no máximo 5 % H2SO4) (pt) ácido p-toluenosulfónico (con un contenido máximo de 5 % de H2SO4) (es) CAS names Benzenesulfonic acid, 4-methyl- IUPAC names 4-methyl benzenesulphonic acid 4-methylbenzene-1-sulfonic acid 4-methylbenzene-1-sulfonic acid hydrate 4-Methylbenzenesulfonic acid , 4-methylbenzenesulfonic acid hydrate , 4-Methylbenzenesulfonic acid monohydrate 4-Methylbenzolsulfonsäure 4-Toluenesulfonic acid monohydrate acide para toluene sulfonique acido 4-metilbenzensulfonico Benzenesulfonic acid, 4-methyl-, monohydrate p-Toluenesulfonic Acid Monohydrate p-Toluenesulfonic acid, Tosylic acid, Tosic acid, PTSA p-toluenesulphonic acid hydrate p-toluenesulphonic acid, containing a maximum of 5% H2SO4 Para Toluene Sulfonic Acid (PTSA) Reaction mass of sulphuric acid and 7732-18-5 toluen 4-sulfonová kyselina Toluene sulphonic acid toluene-4-silphonic acid TOLUENESULFONIC ACID Toluenesulfonic acid, p- Toluol-4-sulfonsäure Toluol-4-sulfonsäure Monohydrat ácido 4-metilbenzenosulfónico Trade names 4-Methylbenzolsulfonsaeure, Monohydrat 4-Toluenesulfonic acid Acide benzènesulfonique, 4-méthyl- Acide benzènesulfonique, 4-méthyl- (< 5 % acide sulfurique) Acide toluene-4-sulfonique acido tolueno-4-sulfonico Benzenesulfonic acid, 4-methyl- (9CI) Benzolsulfonsaeure, 4-methyl Benzolsulfonsäure, 4-Methyl- Cyzac 4040 Eltesol TA Eltesol TA 65 Eltesol TA/E Eltesol TA/F Eltesol TA/H Eltesol TA/K Eltesol TA96 Eltesol TSX Eltesol TSX/A Eltesol TSX/SF K-Cure 1040 LAS 4-methyl, p- LAS 4-methyl, p- (max 5 % sulfuric acid); <5% Schwefelsaeure Manro PTSA/95 Manro PTSA/C MANRO PTSA/C; 60-100% Active Matter; active substance Manro PTSA/E Manro PTSA/LG Manro PTSA/LS Methylbenzolsulfonsäure, 4- Nacure 1040 p-Methylbenzenesulfonic acid p-Methylphenylsulfonic acid p-Toluene sulfonate p-TOLUENE SULFONIC ACID p-Toluene Sulfonic Acid Monohydrat p-Toluolsulfonsaeure p-Toluolsulfonsäure p-Toluolsulfonsäure in ca.65%iger wässriger Lsg.; 65% Active Matter; active substance p-Tolylsulfonic acid P.T.S.A PARA-TOLUENESULFONIC ACID CC5U PARATOLUOLSULFONSAEURE PTSA 70 Reworyl T 65 Stepanate PTSA-C; 60-100% Active Matter; active substance Sulframin TX Toluene Sulfonic Acid Toluene sulfonic acid (INCI) Toluene sulphonic acid (65% in water) TL65LS; 65% Active Matter; active substance TOLUENESULFONIC ACID, HI-PARA Toluenesulfonic acid, p- 65%; 65% Active Matter; active substance Toluensulfonic acid; 95% Active Matter; active substance Toluol-4-sulfonsaeure; 104-15-4 [RN]; 203-180-0 [EINECS] 4-Methylbenzenesulfonic acid [ACD/IUPAC Name] 4-Methylbenzenesulphonic acid 4-Methylbenzolsulfonsäure [German] [ACD/IUPAC Name] 4-toluenesulfonic acid Acide 4-méthylbenzènesulfonique [French] [ACD/IUPAC Name] Benzenesulfonic acid, 4-methyl- [ACD/Index Name] para-toluenesulfonic acid p-Methylbenzenesulfonic Acid P-Toluene Sulfonic acid p-Toluenesulfonic acid [Wiki] p-toluenesulphonic acid p-toluensulfonic acid p-Toluolenesulfonic acid PTSA p-TsOH [Formula] Toluene sulfonic acid Toluene-4-sulfonic acid Toluene-4-sulphonic acid Toluenesulfonic acid tosic acid TsOH [Formula] 236-576-7 [EINECS] 3233-58-7 [RN] 4-11-00-00241 (Beilstein Handbook Reference) [Beilstein] 472690 [Beilstein] 4-methylbenzene-1-sulfonic acid 4-methyl-benzenesulfonic acid 4-methylbenzensulphonic acid 4-Toluene sulfonic acid 70788-37-3 [RN] Benzenesulfonic acid, methyl- Eltesol K-Cure 040 Kyselina p-toluenesulfonova Kyselina p-toluensulfonova [Czech] Kyselina p-toluensulfonova Manro PTSA 65 E Manro PTSA 65 H Manro PTSA 65 LS Methylbenzenesulfonic acid MFCD00064387 [MDL number] MFCD00142137 [MDL number] MFCD02683442 [MDL number] Para Toluene Sulfonic Acid PARA-TOLUENE SULFONATE paratoluene sulfonic acid para-toluene sulfonic acid paratoluenesulfonic acid para-toluenesulphonic acid para-toluensulfonic acid p-cresol sulfate p-Methyl-benzenesulfonic acid p-Methylbenzenesulfonic Acid (en) p-methylphenylsulfonic acid P-Toluene Sulfonic acid(monohydrate) p-Toluene-sulfonic acid p-toluenesulfonicacid p-tolyl sulfonic acid p-tolylsulfonic acid Toluen-4-sulfonsaeure toluene-4-sulfonate toluene-p-sulfonic acid Toluenesulfonic acid (VAN) Toluenesulphonic acid TOS tosylate [Wiki] tosylic acid TSA-HP TSA-MH [Trade name] TSU WLN: WSQR D1 对甲苯磺酸 [Chinese] 203-180-0 [EINECS] 4-Methylbenzenesulfonic acid [ACD/IUPAC Name] 4-Methylbenzenesulphonic acid 4-Methylbenzolsulfonsäure [German] [ACD/IUPAC Name] 4-toluenesulfonic acid Acide 4-méthylbenzènesulfonique [French] [ACD/IUPAC Name] Benzenesulfonic acid, 4-methyl- [ACD/Index Name] para-toluenesulfonic acid p-Methylbenzenesulfonic Acid P-Toluene Sulfonic acid p-Toluenesulfonic acid [Wiki] p-toluenesulphonic acid p-toluensulfonic acid p-Toluolenesulfonic acid PTSA p-TsOH [Formula] Toluene sulfonic acid Toluene-4-sulfonic acid Toluene-4-sulphonic acid Toluenesulfonic acid tosic acid TsOH [Formula] 236-576-7 [EINECS] 3233-58-7 [RN] 4-11-00-00241 (Beilstein Handbook Reference) [Beilstein] 472690 [Beilstein] 4-methylbenzene-1-sulfonic acid 4-methyl-benzenesulfonic acid 4-methylbenzensulphonic acid 4-Toluene sulfonic acid 70788-37-3 [RN] Benzenesulfonic acid, methyl- Eltesol K-Cure 040 Kyselina p-toluenesulfonova Kyselina p-toluensulfonova [Czech] Kyselina p-toluensulfonova Manro PTSA 65 E Manro PTSA 65 H Manro PTSA 65 LS Methylbenzenesulfonic acid MFCD00064387 [MDL number] MFCD00142137 [MDL number] MFCD02683442 [MDL number] Para Toluene Sulfonic Acid PARA-TOLUENE SULFONATE paratoluene sulfonic acid para-toluene sulfonic acid paratoluenesulfonic acid para-toluenesulphonic acid para-toluensulfonic acid p-cresol sulfate p-Methyl-benzenesulfonic acid p-Methylbenzenesulfonic Acid (en) p-methylphenylsulfonic acid P-Toluene Sulfonic acid(monohydrate) p-Toluene-sulfonic acid p-toluenesulfonicacid p-tolyl sulfonic acid p-tolylsulfonic acid Toluen-4-sulfonsaeure toluene-4-sulfonate toluene-p-sulfonic acid Toluenesulfonic acid (VAN) Toluenesulphonic acid TOS tosylate [Wiki] tosylic acid TSA-HP TSA-MH [Trade name] TSU WLN: WSQR D1 对甲苯磺酸 [Chinese] Toluol-p-sulfonsäure Toluolsulfo säure, p- 65 %; 65% Active Matter; active substance Toluolsulfo säure, para Toluolsulfonic acid, para Tosic acid TSA Wilconate TX Acid Witco TX Acid
Toluene Bis (Dimethyl Urea)
DL-alpha-Tocopheryl Acetate; 3,4-Dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-b- enzopyran-6-ol, acetate; Tocopheryl acetate; 2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-6-chromanol acetate; 133-80-2; 1407-18-7; 18920-61-1; 54-22-8; DL-alpha tocopheryl acetate; cas no: 7695-91-2
TOLUENE SULFONIC ACID ( Acide p-toluènesulfonique ) p-Toluenesulfonic Acid
Tolyltriazole; Tolutriazole; Methyl-1H-benzotriazole; Metil-1H-benzotriazol; 5-Methylbenzotriazole; 5-Methyl-1,2,3-benzotriazole; Méthyl-1H-benzotriazole; Tolyltriazole; Methylbenzotriazole; 4(or 5)-Methyl-1H-benzotriazole; Stabinol MBTZ; CAS NO: 29385-43-1
Tolyltriazole
SYNONYMS Tolutriazole; Methyl-1H-benzotriazole; Metil-1H-benzotriazol; 5-Methylbenzotriazole; 5-Methyl-1,2,3-benzotriazole; Méthyl-1H-benzotriazole; Tolyltriazole; Methylbenzotriazole; 4(or 5)-Methyl-1H-benzotriazole; Stabinol MBTZ; CAS NO. 29385-43-1
Tolyltriazole (TTA)
Tolutriazole; Methyl-1H-benzotriazole; Metil-1H-benzotriazol; 5-Methylbenzotriazole; 5-Methyl-1,2,3-benzotriazole; Méthyl-1H-benzotriazole; Tolyltriazole; Methylbenzotriazole; 4(or 5)-Methyl-1H-benzotriazole; Stabinol MBTZ; CAS NO:29385-43-1
TOLYTRIAZOLE
Tolytriazole Chemical Properties of Tolytriazole light brown powder or granules Uses of Tolytriazole A potential labelled nitrification inhibitor of urea fertilizer in agricultural soils. General Description of Tolytriazole Tan to light brown granules or beige pellets with a characteristic odor. Air & Water Reactions of Tolytriazole Insoluble in water. Reactivity Profile of Tolytriazole Tolytriazole is incompatible with oxidizing agents . Neutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen may be generated in combination with strong reducing agents, such as hydrides. Fire Hazard of Tolytriazole Tolytriazole is combustible. Corrosion inhibition of tolytriazole for galvanized steel was studied in 5 mM NaCl by using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), scanning vibrating electrode technique (SVET). The results of EIS and polarization tests indicate that tolytriazole is effective in corrosion inhibition of galvanized steel. As the concentration of tolytriazole is increased to 0.01 M, the inhibiting efficiency reaches above 98%. The low values of anodic and cathodic current density in SVET maps suggest that the complex of tolytriazole with galvanized steel inhibits the anodic and cathodic reactions of corrosion of zinc. The adsorption behaviour of tolytriazole is found to conform to Langmuir adsorption isotherm, which is typical chemical adsorption. USES of Tolytriazole The use of Tolytriazole as a corrosion inhibitor for copper Tolytriazole is a specific corrosion inhibitor for copper and copper alloys. It is now widely used in industry to reduce the corrosion of these alloys under both atmospheric and immersed conditions. Corrosion of copper may produce a surface stain or tarnish, pitting of surfaces of pipes or promote pitting of other metals, such as aluminium, which are in contact with dissolved copper in the water. Tolytriazole is used to reduce these forms of attack and the methods by which it is applied are discussed in this paper. Use: Tolytriazole is an anticorrosive agent well known for its use in aircraft deicing and antifreeze fluids Use of Tolytriazole as antimicrobial agents Tolyltriazole is commonly used as a corrosion-inhibitor for: Automotive coolants. Brake fluids. Circulating water cooling systems. Use of Tolytriazole (TTA) as a ligand of choice Tolytriazole is inexpensive and stable. It behaves as an acid (pKa 8.2) and is highly soluble in basic solutions. It is soluble in ethanol, benzene, toluene, chloroform, and DMF. As one of the most useful synthetic auxiliary, it displays the following characteristics: •It can be easily introduced into molecules and activates then toward various transformations. •It is stable during various operations, •It is easy to remove and can be recovered and used again. Tolytriazole can be used in different applications in major industries. For example, it is used in cooling water or boiler systems by the industrial water treatment industry. Tolyltriazole can be also used in coolants or antifreeze products. Another application is the use as an additive in industrial lubricants, like e.g. drilling and cutting fluids. It does also work to protect silver ware in dishwashing tablets and can be further used in metal detergents. How does Tolytriazole work? As a corrosion inhibitor, Tolyltriazole decreases the corrosion rate of metals and alloys. This works by forming a coating, a passivation layer, which prevents access of the corrosive substance to the metal or alloy underneath. This is of particular importance in industries where fluids routinely need to be in continuous contact with metals that require protection. The product does show outstanding thermic and oxidative stability and is also resistant to UV light. It does not negatively affect the appearance of the metal it's applied to. Tolytriazole is very bright in color so that solutions – either aqueous or in different solvents – are clear and almost colorless. A table of solubility properties and max concentrations is available on request. Grades available: Granular Fine granular Powder Production and use Tolytriazole is used as a component of aircraft de-icing fluid, pickling inhibitor in boiler scale removal, restrainer, developer and antifogging agent in photographic emulsions, corrosion inhibitor for copper, chemical intermediate for dyes, in pharmaceuticals, and as fungicide. (HSDB 1998). Tolyltriazole is used as inhibitor of corrosion of copper and copper alloys, in antioxidants, and photographic developers (NTP 1991b). In Denmark, Tolytriazole and benzotriazole are reported to be used in small amounts (0.1-0.2 %) in de-icing fluids, e.g. propylene glycol (MST 1999). They are also used as a corrosion inhibitor in antifreeze chemicals containing glycol (MST 2000). USAGE areas of Tolytriazole - Corrosion inhibitor - Stabilizing Bronze Objects - Antimicrobial agents - ligand of choice - anticorrosive agent - Circulating water cooling systems - corrosion-inhibitor for Automotive coolants - additive in industrial lubricants - cooling water or boiler systems - water treatment industry - coolants or antifreeze products - protect silver ware in dishwashing tablets - metal detergents Although zinc has protective effect on steel, it is also needed to apply other measures to improve the corrosion resistance of galvanized steel since zinc layer is normally thin. Recently, researchers have attempted to use corrosion inhibitors to protect galvanized steel, which restrains zinc from the formation of white corrosion products in the corrosive media Tolytriazole. Literature has reported that some organic molecules with hetero-atoms (such as oxygen, nitrogen, sulphur and so on) can serve as corrosion inhibiting agents, which may be adsorbed on the surface of metals or react with metals to generate undissolved and stable metal complexes [12]. Tolytriazole-type organic compounds, especially benzotriazole, including nitrogen are particularly used as corrosion inhibitors for copper, cast iron, zinc and so on. Benzotriazole, which has low toxicity and is economical, finds use as a good corrosion inhibitor. Benzotriazole has been studied as a corrosion inhibitor for galvanized steel in aerated corrosive solutions [23, 24, 25]. Tolytriazole (TTA) [26], a mixture of 4- and 5-methyl-1H-benzotriazole, as a derivative of benzotriazole, is similar in chemical structure (Fig. 1). However, the effect and mechanism of Tolytriazole on corrosion inhibition of galvanized steel is still not fully understood. The aim of the present work is to study the inhibition effect of Tolytriazole on corrosion of galvanized steel in neutral NaCl solution. Additionally, the inhibition efficiency of Tolytriazole on galvanized steel was investigated by using Langmuir adsorption isotherm model to obtain better understanding regarding the role of Tolytriazole on galvanized steel. Description of Tolytriazole: Sodium Tolytriazole 50% Solution is a yellowish to amber liquid with a characteristic odor. Applications of Tolytriazole: Sodium Tolytriazole 50% Solution is a copper corrosion inhibitor designed for use in open cooling towers and closed recirculating systems to inhibit corrosion on copper, copper alloys and other metals. Packaging Options of Tolytriazole: Sodium Tolytriazole 50% Solution is available in bulk and 44 lb pails. Galvanized steel used in the present work is a commercial one. Figure 2a, b show the SEM images of surface and cross-sectional morphologies of the galvanized steel. The energy-dispersive spectroscopy (EDS) of the cross section of the sample indicates the top layer is 100% Zn, and the bottom layer is 100% Fe. The thickness of the Zn layer is approximately from 6 to 12 μm. The dimension of the samples for the experiments is 10 mm × 10 mm × 2 mm. Methyl-1H-benzotriazole (Tolytriazole) was purchased from Sinopharm Chemical Reagent Company, China. It was used as corrosion inhibitor for the galvanized steel, which was added into the aqueous solution of 5 mM NaCl. The appropriate amount of Tolytriazole was weighed and mixed with 5 mM NaCl to prepare different concentrations of Tolytriazole of in 5 mM NaCl. Full Immersion Tests Samples of the galvanized steel with dimension of 10 mm × 10 mm × 2 mm were used. Before immersion tests, the back side and four cut edges of the samples were sealed by epoxy resin mixed with polyamide hardener (100:32 by weight). After rinsing with distilled water and degreasing with ethanol, the samples were immersed in aerated 5 mM NaCl without Tolytriazole or 5 mM NaCl with 0.01 Mol/L Tolytriazole for different times (1, 4 and 24 h) at room temperature. After 1, 4 and 24 h, the samples were removed out and taken photos. Before and after the immersion tests, the samples were observed by XL30-type environment scanning electronic microscope (SEM) integrated with energy-dispersive spectroscopy (EDS). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used for investigation of sample surface after 24 h of immersion in 5 mM NaCl with 0.01 Mol/L Tolytriazole. A Spectrum 400 (Perkin Elmer Co., USA) measurement system, fitted with a Universal ATR sampling accessory, was used for infrared spectroscopy. Tolytriazole structure Chemical Name:Tolytriazole CBNumber of Tolytriazole:CB2492203 Molecular Formula of Tolytriazole:C9H9N3 Formula Weight of Tolytriazole:159.19 Tan to light brown granules or beige pellets with a characteristic odor. Other Known Names: tolytriazole, tolutriazole Molecular Formula of Tolytriazole: C9H9N3 Applications of Tolytriazole: fertilizer Applications of Tolytriazole: Sodium Tolytriazole 50% Solution is a copper corrosion inhibitor designed for use in open cooling towers and closed recirculating systems to inhibit corrosion on copper. Property Name of Tolytriazole Property Value Reference Molecular Weight of Tolytriazole 266.3 g/mol Hydrogen Bond Donor Count of Tolytriazole 2 Hydrogen Bond Acceptor Count of Tolytriazole 4 Rotatable Bond Count of Tolytriazole 0 Exact Mass of Tolytriazole 266.127994 g/mol Monoisotopic Mass of Tolytriazole 266.127994 g/mol Topological Polar Surface Area of Tolytriazole 83.1 Ų Heavy Atom Count of Tolytriazole 20 Formal Charge of Tolytriazole 0 Complexity of Tolytriazole 252 Computed by Cactvs 3.4.6.11 Isotope Atom Count of Tolytriazole 0 Defined Atom Stereocenter Count of Tolytriazole 0 Undefined Atom Stereocenter Count of Tolytriazole 0 Defined Bond Stereocenter Count of Tolytriazole 0 Undefined Bond Stereocenter Count of Tolytriazole 0 Covalently-Bonded Unit Count of Tolytriazole 2 Compound Is Canonicalized of Tolytriazole Yes Corrosion inhibition of copper by tolytriazole (TTAH) in comparison with benzotriazole (BTAH) was investigated in unpolluted and sulfide polluted 3.5 % NaCl. Both Tolytriazole and BTAH give approximately similar results in unpolluted salt water. Electrochemical techniques illustrate that Tolytriazole gives about (40%) higher efficiency than BTA in case of sulfide polluted media. Surface analysis by X-ray photoelectron spectroscopy reveals the presence of both sulfide and Tolytriazole on the corroded surface. In sulfide polluted salt water Tolytriazole shows better performance than BTAH. The mechanism of protection is attributed to the formation of protective film of Tolytriazole or BTAH. The rate of destruction of the protective film in Tolytriazole is lower than that of BTAH in the presence of sulfide ions. This result is established at sulfide concentration as low as 10 -3 M in the presence of 10-2 M Tolytriazole. The gained results prove that Tolytriazole gives better resistance against sulfide attack. Tolitriazole is an anticorrosive and corrosion inhibitor produced in granular or powder form. It is used to prevent corrosion of metals such as silver, copper, lead, nickel. The melting point of Tolitriazole is between 80 and 86 degrees. The structure consists of 4-methyl-benzotriazole and 5-methyl-benzotriazole. Tolitriazole is soluble in alcohol, benzene, toluene, chloroform and has low solubility in water.It is used to prevent the metal from losing color. Chemical Properties of Tolytriazole light brown powder or granules Uses A potential labelled nitrification inhibitor of urea fertilizer in agricultural soils. General Description of Tolytriazole Tan to light brown granules or beige pellets with a characteristic odor. The Tolytriazole is being produced at our partner Nantong Botao in Rugao/China. Together with 1,2,3 Benzotriazole (see separate product information) it is one of the most effective corrosion inhibitors for copper and copper alloy used in various industries. Further positive effects can be seen in protection of steel, gray iron, cadmium and nickel. Applications of Tolytriazole Cooling water systems / industrial water treatment Industrial lubricants (e.g. drilling and cutting fluids) Dishwashing tablets (silver protection) Metal detergents and polishing Coolants VCI papers / metal packaging Antifogging agent (photo) Grades available of Tolytriazole Granular Fine granular Powder Tolytriazole is mainly used as antitrust and corrosion inhibitor for metals (such as silver, copper, zinc, lead, nickel, etc..), and for antitrust oil (tallow) products, the gas phase corrosion inhibitor of copper and aldary, lubricant additive, cycle water treating compound and auto antifreeze. It also can be concernedly used with manifold sterilization algaecide and has a very fine corrosion mitigation effect on close cycle cooling water system. Properties of Tolytriazole Tolytriazole is non-toxic, non-explosive materials, soluble in water, chloroform, benzene, toluene and other organic solvents, with a lower alcohol, ethylene glycol miscible in any proportion. Use: antirust and corrosion inhibitor, anti-fading for metal product, antiseptic and anticoagulant agent, anti-fogging for photograph, ultraviolet absorbent, anti-freezing agent, cycling cooling water treatment. Tolytriazole is non-toxic,non-explosive materials,soluble in water,chloroform,benzene,toluene and other organic solvents,with a lower alcohol, ethylene glycol miscible in any proportion. Properties of Tolytriazole Pure Tolytriazole is white granule or powder, Tolytriazole is a mixture of 4-methyl-benzotriazole and 5-methyl-benzotriazole, the melting point is from 80? to 86?, soluble in alcohol, benzene?toluene?chloroform and watery lye, and hardly soluble in water. Tolytriazole is mainly used as antirust and corrosion inhibitor for metals (such as silver, copper, zinc, lead, nickel, etc..), and for antirust oil (tallow) products, the gas phase corrosion inhibitor of copper and aldary, lubricant additive, cycle water treating compound and auto antifreeze. Tolytriazole also can be concernedly used with manifold sterilization algaecide and has a very fine corrosion mitigation effect on close cycle cooling water system. SVET Measurements The corrosion behaviour of the galvanized steel samples immersed in 5 mM NaCl without and in the presence of 0.01 Mol/L Tolytriazole was studied by SVET. A commercial system from Applicable Electronics, controlled by the science wares ASET 2.0 software, was used to perform the SVET measurements. For the tests, the Pt-Ir probes (Microprobe Inc.) were platinized to form a small 30 μm diameter, ball of platinum black at the tip. The frequency of probe vibration in perpendicular direction to the sample surface is 325 Hz. The measurements were taken at open-circuit potential. The time of acquisition for each SVET data point is 1.2 s. The local ionic current densities were mapped on a 30 × 30 grid. The current densities were detected on 150 μm over the sample surface within an area of c.a. 4 mm2. The samples were tested after 1, 4 and 24 h of exposure in the 5 mM NaCl without and in the presence of 0.01 Mol/L Tolytriazole. The solutions in the cell were added by distilled water to maintain the original level while measuring. The data of current density were visualized by QuikGrid software. Immersion Tests After immersion in 5 mM NaCl solutions without or with 0.01 M Tolytriazole for 24 h, the photographs of the galvanized steel samples are shown in Fig. 3a-f, respectively. From Fig. 3a-c, it can be seen that the galvanized steel sample immersed in 5 mM NaCl was severely corroded, while almost no corrosion was seen on the sample surface immersed in 5 mM NaCl containing Tolytriazole (see Fig. 3d-f). Meanwhile, the other two parallel samples immersed in the above solutions were used for SEM observation of surface and cross-sectional morphologies. From the SEM image shown in Fig. 4a, the corrosion products were fully distributed on the surface of the sample after immersion in 5 mM NaCl. Figure 4b shows the surface morphology of the sample after immersion in 5 mM NaCl containing Tolytriazole. It is obvious that there is only slight corrosion on the surface, which reflects the effective corrosion inhibition. ATR-FTIR spectra of Tolytriazole, sample surface after 24 h of immersion in 5 mM NaCl with 0.01 Mol/L Tolytriazole were recorded in order to examine the presence of Tolytriazole on the galvanized steel. As shown in Fig. 5a, the transmission absorption peaks of Tolytriazole are shown at 1092 and 1031 cm-1, which are attributed to N-H in-plane bending and C-H in-plane bending [27, 28]. The peak at 1632 cm-1 is also attributed to N-H in-plane bending [28]. As shown in Fig. 5b, the presence of peaks at 1632, 1092 and 1031 cm-1 indicates that Tolytriazole was complexed with galvanized steel. Polarization Curves Figure 6 shows the polarization curves of the galvanized steel samples immersed in 5 mM NaCl and 5 mM NaCl solutions containing different concentrations of Tolytriazole. Table 1 shows the electrochemical parameters (corrosion potential, Ecorr; corrosion current density, Icorr; polarization resistance, Rp) obtained by Rp extrapolation in the vicinity of the open-circuit potential (± 15 mV). The corrosion efficiency IE is formulated as following [29], where Icorr is the corrosion current density in 5 mM NaCl; I′corr is the corrosion current density in 5 mM NaCl solutions containing different concentrations of Tolytriazole. IE is used to evaluate the inhibition effect of Tolytriazole acted on the surface of galvanized steel. From Fig. 6, it can be seen that with the increase of concentration of Tolytriazole, the corrosion potential shifts to more anodic direction and the corrosion current density shifts to much lower values in comparison to those of the control sample immersed in 5 mM NaCl, indicating that Tolytriazole has good inhibiting effect on corrosion of galvanized steel. Obviously, as the concentration of Tolytriazole reaches 0.01 Mol/L, Icorr is the lowest. From Table 1, it can be seen that Icorr shows a decrease of two orders of magnitude for the sample immersed in 5 mM NaCl containing 0.01 M Tolytriazole, comparing with Icorr for the sample immersed in 5 mM NaCl. Meanwhile, IE reaches to the maximum value at this concentration. When the concentration of Tolytriazole is increased from 0.001 to 0.005 M, Rp shows a sharp increase. Correspondingly, IE increases remarkably from 55.62 to 94.94%. Figure 7 shows the polarization curves of the galvanized steel samples immersed in 5 mM NaCl and 5 mM NaCl solution containing 0.01 M of Tolytriazole after different immersion times. Table 2 gives the fitting results of the polarization curves by Rp extrapolation in the vicinity of the open-circuit potential (± 15 mV). From Table 2, it is clear that Ecorr shifts to the noble direction when 0.01 M Tolytriazole was added to 5 mM NaCl. For Icorr and Rp values, there is an opposite oscillating behaviour, which can be ascribed to the adsorption and desorption of Tolytriazole during the immersion period. EIS Measurements EIS measurements were taken, aiming to study the characteristic at the interface of the galvanized steel and electrolyte. Figure 8 shows the EIS plots of galvanized steel samples exposed to 5 mM NaCl and 5 mM NaCl in the presence of 0.01 M Tolytriazole at different immersion times. From the EIS spectra, the diameter of capacitance loop increases with the addition of Tolytriazole, indicating Tolytriazole has a passive effect on the electrode. In comparison to the EIS spectra measured in 5 mM NaCl, there are larger capacitive loops in the low frequency range in the presence of Tolytriazole, which is caused by the charge transfer during the procedure of the metal dissolution and adsorption of inhibitor [15, 30, 31, 32]. The diameter of the capacitance loop grows with the immersion time before 72 h. It can be inferred that Tolytriazole may be adsorbed at the interface between the metal and the aggressive solution, blocking the available active centre of the galvanized steel. After immersion for 72 h, there is a drop in the diameter of the capacitance loop, which demonstrates that the protecting ability of Tolytriazole acting on the surface of the galvanized steel is becoming weaker. The decrease in capacitance loop can be ascribed to corrosion on the surface. The EEC, R(Q(R(QR))), was fitted with all the impedance data from 0 to 120 h of the immersion. All the fitted data for the impedance spectra are shown in Table 3. It is clear that the value of the film resistance, Rf increases from 0 to 120 h of immersion due to the chemical adsorption of Tolytriazole on galvanized steel, especially after 24 h of immersion. Correspondingly, there shows a decrease of Qf from 24 to 72 h. It is obvious that the value of Rct has an oscillating behaviour, indicating the adsorption and desorption process. The increase of Qdl is possibly due to the intense complexing reactions between Tolytriazole and galvanized steel. The active sites on Tolytriazole are the positively charged N atoms, which are able to complex with negatively charged Cl- adsorbed on the metal surface [7]. Figure 11a-c shows the SVET current density on the galvanized steel during immersion in 5 mM NaCl containing Tolytriazole. The anodic and cathodic current densities show even distribution immediately after immersion (1 h), indicating that Tolytriazole effectively blocks crevice corrosion. The maximum values of anodic current density are c.a. 26 μA/cm2, and the maximum values of cathodic current density are c.a. - 19 μA/cm2. As the immersion time increased to 4 h, the maximum values of anodic current density decrease to c.a. 10 μA/cm2 and the maximum values of cathodic current density change to c.a. - 6 μA/cm2. After 24 h, the maximum values of anodic current density decrease to c.a. 1 μA/cm2 and the maximum values of cathodic current density change to c.a. - 1.5 μA/cm2. The shrinking of anodic and cathodic current densities as the elongation of immersion time clearly suggests that Tolytriazole is effective in corrosion inhibition of the galvanized steel. Meanwhile, the mechanism of Tolytriazole inhibiting the corrosion on the surface of galvanized steel is chemical absorption because the value of ∆G is lower than - 40 kJ/mol, which means that the formation of chemical bonds between the solid and the adsorption needs a larger number of chemical energy than 40 kJ/mol or more and the absorption is single-layer. In contrast, the essence of physical adsorption is van der Waals forces, very small (> - 20 kJ/mol) [39]. From the above analysis, it can be concluded that the adsorption of Tolytriazole is chemical adsorption. Corrosion inhibition of copper by tolytriazole (TTAH) in comparison with benzotriazole (BTAH) was investigated in unpolluted and sulfide polluted 3.5 % NaCl. Both Tolytriazole and BTAH give approximately similar results in unpolluted salt water. Electrochemical techniques illustrate that Tolytriazole gives about (40%) higher efficiency than BTA in case of sulfide polluted media. Surface analysis by X-ray photoelectron spectroscopy reveals the presence of both sulfide and Tolytriazole on the corroded surface. In sulfide polluted salt water Tolytriazole shows better performance than BTAH. The mechanism of protection is attributed to the formation of protective film of Tolytriazole or BTAH. The rate of destruction of the protective film in Tolytriazole is lower than that of BTAH in the presence of sulfide ions. This result is established at sulfide concentration as low as 10 -3 M in the presence of 10-2 M Tolytriazole. The gained results prove that TTAH gives better resistance against sulfide attack. Figure 1 shows the effect of Tolytriazole and BTAH on the polarization behavior of copper in 3.5 % NaCl. The obtained data refers to the Tolytriazole shows higher effect of inhibition for the copper surface in saline media and this is very clear from the magnitude of the limiting currents. The protective film of Tolytriazole copper complex which appeared in the anodic region gives better effect than the BTAH copper complex. These results were accepted because of the presence of methyl group in Tolytriazole which have positive inductive effect (+I) makes the lone electron all the time on nitrogen atom and providing a good chance for coordination bond with copper surface. The passive regions in Tolytriazole and BTAH ends at the break down potential, Eb, 0.56 and 0.58 V respectively, beyond which the current increases rapidly as the potential becomes more anodic. The rapid increase in current above Eb is caused by localized corrosion as a result of the breakdown of the protective film of Tolytriazole and BTAH [36]. Figure 7 a and b illustrate the effect of sulfide injection on the current transients of copper electrodes which pretreated for 1 hr at the passive potential 0.0 V in 10-2 M Tolytriazole and BTAH salt solution before injection. The injected sulfide concentrations were 10-4 M and 10-3 M respectively. The obtained results showed rapid increase in current upon injection of sulfide ions that appears in all concentrations of sulfide ions. The results indicate that destroying of the protective film of Tolytriazole and BTAH but with difference of resistance of sulfide attack with copper surface. The magnitude of this sudden increase in current upon injection of sulfide ions is taken as a measure of the intensity of sulfide attack. The sulfide concentration of 10-3 M makes rapid increase in current of about 200 µA in case of BTAH and 78 µA in case of Tolytriazole. This indicates that the resistance of sulfide attack of Tolytriazole is greater than BTAH by about 40 %. In case of sulfide concentration of 10-4 M the increase of current 12 µA in case of BTAH and 2 µA in case of Tolytriazole. In general the two inhibitors does not prevent the sulfide attack, however the Tolytriazole lower its intensity against copper surface. The reasons of current jump upon sulfide ions injection is related to the oxidation of sulfide ions to CuS and the increase of corrosion rate of copper. Some reviews proved that the oxidation of the sulfide ions contributes only 8% of the charge passed upon injection of the sulfide ions while the rest of the charge is due to enhanced corrosion of copper [43, 44]. The high magnification images in Figure 9 shows the difference between Tolytriazole and BTAH in the depth and width of the inter-granular corrosion. It is clearly noticed that the image of BTAH have more depth and width more than Tolytriazole. The SEM images in figure give further prove for the good resistance of Tolytriazole compared with BTAH in polluted media. Figures 10a explain the XPS spectrum obtained from the corroded copper surface in sulfide polluted salt water in the presence of 0.01 M Tolytriazole and 0.01M BTAH. The electrode was subjected to 0.01M Tolytriazole for 1 hr at 0.0V vs Ag/AgCl before injection of 0.001 M sulfide ions, which remained in contact with copper surface for another 1 hr. The XPS spectrum shows a peak of S2p at a binding energy of 162.0 eV reveals the presence of sulfide ions in the form of copper sulfide. The absence of an S2p at 164.0 eV reveals the absence of elemental sulfur on the corroded copper surface [43]. The XPS results of Tolytriazole show a counts of sulfide ion of 260 and 120 in case of BTAH, which indicates that the amount of sulfide ions on the copper surface in case of Tolytriazole are more than the case of BTAH and this proves that the Tolytriazole is more resistant to the sulfide attack than BTAH. The dissolution of copper as copper sulfide in case of BTAH is more than in case of Tolytriazole as shown by the low counts of sulfide ions on the copper surface in case of BTAH, furthermore the fully destruction of BTAH protective film. The high amount of sulfide ions reveals to low dissolution rate of copper as copper sulfide due to the presence of covered area with Tolytriazole protective film. The current transients reveal interesting interaction between the injected sulfide ions and the Tolytriazole on copper surface as well as the effect of the concentration of sulfide ions. BTAH gives lower efficiency against the injection of sulfide ions, which depends on the sulfide concentration. On the contrary, an order of magnitude the Tolytriazole gives 40 % higher efficiency than BTAH in case of 10-3 M sulfide ion concentration and gives about 16.6% higher that BTAH in case of 10-4 M sulfide concentration. It is concluded that the Tolytriazole gives higher effect more than BTAH against sulfide attack on the copper surface. Extended pre-passivation of the copper surface in the presence of Tolytriazole improves its resistance to sulfide attack more than BTAH. Generators of steam turbines play a key role in power plants. Deionized water is normally used as the cooling media in cooling systems of generators of steam turbines. The quality of cooling water is checked to ensure that the concentration of Cu2+ is no more than 40 ppb and conductivity is <5 µ s/cm (25°C) when the copper inhibitors are added in the system (GB/T12145-1999[1]). There is copper corrosion in hollow-sectioned copper conductors in cooling water. Although the conductivity of water is low, it is a threat to reliable operation. Inhibition of copper corrosion in deionized water is of great interest to the power plants. Benzotriazole (BTA) has been recognized as an effective inhibitor of copper corrosion in aqueous acidic, neutral, and alkaline solutions.1-5 Tolytriazole (TTA) has been found to have equal or superior anticorrosion properties in recirculating cooling water systems.6 In this paper, the inhibitive effects of Tolytriazole and BTA for copper in deionized water are reported. The inhibition effects of BTA and Tolytriazole were evaluated from polarization curves. Effects of concentration, temperature, and time of inhibition efficiency of BTA and Tolytriazole were studied. It was revealed that effective inhibition of copper corrosion can be achieved when adding Tolytriazole or BTA (>6 ppm) to deionized water. The thermodynamic parameters of adsorption of BTA and Tolytriazole were also calculated. Corrosion inhibition of copper by tolytriazole (TTAH) in comparison with benzotriazole (BTAH) was investigated in unpolluted and sulfide polluted 3.5 % NaCl. Both Tolytriazole and BTAH give approximately similar results in unpolluted salt water. Electrochemical techniques illustrate that Tolytriazole gives about (40%) higher efficiency than BTA in case of sulfide polluted media. Surface analysis by X-ray photoelectron spectroscopy reveals the presence of both sulfide and Tolytriazole on the corroded surface. In sulfide polluted salt water Tolytriazole shows better performance than BTAH. The mechanism of protection is attributed to the formation of protective film of Tolytriazole or BTAH. The rate of destruction of the protective film in Tolytriazole is lower than that of BTAH in the presence of sulfide ions. This result is established at sulfide concentration as low as 10 -3 M in the presence of 10 -2 M Tolytriazole. The gained results prove that Tolytriazole gives better resistance against sulfide attack.
TOLYTRIAZOLE GRANULAR
Tolutriazole; Methyl-1H-benzotriazole; Metil-1H-benzotriazol; 5-Methylbenzotriazole; 5-Methyl-1,2,3-benzotriazole; Méthyl-1H-benzotriazole; Tolyltriazole; Methylbenzotriazole; 4(or 5)-Methyl-1H-benzotriazole; Stabinol MBTZ cas no: 29385-43-1
TOLYTRIIAZOL 
tolytriazole, Numéro CAS : 29385-43-1, METHYLBENZOTRIAZOLE-1H, 1H-BENZOTRIAZOLE, 4(5)-METHYL-, 1H-BENZOTRIAZOLE, METHYL-, METHYLBENZO-1H TRIAZOLE, METHYLBENZOTRIAZOLE-1H, TOLYL TRIAZOLE, tolytriazol, tolitriazol, TTA. PurTTAEst granule blanc ou poudre. TTAEst un mélange de 4-methyl-benzotriazole et 5-methyl-benzotriazole. Le point de fusion est de 80 ℃ à 86 ℃, soluble dans l'alcool, le benzène, le toluène, chloroforme andwatery lessive, difficilement soluble dans l'eau.TTAEst principalement utilisé comme anti-rouille et inhibiteur de corrosion pour les métaux. Y compris l'argent, le cuivre, le zinc, le plomb, le nickel et ainsi de suite.TTAEst largement utilisé dans les produits de l'huile anticorrosive. Il est également utilisé dans la phase gazeuse inhibiteur de corrosion du cuivre et aldary, additif lubrifiant, cycle de traitement de l'eau composé et automatique antigel. TTAPeut également être utilisé avec une variété des inhibiteurs de tartre et d'algicide de stérilisation. Il a un bon effet d'atténuation de la corrosion sur cycle rapproché système d'eau de refroidissement.Noms français : 1H-BENZOTRIAZOLE, 4(5)-METHYL- 1H-BENZOTRIAZOLE, METHYL- METHYLBENZO-1H TRIAZOLE METHYLBENZOTRIAZOLE-1H TOLYL TRIAZOLE Utilisation et sources d'émission Agent anticorrosif Methyl-1H-benzotriazole CAS names 1H-Benzotriazole, 6(or 7)-methyl- IUPAC names 1-methyl-1H-1,2,3-benzotriazole 1-methyl-1H-benzotriazole , 1-methylbenzotriazole 1H-Benzotriazole, 4(5)-methyl- 1H-Benzotriazole, 4(or 5)-methyl- 4(or5)-methyl-1H-1,2,3-benzotriazole , 4(or5)-methyl-1H-benzotriazole 4-Methyl-1H-1,2,3-benzotriazol 4-methyl-1H-benzotriazole 4-methyl-2H-benzotriazole 5-Methyl-1,2,3-benzotriazol 5-methyl-1H-1,2,3-benzotriazole METHYL 1H BENZOTYRIAZOLE methyl-1H-1,2,3-benzotriazole Methyl-1H-benzotriazol Methyl-1H-benzotriazole (mixture) METHYL-1H-BENZOTRIAZOLE- Reaction mass of 4-methyl-1H-benzotriazole and 5-methyl-1H-benzotriazole Reaction mass of 6-methylbenzotriazole and 4-methyl-1H-benzotriazole Tolyltriazol Tolyltriazole
Tolytriazole sodium salt (Tolyltriazole de sodium )
Trigen; Triglycol; TEG; 2,2'-ethylenediqxybis(ethanol); 3,6-Dioxa-1,8-octanediol; Glycol Bis(Hydroxyethyl) Ether; Di-beta-Hydroxyethoxyethane; 1,2-bis(2-hydroxyethoxy)ethane; 3,6-dioxaoctane-1,8-diol; 2,2'-(1,2-ethanediylbis(oxy)) bisethanol; ethylene glycol dihydroxydiethyl ether; Trigol; Ethylene glycol-bis-(2-hydroxyethyl) ether; 1,2-Bis(2-hydroxy)ethane; Ethylene glycal-bis-(2-hydroxyethyl ether); cas no: 112-27-6
Trans-1,2-Dichloroethylene
1,1-(4-Methyl-1,3-Phenylene) Bis(3,3-Dimethylurea); N,N-(4-Methyl-1,3-Phenylene)bis[N,N-Dimethyl-Urea) cas no : 17526-94-2
trans-5-Hydroxy-L-pipecolic
SYNONYMS LD-5- hydroxy-2-piperidine carboxylic acid; trans-5- hydroxypipecolic acid; (2S,5R)-5-hydroxypiperidine-2-carboxylic acid CAS NO:50439-45-7
TRI ETILEN GLIKOL 
SYNONYMS 1,2,3-Propanetriyl triacetate; Enzactin; Fungacetin; Glycerin triacetate; Triacetylglycerol; Glycerol triacetate; Glyceryl triacetate; Glyped; Kesscoflex TRA; Triacetine; Vanay; Glycerol triacetate CAS NO. 102-76-1
TRIALLYLAMINE
Tri(butyl cellosolve) phosphate; Tris(2-butoxyethyl) phosphate; TBEP; 2-Butoxyethanol phosphate; Phosphoric acid tris(2-butoxyethyl)ester; Tributyl cellosolve phosphate; Tri(2-butoxyethanol) phosphate; cas no: 78-51-3
TRIBUTOXYETHYL PHOSPHATE
Tributoxyethyl Phosphate Tributoxyethyl phosphate (TBEP) is a phosphate ester that, thanks to its structure, can be used in many applications including plasticisation, solvation, flame retardancy and defoaming. Tributoxyethyl phosphate (TBEP) is in fact a multifunctional additive that may be used to modify the properties of many polymer systems and is a particularly good levelling aid and coalescent additive for emulsion polymers. Tributoxyethyl phosphate (TBEP) is used in a mixed solvent/aqueous system as a defoamer during production and as a secondary plasticiser in many polymers. The above properties in combination with inherent flame retardancy makes Tributoxyethyl phosphate (TBEP) a real multifunctional additive essential to many polymer formulations. Typical applications of Tributoxyethyl phosphate are: in acrylic based polishes where its coalescent and plasticising properties will improve levelling and gloss, enabling a "dry bright" finish to be obtained. It will also reduce surface defects such as streaking, crazing, and powdering. Tributoxyethyl phosphate (TBEP) is used also in acrylic gloss paint formulations as a coalescent and defoamer. Tributoxyethyl phosphate (TBEP) also helps to improve pigment wetting and rheological properties with a minimal effect on reflectance Tributoxyethyl phosphate (TBEP) is a highly effective "knockdown" defoamer used extensively in paint, textile and paper industries. Tributoxyethyl phosphate (TBEP) is also used as a halogen free flame retardant additive in polymer systems. It can be used also in conjunction with other flame retardants. Clinical Laboratory Methods Plasticizer tributoxyethyl phosphate was identified in post-mortem blood sample. Presence of plasticizers in blood samples can arise by contamination from rubber stopper of blood specimen containers. IDENTIFICATION: Tributoxyethyl phosphate is a slightly yellow, oily liquid. It has a sweet odor. It is highly soluble in water. USE: Tributoxyethyl phosphate is used to resist flames and add flexibility in vinyl resins, other plastics, natural and synthetic rubbers, and floor finishes and waxes. EXPOSURE: Low dermal exposure can occur in workers making products containing Tributoxyethyl phosphate or applying floor finishes containing the chemical. Very low exposure to the general population can occur from food packaging plastics and synthetic rubbers used in plumbing washers. Tributoxyethyl phosphate has been detected in surface waters and a small number of drinking water samples. If Tributoxyethyl phosphate is released to the environment, it may move slowly through soil. It may not volatilize from soil or water surfaces. It is not expected to build up in aquatic organisms. Chemical break down of tri(2-butoxyethyl)phosphate in air or water is slow. Breakdown by microbes is also expected to be slow. RISK: Direct contact with Tributoxyethyl phosphate can produce mild irritation to skin or eyes. Allergic skin reactions to Tributoxyethyl phosphate were not found in a study with human volunteers. Swallowing a large amount of Tributoxyethyl phosphate can cause nervous system tissue damage and death. Microscopic changes to the liver and nervous system tissues were found in laboratory animals repeatedly given high doses of Tributoxyethyl phosphate by mouth or in food. No abortions or birth defects in offspring were found after high doses of Tributoxyethyl phosphate were given by mouth to pregnant laboratory animals. Pregnant animals given the high doses could not control muscle movements and had decreased body weight gain. The potential carcinogenicity of Tributoxyethyl phosphate has not been tested in laboratory animals. The potential for Tributoxyethyl phosphate to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 13th Report on Carcinogens. Tributoxyethyl phosphate (TBEP) is usually analysed by gas chromatography (GC) coupled with mass spectrometry (MS), infrared spectroscopy or nuclear magnetic resonance spectrometry. Reactivity Profile Organophosphates, such as Tributoxyethyl phosphate, are susceptible to formation of highly toxic and flammable phosphine gas in the presence of strong reducing agents such as hydrides. Partial oxidation by oxidizing agents may result in the release of toxic phosphorus oxides. This material may react with oxidizers. Tributoxyethyl phosphate is an indirect food additive for use only as a component of adhesives. IDENTIFICATION AND USE: Tributoxyethyl phosphate (TBEP) is a slightly yellow, oily liquid. Tributoxyethyl phosphate (TBEP) is used as a fire-resistant and light stable plasticizer in the production of vinyl resins, rubber, nitrocellulose and cellulose acetate, and synthetic rubber intended for contact with food or drink. HUMAN EXPOSURE AND TOXICITY: A repeat human insult patch test indicated no skin sensitization and minimal skin irritation. ANIMAL STUDIES: The acute systemic mammalian toxicity and irritation potential are low. Several subchronic studies in laboratory animals have shown that the liver is the target organ. One study in male Sprague-Dawley rats suggested that Tributoxyethyl phosphate (TBEP) might cause focal myocarditis. In neurotoxicity studies in hens Tributoxyethyl phosphate (TBEP) had no effect on neuropathy target esterase (NTE). Brain and plasma cholinesterases were inhibited in treated hens. Neurotoxicity studies in rats demonstrated degenerative changes in both myelinated and unmyelinated fibers of female and male animals. Although similar morphological changes were observed in both genders, females were more susceptible than males to the toxic effects of this compound. Tributoxyethyl phosphate (TBEP) also induced electrophysiologic changes in sciatic nerves from rats. The long term toxicity and carcinogenicity of TBEP have not been studied. Tributoxyethyl phosphate (TBEP) causes toxicity in the developing zebrafish by inhibiting the degradation and utilization of nutrients from the mother and inducing apoptosis. Teratogenicity was not observed. The compound is absorbed dermally in experimental animals but no information is available on its kinetics and metabolism. A mutagenicity test in Salmonella typhimurium strains TA1535, TA1538, TA1537, TA98 and TA100, with and without metabolic activation was negative. ECOTOXICITY STUDIES: The toxicity of Tributoxyethyl phosphate (TBEP) to aquatic organisms is moderate. Acute Exposure/ Administered orally guinea-pigs following ingestion death supervened in times varying from 3 hr (acute toxicity) to 21 days (subacute toxicity). Administration of oral doses under 1.4 mL/kg was without effect. Large doses of ... /tributoxyethyl phosphate/ produced, in half hr following ingestion, incoordination of movements (ataxia), muscular flaccidity, and loss of reflexes. Effects reached max 6 hr after ingestion. Mean lethal dose for less than 24 hr was 3 mL/kg, and for 24 days after ingestion it was 2.4 mL/kg. The mutagenicity of Tributoxyethyl phosphate was evaluated in Salmonella tester strains TA98, TA100, TA1535, and TA1537, both in the presence and absence of added metabolic activation by Aroclor-induced rat liver S9 fraction. Based on preliminary bacterial toxicity determinations, Tributoxyethyl phosphate was tested for mutagenicity at levels of 0, 50, 100, 500, 1000, 5000, and 10,000 ug/plate using the plate incorporation method. Tributoxyethyl phosphate did not cause a reproducible positive response in any of the bacterial tester strains, either with or without metabolic activation. The test material was toxic to the bacteria at the two highest levels tested. Tributoxyethyl phosphate (TBEP) was evaluated for developmental toxicity in mated Charles River COBS CD rats (25/group). Dosage levels of 0, 250, 500, and 1500 mg/kg/day were administered in a corn oil vehicle by gavage on days 6-15 of gestation. One mortality, cause not determined, occurred in a rat receiving 1500 mg/kg/day. Animals receiving 1500 mg/kg/day exhibited reduced grooming, ataxia, matted and/or stained fur, and a reduced righting reflex. The high-dose group also had reduced body weight gain compared to controls. It was noted that total implantations/dam in the mid- and high-dose groups were less than controls, but this was due to fewer corpora lutea/dam and/or an increase in pre-implantation losses and therefore was not considered a meaningful parameter for effect. Fetal body weights and the fetal gender ratio of treated groups were not significantly different from controls. There were no significant differences from controls in the incidence of observed fetal malformations or developmental effects. Tributoxyethyl phosphate's production and use as a plasticizer in most resins and elastomers, in floor finishes and waxes and as a flame-retarding agent may result in its release to the environment through various waste streams. If released to air, an estimated vapor pressure of 1.2X10-6 mm Hg at 25 °C indicates Tributoxyethyl phosphate will exist in both the vapor and particulate phases in the atmosphere. Vapor-phase Tributoxyethyl phosphate will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 3 hours. Particulate-phase Tributoxyethyl phosphate will be removed from the atmosphere by wet and dry deposition. Tributoxyethyl phosphate does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. If released to soil, Tributoxyethyl phosphate is expected to have low mobility based upon an estimated Koc of 1260. Volatilization from moist soil surfaces is not expected to be an important fate process based upon an estimated Henry's Law constant of 1.2X10-11 atm-cu m/mole. Tributoxyethyl phosphate is not expected to volatilize from dry soil surfaces based upon its estimated vapor pressure. Utilizing the Japanese MITI test, 0% of the theoretical BOD was reached in 4 weeks indicating that biodegradation is not an important environmental fate process. However, in river die-away studies Tributoxyethyl phosphate degraded 100% in 30 days in one of three experiments. If released into water, Tributoxyethyl phosphate is expected to adsorb to suspended solids and sediment based upon the estimated Koc. Studies have shown that Tributoxyethyl phosphate can be degraded in environmental conditions; however the mode of degradation may be unclear. Tributoxyethyl phosphate degraded 100% in 80 days aerobic pond water and pond water with sediment, but also degraded 20-75% in 80 days in sterilized experiments. Volatilization from water surfaces is not expected to be an important fate process based upon this compound's estimated Henry's Law constant. BCFs of <5.8 in carp suggest bioconcentration in aquatic organisms is low. Tributoxyethyl phosphate may undergo environmental hydrolysis based on estimated half-lives of 95-93 days at pH 5-9. Occupational exposure to Tributoxyethyl phosphate may occur through inhalation and dermal contact with this compound at workplaces where Tributoxyethyl phosphate is produced or used. Monitoring data indicate that the general population may be exposed to Tributoxyethyl phosphate via inhalation of ambient air, ingestion of food and drinking water, and dermal contact with this compound or other products containing Tributoxyethyl phosphate. Tributoxyethyl phosphate (TBEP)'s production and use as a plasticizer in most resins and elastomers, in floor finishes and waxes and as a flame-retarding agent may result in its release to the environment through various waste streams. Based on a classification scheme, an estimated Koc value of 1260, determined from a structure estimation method, indicates that Tributoxyethyl phosphate is expected to have low mobility in soil. Volatilization of Tributoxyethyl phosphate from moist soil surfaces is not expected to be an important fate process given an estimated Henry's Law constant of 1.2X10-11 atm-cu m/mole, using a fragment constant estimation method. Tributoxyethyl phosphate is not expected to volatilize from dry soil surfaces based upon an estimated vapor pressure of 1.2X10-6 mm Hg at 25 °C, determined from a fragment constant method. Utilizing the Japanese MITI test, 0% of the theoretical BOD was reached in 4 weeks indicating that biodegradation is not an important environmental fate process. However, in river die-away studies Tributoxyethyl phosphate degraded 100% in 30 days in one of three experiments. According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, Tributoxyethyl phosphate, which has an estimated vapor pressure of 1.2X10-6 mm Hg at 25 °C, determined from a fragment constant method, will exist in both the vapor and particulate phases in the ambient atmosphere. Vapor-phase Tributoxyethyl phosphate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 3 hours, calculated from its rate constant of 1.2X10-10 cu cm/molecule-sec at 25 °C that was derived using a structure estimation method. Particulate-phase Tributoxyethyl phosphate may be removed from the air by wet and dry deposition. Tributoxyethyl phosphate does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. In one of three river water die-away tests, Tributoxyethyl phosphate degraded approx 100% in 30 days. However, in two of the three tests, its concentration only decreased slightly after 30 days. The degradation of Tributoxyethyl phosphate by bacteria in river water supplemented with polypeptone was observed to be 100% in 30 days in two of three tests while one test exhibited no change in concentration after 30 days. Tributoxyethyl phosphate, present at 100 mg/L, reached 0% of its theoretical BOD in 4 weeks using an activated sludge inoculum at 30 mg/L and the Japanese MITI test. Tris(2-butoxyethyl) phosphate was incubated in 7 leachate samples from a sea-based waste disposal site. Water quality of the oxidation pond was: pH 8.1; DO 3.2 mg/L; DOC 36 mg/L. Water quality of the aeration pond was: pH 7.6; DO 5.5 mg/L; DOC 37 mg/L. Samples were incubated in the dark at 23-25 °C. The detection limit was 0.2 ug/L. Loss in sterilized control was observed, indicating degradation by abiotic processes. Decrease under anaerobic conditions was 10% observed over 60 days. The rate constant for the vapor-phase reaction of Tributoxyethyl phosphate (TBEP) with photochemically-produced hydroxyl radicals has been estimated as 1.2X10-10 cu cm/molecule-sec at 25 °C using a structure estimation method. This corresponds to an atmospheric half-life of about 3 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm. Tributoxyethyl phosphate may undergo hydrolysis in the environment based on estimated hydrolysis half-lives of 95-93 days at pH 5 to 9. Tributoxyethyl phosphate does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. Using a structure estimation method based on molecular connectivity indices, the Koc of Tributoxyethyl phosphate can be estimated to be 1260. According to a classification scheme, this estimated Koc value suggests that Tributoxyethyl phosphate is expected to have low mobility in soil. The Henry's Law constant for Tributoxyethyl phosphate is estimated as 1.2X10-11 atm-cu m/mole using a fragment constant estimation method. This Henry's Law constant indicates that Tributoxyethyl phosphate is expected to be essentially nonvolatile from moist soil and water surfaces. Tributoxyethyl phosphate is not expected to volatilize from dry soil surfaces based upon an estimated vapor pressure of 1.2X10-6 mm Hg, determined from a fragment constant method. Tributoxyethyl phosphate was detected with a mean concentration (76 samples) of 410 ng/L in groundwater samples from Nieschen, Germany collected in March 2000, November 2000, and March 2001. Groundwater samples collected at distances of 4.5, 604, 3000, and 5000 m from the Oder River in Germany contained Tributoxyethyl phosphate concentrations of 339, 126, 1611 ng/L and not detected, respectively. The concentrations of Tributoxyethyl phosphate in groundwater samples from a multilevel monitoring well in Bahnbrucke, Germany sampled in March 2001 were 109, 122, 85, 91 and 85 ng/L at depths of 3, 7, 11, 17 and 21 m, respectively. Effluent Concentrations of TBEP The concentration ranges of Tributoxyethyl phosphate (TBEP) in 5 effluents which directly discharge wastewater into the River Weser, Germany were 1260-3370, 800-2750, 2920-5299, 980-34900 and 12-836 ng/L, resulting in the discharged amount of 176-472, 12.8-44, 14.7-26.6, 19-687 and 0-2.3 g/day at the 5 locations, respectively. Effluent wastewater samples collected in July 2001 from three municipal sewage treatment plants and one industrial sewage treatment plant that discharge their treated wastewater into the Oder River in Germany had mean Tributoxyethyl phosphate concentrations of 2955 ng/L and 162 ng/L, respectively. The concentration of Tributoxyethyl phosphate in sludge samples taken from 11 sewage treatment plants located throughout Sweden was <5.1-1900 ng/g dry weight, samples were collected 2002 to 2003. The concentration of Tributoxyethyl phosphate in influent and effluent samples taken concurrently from these same plants was 5200-35,000 and 3100-30,000 ng/L, respectively. Tributoxyethyl phosphate was detected at median values of 0.70-0.87 ug/L in influent samples and median concentration of 0.55 ug/L in effluent samples from three waste water treatment plants located in Galicia, Spain; samples were collected Nov 2007, Feb, Jun and Sep 2008. Tributoxyethyl phosphate was identified in association with office airborne particles and its representative indoor concentration is 15.0 ng/cu m. Tributoxyethyl phosphate was below the detection limit (<0.1 ng/cu m) in indoor air from a computerized office environment. Tributoxyethyl phosphate was detected at <4X10-5 to 0.3 ug/cu m in the indoor air from 6 Japanese homes. Tri(butoxyethyl) phosphate was not detected in an atmospheric sample collected from a theater in Zurich, Switzerland. The atmospheric deposition of Tributoxyethyl phosphate was calculated to be <0.8 ng/sq m/day in samples from Pallas, Finland; samples were collected Jul 2004. Tri(butoxyethyl) phosphate was not detected in three cars; samples were collected in Zurich, Switzerland. NIOSH (NOES Survey 1981-1983) has statistically estimated that 257,421 workers (105,777 of these are female) were potentially exposed to Tributoxyethyl phosphate in the US. Occupational exposure to Tributoxyethyl phosphate may occur through inhalation and dermal contact with this compound at workplaces where Tributoxyethyl phosphate is produced or used. Monitoring data indicate that the general population may be exposed to Tributoxyethyl phosphate via inhalation of ambient air, ingestion of food and drinking water, and dermal contact with this compound or other products containing Tributoxyethyl phosphate. According to the 2006 TSCA Inventory Update Reporting data, the number of persons reasonably likely to be exposed in the industrial manufacturing, processing, and use of Tributoxyethyl phosphate is 100-999; the data may be greatly underestimated. Tributoxyethyl phosphate (TBEP) concentrations were sampled in different occupational media; results included: inhalable air <50-<60 ng/cu m, particulates <20-<40 ng/cu m, absorbent patches <0.5 ng sq m and hand wash samples <10 ng/hands. Tributoxyethyl phosphate was detected in the air of a recycling electronic products plant at 20-36 ng/cu m in the dismantling hall, 17-19 ng/cu m in shredder during processing of plastics without brominated additives, and 20-24 ng/cu m in the shredder during processing of plastics containing brominated additives. Tri(butoxyethyl) phosphate was not detected in 3 electronic stores but was detected in 1 of 3 offices and 1 of 2 furniture stores; concentrations were below reporting level; all samples were collected in and around Zurich, Switzerland. Plasticizer tributoxyethyl phosphate (TBEP) was identified in post-mortem blood sample. Presence of plasticizers in blood samples can arise by contamination from rubber stopper of blood specimen containers. Tributoxyethyl phosphate was detected in 20 of 58 adipose tissue samples taken from Kingston, Ontario at 0.7-26.8 ng/g. It was also detected in 21 of 57 adipose tissue samples taken from Ottawa, Ontario at 0.9-142.2 ng/g. APPLICATION of Tributoxyethyl Phosphate (TBEP) Tributoxyethyl Phosphate (TBEP) is used as a plasticizer for PVC, chlorinated rubber, and nitriles due to its flame retardant nature and good low temperature flexibility. Tributoxyethyl Phosphate is also used for emulsions of floor polishes, as leveling agent in latex paints and waxes, a processing aid for acrylonitrile rubber, and an antiblock agent for cast polyurethanes. TBEP is a light-colored, high-boiling, non-flammable viscous liquid. Tributoxyethyl Phosphate is generally used as a plasticizer in rubber and plastics, and aids in floor polish formation (as well as in other surface coatings), leveling and improves gloss. Film Formulation • Permanent plasticizer - helps build solids • Primary function: film formation • Secondary function: leveling aid and gloss build • Tributoxyethyl Phosphate (TBEP) is 2X more efficient than standard coalescents to aid film formulation Excellent Benefits of Tributoxyethyl Phosphate Tributoxyethyl Phosphate (TBEP) provides low temperature flexibility, good resilience, low compression set, and is non-reactive. Flame Retardant Tributoxyethyl Phosphate (TBEP) is an alkyl flame retardant and plasticizer, which can be used in many PVC and coatings applications. USAGE areas of Tributoxyethyl Phosphate Tributoxyethyl phosphate uses and applications include: Primary plasticizer for most resins and elastomers; coalescing solvent, plasticizer for acrylic-based polishes, gloss paints, adhesives; leveling agent in floor finishes and waxes; flame retardant for plastics; lubricant; antiwear additive; defoamer for drilling muds, cements, fracturing fluids, plasters, paper coatings, pulp bleaching, aqueous emulsion paints, adhesives, textiles, mercerizing liquorsdye baths, antifreeze, fermentation, detergents; in food packaging adhesives; defoamer in food-contact paperpaperboard; wetting agent, rheology control agent for pigments. CLASS of Tributoxyethyl phosphate Solvent FUNCTIONS of Tributoxyethyl phosphate Resins, Flame Retardant, Additive, Lubricant INDUSTRY of Tributoxyethyl phosphate Textiles, Adhesives, Plastics, Detergent General description of TBEP Tributoxyethyl phosphate is an organic flame retardant. It shows PXR agonistic activity. Tributoxyethyl phosphate was detected and quantified during the analysis of herring gull eggs by liquid chromatography-electrospray ionization(+)-tandem mass spectrometry. Use of Tributoxyethyl Phosphate (TBEP) Tributoxyethyl phosphate (TBEP) is a solvent and plasticizer for cellulose esters such as nitrocellulose and cellulose acetate. It forms stable hydrophobic complexes with some metals; these complexes are soluble in organic solvents as well as supercritical CO2. The major uses of Tributoxyethyl phosphate in industry are as a component of aircraft hydraulic fluid, brake fluid, and as a solvent for extraction and purification of rare-earth metals from their ores. Tributoxyethyl phosphate finds its use as a solvent in inks, synthetic resins, gums, adhesives (namely for veneer plywood), and herbicide and fungicide concentrates. As it has no odour, it is used as an anti-foaming agent in detergent solutions, and in various emulsions, paints, and adhesives. It is also found as a de-foamer in ethylene glycol-borax antifreeze solutions. In oil-based lubricants addition of Tributoxyethyl phosphate increases the oil film strength. It is used also in mercerizing liquids, where it improves their wetting properties. It can be used as a heat-exchange medium. Tributoxyethyl phosphate is used in some consumer products such as herbicides and water-thinned paints and tinting bases. Nuclear chemistry of Tributoxyethyl phosphate A 15–40% (usually about 30%) solution of Tributoxyethyl phosphate (TBEP) in kerosene or dodecane is used in the liquid–liquid extraction (solvent extraction) of uranium, plutonium, and thorium from spent uranium nuclear fuel rods dissolved in nitric acid, as part of a nuclear reprocessing process known as PUREX. The shipment of 20 tons of Tributoxyethyl phosphate to North Korea from China in 2002, coinciding with the resumption of activity at Yongbyon Nuclear Scientific Research Center, was seen by the United States and the International Atomic Energy Agency as cause for concern; that amount was considered sufficient to extract enough material for perhaps three to five potential nuclear weapons. About Tributoxyethyl phosphate Tributoxyethyl phosphate is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 1 000 to < 10 000 per annum. Tributoxyethyl phosphate is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing and at industrial sites. Consumer Uses of Tributoxyethyl phosphate Tributoxyethyl phosphate is used in the following products: washing & cleaning products, polishes and waxes, plant protection products and water treatment chemicals. Other release to the environment of Tributoxyethyl phosphate is likely to occur from: indoor use as processing aid and outdoor use as processing aid. Article service life Release to the environment of Tributoxyethyl phosphate can occur from industrial use: as processing aid and of substances in closed systems with minimal release. Other release to the environment of Tributoxyethyl phosphate is likely to occur from: indoor use as processing aid, indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment), outdoor use as processing aid and outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials). Tributoxyethyl phosphate can be found in products with material based on: wood (e.g. floors, furniture, toys), plastic (e.g. food packaging and storage, toys, mobile phones) and paper (e.g. tissues, feminine hygiene products, nappies, books, magazines, wallpaper). Widespread uses by professional workers of Tributoxyethyl phosphate Tributoxyethyl phosphate is used in the following products: plant protection products, hydraulic fluids, lubricants and greases, metal working fluids, washing & cleaning products and polishes and waxes. Tributoxyethyl phosphate has an industrial use resulting in manufacture of another substance (use of intermediates). Tributoxyethyl phosphate is used in the following areas: agriculture, forestry and fishing and formulation of mixtures and/or re-packaging. Other release to the environment of Tributoxyethyl phosphate is likely to occur from: outdoor use as processing aid and indoor use as processing aid. Formulation or re-packing of Tributoxyethyl phosphate Tributoxyethyl phosphate is used in the following products: polymers and textile treatment products and dyes. Release to the environment of Tributoxyethyl phosphate can occur from industrial use: formulation in materials and formulation of mixtures. Uses at industrial sites of Tributoxyethyl phosphate Tributoxyethyl phosphate is used in the following products: polymers, textile treatment products and dyes and washing & cleaning products. Tributoxyethyl phosphate is used for the manufacture of: plastic products and textile, leather or fur. Release to the environment of Tributoxyethyl phosphate can occur from industrial use: in the production of articles, as processing aid and in processing aids at industrial sites. Manufacture of Tributoxyethyl phosphate ECHA has no public registered data on the routes by which Tributoxyethyl phosphate is most likely to be released to the environment.
TRIBUTYL CITRATE
Phosphoric acid, tri-n-butyl ester; tri-n-butyl phosphate; Butyl phosphate; Phosphoric acid tributyl ester; celluphos 4; TBP; n-Butyl Phosphate; Tributilfosfato (Italian); Tributoxyphosphine Oxide; Tributyle (Phosphate De) (French); Tributylfosfaat (Dutch); Tributylphosphat (German); Fosfato de tributilo (Spanish); Phosphate de tributyle (French); cas no:126-73-8
TRIBUTYL PHOSPHATE
TRI-C12-13 ALKYL CITRATE Nom INCI : TRI-C12-13 ALKYL CITRATE Ses fonctions (INCI) Emollient : Adoucit et assouplit la peau Agent d'entretien de la peau : Maintient la peau en bon état
TRIBUTYLAMINE
SYNONYMS Tris[N-butylamine]; TNBA; N,N-Dibutyl-1-butanamine; Tri-n-butylamine; Tributilamina; Tris-n-butylamine; CAS NO. 102-82-9
TRI-C12-13 ALKYL CITRATE
TRI-C14-15 ALKYL CITRATE N° CAS : 222721-94-0 Nom INCI : TRI-C14-15 ALKYL CITRATE Ses fonctions (INCI) Emollient : Adoucit et assouplit la peau Agent plastifiant : Adoucit et rend souple une autre substance qui autrement ne pourrait pas être facilement déformée, dispersée ou être travaillée Agent d'entretien de la peau : Maintient la peau en bon état
TRI-C14-15 ALKYL CITRATE
Calcium Phosphate Tribasic; Tricalcium diphosphate; Bone phosphate; Calcium orthophosphate; Calcium Phosphate; Calcium phosphate (3:2); Calcium tertiary phosphate; Phosphoric acid, calcium salt (2:3); Phosphoric acid, calcium(2+) salt (2:3); Tertiary calcium phosphate; Tribasic calcium phosphate; Tricalcium orthophosphate; cas no: 7758-87-4
TRICALCIUM PHOSPHATE
SYNONYMS Calcium Phosphate Tribasic; Tricalcium diphosphate; Bone phosphate; Calcium orthophosphate; Calcium Phosphate; Calcium phosphate (3:2); Calcium tertiary phosphate; Phosphoric acid, calcium salt (2:3); Phosphoric acid, calcium(2+) salt (2:3); Tertiary calcium phosphate; Tribasic calcium phosphate; Tricalcium orthophosphate;CAS NO. 7758-87-4
TRICETEARETH-4 PHOSPHATE
TRICETYLMONIUM CHLORIDE Nom INCI : TRICETYLMONIUM CHLORIDE Nom chimique : Hexadecanaminium, N-methyl-N,N-bis(hexadecyl)-, chloride Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance
TRICETYLMONIUM CHLORIDE
Trichloroethanoic acid; TCA; TCAodium; NaTA; aceto-caustin; amchem grass killer; Acide Trichloracetique (French); Acido Tricloroacetico (Italian); Trichloorazijnzuur (Dutch); Trichloromethanecarboxylic acid; Trichloressigsaeure (German); cas no: 76-03-9
TRICHLORO ACETIC ACID
TRICLOCARBAN, N° CAS : 101-20-2, Nom INCI : TRICLOCARBAN, Nom chimique : 1-(4-Chlorophenyl)-3-(3,4-dichlorophenyl)urea, N° EINECS/ELINCS : 202-924-1, Ses fonctions (INCI), Déodorant : Réduit ou masque les odeurs corporelles désagréables, Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Noms français : Triclocarban ; UREA, N-(4-CHLOROPHENYL)-N'-(3,4-DICHLOROPHENYL)- Noms anglais : Triclocarban
TRICHLOROETHYLENE
CAS number: 79-01-6
EC number: 201-167-4
Molecular formula: C2HCl3

Trichloroethylene (TCE) is a volatile, colorless liquid organic chemical.
Trichloroethylene (TCE) does not occur naturally and is created by chemical synthesis.
Trichloroethylene (TCE) is used primarily to make refrigerants and other hydrofluorocarbons and as a degreasing solvent for metal equipment.
Trichloroethylene (TCE) is also used in some household products, such as cleaning wipes, aerosol cleaning products, tool cleaners, paint removers, spray adhesives, and carpet cleaners and spot removers.
Commercial dry cleaners also use trichloroethylene as a spot remover.

Trichloroethylene is a halocarbon commonly used as an industrial solvent, not to be confused with the similar 1,1,1-trichloroethane, also known as chlorothene. It has been sold under a variety of trade names including Trimar and Trilene and used as a volatile anesthetic and as an inhaled obstetrical analgesic. Environmental exposure, particularly groundwater and drinking water contamination from industrial discharge, is a major concern for human health and has been the subject of numerous incidents and lawsuits.
The chemical compound trichloroethylene is a halocarbon commonly used as an industrial solvent.
Trichloroethylene (TCE) is a clear, colourless non-flammable liquid with a chloroform-like sweet smell.
Trichloroethylene (TCE) should not be confused with the similar 1,1,1-trichloroethane, which is commonly known as chlorothene.

Chemical properties
Trichloroethylene is nonflammable. Trichloroethylene (TCE) is slightly soluble in water, and soluble in most other organic solvents.
Trichloroethylene, a colourless, toxic, volatile liquid belonging to the family of organic halogen compounds, nonflammable under ordinary conditions and used as a solvent and in adhesives. Trichloroethylene has a subtle, sweet odour.
Trichloroethylene was first prepared in 1864; its commercial manufacture, begun in Europe in 1908, is based on the reaction of 1,1,2,2-tetrachloroethane with dilute caustic alkali. The compound is denser than water, in which it is practically insoluble.
Trichloroethylene is used in dry cleaning, in degreasing of metal objects, and in extraction processes, such as removal of caffeine from coffee or of fats and waxes from cotton and wool. Trichloroethylene (TCE) is also used in adhesives, such as cement for polystyrene plastics like those found in model-building kits. Industrially, an important use for trichloroethylene is in the manufacture of tetrachloroethylene: trichloroethylene is treated with chlorine to form pentachloroethane, which is converted to tetrachloroethylene by reaction with caustic alkali or by heating in the presence of a catalyst.
Inhalation of the vapours (glue-sniffing) induces euphoria; the practice can be addictive. Inhalation of more than 50 ppm (parts per million) trichloroethylene can produce acute effects on the body, including nausea and vomiting, eye and throat irritation, dizziness, headache, and liver, heart, or neurological damage. Trichloroethylene exposure has been linked to Parkinson disease.

What is Trichloroethylene?
Trichloroethylene is a chlorinated hydrocarbon with a molecular formula of C2HCl3. Trichloroethylene (TCE) is colourless liquid with a sweet smell that is widely used as a vapour degreaser for metal parts. Trichloroethylene (TCE) is a non-flammable liquid, having no measurable flashpoint or flammable limits in air. Trichloroethylene (TCE) is miscible with most organic solvents but only slightly miscible in water.
Trichloroethylene (or trichlor) is an excellent solvent used in a variety of degreasing and cold cleaning applications, as well as other special applications. Available for shipment in barges, tank trucks, tank cars and ships, the following grades of trichlor are offered:

The IUPAC name is trichloroethene.
Industrial abbreviations include TCE, trichlor, Trike, Tricky and tri.
Trichloroethylene (TCE) has been sold under a variety of trade names.
Under the trade names Trimar and Trilene, trichloroethylene was used as a volatile anesthetic and as an inhaled obstetrical analgesic in millions of patients.
Groundwater and drinking water contamination from industrial discharge including trichloroethylene is a major concern for human health and has precipitated numerous incidents and lawsuits.

Uses
Trichloroethylene is an effective solvent for a variety of organic materials.
When it was first widely produced in the 1920s, trichloroethylene's major use was to extract vegetable oils from plant materials such as soy, coconut, and palm.
Other uses in the food industry included coffee decaffeination and the preparation of flavoring extracts from hops and spices.
Trichloroethylene (TCE) has also been used for removing residual water in the production of 100% ethanol.

From the 1930s through the 1970s, both in Europe and in North America, trichloroethylene was used as a volatile anesthetic almost invariably administered with nitrous oxide.
Marketed in the UK by ICI under the trade name Trilene it was coloured blue (with a dye called waxoline blue) to avoid confusion with the similar smelling chloroform.
Trichloroethylene (TCE) replaced earlier anesthetics chloroform and ether in the 1940s, but was itself replaced in the 1960s in developed countries with the introduction of halothane, which allowed much faster induction and recovery times and was considerably easier to administer.
Trilene was also used as a potent inhaled analgesic, mainly during childbirth.
Trichloroethylene (TCE) was used with halothane in the Tri-service field anaesthetic apparatus used by the UK armed forces under field conditions.
As of 2000, however, Trichloroethylene (TCE) was still in use as an anesthetic in Africa.

Trichloroethylene (TCE) has also been used as a dry cleaning solvent, although replaced in the 1950s by tetrachloroethylene (also known as perchloroethylene), except for spot cleaning where it was used until the year 2000.
Trichloroethylene was marketed as 'Ecco 1500 Anti-Static Film Cleaner and Conditioner' until 2009, for use in automatic movie film cleaning machines, and for manual cleaning with lint-free wipes.

Perhaps the greatest use of Trichloroethylene (TCE) has been as a degreaser for metal parts.
The demand for Trichloroethylene (TCE) as a degreaser began to decline in the 1950s in favor of the less toxic 1,1,1-trichloroethane.
However, 1,1,1-trichloroethane production has been phased out in most of the world under the terms of the Montreal Protocol, and as a result trichloroethylene has experienced some resurgence in use as a degreaser.

What is trichloroethylene?
Trichloroethylene is a colourless, highly volatile liquid with a sweet chloroform-like odour.
Other names for trichloroethylene include TCE, trichloroethene and ethylene trichloride.

What is trichloroethylene used for?
The main use of trichloroethylene is in metal cleaning and degreasing. Trichloroethylene (TCE) is also used as a chemical intermediate and an extraction solvent in the textile manufacturing industry.
In the past, trichloroethylene was used as a grain fumigant, an extraction solvent in the food industry, an anaesthetic agent and an analgesic. Trichloroethylene (TCE) was also used in the dry cleaning industry
until the mid-1950s, when it was replaced by tetrachloroethylene.

How does trichloroethylene get into the environment?
Trichloroethylene may be released into the environment from its use. The majority of trichloroethylene released enters the air. Trichloroethylene may also occur in ground water and surface water.
Trichloroethylene is primarily used as a solvent to remove greases from metal parts. As a solvent or as a component of solvent blends trichloroethylene is used with adhesives, lubricants, paints, varnishes, paint strippers, pesticides, and cold metal cleaners. Trichloroethylene (TCE) is used to make other chemicals (pharmaceuticals, polychlorinated aliphatics, flame retardants, and insecticides). Trichloroethylene (TCE) is used as an extraction solvent for greases, oils, fats, waxes and tars. The textile industry uses it to scour cotton, wool and other fabrics, and in waterless dying and finishing. Trichloroethylene (TCE) is used as a refrigerant for low temperature heat transfer.

Trichloroethylene (TCE) has also been used in the United States to clean kerosene-fueled rocket engines (Trichloroethylene (TCE) was not used to clean hydrogen-fueled engines such as the Space Shuttle Main Engine).
During static firing, the RP-1 fuel would leave hydrocarbon deposits and vapors in the engine.
These deposits had to be flushed from the engine to avoid the possibility of explosion during engine handling and future firing.
Trichloroethylene (TCE) was used to flush the engine's fuel system immediately before and after each test firing.
The flushing procedure involved pumping Trichloroethylene (TCE) through the engine's fuel system and letting the solvent overflow for a period ranging from several seconds to 30–35 minutes, depending upon the engine.
For some engines, the engine's gas generator and liquid oxygen (LOX) dome were also flushed with Trichloroethylene (TCE) prior to test firing.
The F-1 rocket engine had its LOX dome, gas generator, and thrust chamber fuel jacket flushed with Trichloroethylene (TCE) during launch preparations.

Trichloroethylene (TCE) is also used in the manufacture of a range of fluorocarbon refrigerants[13] such as 1,1,1,2-tetrafluoroethane more commonly known as HFC 134a.
Trichloroethylene (TCE) was also used in industrial refrigeration applications due to its high heat transfer capabilities and its low temperature specification.
Many industrial refrigeration applications used Trichloroethylene (TCE) up to the 1990s in applications such as car testing facilities.

Chemical instability
Despite its widespread use as a metal degreaser, trichloroethylene itself is unstable in the presence of metal over prolonged exposure.
As early as 1961 this phenomenon was recognized by the manufacturing industry, when stabilizing additives were added to the commercial formulation.
Since the reactive instability is accentuated by higher temperatures, the search for stabilizing additives was conducted by heating trichloroethylene to its boiling point in a reflux condenser and observing decomposition.
Definitive documentation of 1,4-dioxane as a stabilizing agent for Trichloroethylene (TCE) is scant due to the lack of specificity in early patent literature describing Trichloroethylene (TCE) formulations.
Other chemical stabilizers include ketones such as methyl ethyl ketone.

Trichloroethylene is a synthetic, light sensitive, volatile, colorless, liquid that is miscible with many non-polar organic solvents. Trichloroethylene is used mainly as a degreaser for metal parts. Upon combustion, it produces irritants and toxic gases. Occupational exposure to trichloroethylene is associated with excess incidences of liver cancer, kidney cancer and non-Hodgkin lymphoma. Trichloroethylene (TCE) is reasonably anticipated to be a human carcinogen.
Trichloroethylene appears as a clear colorless volatile liquid having a chloroform-like odor. Denser than water and is slightly soluble in water. Noncombustible. Used as a solvent, fumigant, in the manufacture of other chemicals, and for many other uses.
Trichloroethylene (TCE) is a nonflammable, colorless liquid with a somewhat sweet odor and a sweet, burning taste. Trichloroethylene (TCE) is used mainly as a solvent to remove grease from metal parts, but it is also an ingredient in adhesives, paint removers, typewriter correction fluids, and spot removers.Trichloroethylene is not thought to occur naturally in the environment. However, it has been found in underground water sources and many surface waters as a result of the manufacture, use, and disposal of the chemical.

Use and Manufacturing
Household Products
-Auto Products
-Commercial / Institutional
-Hobby/Craft
-Home Maintenance
-Home Office
-Inside the Home

The main use of trichloroethylene is in the vapor degreasing of metal parts. Trichloroethylene is used in consumer products such as typewriter correction fluids, paint removers/strippers, adhesives, spot removers, and rug-cleaning fluids.
Trichloroethylene is used as chemical intermediate for the production of hydrofluorocarbons (e.g., HFC134a, HFC125), monochloroacetic acid, blowing agents, flame retardants, and some agricultural chemicals. The other major use is as solvent for vapor degreasing in the metal industry. ... Trichloroethylene is further used in solvent formulations for rubbers, adhesives, industrial paints, and in the manufacture of lithium-ion batteries. In the production of poly(vinyl chloride), it serves as a chain-transfer agent to control the molecular mass distribution.
Metal degreasing; extraction solvent for oils, fats, waxes; solvent dyeing; dry-cleaning; refrigerant and heat-exchange liquid; fumigant; cleaning and drying electronic parts; diluent in paints and adhesives; textile processing; chemical intermediate; aerospace operations (flushing liquid oxygen).

Industry Uses
-Adhesives and sealant chemicals
-Corrosion inhibitors and anti-scaling agents
-Functional fluids (closed systems)
-Intermediates
-Metal foams
-Solvents (for cleaning and degreasing)
-Solvents (which become part of product formulation or mixture)

Consumer Uses
-Adhesives and sealants
-Building/construction materials not covered elsewhere
-Cleaning and furnishing care products
-Facility Solvent Usage
-Industrial vapor degreasing solvent.
-Lubricants and greases
-Metal products not covered elsewhere
-Paints and coatings

Methods of Manufacturing
The production of trichloroethylene is mainly based on acetylene or ethylene. The acetylene route comprises acetylene chlorination to 1,1,2,2-tetrachloroethane followed by dehydrochlorination to trichloroethylene. In the ethylene-based processes, ethylene or ethylene-based chlorohydrocarbons, preferably 1,2-dichloroethane, are chlorinated or oxychlorinated and dehydrochlorinated in the same reactor. Tetrachloroethylene is obtained as a byproduct in substantial amounts. Some production is based on the catalytic hydrogenation of tetrachloroethylene coming from the chlorinolysis of C1 to C3 chlorohydrocarbons.
Until 1968, about 85% of United States production capacity of trichloroethylene was based on acetylene. The acetylene-based process consists of two steps: acetylene is first chlorinated to 1,1,2,2-tetrachloroethane, with a ferric chloride, phosphorus chloride or antimony chloride catalyst, and the product is then dehydrohalogenated to trichloroethylene. The current method of manufacture is from ethylene or 1,2-dichloroethane. In a process used by one plant in the United States, trichloroethylene is produced by noncatalytic chlorination of ethylene dichloride and other C2 hydrocarbons with a mixture of oxygen and chlorine or hydrogen chloride.
Prepn from sym-tetrachlorethane by elimination of /hydrochloric acid/ (by boiling with lime) ... ; by passing tetrachloroethane vapor over /calcium chloride/ catalyst at 300 °C ... ; without catalyst at 450-470 °C ... .

General Manufacturing Information
Industry Processing Sectors
-Adhesive manufacturing
-All other basic inorganic chemical manufacturing
-All other basic organic chemical manufacturing
-All other chemical product and preparation manufacturing
-Computer and electronic product manufacturing
-Construction
-Fabricated metal product manufacturing
-Government (Department of Transportation)
-Industrial gas manufacturing
-Machinery manufacturing
-Miscellaneous manufacturing
-Paint and coating manufacturing
-Paper manufacturing
-Petroleum lubricating oil and grease manufacturing
-Plastics product manufacturing
-Primary metal manufacturing
-Services
-Soap, cleaning compound, and toilet preparation manufacturing
-Transportation equipment manufacturing
-Wholesale and retail trade

IDENTIFICATION AND USE:
Trichloroethylene (TCE) is a colorless liquid (unless dyed blue). The major use of Trichloroethylene (TCE) is in metal cleaning or degreasing. Trichloroethylene (TCE) was used earlier as an extraction solvent for natural fats and oils, such as palm, coconut and soya bean oils. Trichloroethylene (TCE) was also an extraction solvent for spices, hops and the decaffeination of coffee. The United States Food and Drug Administration banned these uses of trichloroethylene. Its use in cosmetic and drug products was also discontinued. Trichloroethylene (TCE) was also used as both an anesthetic and an analgesic in obstetrics.

About Trichloroethylene (TCE)
Helpful information
Trichloroethylene (TCE) is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 10 000 tonnes per annum.
Trichloroethylene (TCE) is used by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses
ECHA has no public registered data indicating whether or in which chemical products the substance might be used. ECHA has no public registered data on the routes by which Trichloroethylene (TCE) is most likely to be released to the environment.

Article service life
ECHA has no public registered data on the routes by which Trichloroethylene (TCE) is most likely to be released to the environment. ECHA has no public registered data indicating whether or into which articles the substance might have been processed.

Widespread uses by professional workers
ECHA has no public registered data indicating whether or in which chemical products the substance might be used. ECHA has no public registered data on the types of manufacture using Trichloroethylene (TCE). Release to the environment of Trichloroethylene (TCE) can occur from industrial use: in processing aids at industrial sites and as an intermediate step in further manufacturing of another substance (use of intermediates).
Other release to the environment of Trichloroethylene (TCE) is likely to occur from: indoor use in close systems with minimal release (e.g. cooling liquids in refrigerators, oil-based electric heaters) and outdoor use in close systems with minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and break fluids).

Formulation or re-packing
ECHA has no public registered data indicating whether or in which chemical products the substance might be used. Release to the environment of Trichloroethylene (TCE) can occur from industrial use: formulation of mixtures.

Uses at industrial sites
Trichloroethylene (TCE) has an industrial use resulting in manufacture of another substance (use of intermediates).
Trichloroethylene (TCE) is used in the following areas: formulation of mixtures and/or re-packaging.
Trichloroethylene (TCE) is used for the manufacture of: chemicals.
Release to the environment of Trichloroethylene (TCE) can occur from industrial use: in processing aids at industrial sites, as an intermediate step in further manufacturing of another substance (use of intermediates), of substances in closed systems with minimal release and manufacturing of the substance.

Manufacture
Release to the environment of Trichloroethylene (TCE) can occur from industrial use: manufacturing of the substance and as an intermediate step in further manufacturing of another substance (use of intermediates).
Trichloroethylene (IUPAC), CHClCCl2, is a stable, low-boiling, colorless liquid with a chloroform-like odor. Trichloroethylene (TCE) is not corrosive to the common metals even in the presence of moisture. Trichloroethylene (TCE) is slightly soluble in water and is nonflammable. Trichloroethylene (TCE) is toxic by inhalation, with a TLV of 50 ppm and an IDLH of 1000 ppm in air. The FDA has prohibited its use in foods, drugs, and cosmetics. The four-digit UN identification number is 1710. The NFPA 704 designation is health 2, flammability 1, and reactivity 0. Its primary uses are in metal degreasing, dry cleaning, as a refrigerant and fumigant, and for drying electronic parts.

Trichloroethylene (TCE) is a clear, colorless, nonflammable (at room temperature) stable toxic liquid with chloroform-like odor (ATSDR, 2011). Trichloroethylene (TCE) is slightly soluble in water, is soluble in greases and common organic solvents, and boils at 87°C (190 F).
On contact with air, it slowly decomposes and forms phosgene, hydrogen chloride, and dichloroacetyl chloride. Trichloroethylene in contact with water becomes corrosive and forms dichloroacetic acid and hydrochloric acid. Trichloroethylene (TCE) is soluble in methanol, diethyl ether, and acetone.
Trichloroethylene is also known as trichloroethene, acetylene trichloride, 1-chloro-2,2- dichloroethylene, and ethylene trichloride, and it is also commonly abbreviated to TRI. Trichloroethylene (TCE) is a volatile, chlorinated organic hydrocarbon that is widely used for degreasing metals and as a hydrofluorocarbon (HFC-134a) intermediate (ATSDR, 2013). Trichloroethylene (TCE) is also used in adhesives, paint-stripping formulations, paints, lacquers, and varnishes. In the 1930s, Trichloroethylene (TCE) was introduced for use in dry cleaning, but this practice was largely discontinued in the 1950s when Trichloroethylene (TCE) was replaced by tetrachloroethylene (PCE). Trichloroethylene (TCE) has a number of other past uses in cosmetics, drugs, foods, and pesticides (US EPA, 2011). Trichloroethylene (TCE) is an environmental contaminant that has been detected in air, groundwater, surface waters, and soil (US EPA, 2011; NRC, 2006).

Physical properties
Clear, colorless, watery-liquid with a chloroform-like odor. Odor threshold concentrations determined in air were 21.4 ppmv (Leonardos et al., 1969) and 3.9 ppmv (Nagata and Takeuchi, 1990). The average least detectable odor threshold concentrations in water at 60 °C and in air at 40 °C were 10 and 2.6 mg/L, respectively (Alexander et al., 1982).

Uses
Trichloroethylene is used as a solvent, in drycleaning, in degreasing, and in limited use asa surgical anesthetic.
A chlorinated hydrocarbon used as a detergent or solvent for metals, oils, resins, sulfur and as gemal degreasing agent. Trichloroethylene (TCE) can cause irritant contact dermatitis, generalized exanthema, Stevens-Johnson syndrome, pustular or bullous eruption and scleroderma.
Solvent for fats, waxes, resins, oils, rubber, paints, and varnishes. Solvent for cellulose esters and ethers. Used for solvent extraction in many industries. In degreasing, in dry cleaning. In the manufacture of organic chemicals, pharmaceuticals, such as chloroacetic acid.

Production Methods
Trichloroethylene (TCE) has been in commercial use for almost 60 years. Trichloroethylene (TCE) has been used as a solvent because of its powerful ability to dissolve fats, greases, and waxes. Trichloroethylene (TCE) has been widely used in the dry cleaning industry and as a metal degreaser and in the electronic components industry where workers have been observed using it as a cleaning solvent without any protective equipment, thus allowing uncontrolled skin contact and inhalation exposures.

High-purity grades of trichloroethylene are used as a feedstock in the synthesis of the refrigerant hydrofluorocarbon 134a. In this process, the trichloroethylene molecule is destroyed to form the new fluorinated compound.
Trichloroethylene's advantages for metal cleaning include the ability to degrease more thoroughly and several times faster than alkaline cleaners, and its compatibility with smaller equipment that consumes less energy. Trichloroethylene is an important solvent for degreasing aluminum and for cleaning sheet and strip steel prior to galvanizing. Trichloroethylene also is used for cleaning liquid oxygen and hydrogen tanks. Commercial trichloroethylene formulations include a stabilizer system to help prevent solvent breakdown caused by contaminants, such as acids, metal chips, and fines, and exposure to oxygen, light, and heat.
Trichloroethylene is also used as a solvent in some nonflammable adhesive and aerosol formulations, and as a low temperature heat-transfer medium. Other applications of trichloroethylene include its use as a solvent in the metal processing, electronics, printing, pulp and paper, and textile industries.
Trichloroethylene (TCE) is used as a solvent for degreasing metal parts during the manufacture of a variety of products. Trichloroethylene (TCE) can be found in consumer products, including some wood finishes, adhesives, paint removers, and stain removers. Trichloroethylene (TCE) can also be used in the manufacture of other chemicals.

Trichloroethylene (TCE) is:
-is a nonflammable, colorless liquid at room temperature.
-evaporates easily into air.
-has an ether-like odor at high concentrations; at lower levels, there is no odor to warn people that contaminants are in the air.
Trichloroethylene (TCE) that has been spilled or dumped on the ground can pollute soil and groundwater.
Because Trichloroethylene (TCE) moves from water to air easily, it is not usually found in surface soils or in open surface water.

Trichloroethylene (TCE) spilled on the ground can move down through the soil and into water under the ground where it may pollute private and public drinking water wells. Trichloroethylene (TCE) can also move from water under the ground into rivers or lakes and then quickly move into the air.
Trichloroethylene (TCE) can evaporate from the polluted soil and groundwater and rise toward the ground surface.
If these Trichloroethylene (TCE) vapors come to a basement as they travel to the surface, they may enter through cracks in the foundation, around pipes, or through a sump or drain system. In this way, the vapors enter buildings and contaminate indoor air. This process, when pollution moves from air spaces in soil to indoor air, is called vapor intrusion.
Tricholoroethylene (TCE) is a volatile organic compound mostly used to manufacture refrigerant chemicals in a closed system. Trichloroethylene (TCE) is also used as a solvent for degreasing, as a spot cleaner in dry cleaning, and in consumer products (cleaners and solvent degreasers, adhesives, lubricants, hoof polishes, mirror edge sealants, and pepper spray).

PRODUCTION
Nine entities manufactured or imported almost 225 million pounds of TCE in the U.S. in 2011, according to Chemical Data Reporting by the chemical industry to EPA. The manufacturers who disclosed their names were Dow Chemical and Solvchem Inc. in Texas and PPG Industries and Shin Etsu in Louisiana. Two entities claimed their names as confidential business information.
Trichloroethylene (CICH=CCl2) is a colorless liquid with a chloroform-like odor. Trichloroethylene may cause irritation to the eyes and skin. Exposure to high concentrations can cause dizziness, headaches, sleepiness, confusion, nausea, unconsciousness, liver damage, and even death. Trichloroethylene is a known carcingen. Workers may be harmed from exposure to trichloroethylene. The level of exposure depends upon the dose, duration, and work being done.
Trichloroethylene is used in many industries. Trichloroethylene (TCE) is mostly used as a solvent to remove grease from metal parts, but it is also an ingredient in adhesives, paint removers, typewriter correction fluids, and spot removers. Some examples of workers at risk of being exposed to trichloroethylene include the following:

Workers who use this substance for metal degreasing
Workers who use it as an extraction solvent for greases, oils, fats, waxes, and tars
Factory workers in the textile processing industry who use it to scour cotton, wool, and other fabrics
Dry cleaning workers who use it to remove spots
Factory workers in plants that manufacture pharmaceuticals
Chemical workers who use it to make other chemicals

Uses
The main use of trichloroethylene is in the vapor degreasing of metal parts.
Trichloroethylene is also used as an extraction solvent for greases, oils, fats, waxes, and tars, a chemical
intermediate in the production of other chemicals, and as a refrigerant.
Trichloroethylene is used in consumer products such as typewriter correction fluids, paint
removers/strippers, adhesives, spot removers, and rug-cleaning fluids.
Trichloroethylene was used in the past as a general anesthetic.

Trichloroethylene (TCE) is a chlorine containing organic compound, widely employed as an industrial solvent.
TCE is formed as a major intermediate during the biodegradation of tetrachloroethylene (PCE) in a small anaerobic continuous-flow fixed film column.

Application
Trichloroethylene may be employed for various industrial processes, such as metal cleaning and degreasing. Trichloroethylene (TCE) may be used to synthesize chloroacetic acid.

Key Points
- trichloroethylene is a colourless, highly volatile liquid with a sweet odour
- it is mainly used in metal cleaning and degreasing
- in the past it has been used as a grain fumigant, an anaesthetic and in the dry cleaning industry
- breathing in trichloroethylene can cause excitement, dizziness, headache, nausea and vomiting followed by drowsiness and coma
- more severe exposures may cause heart problems and in some cases death
- drinking trichloroethylene can cause burning of the mouth and throat, nausea, vomiting and diarrhoea
- the International Agency for Research on Cancer (IARC) has classified trichloroethylene as having the ability to cause cancer in humans

Physical properties
Trichloroethylene is a colourless, liquid with a sweet odour, and a sweet burning taste.

Melting Point: -73°C
Boiling Point: 86.7°C
Vapour Density: 4.53
Specific Gravity: 1.456
Flashpoint: 89.6°C

Degreasing and general solvent grade for heavy-duty vapor degreasing and cold cleaning
Dual-purpose grade may be used for liquid oxygen flushing and vapor degreasing
High-purity grade is a low residue solvent for cleaning electronic components, chemical synthesis and liquid oxygen flushing
Fluorocarbon grade for feedstock applications

History
Pioneered by Imperial Chemical Industries in Britain, its development was hailed as an anesthetic revolution.
Originally thought to possess less hepatotoxicity than chloroform, and without the unpleasant pungency and flammability of ether, Trichloroethylene (TCE) use was nonetheless soon found to have several pitfalls.
These included promotion of cardiac arrhythmias, low volatility and high solubility preventing quick anesthetic induction, reactions with soda lime used in carbon dioxide absorbing systems, prolonged neurologic dysfunction when used with soda lime, and evidence of hepatotoxicity as had been found with chloroform.

The introduction of halothane in 1956 greatly diminished the use of Trichloroethylene (TCE) as a general anesthetic.
Trichloroethylene (TCE) was still used as an inhalation analgesic in childbirth given by self-administration.
Fetal toxicity and concerns for carcinogenic potential of Trichloroethylene (TCE) led to its abandonment in developed countries by the 1980s.

The use of trichloroethylene in the food and pharmaceutical industries has been banned in much of the world since the 1970s due to concerns about its toxicity.
Legislation has forced the replacement of trichloroethylene in many processes in Europe as the chemical was classified as a carcinogen
TRICLOCARBAN
2,4,4'-Trichloro-2'-hydroxydiphenyl ether; Trichloro-2'-hydroxydiphenylether; 5-Chloro-2-(2,4-dichlorophenoxy)phenol; 2,4,4'-Trichloro-2-hydroxydiphenyl ether; 5-Chloro-2-(2,4- dichlorophenoxy) phenol; cas no: 3380-34-5
TRICLOSAN
SYNONYMS 2, 4, 4'-Trichloro-2'-hydroxydiphenylether;2,2'-Oxybis(1',5'-dichlorophenyl-5-chlorophenol);2,4,4'-TRICHLORO-2'-HYDROXY DIPHENYLETHER;2',4',4-Trichloro-2-hydroxydiphenyl ether;2',4,4'-Trichloro-2-hydroxydiphenyl ether;2,4,4'-Trichloro-2'-hydroxydiphenyl ether CAS NO:3380-34-5
TRICLOSAN ( Éther de trichloro-2,4,4' hydroxy-2' diphényle)
TCP; Tritolyl phosphate; Phosphoric acid tritolyl ester; Cresyl phosphate; Tris(methylphenyl)ester of phosphoric acid; Phosphoric acid tris(methylphenyl) ester; Tricresyl phosphates; Tritolyl phosphate; Tricresyl phosphate; Phosphoric acid tolyl ester; Thiorthocresyl phosphate; Tris(tolyloxy)phosphine oxide; Plasticizer TCP; Tritolylfosfat; Tricresilfosfati; Phosphate de tricresyle; EPA Pesticide Chemical Code 083401; Kronitex; Lindol CAS NO: 1330-78-5 (Mixture); 78-30-8 (Tri-o-cresyl phosphate); 563-04-2 (Tri-m-cresyl phosphate); 78-32-0 (Tri-p-cresyl phosphate)
TRIDECANE
TRIDECETH-10, N° CAS : 24938-91-8 / 69011-36-5, Nom INCI : TRIDECETH-10, N° EINECS/ELINCS : *607-463-3 / 500-241-6. Classification : Composé éthoxylé. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Trideceth-10; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (10) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-10 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 10 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (10 EO); Polyalkoxylated (10EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (10 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-10
TRIDECETH-10 ( Tridécyléther de polyéthylèneglycol)
TRIDECETH-10 PHOSPHATE, N° CAS : 9046-01-9 (Generic) / 73070-47-0 (Generic), Nom INCI : TRIDECETH-10 PHOSPHATE. Classification : Composé éthoxylé. Ses fonctions (INCI), Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : PHOSPHORIC ACID, (ETHOXYLATED TRIDECYL ALCOHOL) ESTERS POLY(OXY-1,2-ETHANEDIYL), .ALPHA.-TRIDECYL-.OMEGA.-HYDROXY-, PHOSPHATE POLYETHYLENEGLYCOLTRIDECYL ETHER PHOSPHATE TRIDECYL ALCOHOL, ETHOXYLATED AND PHOSPHATED
TRIDECETH-10 PHOSPHATE
TRIDECETH-12, N° CAS : 24938-91-8 / 69011-36-5, Nom INCI : TRIDECETH-12, N° EINECS/ELINCS : *607-463-3 / 500-241-6, Classification : Composé éthoxylé, Ses fonctions (INCI), Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Trideceth-12; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (12) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-12 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 12 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (12 EO); Polyalkoxylated (12 EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (12 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-12
TRIDECETH-12 ( PEG-12 Tridecyl ether)
TRIDECETH-15, N° CAS : 24938-91-8 (Generic), Nom INCI : TRIDECETH-15, Classification : Composé éthoxylé. Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français :Trideceth-15; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (15) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-10 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 15 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (15 EO); Polyalkoxylated (15 EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates; Tridecyl Alcohol Ethoxylates (15); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-15
TRIDECETH-15 ( PEG-15 Tridecyl ether)
TRIDECETH-2, N° CAS : 24938-91-8 / 69011-36-5, Nom INCI : TRIDECETH-2, N° EINECS/ELINCS : *607-463-3 / 500-241-6. Classification : Composé éthoxylé. Ses fonctions (INCI), Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Noms français : Trideceth-10; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (2) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-2 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 2 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (2 EO); Polyalkoxylated (2EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (2 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-2
TRIDECETH-2 ( PEG-2 Tridecyl ether)
TRIDECETH-20, N° CAS : 24938-91-8 (Generic), Nom INCI : TRIDECETH-20, Classification : Composé éthoxylé, Ses fonctions (INCI), Agent nettoyant : Aide à garder une surface propre, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Noms français : Trideceth-20; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (20) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-20 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 20 EO; Poly(ethylene glycol) tridecyl ether ( 20 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (20 EO); Polyalkoxylated (20EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (20 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-20
TRIDECETH-20 ( PEG-20 Tridecyl ether)
TRIDECETH-3, N° CAS : 4403-12-7 / 24938-91-8 / 69011-36-5, Nom INCI : TRIDECETH-3, N° EINECS/ELINCS : 224-540-3 / *607-463-3 / 500-241-6, Classification : Composé éthoxylé, Ses fonctions (INCI) : Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Trideceth-3; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (3) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-3 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 3 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (3 EO); Polyalkoxylated (3EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (3 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-3
TRIDECETH-3 ( PEG-3 Tridecyl ether)
TRIDECETH-4, N° CAS : 24938-91-8 / 69011-36-5, Nom INCI : TRIDECETH-4, N° EINECS/ELINCS : *607-463-3 / 500-241-6, Classification : Composé éthoxylé : Ses fonctions (INCI); Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français :Trideceth-4; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (4) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-4 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 4 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (4 EO); Polyalkoxylated (4 EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates; Tridecyl Alcohol Ethoxylates (4 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-4
TRIDECETH-4 ( PEG-4 Tridecyl ether)
TRIDECETH-5, N° CAS : 24938-91-8 / 69011-36-5, Nom INCI : TRIDECETH-5, N° EINECS/ELINCS : *607-463-3 / 500-241-6, Classification : Composé éthoxylé. Ses fonctions (INCI), Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Trideceth-5; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (5) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-5 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 5 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (5 EO); Polyalkoxylated (5 EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (5 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-5
TRIDECETH-5 ( PEG-5 Tridecyl ether)
TRIDECETH-50, N° CAS : 24938-91-8 (Generic), Nom INCI : TRIDECETH-50, Classification : Composé éthoxylé. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre: Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Trideceth-50; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (50) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-10 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 50 EO; Poly(ethylene glycol) tridecyl ether ( 50 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (50 EO); Polyalkoxylated ( 50 EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (50 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-50
TRIDECETH-50 ( Tridecyl Alcohol 50 EO )
TRIDECETH-6, N° CAS : 24938-91-8 / 69011-36-5, Nom INCI : TRIDECETH-6, N° EINECS/ELINCS : *607-463-3 / 500-241-6, Classification : Composé éthoxylé; Ses fonctions (INCI), Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Trideceth-6; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (6) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-6 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 6 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (6 EO); Polyalkoxylated (6 EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (6 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-6
TRIDECETH-6 ( Tridecyl Alcohol Ethoxylate (6 EO))
PEG-6 Tridecyl ether phosphate; TRIDECETH-6 PHOSPHATE, N° CAS : 9046-01-9 (Generic) / 73070-47-0 (Generic), Nom INCI : TRIDECETH-6 PHOSPHATE. Classification : Composé éthoxylé. Ses fonctions (INCI), Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : PHOSPHORIC ACID, (ETHOXYLATED TRIDECYL ALCOHOL) ESTERS ; POLY(OXY-1,2-ETHANEDIYL), .ALPHA.-TRIDECYL-.OMEGA.-HYDROXY-, PHOSPHATE; POLYETHYLENEGLYCOLTRIDECYL ETHER PHOSPHATE; TRIDECYL ALCOHOL, ETHOXYLATED AND PHOSPHATED; 2-(tricylcoxy) ethyl dihydrogen phosphate; PEG-10 Tridecyl ether phosphate; PEG-3 Tridecyl ether phosphate; PEG-6 Tridecyl ether phosphate; Phosphoric acid, (ethoxylated tridecyl alcohol) esters; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-, phosphate; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-, phosphate; Polyethylene glycol (3) tridecyl ether phosphate; Polyethylene glycol 300 tridecyl ether phosphate; Polyethylene glycol 500 tridecyl ether phosphate; Polyethylene glycol tridecyl ether phosphate; polyethyleneglycol tridecyl ether phosphate; Polyoxyethylene (10) tridecyl ether phosphate; Polyoxyethylene (3) tridecyl ether phosphate; Polyoxyethylene (6) tridecyl ether phosphate; Trideceth-10 phosphate ; Trideceth-3 phosphate; Trideceth-6 phosphate. IUPAC names: 2-(tridecyloxy)ethyl dihydrogen phosphate; 2-Tridecoxyethyl dihydrogen phosphate; alcohol C10-16 ethoxy phosphate ; alkyl alkoxy phosphate; diethyl glycol tridecyl alcohol ethoxylate phosphate ester; Organic phosphate ester, free acid; Phosphoric acid ester with tridecyl alcohol ethoxylated~ poly(oxy-1,2-ethandiyl), α-tridecyl-ω-hydroxy-, fosfát Poly(oxy-1,2-ethanedicyl), alpha-tridecyl-omega-hydroxy-, phosphate Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-, phosphate Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-, phosphate Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-, phosphate (3-20 EO) Poly(oxy-1.2-ethanediyl),alpha-tridecyl-omega-hydroxy-, phosphate polyoxyethylene alkyl ether phosphate Polyoxyethylene Tridecyl Ether Phosphate TRIDECYL ALCOHOL, ETHOXYLATED, PHOSPHATED Trade names RHODAFAC RS-610 names Tridecylethoxylatphosphat
TRIDECETH-6 PHOSPHATE ( PEG-6 Tridecyl ether phosphate )
TRIDECETH-7, N° CAS : 24938-91-8 / 69011-36-5. Nom INCI : TRIDECETH-7. N° EINECS/ELINCS : *607-463-3 / 500-241-6. Classification : Composé éthoxylé. Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Trideceth-7; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (7) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-7 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 7 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (7 EO); Polyalkoxylated (7 EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (7 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-7
TRIDECETH-7 ( Tridecyl Alcohol Ethoxylate (7 EO))
TRIDECETH-7 CARBOXYLIC ACID, N° CAS : 68412-55-5, Nom INCI : TRIDECETH-7 CARBOXYLIC ACID, Classification : Composé éthoxylé, Ses fonctions (INCI).Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
TRIDECETH-7 CARBOXYLIC ACID
TRIDECETH-8, N° CAS : 24938-91-8 / 69011-36-5, Nom INCI : TRIDECETH-8, N° EINECS/ELINCS : *607-463-3 / 500-241-6, Classification : Composé éthoxylé. Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Trideceth-8; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (8) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-8 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 8 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (8 EO); Polyalkoxylated (8 EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (8 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-8
TRIDECETH-8 ( PEG-8 Tridecyl ether phosphate )
TRIDECETH-8 CARBOXYLIC ACID, Nom INCI : TRIDECETH-8 CARBOXYLIC ACID, Classification : Composé éthoxylé, Ses fonctions (INCI), Agent nettoyant : Aide à garder une surface propre, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
TRIDECETH-8 CARBOXYLIC ACID
TRIDECETH-9, N° CAS : 24938-91-8 / 69011-36-5., Origine(s) : Synthétique, Nom INCI : TRIDECETH-9, N° EINECS/ELINCS : *607-463-3 / 500-241-6, Classification : Composé éthoxylé; Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Trideceth-9; Tridécyléther de polyéthylèneglycol. Noms anglais : Ethoxylated tridecyl alcohol; Glycols, polyethylene, monotridecyl ether; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy- ; Poly(oxyethylene) monotridecyl ether; Polyethylene glycol monotridecyl ether; Polyoxiethylene (9) alkyl (10) ether.; Polyoxyethylene tridecyl ether; Tridecyl alcohol ethoxylate. Utilisation et sources d'émission: Fabrication de cosmétiques, polymère. PEG-9 Tridecyl ether; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy-. IUPAC names: 1-Tridecanol, monoether with polyethylene glycol ; 2-tridecoxyethanol; Ethoxylated Alcohol; fatty alcohol ethoxylate C10, 9 EO; Poly(ethylene glycol) tridecyl ether ( 6-15 EO ); poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy ; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-; Poly(oxy-1,2-ethanediyl), a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), α-tridecyl-ω-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy; Poly(oxy-1,2-ethanediyl),a-tridecyl-w-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy-; Poly(oxy-1,2-ethanediyl),alpha-tridecyl-omega-hydroxy- (9 EO); Polyalkoxylated (9 EO) isotridecanol; Polyethylene glcol monotridecylether; POLYOXYETHYLATED TRIDECYL ALCOHOL; POLYOXYETHYLENE TRIDECYL ETHER; tridecyl alcohol ethoxylate; tridecyl alcohol ethoxylated; TRIDECYL ALCOHOL ETHOXYLATED (CAS # 24938-91-8); Tridecyl alcohol ethoxylates ; Tridecyl Alcohol Ethoxylates (9 EO); Tridecyl alcohol, ethoxylated (Polymer); tridecylalcohol ethoxylate; α-tridecyl-ω-hydroxy poly(oxyethylene); α-Tridecyl-ω-hydroxypoly(oxy-1,2-ethanediyl) names: Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega. Polyethylene glycol monotridecyl ether; Polyethyleneglycol monotridecyl ether; Trideceth-9
TRIDECETH-9 ( PEG-9 Tridecyl ether )
Alcool tridécylique; n-Tridécanol; Tridécanol normal. Noms anglais : 1-Tridécanol; n-Tridecyl alcohol; TRIDECYL ALCOHOL, N° CAS : 112-70-9, Nom INCI : TRIDECYL ALCOHOL, Nom chimique : Tridecan-1-ol, N° EINECS/ELINCS : 203-998-8, Classification : Alcool, Emollient : Adoucit et assouplit la peau, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Agent de restauration lipidique : Restaure les lipides des cheveux ou des couches supérieures de la peau, Agent d'entretien de la peau : Maintient la peau en bon état, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Principaux synonymes: Noms français : Alcool tridécylique; n-Tridécanol; Tridécanol normal. Noms anglais : 1-Tridécanol; n-Tridecyl alcohol. Utilisation et sources d'émission: Fabrication de produits organiques, agent antimoine
TRIDECYL ALCOHOL ( Alcool tridécylique )
TRIDECYL COCOATE, Nom INCI : TRIDECYL COCOATE, Ses fonctions (INCI), Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état
TRIDECYL ALCOHOL ETHOXYLATES
Alpha-tridecyl-omega-hydroxy-poly(oxy-1,2-ethanediyl); Polyoxyethylene Tridecyl alcohol; Polyoxyethylene tridecyl alcohol; POE Tridecyl alcohol; Polyoxyethylene Tridecyl Ether; CAS NO : 24938-91-8
TRIDECYL COCOATE
2,2,2-Trihydroxytriethylamine; TEA; 2,2',2''-Nitrilotriethanol; Triethanolamin; Tris(beta-hydroxyethyl)amine; Trolamine; Daltogen; Nitrilotriethanol; Sterolamide; Tri(hydroxyethyl)amine; Triethanolamin; Tris(2-hydroxyethyl)amine; 2,2',2''-Nitrilotriethanol; 2,2',2''-Nitrilotris(ethanol); Nitrilo-2,2',2"-triethanol; 2,2,2-Nitrilotriethanol; 2,2',2"-Nitrilotriethanol; Nitrilo-2,2',2''-triethanol; 2,2',2''-trihydroxy Triethylamine; Triethylolamine; Trihydroxytriethylamine; Tris(beta-hydroxyethyl)amine cas no: 102-71-6
TRIETANOLAMINE %99
2,2,2-Trihydroxytriethylamine; TEA; 2,2',2''-Nitrilotriethanol; Triethanolamin; Tris(beta-hydroxyethyl)amine; Trolamine; Daltogen; Nitrilotriethanol; Sterolamide; Tri(hydroxyethyl)amine; Triethanolamin; Tris(2-hydroxyethyl)amine; 2,2',2''-Nitrilotriethanol; 2,2',2''-Nitrilotris(ethanol); Nitrilo-2,2',2"-triethanol; 2,2,2-Nitrilotriethanol; 2,2',2"-Nitrilotriethanol; Nitrilo-2,2',2''-triethanol; 2,2',2''-trihydroxy Triethylamine; Triethylolamine; Trihydroxytriethylamine; Tris(beta-hydroxyethyl)amine; Other RN: 36549-54-9, 36549-53-8, 36549-55-0, 36659-79-7, 105655-27-4, 126068-67-5, 464917-26-8 cas no: 102-71-6
TRIETHANOLAMINE 99%           
SYNONYMS TEA-Lauryl Sulfate; Dodecyl sulfate, triethanolamine salt; Tris(2-hydroxyethyl)ammonium decyl sulfate; Lauryl sulfate ester, triethanolamine salt; Triethanol ammonium C12-14 sulfate CAS Number: 139-96-8
TRIETHANOLAMINE LAURYL SULFA
Triethylamine; N,N-Diethylethanamine cas no: 121-44-8
TRIETHYL AMINE 
Citric Acid, Triethyl Ester; TEC; Ethyl citrate; Triaethylcitrat (German); Triethylester Kyseliny Citronove (Czech); 2-hydroxy-1,2,3-propanetricarboxylic Acid, Triethyl ester; Citroflex 2; cas no: 77-93-0
TRIETHYL CITRATE
Citric Acid, Triethyl Ester; TEC; Ethyl citrate; Triaethylcitrat (German); Triethylester Kyseliny Citronove (Czech); 2-hydroxy-1,2,3-propanetricarboxylic Acid, Triethyl ester; Citroflex 2; cas no: 77-93-0
TRIETHYL PHOSPHATE
CAS Number: 78-40-0
EC Number: 201-114-5
Formula: C6H15O4P / (C2H5)3PO4
Molecular mass: 182.2

Triethyl phosphate is a chemical compound with the formula (C2H5)3PO4.
Triethyl phosphate is a colorless liquid.
Triethyl phosphate is the triester of ethanol and phosphoric acid and can be called "phosphoric acid, triethyl ester".
Triethyl phosphate is a chemical compound with the formula (C2H5)3PO4 or OP(OEt)3. Triethyl phosphate is a colorless liquid.
Triethyl phosphate is the triester of ethanol and phosphoric acid and can be called "phosphoric acid, triethyl ester".

Uses:
Triethyl phosphate is sold by LANXESS for use as a flame retardant in the manufacture of polyisocyanurate (PIR) and polyurethane (PUR) foam insulation and thermoset plastic products.
The chemical compound is also used as a viscosity reducer in plastic resins, and as a catalyst, solvent or intermediate in the production of pesticides, pharmaceuticals, lacquers and other products.
Triethyl phosphate is use as a flame retardant in the manufacture of polyisocyanurate (PIR) and polyurethane (PUR) foam insulation and thermoset plastic products.
The chemical compound is also used as a viscosity reducer in plastic resins, and as a catalyst, solvent or intermediate in the production of pesticides, pharmaceuticals, lacquers and other products.
As ethylating agent; formation of polyesters which are used as insecticides.
Triethyl phosphate (TEP) is useful as a plasticizer for flame resistant unsaturated polyester resins (used for fiberglass), a solvent for varied applications, and an agricultural chemical intermediate.

Triethyl phosphate uses and applications include
Intermediate for agriculture insecticides, floor polishes, lubricants, hydraulic fluids, aprotic solvent, flame-retardant plasticizer in cellulosic, polyester resins, PU, viscous depressant in polyester laminates, cellulosic, a catalyst for synthesizing ketene in production of acetic anhydride, lacquer remover, solvating and desensitizing agent for organic peroxides, solvent for textiles, dyeing assistant, in sizes, in food packaging adhesives.

History
Triethyl phosphate was studied for the first time by French chemist Jean Louis Lassaigne in the early 19th century.

Triethyl phosphate appears as a colorless, corrosive liquid.
Combustible.
Slowly dissolves in water and sinks in water.
Severely irritates skin, eyes and mucous membranes.

Triethyl phosphate is a trialkyl phosphate that is the triethy ester derivative of phosphoric acid.
Triethyl phosphate derives from an ethanol.

USES
-Used as a catalyst in the production of acetic anhydride by the ketene process, as a desensitizing agent for peroxides, and as a solvent and plasticizer
-Solvent; plasticizer for resins, plastics, gums; catalyst; lacquer remover.
-As a plasticizer, solvent, fire-retarding agent, anti-foaming agent
-As an ethylating agent, and as a raw material to prepare insecticides such as tetraethyl pyrophosphate.
-As ethylating agent; formation of polyesters which are used as insecticides.

Industry Uses
Flame retardants
Intermediates
Process regulators

Consumer Uses
Building/construction materials not covered elsewhere
Fabric, textile, and leather products not covered elsewhere
Forest fire suppression.
Intermediate

Industry Processing Sectors
Agriculture, forestry, fishing and hunting
All other basic organic chemical manufacturing
Construction
Plastics product manufacturing
Textiles, apparel, and leather manufacturing

Formula: C6H15O4P / (C2H5)3PO4
Molecular mass: 182.2
Boiling point: 215°C
Melting point: -57°C
Relative density (water = 1): 1.07
Solubility in water: miscible
Vapour pressure, Pa at 20°C: 20
Relative vapour density (air = 1): 6.3
Relative density of the vapour/air-mixture at 20°C (air = 1): 1.00
Flash point: 116°C o.c.
Auto-ignition temperature: 452°C
Octanol/water partition coefficient as log Pow: 0.8

Triethyl phosphate is a clear, colorless liquid having a mild pleasant odor.
Triethyl phosphate is useful as a solvent in many applications, as a plasticizer for tough, fire-resistant plastics, and as an agricultural chemical as an intermediate in preparing tetraethyl pyrophosphate (TEPP).

Applications/uses
Process solvents

Applications
Triethyl phosphate finds it major applications in plastics industry as a flame retardant, plasticizer and carrier, where it is available in the matrix.
A further 10 to 20 % are used in other industrial branches as a solvent, plasticizer, flame retardant or intermediate for the production of pharmaceuticals, and lacquers.
Triethyl phosphate is a useful synthetic intermediate used in the synthesis of mesoporous spheres of metal oxides and phosphates.
Triethyl phosphate is also used as an industrial catalyst employed in ketene synthesis where the compound is hydrolyzed, as a polymer resin modifier, as a solvent, a car paint repairing product and as flame retarder

TEP – (Triethyl Phosphate) is a flame retardants that shows low acute toxicity following oral, dermal or inhalation exposures.
Triethyl Phosphate’s a slight skin and eye irritant and is not genetically active.

About this substance
Helpful information
ThisTriethyl phosphateance is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 10 000 to < 100 000 tonnes per annum.
Triethyl phosphate is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses
Triethyl phosphate is used in the following products: polymers, adhesives and sealants, coating products, fillers, putties, plasters, modelling clay and leather treatment products. Other release to the environment of this substance is likely to occur from: indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment), outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials), outdoor use in long-life materials with high release rate (e.g. tyres, treated wooden products, treated textile and fabric, brake pads in trucks or cars, sanding of buildings (bridges, facades) or vehicles (ships)), indoor use in long-life materials with high release rate (e.g. release from fabrics, textiles during washing, removal of indoor paints), indoor use and outdoor use resulting in inclusion into or onto a materials (e.g. binding agent in paints and coatings or adhesives).

Article service life
Other release to the environment of Triethyl phosphate is likely to occur from: indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment), outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials), indoor use in long-life materials with high release rate (e.g. release from fabrics, textiles during washing, removal of indoor paints) and outdoor use in long-life materials with high release rate (e.g. tyres, treated wooden products, treated textile and fabric, brake pads in trucks or cars, sanding of buildings (bridges, facades) or vehicles (ships)).
Triethyl phosphate can be found in complex articles, with no release intended: vehicles and machinery, mechanical appliances and electrical/electronic products (e.g. computers, cameras, lamps, refrigerators, washing machines).
Triethyl phosphate can be found in products with material based on: plastic (e.g. food packaging and storage, toys, mobile phones), stone, plaster, cement, glass or ceramic (e.g. dishes, pots/pans, food storage containers, construction and isolation material), leather (e.g. gloves, shoes, purses, furniture) and rubber (e.g. tyres, shoes, toys).

Widespread uses by professional workers
Triethyl phosphate is used in the following products: polymers, adhesives and sealants, plant protection products, coating products and fillers, putties, plasters, modelling clay.
Triethyl phosphate is used in the following areas: agriculture, forestry and fishing.
Other release to the environment of Triethyl phosphate is likely to occur from: outdoor use and indoor use.

Triethyl phosphates primary uses are as an industrial catalyst (in acetic anhydride synthesis), a polymer resin modifier, and a plasticizer (e.g. for unsaturated polyesters).
In smaller scale it is used as a solvent for e.g. cellulose acetate, flame retardant, an intermediate for pesticides and other chemicals, stabilizer for peroxides, a strength agent for rubber and plastic including vinyl polymers and unsaturated polyesters, etc.

Formulation or re-packing
Triethyl phosphate is used in the following products: polymers, plant protection products and adhesives and sealants.
Release to the environment of Triethyl phosphate can occur from industrial use: formulation of mixtures and formulation in materials.

Uses at industrial sites
Triethyl phosphate is used in the following products: polymers, leather treatment products and pH regulators and water treatment products.
Triethyl phosphate has an industrial use resulting in manufacture of another substance (use of intermediates).
Triethyl phosphate is used for the manufacture of: chemicals, plastic products and textile, leather or fur.
Release to the environment of Triethyl phosphate can occur from industrial use: in the production of articles, in processing aids at industrial sites and for thermoplastic manufacture.

Manufacture
Release to the environment of Triethyl phosphate can occur from industrial use: manufacturing of the substance.
Triethyl phosphate is a useful synthetic intermediate used in the synthesis of mesoporous spheres of metal oxides and phosphates.
Triethyl Phosphate Mainly used for high boiling point solvents, catalysts, plasticizers, flame retardants, ethyl agent, organic peroxide stabilizer.

Triethyl Phosphate is a liquid form, kosher resin intermediate that effectively reduces viscosity and can be used as a synergist for flame resistance.
Triethyl phosphate (TEP) is useful as a plasticizer for flame resistant unsaturated polyester resins (used for fiberglass), a solvent for varied applications, and an agricultural chemical intermediate.
Triethyl phosphate is a chemical compound with the formula (C₂H₅)₃PO₄ or OP(OEt)₃. Triethyl phosphate is a colorless liquid.
Triethyl phosphate is the triester of ethanol and phosphoric acid and can be called "phosphoric acid, triethyl ester".
Triethyl phosphate (TEP) is a clear, colorless liquid with a mild pleasant odor. Triethyl phosphate is also called phosphoric acid and triethyl ester.

Occurrence/Use
Industrial catalyst, desensitizing agent for peroxides, ethylating agent, plasticizer, color inhibitor for fibers and other polymers, solvent for aromatic halogenations and nitrations, flame retardant, anti-foaming agent; stabilizer in pesticides

APPLICATION
Triethyl phosphate, Cas 78-40-0 - used in other industrial branches as a solvent, plasticizer, flame retardant or intermediate for the production of pharmaceuticals, and lacquers.

Triethyl phosphate is a colorless, high-boiling liquid and containing 17 wt % phosphorus; mild odor.
Very stable at ordinary temperatures, compatible with many gums and resins, soluble in most organic solvents, miscible with water.
When mixed with water is quite stable at room temperature, but at elevated temperatures it hydrolyzes slowly.
Combustible.
Triethyl phosphate is manufactured from diethyl ether and phosphorus pentoxide via a metaphosphate intermediate.

Triethyl phosphate has been used commercially as an additive for polyester laminates and in cellulosics.
In polyester resins it functions as a viscosity depressant and as a flame retardant.
The viscosity-depressant effect of triethyl phosphate in polyester resin permits high loadings of alumina trihydrate, a fire- retardant smoke-suppressant filler.
Triethyl phosphate has also been employed as a flame-resistant plasticizer in cellulose acetate.
Because of its water solubility, the use of triethyl phosphate is limited to situations where weathering resistance is unimportant.
The halogenated alkyl phosphates are generally used for applications where lower volatility and greater resistance to leaching are required.

Properties
Chemical formula: C6H15O4P
Molar mass: 182.15 g/mol
Density: 1.072 g/cm3
Melting point: −56.5 °C (−69.7 °F; 216.7 K)
Boiling point: 215 °C (419 °F; 488 K)
Solubility in water: Miscible
Magnetic susceptibility (χ): -125.3·10−6 cm3/mol

General Description
Triethyl phosphate [78-40-0] is a colorless, corrosive liquid. Combustible.
Slowly dissolves in water and sinks in water.
Severely irritates skin, eyes and mucous membranes.
Triethyl phosphate is manufactured from diethyl ether and phosphorus pentoxide via a metaphosphate intermediate.
Triethyl phosphate has been used commercially as an additive for polyester laminates and in cellulosics.

In polyester resins it functions as a viscosity depressant and as a flame retardant.
The viscosity-depressant effect of triethyl phosphate in polyester resin permits high loadings of alumina trihydrate,a fire-retardant smoke-suppressant filler.
Triethyl phosphate has also been employed as a flame-resistant plasticizer in cellulose acetate.
Because of its water solubility the use of triethyl phosphate is limited to situations where weathering resistance is unimportant.
The halogenated alkyl phosphates are generally used for applications where lower volatility and greater resistance to leaching are required.

Industrial uses
-Plasticizer for cellulose acetate, resins, plastics, gums.
-Flame retardant additive in unsaturated polyester resins.
-Solvent; lacquer remover.
-Catalyst.
-Chemical intermediate; ethylating agent.

Applications
Triethyl phosphate finds it major applications in plastics industry as a flame retardant, plasticizer and carrier, where it is available in the matrix.
A further 10 to 20 % are used in other industrial branches as a solvent, plasticizer, flame retardant or intermediate for the production of pharmaceuticals, and lacquers.
Triethyl phosphate is a useful synthetic intermediate used in the synthesis of mesoporous spheres of metal oxides and phosphates.
Triethyl phosphate is also used as an industrial catalyst employed in ketene synthesis where the compound is hydrolyzed, as a polymer resin modifier, as a solvent, a car paint repairing product and as flame retarder

Triethyl phosphate is a colorless liquid at ambient temperatures.
The chemical has a mild, characteristic odor.

IUPAC NAMES:
Ethylphosphate, triethylester
phosphoric acid triethyl ester
Phosphoric acid, triethyl ester
riethyl phosphate
TEP
Tri Ethyl Phosphate
Tributylphosphat
TRIETHYL PHOSPHATE
Triethyl Phosphate
Triethyl phosphate
triethyl phosphate
TRIETHYL PHOSPHATE
Triethyl phosphate
triethyl phosphate
Triethylphosphat
Triethylphosphate
Triethylphosphate, Phosphoric acid triethyl ester, Triethyl orthophosphate,
trietile fosfato
1705772 [Beilstein]
201-114-5 [EINECS]
78-40-0 [RN]
MFCD00009077 [MDL number]
Phosphate de triéthyle [French] [ACD/IUPAC Name]
Phosphoric acid triethyl ester
Phosphoric acid, triethyl ester [ACD/Index Name]
TC7900000
TEP
Triethyl phosphate [ACD/IUPAC Name]
Triethylfosfat [Czech]
Triethylphosphat [German] [ACD/IUPAC Name]
Triethylphosphate
(C2H5O)3PO
[78-40-0]
135942-11-9 [RN]
4-01-00-01339 (Beilstein Handbook Reference) [Beilstein]
EINECS 201-114-5
Ethyl phosphate (VAN)
http:////www.amadischem.com/proen/509570/
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:45927
InChI=1/C6H15O4P/c1-4-8-11(7,9-5-2)10-6-3/h4-6H2,1-3H
NCGC00091606-02
o-Phosphoric acid triethyl ester
Phosphoric acid triethyl ester, TEP
TEN
triethoxy-hydroxyphosphanium
triethoxy-hydroxy-phosphanium
triethoxy-hydroxyphosphonium
triethoxy-hydroxy-phosphonium
Triethoxyphosphine oxide
TRI-ETHYL PHOSPHATE
Triethyl Phosphate (TEP)
Triethyl phosphate(TEP)
TRIETHYL PHOSPHATE, 99%
Triethyl phosphate,C6H15O4P,78-40-0
Triethyl Phosphate-d15
TRIETHYL-13C6 PHOSPHATE
Triethyl-d15-phosphate
Triethylfosfat
Triethylfosfat [Czech]
tri-ethylphosphate
TRIETHYLAMINE
Triethylamine Synthesis and properties of Triethylamine Triethylamine is prepared by the alkylation of ammonia with ethanol: NH3 + 3 C2H5OH → N(C2H5)3 + 3 H2O The pKa of protonated triethylamine is 10.75, and it can be used to prepare buffer solutions at that pH. The hydrochloride salt, triethylamine hydrochloride (triethylammonium chloride), is a colorless, odorless, and hygroscopic powder, which decomposes when heated to 261 °C. Triethylamine is soluble in water to the extent of 112.4 g/L at 20 °C. It is also miscible in common organic solvents, such as acetone, ethanol, and diethyl ether. Laboratory samples of triethylamine can be purified by distilling from calcium hydride. In alkane solvents triethylamine is a Lewis base that forms adducts with a variety of Lewis acid such as I2 and phenols. Owing to its steric bulk, it forms complexes with transition metals reluctantly. Applications of Triethylamine Triethylamine is commonly employed in organic synthesis as a base. For example, it is commonly used as a base during the preparation of esters and amides from acyl chlorides. Such reactions lead to the production of hydrogen chloride which combines with triethylamine to form the salt triethylamine hydrochloride, commonly called triethylammonium chloride. This reaction removes the hydrogen chloride from the reaction mixture, which can be required for these reactions to proceed to completion (R, R' = alkyl, aryl): R2NH + R'C(O)Cl + Et3N → R'C(O)NR2 + Et3NH+Cl− Like other tertiary amines, it catalyzes the formation of urethane foams and epoxy resins. It is also useful in dehydrohalogenation reactions and Swern oxidations. Triethylamine is readily alkylated to give the corresponding quaternary ammonium salt: RI + Et3N → Et3NR+I− Triethylamine is mainly used in the production of quaternary ammonium compounds for textile auxiliaries and quaternary ammonium salts of dyes. It is also a catalyst and acid neutralizer for condensation reactions and is useful as an intermediate for manufacturing medicines, pesticides and other chemicals. Triethylamine salts like any other tertiary ammonium salts are used as an ion-interaction reagent in ion interaction chromatography, due to their amphiphilic properties. Unlike quaternary ammonium salts, tertiary ammonium salts are much more volatile, therefore mass spectrometry can be used while performing analysis. Niche uses of Triethylamine Triethylamine is used to give salts of various carboxylic acid-containing pesticides, e.g. Triclopyr and 2,4-dichlorophenoxyacetic acid Triethylamine is the active ingredient in FlyNap, a product for anesthetizing Drosophila melanogaster. Triethylamine is used in mosquito and vector control labs to anesthetize mosquitoes. This is done to preserve any viral material that might be present during species identification. Also, the bicarbonate salt of triethylamine (often abbreviated TEAB, triethylammonium bicarbonate) is useful in reverse phase chromatography, often in a gradient to purify nucleotides and other biomolecules. Triethylamine was found during the early 1940s to be hypergolic in combination with nitric acid, and was considered a possible propellant for early hypergolic rocket engines. Natural occurrence of Triethylamine Hawthorn flowers have a heavy, complicated scent, the distinctive part of which is triethylamine, which is also one of the first chemicals produced by a dead human body when it begins to decay. For this reason, it is considered as unlucky to bring Hawthorn (or May blossom) into the house. Gangrene is also said to possess a similar odour. On a brighter note, it is also described as 'the smell of sex', specifically of semen. Application of Triethylamine Triethylamine has been used: • as a hydrogen donor for the polymerization of various monomers • to catalyze silanization • in the synthesis of the Cy3-Alexa647 heterodimer • in the synthesis of methacrylated solubilized decellularized cartilage Biochem/physiol Actions of Triethylamine Triethylamine is known to drive polymerization reaction. It acts as a source of carbon and nitrogen for bacterial cultures. Triethylamine is used in pesticides. Triethylamine can serve as an organic solvent. General description of Triethylamine Triethylamine (TEA, Et3N) is an aliphatic amine. Its addition to matrix-assisted laser desorption/ionization (MALDI) matrices affords transparent liquid matrices with enhanced ability for spatial resolution during MALDI mass spectrometric (MS) imaging. A head-space gas chromatography (GC) procedure for the determination of triethylamine in active pharmaceutical ingredients has been reported. The viscosity coefficient of triethylamine vapor over a range of density and temperature has been measured. Application of Triethylamine Triethylamine has been used during the synthesis of: • 5′-dimethoxytrityl-5-(fur-2-yl)-2′-deoxyuridine • 3′-(2-cyanoethyl)diisopropylphosphoramidite-5′-dimethoxytrityl-5-(fur-2-yl)-2′-deoxyuridine • polyethylenimine600-β-cyclodextrin (PEI600-β-CyD) It may be used as a homogeneous catalyst for the preparation of glycerol dicarbonate, via transesterification reaction between glycerol and dimethyl carbonate (DMC). Triethylamine appears as a clear colorless liquid with a strong ammonia to fish-like odor. Flash point 20°F. Vapors irritate the eyes and mucous membranes. Less dense (6.1 lb / gal) than water. Vapors heavier than air. Produces toxic oxides of nitrogen when burned. Triethylamine is a tertiary amine that is ammonia in which each hydrogen atom is substituted by an ethyl group. Acute (short-term) exposure of humans to triethylamine vapor causes eye irritation, corneal swelling, and halo vision. People have complained of seeing "blue haze" or having "smoky vision." These effects have been reversible upon cessation of exposure. Acute exposure can irritate the skin and mucous membranes in humans. Chronic (long-term) exposure of workers to triethylamine vapor has been observed to cause reversible corneal edema. Chronic inhalation exposure has resulted in respiratory and hematological effects and eye lesions in rats and rabbits. No information is available on the reproductive, developmental, or carcinogenic effects of triethylamine in humans. EPA has not classified triethylamine with respect to potential carcinogenicity. Liquid triethylamine will attack some forms of plastics, rubber, and coatings. The pharmacokinetics of the industrially important compound triethylamine (TEA) and its metabolite triethylamine-N-oxide (Triethylamine) were studied in four volunteers after oral and intravenous administration. Triethylamine was efficiently absorbed from the gastrointestinal (GI) tract, rapidly distributed, and in part metabolized into Triethylamine. There was no significant first pass metabolism. Triethylamine was also well absorbed from the GI tract. Within the GI tract, Triethylamine was reduced into Triethylamine (19%) and dealkylated into diethylamine (DEA; 10%). The apparent volumes of distribution during the elimination phase were 192 liters for Triethylamine and 103 liters for Triethylamine. Gastric intubation showed that there was a close association between levels of Triethylamine in plasma and gastric juice, the latter levels being 30 times higher. The Triethylamine and Triethylamine in plasma had half-lives of about 3 and 4 hr, respectively. Exhalation of Triethylamine was minimal. More than 90% of the dose was recovered in the urine as Triethylamine and Triethylamine. The urinary clearances of Triethylamine and Triethylamine indicated that in addition to glomerular filtration, tubular secretion takes place. For Triethylamine at high levels, the secretion appears to be saturable. The present data, in combination with those of earlier studies, indicate that the sum of Triethylamine and Triethylamine in urine may be used for biological monitoring of exposure to Triethylamine. Uses of Triethylamine Triethylamine is used as a catalytic solvent in chemical syntheses; as an accelerator activator for rubber; as a corrosion inhibitor; as a curing and hardening agent for polymers; as a propellant; in the manufacture of wetting, penetrating, and waterproofing agents of quaternary ammonium compounds; and for the desalination of seawater. The objectives of the study were to assess triethylamine (TEA) exposure in cold-box core making and to study the applicability of urinary Triethylamine measurement in exposure evaluation. Air samples were collected by pumping of air through activated-charcoal-filled glass tubes, and pre- and postshift urine samples were collected. The Triethylamine concentrations were determined by gas chromatography. Triethylamine was measured in air and urine samples from the same shift. Breathing-zone measurements of 19 workers in 3 foundries were included in the study, and stationary and continuous air measurements were also made in the same foundries. Pre- and postshift urine samples were analyzed for their Triethylamine and triethylamine-N-oxide (Triethylamine) concentrations. The Triethylamine concentration range was 0.3-23 mg/cu m in the breathing zone of the core makers. The mean 8-hr time-weighted average exposure levels were 1.3, 4.0, and 13 mg/cu m for the three foundries. Most of the preshift urinary Triethylamine concentrations were under the detection limit, whereas the postshift urinary Triethylamine concentrations ranged between 5.6 and 171 mmol/mol creatinine. The Triethylamine concentrations were 4-34% (mean 19%) of the summed Triethylamine + Triethylamine concentrations. The correlation between air and urine measurements was high (r=0.96, p<0.001). A Triethylamine air concentration of 4.1 mg/cu m (the current ACGIH 8-hr time-weighted average threshold limit value) corresponded to a urinary concentration of 36 mmol/mol creatinine. In 20 workers studied before, during, and after exposure to triethylamine (TEA) in a polyurethane-foam producing plant the amount of Triethylamine and its metabolite triethylamine-N-oxide (Triethylamine) excreted in urine corresponded to an average of 80% of the inhaled amount. An average of 27% was Triethylamine, but with a pronounced interindividual variation. Older subjects excreted more than younger ones; less than 0.3% was excreted as diethylamine. There have been few studies on the metabolism of industrially important aliphatic amines such as triethylamine. It is generally assumed that amines not normally present in the body are metabolized by monoamine oxidase and diamine oxidase (histaminase). Monoamine oxidase catalyzes the deamination of primary, secondary, and tertiary amines. Ultimately ammonia is formed and will be converted to urea. The hydrogen peroxide formed is acted upon by catalase and the aldehyde formed is thought to be converted to the corresponding carboxylic acid by the action of aldehyde oxidase. Five healthy volunteers were exposed by inhalation to triethylamine (Triethylamine; four or eight hours at about 10, 20, 35, and 50 mg/cu m), a compound widely used as a curing agent in polyurethane systems. Analysis of plasma and urine showed that an average of 24% of the Triethylamine was biotransformed into triethylamine-N-oxide (Triethylamine) but with a wide interindividual variation (15-36%). The Triethylamine and Triethylamine were quantitatively eliminated in the urine. The plasma and urinary concentrations of Triethylamine and Triethylamine decreased rapidly after the end of exposure (average half time of Triethylamine was 3.2 hr). In 20 workers studied before, during, and after exposure to triethylamine (TEA) in a polyurethane-foam producing plant the amount of Triethylamine and its metabolite triethylamine-N-oxide (Triethylamine) excreted in urine corresponded to an average of 80% of the inhaled amount. An average of 27% was Triethylamine, but with a pronounced interindividual variation. Older subjects excreted more than younger ones; less than 0.3% was excreted as diethylamine. After oral dose of triethylamine to four men, triethylamine in plasma had a half-life of about 3 hr (range, 2.4-3.5 hr). In 20 workers studied before, during, and after exposure to triethylamine (TEA) in a polyurethane-foam producing plant the amount of Triethylamine and its metabolite triethylamine-N-oxide (Triethylamine) excreted in urine corresponded to an average of 80% of the inhaled amount. The data indicate half-lives for Triethylamine and Triethylamine excretion in urine of about 3 hr. IDENTIFICATION of Triethylamine: Triethylamine is a colorless liquid with a strong fish odor. It mixes easily with water. USE: Triethylamine is an important commercial chemical. It is used as a curing catalyst in foundry molds, and in particle-board adhesives. It is used for the precipitation and purification of antibiotics. It is used for the production of polycarbonate resins. Triethylamine is found in tobacco smoke, two household use products (floor finish, stump and vine killer) and is approved for use in food and food packaging. EXPOSURE of Triethylamine: Workers that produce or use triethylamine may breathe in vapors or have direct skin contact. The general population may be exposed by vapors given off of food, from tobacco smoke, and by dermal contact with products containing triethylamine. If triethylamine is released to the environment, it will be broken down in air by reaction with hydroxyl radicals. It is not likely to be broken down in the air by sunlight. It will not volatilize into air from moist soil or water surfaces, but may volatilize from dry soil. It is expected to move easily through soil. It may be broken down by microorganisms, and is not expected to build up in fish. RISK of Triethylamine: Temporary eye irritation and damage, causing eye pain and hazy, blurred, and/or halo vision, have been reported in workers and volunteers exposed to low vapor levels of triethylamine. Nose and throat irritation have also been reported at moderate vapor levels. An increase in mild, reoccurring headaches was associated with occupational exposure to triethylamine in one study; no changes in blood pressure were observed. Data on the potential for triethylamine to produce other toxic effects in humans were not available. Triethylamine is a skin, eye, and respiratory irritant in laboratory animals. Difficulty breathing, nervous system effects (excitation, tremors, convulsions), and damage to the lungs, eyes, liver, kidney, and heart were observed in laboratory animals exposed to moderate-to-high vapor levels; some animals died at high exposure levels. Convulsions, abnormal reflexes, stomach irritation, changes in the blood, and decreased body weight occurred in laboratory animals repeatedly fed moderate-to-high levels of triethylamine; some animals died at high exposure levels. Triethylamine did not cause cancer in laboratory animals following lifetime oral exposure. No changes in fertility or abortion were observed in laboratory animals fed triethylamine over three generations. Data on the potential for triethylamine to cause birth defects in laboratory animals were not available. The American Conference of Governmental Industrial Hygienists has determined that triethyamine is not classifiable as a human carcinogen. The potential for triethylamine to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 13th Report on Carcinogens. USES of Triethylamine Triethylamine is used as a catalytic solvent in chemical syntheses; as an accelerator activator for rubber; as a corrosion inhibitor; as a curing and hardening agent for polymers; as a propellant; in the manufacture of wetting, penetrating, and waterproofing agents of quaternary ammonium compounds; and for the desalination of seawater. Determination of triethylamine and 2-dimethylaminoethanol by isotachophoresis in air samples from polyurethane foam production was studied. Acute (short-term) exposure of humans to triethylamine vapor causes eye irritation, corneal swelling, and halo vision. People have complained of seeing "blue haze" or having "smoky vision." These effects have been reversible upon cessation of exposure. Acute exposure can irritate the skin and mucous membranes in humans. Chronic (long-term) exposure of workers to triethylamine vapor has been observed to cause reversible corneal edema. Chronic inhalation exposure has resulted in respiratory and hematological effects and eye lesions in rats and rabbits. No information is available on the reproductive, developmental, or carcinogenic effects of triethylamine in humans. EPA has not classified triethylamine with respect to potential carcinogenicity. Triethylamine/ is strongly alkaline, and when drop is applied to rabbit's eye, causes severe injury, graded 9 on scale of 1 to 10 after 24 hr /most severe injuries have been rated 10/. Tests of aqueaous solution on rabbit eyes at pH 10 and pH 11 indicate injuriousness /of triethylamine/ is related principally to degree of alkalinity. A waste containing triethylamine may (or may not) be characterized a hazardous waste following testing for ignitability characteristics as prescribed by the Resource Conservation and Recovery Act (RCRA) regulations. NIOSH questioned whether the PEL proposed by OSHA for triethylamine was adequate to protect workers from recognized health hazards: TWA 10 ppm; STEL 15 ppm. Toxic gases and vapors (such as oxides of nitrogen and carbon monoxide) may be released in fire involving triethylamine. This action promulgates standards of performance for equipment leaks of Volatile Organic Compounds (VOC) in the Synthetic Organic Chemical Manufacturing Industry (SOCMI). The intended effect of these standards is to require all newly constructed, modified, and reconstructed SOCMI process units to use the best demonstrated system of continuous emission reduction for equipment leaks of VOC, considering costs, non air quality health and environmental impact and energy requirements. Triethylamine is produced, as an intermediate or a final product, by process units covered under this subpart. Listed as a hazardous air pollutant (HAP) generally known or suspected to cause serious health problems. The Clean Air Act, as amended in 1990, directs EPA to set standards requiring major sources to sharply reduce routine emissions of toxic pollutants. EPA is required to establish and phase in specific performance based standards for all air emission sources that emit one or more of the listed pollutants. Triethylamine is included on this list. USE of Triethylamine: Triethylamine (TEA) is a colorless liquid. It is used as catalytic solvent in chemical synthesis; accelerator activators for rubber; wetting, penetrating, and waterproofing agents of quaternary ammonium types; curing and hardening of polymers; corrosion inhibitor; propellant. HUMAN EXPOSURE AND TOXICITY of Triethylamine: Aside from irritation of the eyes and respiratory tract, triethylamine also stimulates the central nervous system, because it inhibits monamine oxidase. Experimental studies were conducted in four healthy men on the metabolism of inhaled Triethylamine (20 mg/cu m) with and without ethanol ingestion. Three subjects displayed visual disturbances in the experiments without ethanol. These same subjects did not experience any visual disturbances in those experiments containing ethanol. In another study, four hour exposure to a Triethylamine concentration of 3.0 mg/cu m seemed to cause no effects, whereas exposure to 6.5 mg/cu m for the same period caused blurred vision and a decrease in contrast sensitivity. Two volunteers were exposed to various airborne concentrations of triethylamine. Levels of 18 mg/cu m for eight hours caused subjective visual disturbances (haze and halos) and objective corneal edema. The effects faded within hours after the end of exposure. A cross-sectional study of visual disturbances was conducted in 19 workers (13 men, 6 women, mean age 45) employed in a polyurethane foam production plant. Visual disturbances (foggy vision, blue haze, and sometimes halo phemomena) were reported by 5 workers. Symptoms were associated with work operations with the highest exposure to triethylamine (TWA= 12-13 mg/cu m). ANIMAL STUDIES of Triethylamine: Triethylamine irritates the mucous membranes and the respiratory tract. In concentrations of 156 ppm a 50% decrease of the respiratory rate in rats was found. A 70% solution applied on the skin of guinea pigs caused prompt skin burns leading to necrosis; when held in contact with guinea pig skin for 2 hr, there was severe skin irritation with extensive necrosis and deep scarring. Five cat eyes and 1 monkey eye were exposed to triethylamine. Animals were exposed to triethylamine at rates of 0.45-0.85 mmol triethylamine/5 min for periods ranging from 1 to 5 min. Corneal epithelial damage occurred at all doses and was severe at higher concentrations. In all cases the epithelium was healed by day 4. Optical discontinuities of the stroma similar to those seen in human patients were observed at all dose levels. Convulsions observed in all rats given oral dosages of 50 mg or more. Triethylamine was tested on 3 day old chicken embryos. Malformations observed were: small eye cup 31%, defects of lids and cornea 73%, defects of beak 4%, encephalocoele or skin pimple in head 23%, open coelom 35%, short back or neck 42%, defects of wings 38%, and edema and lymph blebs 4%. Triethylamine was tested for mutagenicity in the Salmonella/microsome preincubation assay. Triethylamine was tested at doses of 0, 100, 333, 1000, 3333, and 10,000 ug/plate in four Salmonella typhimurium strains (TA98, TA100, TA1535, and TA1537) in the presence and absence of metabolic activation. Triethylamine was negative in these tests. Employee who /will be/ exposed to triethylamine at potentially hazardous levels should be screened for history of certain medical conditions /chronic respiratory diseases, cardiovascular diseases, liver diseases, kidney diseases, eye diseases/ which might place the employee at increased risk from triethylamine exposure. Any employee developing the conditions should be referred for further medical exam. Experimental studies were conducted in four healthy men on the metab of inhaled triethylamine (TEA) (20 mg/cu m) with and without ethanol ingestion. The mean serum ethanol concn during exposure & in the first hr after exposure was 25 mmol/L, ranging from 16 to 35 mmol/L. Triethylamine was readily absorbed during exposure & partly oxygenated into triethylamine-N-oxide. The concn in plasma of Triethylamine at the end of the exposure were lower in experiments with ethanol intake. Triethylamine plus ethanol plus sodium bicarbonate caused the highest plasma levels, with only minor Triethylamine amounts exhaled. The half live of Triethylamine in urine was similar in many experiments. The triethylamine-N-oxide excretion was lower after ethanol ingestion than after exposure to Triethylamine alone. Urinary pH profoundly affected Triethylamine metabolism. /SRP: A decrease of the urinary pH by one increased renal clearance of Triethylamine by a factor of 2./A change in urinary pH by about 2 units caused a change of renal clearance of Triethylamine by a factor of three & of the oxygenation by a factor of two. Renal clearance of triethylamine-N-oxide was not affected by urinary pH. Three subjects displayed visual disturbances in the experiments without ethanol. These same subjects did not experience any visual disturbances in those experiments containing ethanol. It was concluded that, theoretically, the ethanol intake & varying urinary pH may affect the possibility of monitoring Triethylamine exposure through biological samples. Although there was good correlation between air Triethylamine levels & either end shift plasma levels & post shift urinary excretion of Triethylamine plus triethylamine-N-oxide in an industrial settling, a determination of urinary pH would help. Four people were exposed to triethylamine (TEA) for 4 hr at concentrations of 40.6, 6.5, and 3.0 mg/cu m. Before and after every exposure, symptoms and ocular microscopy findings were recorded. Binocular visual acuity and contrast sensitivity at 2.5% contrast were also measured. Also, before and after the 40.6 mg/cu m exposure, corneal thickness was measured and ocular dimensions were recorded by ultrasonography, endothelial cells of the cornea were analyzed, and serum and lacrimal specimens were collected for the analysis of Triethylamine. After exposure to 40.6 mg/cu m Triethylamine there was a marked edema in the corneal epithelium and subepithelial microcysts. However, corneal thickness increased only minimally because of the epithelial edema. The lacrimal concentrations of Triethylamine were, on average (range) 41 (18-83) times higher than the serum Triethylamine concentrations. The vision was blurred in all subjects and visual acuity and contrast sensitivity had decreased in three of the four subjects. After exposure to Triethylamine at 6.5 mg/cu m two subjects experienced symptoms, and contrast sensitivity had decreased in three of the four subjects. There were no symptoms or decreases in contrast sensitivity after exposure to a Triethylamine concentration of 3.0 mg/cu m. Triethylamine caused a marked edema and microcysts in corneal epithelium but only minor increases in corneal thickness. The effects may be mediated by the lacrimal fluid owing to its high Triethylamine concentration. Four hour exposure to a Triethylamine concentration of 3.0 mg/cu m seemed to cause no effects, whereas exposure to 6.5 mg/cu m for the same period caused blurred vision and a decrease in contrast sensitivity. Triethylamine is 10.78, indicating that this compound will exist almost entirely in cation form in the environment and cations generally adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts. Volatilization from moist soil is not expected because the compound exists as a cation and cations do not volatilize. Triethylamine may volatilize from dry soil surfaces based upon its vapor pressure. Utilizing the Japanese MITI test, 28% of the Theoretical BOD was reached in 4 weeks indicating that biodegradation may be an important environmental fate process in soil and water. If released into water, triethylamine is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is not expected to be an important fate process based upon this compound's pKa. BCFs of <4.9 measured in carp suggest bioconcentration in aquatic organisms is low. Hydrolysis is not expected to be an important environmental fate process since this compound lacks functional groups that hydrolyze under environmental conditions (pH 5 to 9). Occupational exposure to triethylamine may occur through inhalation and dermal contact with this compound at workplaces where triethylamine is produced or used. Monitoring data indicate that the general population may be exposed to triethylamine via inhalation of tobacco smoke and ambient air, ingestion of food, and dermal contact with consumer products containing triethylamine. Triethylamine's production and use in the synthesis of semisynthetic penicillins and cephalosporins, as a polyurethane catalysts, an anti-corrosion agent, in paper, textile and photographic auxiliaries, and in anodic electro-coating may result in its release to the environment through various waste streams. TERRESTRIAL FATE: Based on a classification scheme, an estimated Koc value of 51, determined from a structure estimation method, indicates that triethylamine is expected to have high mobility in soil. The pKa of triethylamine is 10.78, indicating that this compound will exist almost entirely in cation form in the environment and cations generally adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts. Volatilization of the cation from moist soil is not expected because cations do not volatilize. Triethylamine is expected to volatilize from dry soil surfaces based upon a vapor pressure of 57.07 mm Hg at 25 °C. A 28% of Theoretical BOD using activated sludge in the Japanese MITI test suggests that biodegradation may be an important environmental fate process in soil. AQUATIC FATE: Based on a classification scheme, an estimated Koc value of 51, determined from a structure estimation method, indicates that triethylamine is not expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is not expected based upon a pKa of 10.78, indicating that triethylamine will exist almost entirely in the cation form and cations do not volatilize. Triethylamine is not expected to undergo hydrolysis in the environment due to the lack of functional groups that hydrolyze under environmental conditions. According to a classification scheme, BCFs of <4.9, suggest bioconcentration in aquatic organisms is low. Triethylamine present at 100 mg/L, reached 28% of its theoretical BOD in 4 weeks using an activated sludge inoculum at 30 mg/L and the Japanese MITI test. ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, triethylamine, which has a vapor pressure of 57.07 mm Hg at 25 °C, is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase triethylamine is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 4.2 hours, calculated from its rate constant of 9.3X10-11 cu cm/molecule-sec at 25 °C that was derived using a structure estimation method. Triethylamine does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. The rate constant for the vapor-phase reaction of triethylamine with photochemically-produced hydroxyl radicals has been estimated as 9.3X10-11 cu cm/molecule-sec at 25 °C using a structure estimation method. This corresponds to an atmospheric half-life of about 4.2 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm. Triethylamine is not expected to undergo hydrolysis in the environment due to the lack of functional groups that hydrolyze under environmental conditions. Triethylamine does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. Experiments show that triethylamine reacts with NO-NO2-H20 mixtures to form diethylnitroamine both in the dark and on irradiation. On irradiation, triethylamine is highly reactive forming ozone, PAN, acetaldehyde, diethylnitroamine, diethylformamide, ethylacetamide, and diethylacetamide and aerosols. These experiments were performed in large outdoor chambers under natural conditions of temperature, humidity, and illumination. Initially the mixture was allowed to react for two hours in the dark and then exposed to sunlight. The triethylamine completely disappeared after 90 minutes of illumination. Using a structure estimation method based on molecular connectivity indices, the Koc of triethylamine can be estimated to be 51. According to a classification scheme, this estimated Koc value suggests that triethylamine is expected to have high mobility in soil. The pKa of triethylamine is 10.78, indicating that this compound will exist almost entirely in the cation form in the environment and cations generally adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts. A pKa of 10.78 indicates triethylamine will exist almost entirely in the cation form at pH values of 5 to 9. Volatilization from water and moist soil surfaces is not expected to be an important environmental fate because cations do not volatilize. Triethylamine is expected to volatilize from dry soil surfaces based upon a vapor pressure of 57.07 mm Hg. Triethylamine has been reported in an effluent sample from the plastics and synthetics industry at 356.5 mg/L. It is emitted from sewage treatment plants. Anthropogenic releases of triethylamine by industry in the US to the atmosphere, surface water, underwater injections, land, and off-site were 2.3X10+5, 2299, 1.3X10+5, 10, and 2961 lbs, respectively, for the year 2014.
TRIETHYLENE GLYCOL (TEG)
Triethylene Glycol Properties Chemical formula C6H14O4 Molar mass 150.174 g·mol−1 Appearance Colorless liquid Density 1.1255 g/mL Melting point −7 °C (19 °F; 266 K) Boiling point 285 °C (545 °F; 558 K) Properties Triethylene glycol is a member of a homologous series of dihydroxy alcohols. It is a colorless, odorless and stable liquid with high viscosity and a high boiling point. Apart from its use as a raw material in the manufacture and synthesis of other products, Triethylene glycol is known for its hygroscopic quality and its ability to dehumidify fluids. This liquid is miscible with water, and at a pressure of 101.325 kPa has a boiling point of 286.5 °C and a freezing point of -7 °C. It is also soluble in ethanol, acetone, acetic acid, glycerine, pyridine, aldehydes; slightly soluble in diethyl ether; and insoluble in oil, fat and most hydrocarbons. Preparation Triethylene glycol is prepared commercially as a co-product of the oxidation of ethylene at high temperature in the presence of silver oxide catalyst, followed by hydration of ethylene oxide to yield mono(one)-, di(two)-, tri(three)- and tetraethylene glycols. Applications Triethylene glycol is used by the oil and gas industry to "dehydrate" natural gas. It may also be used to dehydrate other gases, including CO2, H2S, and other oxygenated gases. It is necessary to dry natural gas to a certain point, as humidity in natural gas can cause pipelines to freeze, and create other problems for end users of the natural gas. Triethylene glycol is placed into contact with natural gas, and strips the water out of the gas. Triethylene glycol is heated to a high temperature and put through a condensing system, which removes the water as waste and reclaims the Triethylene glycol for continuous reuse within the system. The waste Triethylene glycol produced by this process has been found to contain enough benzene to be classified as hazardous waste (benzene concentration greater than 0.5 mg/L). Triethylene glycol is well established as a relatively mild disinfectant toward a variety of bacteria, influenza A viruses and spores of Penicillium notatum fungi. However, its exceptionally low toxicity, broad materials compatibility, and low odor combined with its antimicrobial properties indicates that it approaches the ideal for air disinfection purposes in occupied spaces. Much of the scientific work with triethylene glycol was done in the 1940s and 1950s, however that work has ably demonstrated the antimicrobial activity against airborne, solution suspension, and surface bound microbes. The ability of triethylene glycol to inactivate Streptococcus pneumoniae (original citation: pneumococcus Type I), Streptococcus pyogenes (original citation: Beta hemolytic streptococcus group A) and Influenza A virus in the air was first reported in 1943. Since the first report the following microorganisms have been reported in the literature to be inactivated in the air: Penicillium notatum spores, Chlamydophila psittaci (original citation: meningopneumonitis virus strain Cal 10 and psittacosis virus strain 6BC), Group C streptococcus, type 1 pneumococcus, Staphylococcus albus, Escherichia coli, and Serratia marcescens Bizio (ATCC 274). Solutions of triethylene glycol are known to be antimicrobial toward suspensions of Penicillium notatum spores, Streptococcus pyogenes (original citation: Beta hemolytic streptococcus Group A ), Streptococcus pneumoniae (original citation: pneumococcus Type I), Streptococcus viridans, and Mycobacterium bovis (original citation: tubercle bacilli Ravenel bovine-type). Further, the inactivation of H1N1 influenza A virus on surfaces has been demonstrated. The latter investigation suggests that triethylene glycol may prove to be a potent weapon against future influenza epidemics and pandemics. However, at least some viruses, including Pseudomonas phage phi6 become more infectious when treated with triethylene glycol. Molar Mass: 150.17 g/mol CAS #: 112-27-6 Hill Formula: C₆H₁₄O₄ Chemical Formula: HO(CH₂CH₂O)₃H EC Number: 203-953-2 Four male albino rats weighing 112 to 145 g were given a single oral dose of 22.5 mg randomly radiolabeled 14-C-triethylene glycol. The rats were then placed in a metabolic chamber in which urine, feces, and expired air were collected over a period of 5 days. The radioactivity recovered (in percent of the administered dose) amounted to 0.8 to 1.2% in expired air, 2.0 to 5.3% in feces, and 86.1 to 94.0% in urine. The total recovery of radioactivity was 90.6% to 98.3% of the administered dose. Following oral dosing, the rat and rabbit excreted most of the triethylene glycol in both unchanged and/or oxidized forms (mono- and dicarboxylic acid derivatives of triethylene glycol). In rabbits dosed with 200 or 2000 mg/kg triethylene glycol respectively excreted 34.3% or 28%, of the administered dose in the urine as unchanged triethylene glycol and 35.2% as a hydroxyacid form of this chemical. In the studies with rats, little if any 14-C-oxalate or 14-C-triethylene glycol in conjugated form was found in the urine. Trace amounts of orally administered 14-C triethylene glycol were excreted in expired air as carbon dioxide (<1%) and in detectable amounts in feces (2 to 5 %). The total elimination of radioactivity (urine, feces and CO2) during the five day period following an oral dose of labeled compound (22.5 mg) ranged from 91 to 98%. The majority of the radioactivity appeared in the urine. Uses: Antifreeze Coolants Chemical intermediates Gas dehydration and treating Heat transfer fluids Polyester resins Solvents Benefits: Versatile intermediates Low volatility Low boiling point TETRA EG is completely miscible with water and a wide range of organic solvents. No studies have been reported dealing with the skin absorption of triethylene glycol. Although it is possible that under conditions of very severe prolonged exposures to this chemical, absorption through the skin can occur, it is doubtful any appreciable systemic/dermal injury would occur because triethylene glycol has (1) a low order of dermal irritancy, (2) is not a dermal sensitizer, and (3) showed no evidence of dermal or systemic toxicity following repeated dermal applications of 2 mL (approximately 600 mg/kg) triethylene glycol applied to the skin of rabbits in a 21-day dermal toxicity study. Two female New Zealand white rabbits triethylene glycol by stomach tube. Urine from the dosed animals was subsequently collected for 24 hrs. Rabbits dosed with 200 or 2,000 mg/kg respectively excreted 34.3% or 28% of the dose amount as unchanged triethylene glycol. The urine of one rabbit contained 35.2% of the administered dose as a hydroxyacid form of triethylene glycol. Triethylene glycol is believed to be metabolized in mammals by alcohol dehydrogenase to acidic products causing metabolic acidosis. Triethylene glycol metabolism by alcohol dehydrogenase can be inhibited by 4-methyl pyrazole or ethanol. Triethylene glycol is approved by the Food and Drug Administration (FDA) as a preservative for food packaging adhesives ... . Currently, however, there are no EPA registered products for this use. Triethylene glycol /is also approved as/ an indirect food additive for its use as a plasticizer in cellophane. Used as a chemical intermediate for the synthesis of iodoxamic acid; rosin ester gum; triethylene glycol bis(3-(3-t-butyl-4-hydroxy-5-methylphenyl)-propionate); triethylene glycol diacetate; triethylene glycol dimethacrylate; triethylene glycol dinitrate; triethylene glycol dipelargonate. Commercial grade triethylene glycol has been found to contain <1 ppm dioxane. Twenty-six samples of 99.9% pure triethylene glycol were found to contain 0.02 to 0.13% diethylene glycol. After years of study, triethylene glycol was found to be the ideal chemical for aerial disinfection in sterile filling units because it had a high bactericidal potency at reasonable cost and was non-toxic. It was most effective at relative humidities of 30 to 55% and the rate of kill increased with temperature and degree of saturation of air with the vapor. Triethylene glycol is described as an oligomer of ethylene glycol. So-called polyglycols are higher molecular weight adducts of ethylene oxide and distinguised by intervening ether linkages in the hydrocarbon chain. Method: NIOSH 5523, Issue 1; Procedure: gas chromatography with a flame ionization detector; Analyte: triethylene glycol; Matrix: air; Detection Limit: 14 ug/sample. Triethylene glycol has been determined by gas chromatography-mass spectormetry and gas-liquid chromatography. Triethylene glycol has been measured in rat and rabbit urine using vapor phase chromatography and colorimetry. Residues of triethylene glycol are exempted from the requirement of a tolerance when used as a deactivator in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only. Residues of triethylene glycol are exempted from the requirement of a tolerance when used as a deactivator in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only. The Agency has determined triethylene glycol is eligible for reregistration. Based on the available data, the Agency has concluded that triethylene glycol exhibits low toxicity and exposures to triethylene glycol used as both an active or inert ingredient do not present risks of concern to the Agency. Therefore, no mitigation measures are necessary at this time. As the federal pesticide law FIFRA directs, EPA is conducting a comprehensive review of older pesticides to consider their health and environmental effects and make decisions about their future use. Under this pesticide reregistration program, EPA examines health and safety data for pesticide active ingredients initially registered before November 1, 1984, and determines whether they are eligible for reregistration. In addition, all pesticides must meet the new safety standard of the Food Quality Protection Act of 1996. Pesticides for which EPA had not issued Registration Standards prior to the effective date of FIFRA '88 were divided into three lists based upon their potential for human exposure and other factors, with List B containing pesticides of greater concern and List D pesticides of less concern. Triethylene glycol is found on List C. Case No: 3146; Pesticide type: insecticide, fungicide, antimicrobial; Case Status: OPP is reviewing data from the pesticide's producers regarding its human health and/or environmental effects, or OPP is determining the pesticide's eligibility for reregistration and developing the RED document.; Active ingredient (AI): triethylene glycol; Data Call-in (DCI) Date(s): 9/30/92; AI Status: The producers of the pesticide have made commitments to conduct the studies and pay the fees required for reregistration, and are meeting those commitments in a timely manner. Triethylene glycol is an indirect food additive for use only as a component of adhesives. Triethylene glycol (TEG) is a liquid higher glycol of very low vapor pressure with uses that are primarily industrial. It has a very low order of acute toxicity by iv, ip, peroral, percutaneous and inhalation (vapor and aerosol) routes of exposure. It does not produce primary skin iritation. Acute eye contact with the liquid causes mild local transient irritation (conjunctival hyperemia and slight chemosis) but does not induce corneal injury. Animal maximization and human volunteer repeated insult patch tests studies have shown that TEG does not cause skin sensitization. A study with Swiss-Webster mice demonstrated that TEG aerosol has properties of a peripheral chemosensory irritant material and caused a depression of breathing rate with an RD(50) of 5140 mg/ cu m. Continuous subchronic peroral dosing of TEG in the diet of rats did not produce any systemic cumulative or long-term toxicity. The effects seen were dose-related increased relative kidney weight, increased urine volume and decreased urine pH, probably a result of the renal excretion of TEG and metabolites following the absorption of large doses of TEG. There was also decreased hemoglobin concentration, decreased hematocrit and increased mean corpuscular volume, probably due to hemodilution following absorption of TEG. The NOAEL was 20,000 ppm TEG in diet. Short-term repeated aerosol exposure studies in the rat demonstrated that, by nose-only exposure, the threshold for effects by respiratory tract exposure was 1036 mg/cu m. Neither high dosage acute nor repeated exposures to TEG produce hepatorenal injury characteristic of that caused by the lower glycol homologues. Elimination studies with acute peroral doses of TEG given to rats and rabbits showed high recoveries (91-98% over 5 days), with the major fraction appearing in urine (84-94%) and only 1% as carbon dioxide. TEG in urine is present in unchanged and oxidized forms, but only negligible amounts as oxalic acid. Developmental toxicity studies with undiluted TEG given by gavage produced maternal toxicity in rats (body weight, food consumption, water consumption, and relative kidney weight) with a NOEL of 1126 mg/kg/day, and mice (relative kidney weight) with a NOEL of 5630 mg/kg/day. Developmental toxicity, expressed as fetotoxicity, had a NOEL of 5630 mg/kg/day with the rat and 563 mg/kg/day with mice. Neither species showed any evidence of embryotoxicity or teratogenicity. There was no evidence for reproductive toxicity with mice given up to 3% TEG in drinking water in a continuous breeding study. TEG did not produce mutagenic or clastogenic effects in the following in vitro genetic toxicology studies: Salmonella typhimurium reverse mutation test, SOS-chromotest in E. coli, CHO forward gene mutation test (HGPRT locus), CHO sister chromatid exchange test, and a chromosome aberration test with CHO cells. The use patterns suggest that exposure to TEG is mainly occupational, with limited exposures by consumers. Exposure is normally by skin and eye contact. Local and systemic adverse health effects by cutaneous exposure are likely not to occur, and eye contact will produce transient irritation without corneal injury. The very low vapor pressure of TEG makes it unlikely that significant vapor exposure will occur. Aerosol exposure is not a usual exposure mode, and acute aerosol exposures are unlikely to be harmful, although a peripheral sensory irritant effect may develop. However, repeated exposures to a TEG aerosol may result in respiratory tract irritation, with cough, shortness of breath and tightness of the chest. Recommended protective and precautionary measures include protective gloves, goggles or safety glasses and mechanical room ventilation. LC(50) data to various fish, aquatic invertebrates and algae, indicate that TEG is essentially nontoxic to aquatic organisms. Also, sustained exposure studies have demonstrated that TEG is of a low order of chronic aquatic toxicity. The bioconcentration potential, environmental hydrolysis, and photolysis rates are low, and soil mobility high. In the atmosphere TEG is degraded by reacting with photochemically produced hydroxyl radicals. These considerations indicate that the potential for ecotoxicological effects with TEG is low. A 23-yr-old woman was brought to an emergency room after intentionally ingesting one gulp (volume unspecified) of ... brake fluid. ...The patient was given milk to drink by her family and subsequently vomited. Upon arrival to the emergency room, she was unconscious and had metabolic acidoses (pH 7.03, PCO2 44 mmHg, bicarbonate 11 mmol/L, anion gap 30 mmol/L, serum creatinine 90 umol/L). She was intubated and given 100 mmol of iv sodium bicarbonate. Triethylene glycol is thought to be metabolized by alcohol dehydrogenase to acidic products resulting in metabolic acidosis. To act as a competitor of the alcohol dehydrogenase enzyme, ethanol was administered to maintain a serum ethanol level of 100 mg/dL. The blood pH returned to normal over the next 8 hrs, and ethanol infusion was continued for 22 hr. At 36 hr post ingestion, the patient was discharged to a psychiatric ward. Analysis of blood drawn upon admission did not detect the presence of ethanol, ethylene glycol, methanol... . The above case study described the... brake fluid as 99.9% triethylene glycol. The material safety data sheet for /this brand of/ brake fluid, however, lists its ingredients as 30-60% polyglycol ethers; 30-60% borate of triethylene glycol monomethyl ether; 30-60% polyglycol; 0-10% corrosion inhibitor; and 0-10% dye. The metabolism of triethylene glycol was evaluated in groups of rats (number and sex not reported) orally administered (gavage or diet not specified) 1.2 g/kg. The proportion of the dose that was excreted in the urine unchanged was 59% and 3.8% at days 1 and 2 post-dosing, respectively. The procedure for recovery of triethylene glycol from the urine was not reported. No metabolites of the test compound were identified. A perinatal/postnatal teratology study was conducted with 50 pregnant Specific Pathogen Free CD-1 albino mice administered triethylene glycol by oral gavage at a dose level of 11270 mg/kg/day (the maximum tolerated dose calculated from a previous study) on gestation days 7-14. Mortality was not observed and no pharmacotoxic signs were observed except for a roughened haircoat in 1 animal. Statistical analysis were determined by the Student's t-test (p<0.05). The mean maternal body weights and the mean weight change (Day 18-7) were significantly lower than control values. Mean pup counts and offspring viability were similiar to controls. Although mean pup weights were significantly lower than the control weights at birth, mean pup weights at day 3 were comparable to controls. No apparent adverse effects on reproductive or neonatal outcome were observed. Gross necropsy observations were not reported. Reproductive toxicity was evaluated in groups of 10 pregnant Charles River CD female mice receiving an oral gavage dose of triethylene glycol at 10 ml/kg body weight on gestation days 7 through 14. Maternal mortality was approximatedly 4% of the test group. Clinical observations and gross necropsy were not reported. There was a significant reduction (p<0.05) in the number of live pups per litter, reduced survival, and reduced birth weight among offspring of treated dams. Triethylene glycol's production and use a fragrance ingredient in cosmetics, as a solvent, plasticizer in vinyl, polyester and polyurethane resins, as a humectant in printing inks, and in the dehydration of natural gas may result in its release to the environment through various waste streams; it's use as a bacteriostat and as an inert ingredient to facilitate delivery of formulated pesticide products will result in its direct release to the environment. If released to air, a vapor pressure of 1.32X10-3 mm Hg at 25 °C indicates triethylene glycol will exist solely as a vapor in the atmosphere. Vapor-phase triethylene glycol will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 11 hours. Alcohols and ethers do not absorb light at wavelengths >290 nm and therefore triethylene glycol is not expected to be susceptible to direct photolysis by sunlight. If released to soil, triethylene glycol is expected to have very high mobility based upon an estimated Koc of 10. Volatilization from moist soil surfaces is not expected to be an important fate process based upon an estimated Henry's Law constant of 3.2X10-11 atm-cu m/mole. River die-away test data demonstrate that biodegradation is likely to be the most important removal mechanism of triethylene glycol from aerobic soil and water; complete degradation in river die-away studies required 7-11 days. If released into water, triethylene glycol is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is not expected to be an important fate process based upon this compound's estimated Henry's Law constant. An estimated BCF of 3 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis is not expected to be an important environmental fate process since this compound lacks functional groups that hydrolyze under environmental conditions. Occupational exposure to triethylene glycol may occur through inhalation and dermal contact with this compound at workplaces where triethylene glycol is produced or used. Monitoring and use data indicate that the general population may be exposed to triethylene glycol via inhalation of ambient air, and dermal contact with products containing triethylene glycol. Triethylene glycol's production and use as a solvent, plasticizer in vinyl, polyester and polyurethane resins, as a humectant in printing inks, in the dehydration of natural gas(1) and as a fragrance ingredient in cosmetics(2) may result in its release to the environment through various waste streams; it's use as a bacteriostat and as an inert ingredient to facilitate delivery of formulated pesticide products(3) will result in its direct release to the environment(SRC). Based on a classification scheme(1), an estimated Koc value of 10(SRC), determined from a structure estimation method(2), indicates that triethylene glycol is expected to have very high mobility in soil(SRC). Volatilization of triethylene glycol from moist soil surfaces is not expected to be an important fate process(SRC) given an estimated Henry's Law constant of 3.2X10-11 atm-cu m/mole(SRC), using a fragment constant estimation method(3). Triethylene glycol is not expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 1.32X10-3 mm Hg(4). A series of aerobic river die-away tests which utilized several different sources of freshwater, suggest that rapid biodegradation is likely to be the most important removal mechanism of triethylene glycol from aerobic soil(SRC); degradation was complete within 7-11 days(5). Based on a classification scheme(1), an estimated Koc value of 10(SRC), determined from a structure estimation method(2), indicates that triethylene glycol is not expected to adsorb to suspended solids and sediment(SRC). Volatilization from water surfaces is not expected(3) based upon an estimated Henry's Law constant of 3.2X10-11 atm-cu m/mole(SRC), developed using a fragment constant estimation method(4). According to a classification scheme(5), an estimated BCF of 3(SRC), from an estimated log Kow of -1.75(6) and a regression-derived equation(7), suggests the potential for bioconcentration in aquatic organisms is low(SRC). A series of aerobic river die-away tests, which utilized several differing sources of freshwater, suggest that rapid aerobic biodegradation is likely to be the most important removal mechanism of triethylene glycol from aquatic systems(SRC); degradation was complete within 7-11 days(8). According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere(1), triethylene glycol, which has a vapor pressure of 1.32X10-3 mm Hg at 25 °C(2), is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase triethylene glycol is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 11 hours(SRC), calculated from its rate constant of 3.6X10-11 cu cm/molecule-sec at 25 °C(SRC) that was derived using a structure estimation method(3). Alcohols and ethers do not absorb light at wavelengths >290 nm and therefore triethylene glycol is not expected to be susceptible to direct photolysis by sunlight(4). Aerobic river die-away tests, utilizing several different sources of freshwater, have demonstrated that triethylene glycol should biodegrade rapidly in the environment(1). At 20 °C, the degradation of 10 mg/L triethylene glycol was complete within 7-11 days(1). 25 to 92% of the theoretical BOD was reached within 4 weeks incubation during the MITI test using a sludge inoculum; these results were on an upward trend by the end of the test(2) indicating that acclimation may be important for this compound(SRC). Triethylene glycol degraded 85% of theoretical BOD (1.6 gm/gm) after 20 days at 20 °C(3). The rate constant for the vapor-phase reaction of triethylene glycol with photochemically-produced hydroxyl radicals has been estimated as 3.6X10-11 cu cm/molecule-sec at 25 °C(SRC) using a structure estimation method(1). This corresponds to an atmospheric half-life of about 11 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm(1). Triethylene glycol is not expected to undergo hydrolysis in the environment due to the lack of functional groups that hydrolyze under environmental conditions(2,3). Alcohols and ethers do not absorb light at wavelengths >290 nm and therefore triethylene glycol is not expected to be susceptible to direct photolysis by sunlight(4). An estimated BCF of 3 was calculated in fish for triethylene glycol(SRC), using an estimated log Kow of -1.75(1) and a regression-derived equation(2). According to a classification scheme(3), this BCF suggests the potential for bioconcentration in aquatic organisms is low(SRC). The Henry's Law constant for triethylene glycol is estimated as 3.2X10-11 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This Henry's Law constant indicates that triethylene glycol is expected to be essentially nonvolatile from water surfaces(2). Triethylene glycol is not expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 1.32X10-3 mm Hg(3). Triethylene glycol was found in 5 of 25 aerosol samples taken from a light house site in northeastern Puerto Rico, and was identified in a sample taken 30 miles off the south coast(1). NIOSH (NOES Survey 1981-1983) has statistically estimated that 233,613 workers (53,367 of these are female) are potentially exposed to triethylene glycol in the US(1). Occupational exposure to triethylene glycol may occur through inhalation and dermal contact with this compound at workplaces where triethylene glycol is produced or used(SRC). Monitoring and use data indicate that the general population may be exposed to triethylene glycol via inhalation of ambient air, and dermal contact with products containing triethylene glycol(SRC). Application Triethylene glycol can be used: • To prepare fatty acid gelators, which are used to gelate various edible and vegetable oils. • As a solvent to prepare superparamagnetic iron oxide nanoparticles for in situ protein purification. • As an absorbent agent in the subsea natural gas dehydration process. Triethylene glycol (TEG) is a colorless, viscous liquid with a slight odor. It is non-flammable, mildly toxic, and considered non-hazardous. TEG is a member of a homologous series of dihydroxy alcohols. It is used as a plasticizer for vinyl polymers as well as in the manufacture of air sanitizer and other consumer products. Triethylene Glycol (TEG) is a liquid chemical compound with the molecular formula C6H14O4 or HOCH2CH2CH2O2CH2OH. Its CAS is 112-27-6. TEG is recognized for its hygroscopic quality and ability to dehumidify fluids. It is miscible with water and soluble in ethanol, acetone, acetic acid, glycerine, pyridine, and aldehydes. It is slightly soluble in diethyl ether, and insoluble in oil, fat, and most hydrocarbons. TEG is commercially produced as a co-product of the oxidation of ethylene at a high temperature in the presence of silver oxide catalyst, followed by hydration of ethylene oxide to yield mono, di, tri, and tetraethylene glycols. The oil and gas industries use TEG to dehydrate natural gas as well as other gases including CO2, H2S, and other oxygenated gases. Industrial uses include adsorbents and absorbents, functional fluids in both closed and open systems, Intermediates, petroleum production processing aids, and solvents. TEG is used in the manufacture of a host of consumer products that include anti-freeze, automotive care products, building and construction materials, cleaning and furnishing care products, fabric, textile, and leather products, fuels and related products, lubricants and greases, paints and coatings, personal care products, and plastic and rubber products. Triethylene Glycol is widely used as a solvent. It has a high flash point, emits no toxic vapors, and is not absorbed through the skin. Characteristics Triethylene glycol is viscous at room temperature. It is colorless, odorless, and sweet-tasting. It is miscible in water in all ratios. Triethylene Glycol (TEG) is a larger molecule than MEG, DEG and has two ether groups. It is less clear and less hygroscopic than DEG, but has a higher boiling point, density and viscosity. PROPERTIES Triethylene glycol is a member of a homologous series of dihydroxy alcohols. It is a colorless, odorless and stable liquid with high viscosity and a high boiling point. Apart from its use as a raw material in the manufacture and synthesis of other products, triethylene glycol is known for its hygroscopic quality and its ability to dehumidify fluids. This liquid is miscible with water, and at a pressure of 101.325 kPa has a boiling point of 286.5°C and a freezing point of -7°C. Triethylene glycol (TEG) is a liquid chemical compound with the molecular formula C6H14O4. Triethylene glycol is recognized for its hygroscopic quality and ability to dehumidify fluids. It is miscible with water and soluble in ethanol, acetone, acetic acid, glycerine, pyridine, and aldehydes. It is slightly soluble in diethyl ether, and insoluble in oil, fat, and most hydrocarbons. CHEMICAL AND PHYSICAL PROPERTIES OF TRIETHYLENE GLYCOL Triethylene glycol’s molecule formula: C6-H14-O4 Triethylene glycol’s molecular weight: 150.17 Triethylene glycol’s colour/form: colourless, liquid Triethylene glycol’s odor: practically odorless Triethylene glycol’s boiling point: 285°C; 165 °C at 14 mm Hg Triethylene glycol’s melting point: -7°C Triethylene glycol’s density: 1.1274 at 15°C/4 °C Triethylene glycol’s heat of vaporization: 61.04 kJ/mol at 101.3 kPa /=760 mm Hg/ Triethylene glycol’s octanol/water partition coefficient: log Kow = -1.98 Triethylene glycol’s solubility: Miscible with alcohol, benzene, toluene; sparingly sol in ether; practically insol in petroleum ether. Soluble in oxygenated solvents. Slightly soluble in ethyl ether, chloroform; insoluble in petroleum ether. In water, miscible. Triethylene glycol’s vapor pressure: 1.32X10-3 mm Hg at 25°C (est) Triethylene glycol’s viscosity: 47.8 cP at 20°C Triethylene glycol’s flash point: 350°F (177°C) (Open cup) Triethylene glycol’s flammable limits: Lower flammable limit: 0.9% by volume; Upper flammable limit: 9.2% by volume Triethylene glycol’s autoignition temperature: 700°F (371°C) PREPARATIONS OF TRIETHYLENE GLYCOL Triethylene glycol is prepared commercially as a co-product of the oxidation of ethylene at high temperature in the presence of silver oxide catalyst, followed by hydration of ethylene oxide to yield mono(one)-, di(two)-, tri(three)- and tetraethylene glycols. METHODS OF MANUFACTURING OF TRIETHYLENE GLYCOL Prepared from ethylene oxide and ethylene glycol in presence of sulfuric acid ... manufactured by forming ether-ester of hydroxyacetic acid with glycol and then hydrogenating. Produced commercially as by-product of ethylene glycol production. Triethylene glycol's formation is favored by a high ethylene oxide to water ratio. Diethylene glycol + ethylene oxide (epoxidation) Ethylene glycol monoethers are usually produced by reaction of ethylene oxide with the appropriate alcohol. A mixture of homologues is obtained. The glycol monoethers can be converted to diethers by alkylation with common alkylating agents, such as dimethyl sulfate or alkyl halides (Williamson synthesis). Glycol dimethyl ethers are formed by treatment of dimethyl ether with ethylene oxide.
TRIETHYLENE GLYCOL DIVINYL ETHER
Trigen; Triglycol; TEG; 2,2'-ethylenediqxybis(ethanol); 3,6-Dioxa-1,8-octanediol; Glycol Bis(Hydroxyethyl) Ether; Di-beta-Hydroxyethoxyethane; 1,2-bis(2-hydroxyethoxy)ethane; 3,6-dioxaoctane-1,8-diol; 2,2'-(1,2-ethanediylbis(oxy)) bisethanol; ethylene glycol dihydroxydiethyl ether; Trigol; Ethylene glycol-bis-(2-hydroxyethyl) ether; 1,2-Bis(2-hydroxy)ethane; Ethylene glycal-bis-(2-hydroxyethyl ether); cas no: 112-27-6
TRIETHYLENETETRAMINE (TETA)
Triethylenetetramine (TETA) Uses of Triethylenetetramine (TETA) The reactivity and uses of Triethylenetetramine (TETA) are similar to those for the related polyamines ethylenediamine and diethylenetriamine. Triethylenetetramine (TETA) is primarily used as a crosslinker ("hardener") in epoxy curing. Medical uses of Triethylenetetramine The hydrochloride salt of Triethylenetetramine (TETA), referred to as Triethylenetetramine (TETA) hydrochloride, is a chelating agent that is used to bind and remove copper in the body to treat Wilson's disease, particularly in those who are intolerant to penicillamine. Some recommend Triethylenetetramine (TETA) as first-line treatment, but experience with penicillamine is more extensive. Triethylenetetramine (TETA) hydrochloride (brand name Syprine) was approved for medical use in the United States in November 1985. Production of Triethylenetetramine Triethylenetetramine (TETA) is prepared by heating ethylenediamine or ethanolamine/ammonia mixtures over an oxide catalyst. This process gives a variety of amines, especially ethylene amines which are separated by distillation and sublimation. Coordination chemistry of Triethylenetetramine Triethylenetetramine (TETA) is a tetradentate ligand in coordination chemistry, where it is referred to as trien. Octahedral complexes of the type M(trien)L2 can adopt several diastereomeric structures. Triethylenetetramine tetrahydrochloride (brand name Cuprior) was approved for medical use in the European Union in September 2017. Triethylenetetramine (TETA) is indicated for the treatment of Wilson's disease in adults, adolescents and children five years of age or older who are intolerant to D-penicillamine therapy. Triethylenetetramine (TETA) dihydrochloride (brand name Cufence) was approved for medical use in the European Union in July 2019. It is indicated for the treatment of Wilson's disease in adults, adolescents and children five years of age or older who are intolerant to D-penicillamine therapy. The most common side effects include nausea, especially when starting treatment, skin rash, duodenitis (inflammation of the duodenum, the part of the gut leading out of the stomach), and severe colitis (inflammation in the large bowel causing pain and diarrhea). Properties of Triethylenetetramine Chemical formula C6H18N4 Molar mass 146.238 g·mol−1 Appearance Colorless liquid Odor Fishy, ammoniacal Density 982 mg mL−1 Melting point −34.6 °C; −30.4 °F; 238.5 K Boiling point 266.6 °C; 511.8 °F; 539.7 K Solubility in water Miscible log P 1.985 Vapor pressure <1 Pa (at 20 °C) Refractive index (nD) 1.496 Application of Triethylenetetramine Triethylenetetramine has been used as an additive to enhance the peak resolution ability of capillary zone electrophoresis (CZE) running buffer system to separate and quantitate the monoclonal antibodies by the CZE method. Triethylenetetramine may be used for the amination of polyacrylonitrile fibers to form novel fiber catalysts for Knoevenagel condensation in aqueous media. TETA also acts as a copper (II)-selective chelator. Triethylenetetramine (TETA) may also be used as a growth-orientator in the formation of 1D zinc sulfide nanoarchitectures. Triethylenetetramine (TETA) is a highly selective divalent Cu(II) chelator and orphan drug that revereses copper overload in tissues. Its salt form, trientine (triethylenetetramine dihydrochloride or 2,2,2-tetramine) was introduced in 1969 as an alternative to D-penicillamine. It consists of a polyamine-like structure different from D-penicillamine, as it lack sulfhydryl groups. It was previously approved by FDA in 1985 as second-line pharmacotherapy for Wilson's disease. Although penicillamine treatment is believed to be more extensive, Triethylenetetramine (TETA) therapy has been shown to be an effective initial therapy, even with patients with decompensated liver disease at the outset, and prolonged Triethylenetetramine (TETA) treatment is not associated with adverse effects as expected in penicillamine treatment. Its clinical applications on cancer, diabetes mellitus, Alzheimer's disease and vascular demetia are being studied. Triethylenetetramine (TETA) is an oral copper chelating agent used to treat Wilson disease. Triethylenetetramine (TETA) has not been associated with worsening of serum enzyme elevations during therapy or with cases of clinically apparent liver injury with jaundice. Triethylenetetramine appears as a yellowish liquid. Less dense than water. Combustible, though may be difficult to ignite. Corrosive to metals and tissue. Vapors heavier than air. Toxic oxides of nitrogen produced during combustion. Used in detergents and in the synthesis of dyes, pharmaceuticals and other chemicals. Triethylenetetramine (TETA) is a copper chelator used in the treatment of Wilson's disease as an alternative to D-penicillamine. It tends to be used in patients who are experiencing serious adverse effects from penicillamine therapy or intolerance of penicillamine. Triethylenetetramine (TETA) is a selective copper (II) chelator. tightly binds and facilitates systemic elimination of Cu(II) into the urine whilst neutralizing its catalytic activity, but does not cause systemic copper deficiency even after prolonged use. It may also act as an antioxidant as it suppresses the copper-mediated oxidative stress. Triethylenetetramine (TETA) not only increases urinary Cu excretion, but also decreases intestinal copper absorption by 80%. The unchanged drug and two acetylated metabolites, N1-acetyltriethylenetetramine (MAT) and N1,N10-diacetyltriethylenetetramine (DAT), are mainly excreted in the urine. About 1% of the administered trientine and about 8% of the biotransformed trientine metabolite, acetyltrien, ultimately appear in the urine. The amounts of urinary copper, zinc and iron increase in parallel with the amount of trientine excreted in the urine. Unchanged drug is also excreted in feces after oral administration. Triethylenetetramine (TETA) is mainly metabolized via acetylation, and two major acetylated metabolites exist in human serum and urine. Triethylenetetramine is readily acetylated into N1-acetyltriethylenetetramine (MAT) and N1,N10-diacetyltriethylenetetramine (DAT). MAT is still capable of binding divalent Cu, Fe, and Zn but to a much lesser extent compared to the unchanged drug. To date no enzyme has been definitely identified as responsible for Triethylenetetramine acetylation but spermidine/spermine acetyltransferase-1 (SSAT-1) is a potential candidate responsible for acetylation of Triethylenetetramine because of the close chemical resemblance between its natural substrate spermidine and Triethylenetetramine. Triethylenetetramine (TETA) is also shown to be a substrate for human thialysine acetyltransferase (SSAT2) in vitro. The plasma elimination half life of Triethylenetetramine in healthy volunteers and Wilson's disease patients ranges from 1.3 to 4 hours. The metabolites are expected to be longer than the parent drug. Copper is chelated by forming a stable complex with the four constituent nitrogens in a planar ring as copper displays enhanced ligand binding properties for nitrogen compared to oxygen. It binds Cu(II) very tightly, having a dissociation constant from Cu(II) of 10^−15 mol/L at pH 7.0. Triethylenetetramine reacts in a stoichiometric ratio 1:1 with copper and is also able to complex with iron and zinc in vivo. Triethylenetetramine (TETA) is considered a potential chemotherapeutic agent as it could be a telomerase inhibitor because it is a ligand for G-quadruplex, and stabilizes both intra- and intermolecular G-quadruplexes. It may mediate a selective inhibitory effect or cytotoxicity on tumor growth. Chelating excess copper may affect copper-induced angiogenesis. Other mechanisms of action of Triethylenetetramine (TETA) for alternative therapeutic implications include improved antioxidant defense against oxidative stress, pro-apoptosis, and reduced inflammation. A mixture of four compounds with close boiling points including linear, branched and two cyclic molecules. Building block in the manufacture of imidazoline based corrosion inhibitors. Uses of Triethylenetetramine: Corrosion inhibitors; Wet-strength resins; Fabric softeners; Epoxy curing agents; Polyamide resins; Fuel additives; Lube oil additives; Asphalt additives; Ore flotation; Corrosion inhibitors; Asphalt; Additives; Epoxy curing agents; Hydrocarbon purification; Lube oil & fuel additives; Mineral processing aids; Polyamide resins; Surfactants; Textile additives-paper wet-strength resins; Fabric Softeners; Surfactants; Coatings; Urethanes; Fuel additives; Chemical intermediates; Epoxy curing agents; Lube oils; Wet strength resins. Benefits of Triethylenetetramine: Consistent and predictable reaction products; Easily derivatized; Low vapor pressure; High viscosity; Low environmental impact; Suitable for harsh conditions; Low sensitivity; Versatile. Triethylenetetramine (TETA)/Ethanol Solutions Zheng et al. have reported that triethylenetetramine (TETA) dissolved in ethanol can produce a solid precipitate after CO2 absorption, which can then be easily separated and regenerated.19 In comparison, a Triethylenetetramine/water solution does not form any precipitates after CO2 absorption. The Triethylenetetramine/ethanol solution offers several advantages for CO2 capture in regard to absorption rate, absorption capacity, and absorbent regenerability. Both the rate and capacity of CO2 absorption with the Triethylenetetramine/ethanol solution are significantly higher than those of a Triethylenetetramine/water solution. This is because ethanol cannot only promote the solubility of CO2 in the liquid phase but can also facilitate the chemical reaction between Triethylenetetramine and CO2. This approach is found able to capture 81.8% of the absorbed CO2 in the solid phase as Triethylenetetramine-carbamate. The absorption–desorption tests using a temperature-swing process reveals that the absorption performance of the Triethylenetetramine/ethanol solution is relatively stable. One limitation of using the Triethylenetetramine/ethanol solution for CO2 removal is that ethanol is a solvent with a high vapor pressure and measures must be taken to mitigate solvent evaporation. Small Organic Molecule Depressants Identified as a subgroup by Nagaraj and Ravishankar (2007), only the polyamines DETA (diethylenetriamine) and TETA (triethylenetetramine) introduced in processing Ni ores to depress pyrrhotite (Marticorena et al., 1994; Kelebek and Tukel, 1999) are considered. While the mechanism may not be fully understood, the amines’ N-C-C-N structure does chelate with metal ions such as Cu and Ni that may be accidentally activating the pyrrhotite. Depression of pyroxene (a silicate) by DETA and triethylenetetramine (TETA) in selective flotation of pentlandite was attributed to this deactivation mechanism. In combination with sulfite ions to reduce potential and thus reaction with xanthate (even decomposing it to carbon disulfide) increases the effectiveness of polyamine depressants. A condensate of a poly(amine), such as diethylene triamine, triethylenetetramine, or amino ethylethanolamine, with C21 or C22 carbon fatty acids or tall oil fatty acids can be used as corrosion inhibitor base. Propargyl alcohol has been found to enhance the anticorrosive effects of the composition. Diethylenetriamine and triethylenetetramine are highly reactive primary aliphatic amines with five and six active hydrogen atoms available for cross-linking respectively. Both materials will cure glycidyl ether at room temperature. In the case of diethylenetriamine, the exothermic temperature may reach as high as 250°C in 200 g batches. With this amine 9–10 pts phr, the stoichiometric quantity, is required and this will give a room temperature pot life of less than an hour. The actual time depends on the ambient temperature and the size of the batch. With triethylenetetramine 12–13 pts phr are required. Although both materials are widely used in small castings and in laminates because of their high reactivity, they have the disadvantage of high volatility, pungency and being skin sensitisers. Properties such as heat distortion temperature (HDT) and volume resistivity are critically dependent on the amount of hardener used. Triethylenetetramine (TETA), a CuII-selective chelator, is commonly used for the treatment of Wilson's disease. Recently, it has been shown that Triethylenetetramine can be used in the treatment of cancer because it possesses telomerase inhibiting and anti-angiogenesis properties. Although Triethylenetetramine has been used in the treatment of Wilson's disease for decades, a comprehensive review on Triethylenetetramine pharmacology does not exist. Triethylenetetramine is poorly absorbed with a bioavailability of 8 to 30%. It is widely distributed in tissues with relatively high concentrations measured in liver, heart, and kidney. It is mainly metabolized via acetylation, and two major acetylated metabolites exist in human serum and urine. It is mainly excreted in urine as the unchanged parent drug and two acetylated metabolites. It has a relatively short half-life (2 to 4 hours) in humans. The most recent discoveries in Triethylenetetramine (TETA) pharmacology show that the major pharmacokinetic parameters are not associated with the acetylation phenotype of N-acetyltransferase 2, the traditionally regarded drug acetylation enzyme, and the Triethylenetetramine-metabolizing enzyme is actually spermidine/spermine acetyltransferase. This review also covers the current preclinical and clinical application of Triethylenetetramine. A much needed overview and up-to-date information on Triethylenetetramine pharmacology is provided for clinicians or cancer researchers who intend to embark on cancer clinical trials using Triethylenetetramine or its close structural analogs. Triethylenetetramine (TETA), a CuII-selective chelator and an orphan drug, is commonly used for the treatment of Wilson's disease. Recently, its potential uses in cancer chemotherapy and other diseases are under investigation. Wilson's disease is an autosomal recessive genetic disorder, manifested by copper accumulation in the tissues of patients. Illness presents as neurologic or psychiatric symptoms and liver disease, resulting in the death of patients, and was considered an incurable disease until the 1950s. Treatments of this disease using orphan drugs were developed in the 1950s by John Walshe. Currently, common treatments for Wilson's disease either reduce copper absorption, by using zinc acetate, or remove the excess copper from the body using chelators such as penicillamine and Triethylenetetramine. Recently, it was shown that Triethylenetetramine could ameliorate left ventricular hypertrophy in humans and rats with diabetes. It has also been suggested that Triethylenetetramine can be used in the treatment of cancer because it is a telomerase inhibitor, and has anti-angiogenesis properties, on the basis of preclinical investigations. In addition, a recent report showed that Triethylenetetramine treatment could overcome cisplatin resistance in human ovarian cancer cell culture via inhibition of superoxide dismutase 1/Cu/Zn superoxide dismutase. Another recent report showed that Triethylenetetramine could induce apoptosis in murine fibrosarcoma cells by activation of the p38 mitogen-activated protein kinase (MAPK) pathway. However, no clinical trial or trial plan using Triethylenetetramine to treat cancer has been reported in the literature. Because Triethylenetetramine is an orphan drug and has been used in the clinic for decades, it can be tested readily in clinical cancer chemotherapy. However, in order to take advantage of the possible benefits of Triethylenetetramine in clinical cancer treatment, a thorough understanding of Triethylenetetramine pharmacology is crucial. Although Triethylenetetramine (TETA) has been used in the treatment of the Wilson's disease for decades, relatively few reports on Triethylenetetramine pharmacology in patients with Wilson's disease can be found in the literature, and no comprehensive review of Triethylenetetramine pharmacology exists to date. This overview examines pharmacologic aspects of Triethylenetetramine (TETA) and its current clinical applications, thus providing valuable information to research scientists or clinicians who are interested in using Triethylenetetramine as a treatment for cancer or other diseases. It also reveals the gaps in Triethylenetetramine pharmacology that need to be addressed, despite its decades of clinical use in patients with Wilson's disease. Chemistry and Detection Triethylenetetramine (TETA) is a structure analog of linear polyamine compounds spermidine and spermine. It was first made in Berlin, Germany in 1861 and was made as a dihydrochloride salt in 1896. Its chelation activity was studied at Cambridge University in 1925. CuII prefers nitrogen to oxygen as a ligand, and because Triethylenetetramine has four nitrogen groups, it fits the square-planar geometry in which CuII is most stable. Therefore, it binds CuII very tightly, having a dissociation constant from CuII of 10−15 mol/L at pH 7.0. Triethylenetetramine is mainly used in the clinic in the form of dihydrochloride salt (trientine; refs. 1, 16); although, a Triethylenetetramine disuccinate form has recently been developed as well. Trientine dissolves in aqueous solutions and presents as a free-based Triethylenetetramine. The detection of Triethylenetetramine in aqueous solutions has proven to be difficult because Triethylenetetramine has a very polar structure, does not elute efficiently from conventional high performance liquid chromatography (HPLC) columns, and possesses little absorbance at accessible UV detection wavelengths. One solution, inspired by aqueous polyamine analytic methods, is to use fluorescence-labeling reagents to derivatize Triethylenetetramine and detect its derivatives by using a fluorimetric detector. A number of fluorescence-labeling reagents have been tried, including m-toluoyl chloride, fluorescamine, dansyl chloride, O-phthalaldhyde, 4-(1-pyrene)butyric acid N-hydroxysuccinimide ester, and 9-flouorenylmehylchlorofomat. However, fluorimetric methods are associated with challenges, such as whether the analyte is fully or partially labeled, and whether detected peaks are separated from other known or unknown metabolites, polyamines, and their metabolites. Only one of the above methods addressed those concerns. An HPLC-conductivity detection method has also been developed, but its detection limit is relatively high, rendering poor sensitivity to the method. Recently, a nonderivatized method using liquid chromatography-mass spectrometry (LC-MS) has been developed to detect Triethylenetetramine and its two major metabolites simultaneously in aqueous solutions, providing more sensitive detection and analytic power. With the availability of the LC-MS-MS technology, a method with higher sensitivity and accuracy could be developed to study Triethylenetetramine and its metabolites in human samples, which will certainly facilitate future pharmacologic studies of Triethylenetetramine. Absorption in animals Results obtained from rat and dog studies show that Triethylenetetramine has a relatively slow absorption and apparently incomplete intestinal absorption. The Tmax for rats, dogs, and rabbits after oral Triethylenetetramine administration is 0.5 to 2 hours, indicating an overall slow gut absorption. The intestinal absorption rate in normal male Wistar rats has been reported to be 42% in the jejunum and 22.5% in the ileum using an in situ loop method. In Long-Evans Cinnamon (LEC) rats, the model organism for Wilson's disease, the jejunum absorption rate has been reported to be approximately 46%, and without statistical significance when compared with data derived from Wistar rats. In Sprague Dawley rats, the extent of absorption after oral Triethylenetetramine administration has been reported to be 44.3%. In vitro studies have been carried out to determine the uptake characteristics of Triethylenetetramine by rat intestinal brush-border membrane vesicles. The mechanism of absorption is similar to those of physiologic polyamines, such as spermine and spermidine, with respect to excessive accumulation in vesicles, pH dependency, temperature dependency, and the ineffectiveness of K+ diffusion potential. The initial uptake of Triethylenetetramine has a Km value of 1.1 mmol/L, which is larger than that observed for spermine and spermidine. The uptake rate of Triethylenetetramine can be inhibited in a dose-dependent manner by spermine and spermidine. The bioavailability range of oral trientine in fasted rats was first reported at 6 to 18%. Later reports provided similar results. One study reported a bioavailability of 2.31% in nonfasted rats and 6.56% in fasted rats. A second report showed bioavailability in three fasted rats at 5.6%, 5.7%, and 16.4%, respectively. A third report provided a bioavailability of 14.0% in nonfasted rats and 25.5% in fasted rats. A fourth report determined that the bioavailability in fasted rats was 13.78%. Overall, the bioavailability of oral Triethylenetetramine (TETA) administration is relatively low in rats, and food intake seems to reduce it further. Distribution in animals Triethylenetetramine (TETA) is widely distributed into various tissues in rats, either in the form of unchanged parent compound or biotransformed metabolite(s). The earliest study done by Gibbs and Walshe using 14C radio-labeled Triethylenetetramine-4HCl showed that liver, kidney, and muscle had higher Triethylenetetramine concentrations than those quantified in plasma. A later study using 14C radio-labeled trientine showed that Triethylenetetramine could be found in most rat tissues, including cerebrum, cerebellum, hypophysis, eyeball, harderian gland, thyroid, submaxillary gland, lymphatic gland, thymus, heart, lung, liver, kidney, adrenal, spleen, pancreas, fat, brown fat, muscle, skin, bone marrow, testis, epididymis, prostate gland, stomach, small intestine, and large intestine. However, concentrations in liver and kidney seemed to be much higher than those in plasma, and plasma concentrations were higher than those observed for other tissues. Apart from liver and kidney, other tissues did not accumulate significant amounts of Triethylenetetramine after oral administration. In the analyses, it was observed that both the parent compound and metabolite(s) exist in all tissues. A later report confirmed such findings, showing that concentration ratios of liver/plasma and kidney/plasma were greater than 1, whereas brain, lung, spleen, and white fat have ratios lower than 1. It is proposed that Triethylenetetramine (TETA) shares a common transport mechanism with polyamines in intestinal uptake. It is likely that Triethylenetetramine is also transported across biological membrane into mammalian cells by the same transporter for polyamines. The transporter of polyamines has been identified as glypican-1. Inside cells, polyamines are further transported into mitochondria, where polyamine concentrations can reach millimolar level, electrophoretically by a specific polyamine uniporter. It is therefore not surprising that Triethylenetetramine is widely distributed in the body and can be accumulated in the tissues. Distribution in humans No data are available for tissue distribution in humans. Because the bioavailability has not been established in humans, the volume of distribution cannot be calculated from previously published studies. However, a recent study reported that the central and peripheral volumes of distribution were 393 L and 252 L, respectively. These values indicate that Triethylenetetramine (TETA) is widely distributed in the human body, where accumulation in certain tissues is likely to happen. Metabolism in animals Triethylenetetramine is extensively metabolized in rats. In vitro experiments have shown that about 50% of Triethylenetetramine was eliminated from the S9 liver fraction system after 2 hours of incubation. One in vivo study in rats showed that after oral administration of trientine, only 3.1% of the dose was found in the 24-hour urine collection as the unchanged parent compound, whereas metabolites accounted for 32.6% of the oral dose. Another in vivo study reported that 2.6% of the dose was recovered from 24-hour urine collection as the unchanged parent compound, and 11% metabolites. The existence of acetylated metabolites in rats was first proposed, then established by Gibbs and Walshe. To date, two acetylated metabolites, N1-acetyltriethylenetetramine and N1,N10-diacetyltriethylenetetramine, have been identified. Triethylenetetramine metabolite levels in rat tissues have been investigated in two studies. In one study, after oral administration of trientine, the plasma AUC0 to 6 h of the metabolite MAT has been reported to be higher than that of unchanged Triethylenetetramine in rats. Both the same report and another early report showed that MAT existed in rat tissues at similar levels observed for the unchanged parent compound. Metabolism in humans Triethylenetetramine is extensively metabolized in humans, as a number of metabolites have been found in urine other than the unchanged parent compound. Two major Triethylenetetramine metabolites have been identified from human urine, both of which are acetylation products of Triethylenetetramine. MAT was first identified in 1993, and further studied in 1997. DAT was first identified in 2007, and further studied together with MAT in both healthy volunteers and patients affected with diabetes. Most of the absorbed Triethylenetetramine (TETA) dose is excreted as either unchanged parent compound or metabolites in urine, as bile excretion seems to be minimal, shown in one study in which less than 0.8% of intravenous-administered Triethylenetetramine was excreted via bile excretion. The majority of the urinary excreted Triethylenetetramine is in the form of metabolites, MAT, and DAT. The recovery of unchanged parent compound in urine ranges from 0.71 to 4.10% of the administered dose in healthy volunteers, and from 0.64 to 2.40% in patients with Wilson's disease or diabetes. Metabolite(s) recovery ranges from 2.50 to 9.00% in healthy volunteers; and, from 8.56 to 27.1% in patients with diabetes or Wilson's disease. It is suggested that patients with diabetes have a higher rate of Triethylenetetramine metabolism than healthy volunteers. Whether other disease states, such as Wilson's disease or cancer, have the same effect on Triethylenetetramine metabolism as diabetes has not been established, but further investigation is warranted. It is worth noticing that cancer-derived cytokines may repress the activity of drug-metabolizing enzymes, especially cytochrome P450 enzymes. The enzyme responsible for Triethylenetetramine metabolism has yet to be formally identified. Because two major metabolites have been identified as acetylation products of Triethylenetetramine, it is natural to suggest that the major drug acetylation enzyme, N-acetyltransferase (NAT2), is responsible for Triethylenetetramine's acetylation. However, a recent study showed that there is no correlation between the NAT2 acetylation phenotype and metabolic rate of Triethylenetetramine. This lack of correlation suggests another enzyme may be responsible for Triethylenetetramine's metabolism. A current study conducted by our laboratory shows that spermidine/spermine acetyltransferase (SSAT) is the enzyme responsible for the formation of two of the Triethylenetetramine acetylation metabolites.3 Given the fact that Triethylenetetramine is a structural analog of spermidine and spermine, it is not surprising that SSAT is the enzyme that metabolizes Triethylenetetramine in humans. SSAT may also be responsible for the metabolism of many other polyamine analogs, such as diethylspermine and diethylnorspermine, which are currently in clinical trials for the treatment of cancer. Excretion and/or elimination in animals Most of the absorbed Triethylenetetramine that is excreted via urine as bile and lung excretions seems to be minimal in animal studies. One study found that after oral trientine administration to rats, 0.69% of the dose was found in expired air and 0.86% of the dose was excreted via bile. The urinary excreted Triethylenetetramine is mainly in the form of acetylated metabolites, whereas the unchanged parent compound represents a smaller percentage of the dose. The renal clearance of Triethylenetetramine in rat is about 30% higher than creatinine clearance, which indicates that Triethylenetetramine is actively excreted from the renal tubule into urine. It has been identified that the Na+/spermine antiporter in the rat renal tubular brush-border membrane is responsible for active excretion of spermine, Triethylenetetramine, and any other straight-chain polyamine compound with more than four amino groups. Triethylenetetramine metabolites MAT and DAT, are also straight-chain structures, and with four amino groups, they should be able to be actively excreted in kidney as well. Therefore, it is not surprising that a large number of metabolites are found in rat urine. Diseases that compromise kidney function in rats seem to affect urinary excretion of Triethylenetetramine. One early study reported that LEC rats, a rat model of Wilson's disease, had significantly lower urinary Triethylenetetramine excretion than that in normal Wistar rats. This lower rate was due to the impairment of kidney function in LEC rats. The plasma elimination half-lives (T1/2) of Triethylenetetramine in rat,dog, and rabbit are between 0.5 to 2 hours, which suggests that Triethylenetetramine is quickly removed from the blood. Excretion and/or elimination in humans Most of the urinary excreted Triethylenetetramine is in the form of the unchanged parent compound and two acetylated metabolites, MAT and DAT. Patients affected with diabetes excrete more metabolites in urine than healthy volunteers. It has been reported that urinary excretion of spermine is elevated in patients with certain types of cancer. The implication of these facts for Triethylenetetramine (TETA) excretion is unknown because the mechanism of Triethylenetetramine urinary excretion in humans has yet to be established. Urinary concentrations of Cu, Fe, and Zn all increased in parallel with Triethylenetetramine excretion. Trientine (TETA) administration has also been shown to increase the fecal excretion of Cu in Wilson's disease patients . Drug-drug interactions It has been shown in a rat study that diuretics, such as acetazolamide and furosemide, can increase the urinary Triethylenetetramine excretion. In contrast, drugs that are the substrate of the H+/organic cation antiporter or aminoglycoside antibiotics do not interact with Triethylenetetramine in terms of excretion. Diuretics are the drugs that change the concentration of sodium ions in renal proximal tubules. The increase in the luminal concentration of sodium ions accelerates the Na+/spermine antiporter, which is responsible for the active excretion of Triethylenetetramine into urine. No drug interaction information in humans is currently available. Only a few drugs are metabolized via the acetylation route, and even fewer drugs are possibly metabolized via the SSAT route. This observation implicates that there may be few drug-drug interactions, because metabolizing enzyme activation or competition is unlikely between Triethylenetetramine and most of other drugs. Mechanism of action in Wilson's disease Triethylenetetramine (TETA) is a CuII-selective chelator, which aids the systemic elimination of divalent Cu from the human body by forming a stable complex that is readily excreted from the kidney. Triethylenetetramine not only increases urinary Cu excretion, but also decreases intestinal copper absorption by 80%. Triethylenetetramine and its metabolite, MAT, are both capable of binding divalent Cu, Fe, and Zn. However, the chelating activity of MAT is significantly lower than that of Triethylenetetramine. The urinary levels of copper increase in parallel with the amount of Triethylenetetramine (TETA) excretion in healthy volunteers, but increase in parallel with the sum of Triethylenetetramine and MAT in diabetic patients. The removal of excessive Cu in Wilson's disease patients is regarded as its mechanism of action for treating
TRIETHYLHEXYL CITRATE
TRIETHYLHEXYL CITRATE, N° CAS : 7147-34-4, Nom INCI : TRIETHYLHEXYL CITRATE, Nom chimique : Tris(2-Ethylhexyl) 2-hydroxypropane-1,2,3-tricarboxylate, N° EINECS/ELINCS : 230-457-3, Ses fonctions (INCI) :Emollient : Adoucit et assouplit la peau, Agent plastifiant : Adoucit et rend souple une autre substance qui autrement ne pourrait pas être facilement déformée, dispersée ou être travaillée, Agent d'entretien de la peau : Maintient la peau en bon état
TRIGONOX A-W70 (ТРЕТ-БУТИЛГИДРОПЕРОКСИД, 70% РАСТВОР В ВОДЕ)
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является инициатором (со)полимеризации стирола, бутадиена, акрилонитрила и (мет)акрилатов.
Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) реагент высокой чистоты в фармацевтическом и тонком химическом синтезе.
Брелок вязкости Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) для гидроразрыва пласта.

Номер CAS: 75-91-2
Молекулярная формула: C4H10O2
Молекулярный вес: 90,12
Номер EINECS: 200-915-7

Синонимы: ТРЕТ-БУТИЛГИДРОПЕРОКСИД, 75-91-2, TBHP, T-бутилгидропероксид, трет-бутилгидропероксид, 2-гидроперокси-2-метилпропан, пербутил H, t-бутилгидропероксид, 1,1-диметилэтилгидропероксид, Cadox TBH, гидропероксид, 1,1-диметилэтил, Terc. бутилгидропероксид, трет-бутиловая перекись водорода, гидропероксид де бутил-тертиар, гидропероксид, трет-бутил, слимицид ДЭ-488, третичный бутилгидропероксид, тригонокс а-75, тригонокс а-W70, ТБХП-70, 1,1-диметилэтилгидропероксид, третич-бутилгидропероксид, НСК 672, Касвелл No 130ВВ, диметилэтилгидропероксид, пербутил Н 69Т, т-БУООХ, Луперокс ТБХ 70Х, терк. Бутилгидропероксид, тригонокс A-W 70, трет-бутилгидропероксид, CCRIS 5892, HSDB 837, трет-бутил-гидропероксид, каябутил H, T-Hydro, EINECS 200-915-7, DE 488, DE-488, UNII-955VYL842B, BRN 1098280, CHEBI: 64090, AI3-50541, NSC-672, 955VYL842B, гидропероксид, 1,1-диметилэтил-, КАЯБУТИЛ Н 70, DTXSID9024693, EC 200-915-7, ТРЕТ-БУТИЛГИДРОПЕРОКСИД (II), ТРЕТ-БУТИЛГИДРОПЕРОКСИД [II], ТРИГОНОКС А-75 [Чехия], tBOOH, t Бутилгидропероксид, терц. Бутилгидропероксид [чешский], t Бутилгидропероксид, t-BHP, terc. Бутилгидропероксид [Чехия], Гидропероксид, т-бутил, трет-бутилгидропероксид, третичный бутилгидропероксид, тригонокс, гидропероксид бутил-тертьер [французский], tBuOOH, трет-BuOOH, этилдиэтилпероксид, пербутил Н 69, пербутил Н 80, т-бутил-гидропероксид, тербутилгидропероксид, трет-бутигидропероксид, терц-бутилгидропероксид, трет-C4H9OOH, т-бутилгидрогенпероксид, т-бутилгидрогенпероксид, трет.-бутилгидропероксид, трет.-бутилгидропероксид, трет.бутилгидропероксид, трет.бутилгидропероксид, Перекись тербутилводорода, T-бутилперекись водорода, трет-бутилгидроперокси��, DSSTox_CID_4693, трет-бутилводородная перекись, 2-метилпропан-2-пероксол, DSSTox_RID_78866, DSSTox_GSID_31209, третичная бутилгидроперекись, гидропероксид, 1-диметилэтил, тригонокс A-80 (соль/смесь), UN 2093 (соль/смесь), UN 2094 (соль/смесь), USP -800 (соль/смесь), CHEMBL348399, DTXCID504693, NSC672, трет-бутилгидропероксид (8CI), трет-бутилгидропероксид, >90% с водой [запрещено], WLN: QOX1 и 1 и 1, 2-метил-проп-2-ил-гидропероксид, Tox21_200838, ацтекский т-бутилгидропероксид-70, Aq, MFCD00002130, БУТИЛГИДРОПЕРОКСИД (ТРЕТИЧНЫЙ), ТРЕТ-БУТИЛГИДРОПЕРОКСИД [MI], AKOS000121070, ТРЕТ-БУТИЛГИДРОПЕРОКСИД [HSDB], NCGC00090725-01, NCGC00090725-02, NCGC00090725-03, NCGC00258392-01, водный раствор трет-бутилгидропероксида, гидропероксид, 1,1-диметилэтил (9CI), трет-бутилгидропероксид (70% в воде), трет-бутилгидропероксид, >90% с водой, B3153, FT-0657109, Q286326, J-509597, F1905-8242

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является инициатором (со)полимеризации стирола, бутадиена, акрилонитрила и (мет)акрилатов.
Высокочистый реагент в фармацевтическом и тонком химическом синтезе.
Кроме того, Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) предлагает широкий спектр органических пероксидов и азосоединений для использования в синтезе фармацевтических препаратов, гербицидов, инсектицидов или в качестве активного фармацевтического ингредиента для использования в кремах против акне, средствах для мытья лица и тела, а также шампунях.

Органические пероксиды и азосоединения являются хорошо зарекомендовавшими себя реагентами высокой чистоты в фармацевтическом и тонком химическом синтезе.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может быть использован в качестве инициатора при наливной, водной растворной и эмульсионной полимеризации стирола, акрилатов и метакрилатов.
Полимеризация может быть инициирована радикалами, образующимися при термическом разложении Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) выше 110°C или с помощью окислительно-восстановительного механизма при низких температурах.

Эффективными органическими восстановителями являются аскорбиновая кислота и сульфоксилат формальдегида натрия, возможно, в сочетании с соединениями тяжелых металлов, такими как соли кобальта или железа.
Типичные области применения Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) включают: производство акрилата, винилацетата, бутадиен-стирола и других латексов, отверждение стирол-полиэфирных смол и использование в качестве окислителя углеводородов или других химических веществ.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является инициатором (70% активного ингредиента в воде), используемым для отверждения промотированных ненасыщенных полиэфирных и винилэфирных смол при комнатной температуре, а также повышенного отверждения непродвигаемых смол.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является инициатором (со)полимеризации (мет)акрилатов.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является инициатором (70% действующего вещества в воде) сыпучей, водной растворной и эмульсионной полимеризации стирола, акрилатов и метакрилатов, бутадиена и акрилонитрилакрилатов.
Полимеризация может быть инициирована радикалами, образующимися при термическом разложении Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) выше 110°C или с помощью окислительно-восстановительного механизма при низких температурах. Срок годности этого продукта составляет 3 месяца.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой прозрачную бесцветную жидкость комнатной температуры, с характерным резким запахом.
Trigonox A-W70 (трет-бутилгидроперекись, 70% раствор в воде) представляет собой органическую перекись, широко используемую в различных процессах окисления.
Пары Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) могут гореть в отсутствие воздуха и могут воспламеняться как при повышенной, так и при пониженном давлении.

Мелкодисперсный туман/аэрозоль может быть горючим при температуре ниже нормальной температуры вспышки.
При испарении остаточная жидкость будет концентрировать содержание Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) и может достигать взрывоопасной концентрации (>90%).
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является высокореакционноспособным продуктом.

Существует три типа значительных физических опасностей: воспламеняемость, термическая опасность и разложение из-за загрязнения.
Чтобы свести к минимуму эти опасности, избегайте воздействия тепла, огня или любых условий, которые могут привести к концентрации жидкого материала.
Хранить вдали от источников тепла, искр, открытого огня, посторонних загрязнений, горючих материалов и восстановителей.

Часто осматривайте контейнеры, чтобы выявить выпуклости или утечки.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является одним из наиболее широко используемых гидропероксидов в различных процессах окисления, например, в процессе Халкона.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обычно поставляется в виде 69–70% водного раствора.

По сравнению с перекисью водорода и органическими перацидами, Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) менее реакционноспособен.
В целом, Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) известен своими удобными свойствами обращения.
Растворы Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) в органических растворителях обладают высокой стабильностью.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой алкилгидроперекись в котором алкильной группой является трет-бутил.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) широко используется в различных окислительных процессах.
Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) играет роль антибактериального средства.

В качестве окислителя используется Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде).
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой водянистую бесцветную жидкость.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) плавает и медленно растворяется в воде.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой соединение без запаха.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде), часто сокращенно TBHP, представляет собой химическое соединение с молекулярной формулой C4H10O2.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой органическую перекись, то есть содержит перекисную группу (-O-O-).

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой бесцветную жидкость при комнатной температуре и обычно используется в качестве источника свободных радикалов в различных химических реакциях, особенно в реакциях окисления.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является мощным окислителем и часто используется в лабораторных и промышленных условиях для таких целей, как инициирование реакций полимеризации, окисление органических соединений, а также в качестве радикального инициатора в различных химических процессах.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) известен своей стабильностью и простотой обращения по сравнению с некоторыми другими пероксидами.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой органическое соединение с формулой (CH3)3COOH.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является одним из наиболее широко используемых гидропероксидов в различных процессах окисления, например, в процессе Халкона.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обычно поставляется в виде 69–70% водного раствора.

По сравнению с перекисью водорода и органическими перацидами, трет-бутилгидропероксид менее реакционноспособен и лучше растворяется в органических растворителях.
В целом, она известна удобными в обращении свойствами своих решений.
Растворы Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) в органических растворителях обладают высокой стабильностью.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой соединение без запаха.
Химическая структура TBHP состоит из трет-бутиловой (третично-бутиловой) группы, присоединенной к гидроперокси (перекисистой) группе.
Молекулярная формула Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) C4H10O2, а его химическая формула часто записывается как (CH3)3COOH.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) имеет относительно высокую температуру кипения около 86-90 °C (187-194 °F).
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является сильным окислителем и может легко отдавать атомы кислорода, что делает его полезным в различных химических реакциях, где требуется окисление.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) широко используется в различных окислительных процессах.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является легковоспламеняющейся жидкостью и высокореакционноспособным окислителем.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой алкилгидроперекись в котором алкильной группой является трет-бутил.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) широко используется в различных окислительных процессах.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется для инициирования реакций полимеризации и в органическом синтезе для введения в молекулу пероксигрупп.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является высокореакционноспособным продуктом.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является промежуточным продуктом.

Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) в основном используется в качестве инициатора.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является сильным окислителем и бурно реагирует с горючими и восстановительными материалами, соединениями металлов и серы.
Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в качестве инициатора радикальной полимеризации и в различных процессах окисления, таких как эпоксидирование без остря.

Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) играет важную роль для введения пероксигрупп в органический синтез.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является легковоспламеняющейся жидкостью и высокореакционноспособным окислителем.
Pure TBHP чувствителен к ударам и может взорваться при нагревании.

При пожарах с участием Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) следует использовать углекислотные или сухие химические огнетушители.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) и концентрированные водные растворы TBHP бурно реагируют со следами кислоты и солями некоторых металлов, включая, в частности, марганец, железо и кобальт.
Смешивание безводной трет-бутилгидроперекиси с органическими и легко окисляемыми веществами может вызвать воспламенение и взрыв.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может инициировать полимеризацию некоторых олефинов.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой алкилгидроперекись в котором алкильной группой является трет-бутил.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) широко используется в различных окислительных процессах.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой водно-белую жидкость, обычно доступную в продаже в виде 70% раствора в воде
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется для инициирования реакций полимеризации и в органическом синтезе для введения в молекулу пероксигрупп.
Пары Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) могут гореть при отсутствии воздуха.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может воспламеняться как при повышенной, так и при пониженном давлении.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может быть горючим при температурах ниже нормальной температуры вспышки.
Закрытые контейнеры могут создавать внутреннее давление за счет разложения Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) до кислорода.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является высокореакционноспособным продуктом.
Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) является промежуточным продуктом при производстве оксида пропилена и т-бутилового спирта из изобутана и пропилена.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) в основном используется в качестве инициатора и финишного катализатора в методах полимеризации в растворе и эмульсии полистирола и полиакрилатов.

Другие области применения - полимеризация винилхлорида и винилацетата, а также в качестве катализатора окисления и сульфирования в операциях отбеливания и дезодорации.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является сильным окислителем и бурно реагирует с горючими и восстановительными материалами, соединениями металлов и серы.
Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в качестве инициатора радикальной полимеризации и в различных процессах окисления, таких как эпоксидирование без остря.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) участвует в катализируемом осмием вицинальном гидроксилировании олефинов в щелочных условиях.
Кроме того, Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется при каталитическом асимметричном окислении сульфидов до сульфоксидов с использованием бинафтола в качестве хирального вспомогательного средства и при окислении дибензотиофена.
Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) играет важную роль для введения пероксигрупп в органический синтез.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой легкодоступный и удобный источник активного кислорода, подходящий для различных технологий окисления.
Производители инициаторов используют раствор Т-Гидро для синтеза многих производных переэфира, диалкилпероксида и перкетала. Сам продукт служит инициатором свободных радикалов для полимеризации, сополимеризации, привитой полимеризации и отверждения полимеров.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обладает такими преимуществами, как универсальность, региоселективность, стереоселективность, хемоселективность и контроль реакционной способности с выбором катализатора, мягкие условия реакции и оптовая доступность.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) находит применение в приготовлении специальных химикатов, необходимых для тонкой химии и химической промышленности, такой как фармацевтика и агрохимикаты.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может селективно окислять углеводороды, олефины и спирты.
Асимметричное эпоксидирование и кинетическое разрешение с помощью Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) могут обеспечить доступ к сложным хиральным промежуточным продуктам.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в качестве инициатора радикальной полимеризации и в различных процессах окисления, таких как эпоксидирование по Шарплессу.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) участвует в катализируемом осмием оцинальном гидроксилировании олефинов в щелочных условиях.
Кроме того, он используется в каталитическом асимметричном окислении сульфидов до сульфоксидов с использованием бинафтола в качестве хирального вспомогательного средства и при окислении дибензотиофена.

Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) играет важную роль во введении пероксидных групп в органический синтез.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) Раствор используется для эмульсионной полимеризации стирола, акрилатов и метакрилатов и отверждения полиэфирных смол.
Подходит для использования в качестве активной перекиси при полимеризации под высоким давлением или в качестве инициатора в кислородной комбинации этилена.

Основные области применения: акрилат, винилацетат, производство бутадиен-стирола, отверждение стирол-полиэфирных смол, окислитель углеводородов.
Рекомендуемая температура хранения от 0 °C до +30 °C. Держите ведра плотно закрытыми.
Хранить и обрабатывать в сухом, хорошо проветриваемом месте.

Хранить вдали от источников тепла, возгорания и прямых солнечных лучей в оригинальной упаковке.
Обеспечьте заземление и вентиляцию, чтобы предотвратить накопление статического электричества.
Избегайте любого контакта с ускорителями аминов и кобальта, кислотами, щелочами и соединениями тяжелых металлов, такими как сиккативы и металлическое мыло.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) находит применение в различных отраслях промышленности, включая фармацевтическую, полимерную и химическую промышленность.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в производстве широкого спектра продуктов, таких как фармацевтические промежуточные продукты, пластмассы и специальные химикаты.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в качестве агента для переноса кислорода в некоторых химических реакциях, позволяя контролировать высвобождение атомов кислорода, которые могут быть необходимы при окислении органических соединений.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) растворим во многих органических растворителях, что делает его универсальным для использования в различных условиях реакции.
К распространенным растворителям, используемым в сочетании с TBHP, относятся ацетон, дихлорметан и толуол.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) коммерчески доступен в различных концентрациях, обычно в диапазоне от 70% до 98%.

Выбор концентрации зависит от конкретного применения и требований к реакции.
При использовании Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) в химической реакции для достижения желаемого результата необходимо тщательно контролировать условия реакции, такие как температура, время и стехиометрия.
Эти факторы могут влиять на кинетику и селективность реакции.

Разложение Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может привести к образованию газообразного кислорода и трет-бутилового спирта (TBA).
Эти продукты разложения следует учитывать при планировании и мониторинге реакций с участием Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде).
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) считается вредным при проглатывании, вдыхании или всасывании через кожу.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может раздражать дыхательную систему, кожу и глаза.
При работе с TBHP следует надевать соответствующие средства индивидуальной защиты (СИЗ) для предотвращения контакта.
В случае разлива или случайного воздействия Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) следует соблюдать аварийные процедуры, изложенные в паспорте безопасности.

Это может включать в себя такие действия, как промывание пораженных участков водой и обращение за медицинской помощью, если это необходимо.
Утилизация Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) и его отходов должна производиться в соответствии с местными, государственными и федеральными правилами.
В зависимости от концентрации и объема может потребоваться консультация со специалистами по утилизации опасных отходов.

При использовании Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) в лабораторных или промышленных условиях проведение тщательной оценки рисков и принятие соответствующих мер безопасности, включая инженерный контроль и планы реагирования на чрезвычайные ситуации, имеют решающее значение для снижения потенциальных опасностей.
При планировании использования Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) с другими химическими веществами следует провести тестирование на совместимость, чтобы убедиться в отсутствии неожиданных реакций или опасностей в результате их взаимодействия.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется для инициирования реакций полимеризации и в органическом синтезе для введения в молекулу пероксигрупп.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой водно-белую жидкость, обычно доступную в продаже в виде 70% раствора в воде; Также доступны 80% решений.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является натуральным продуктом, содержащимся в Apium graveolens, по имеющимся данным.

Температура плавления: -2,8 °C
Температура кипения: 37 °C (15 мм рт. ст.)
Плотность: 0,937 г/мл при 20 °C
давление пара: 62 мм рт.ст. при 45 °C
показатель преломления: n20/D 1,403
Температура вспышки: 85 °F
температура хранения: 2-8°C
pka: pK1: 12,80 (25°C)
Форма: Жидкость
цвет: Прозрачный бесцветный
Растворимость в воде: смешивается
Мерк: 14,1570
BRN: 1098280
Пределы воздействия Предел экспозиции не установлен. На основании его раздражающих свойств рекомендуется предельно допустимая концентрация 1,2 мг/м3 (0,3 ppm).
Стабильность: Стабильная, но может взорваться при нагревании в заключении. Разложение может быть ускорено следами металлов, молекулярного сита или других загрязняющих веществ. Несовместим с восстановителями, горючими материалами, кислотами.
InChIKey: CIHOLLKRGTVIJN-UHFFFAOYSA-N
LogP: 1,230 (приблизительно)

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) относительно стабилен при хранении в надлежащих условиях.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обычно хранят в коричневых стеклянных контейнерах или непрозрачных бутылках, чтобы защитить его от света, так как воздействие ультрафиолетового (УФ) света может инициировать разложение.
При хранении и обращении с TBHP важно держать его вдали от источников тепла, открытого огня и несовместимых материалов.

Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) следует хранить в прохладном, сухом месте и вдали от прямых солнечных лучей.
Контейнеры должны быть плотно закрыты, чтобы предотвратить загрязнение и воздействие воздуха.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) стабилен при нормальных условиях хранения, может разлагаться взрывоопасно при воздействии тепла, трения или загрязнения несовместимыми материалами.

Разложение может привести к выделению газообразного кислорода и вызвать пожар или взрыв.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) не следует смешивать с восстановителями, легковоспламеняющимися материалами, сильными кислотами или щелочами, так как эти вещества могут вступать с ним в реакцию и потенциально приводить к опасным реакциям.
Производители предоставляют подробные паспорта безопасности (SDS) или паспорта безопасности материалов (MSDS) для TBHP, которые включают информацию об опасностях, методах безопасного обращения, мерах первой помощи и действиях в чрезвычайных ситуациях.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может оказывать неблагоприятное воздействие на окружающую среду при попадании в окружающую среду.
Следует соблюдать надлежащие методы утилизации, а любые разливы должны быть локализованы и убраны с использованием соответствующих методов и материалов.
Обращение, хранение и транспортировка Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) регулируются правилами и рекомендациями, установленными государственными учреждениями и организациями по безопасности.

В некоторых случаях в химических реакциях могут использоваться альтернативные окислители вместо Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде), в зависимости от конкретных требований реакции и соображений безопасности.
Способы производства Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде):
Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) получают реакцией жидкой фазы изобутана и молекулярного кислорода или смешиванием эквимолярных количеств т-бутилового спирта и 30–50% перекиси водорода.

Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) также может быть получен из т-бутилового спирта и 30% перекиси водорода в присутствии серной кислоты или путем окисления трет-бутилмагния хлорида.
Процесс производства Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) осуществляется в замкнутой системе.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обычно поставляется в виде 69–70% водного раствора.
Растворы Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) в органических растворителях обладают высокой стабильностью.
Повреждающее действие низких концентраций Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) в процессе окисления пирувата в изолированных митохондриях печени обусловлено открытием неспецифической Са2+-зависимой циклоспориновой А-чувствительной поры во внутренней мембране митохондрий.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) и концентрированные водные растворы TBHP бурно реагируют со следами кислоты и солями некоторых металлов, включая, в частности, марганец, железо и кобальт.
Смешивание безводного Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) с органическими и легко окисляемыми веществами может вызвать воспламенение и взрыв.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может инициировать полимеризацию некоторых олефинов.
При попадании на кожу немедленно вымойте водой с мылом и снимите загрязненную одежду.
При попадании в глаза немедленно промыться большим количеством воды в течение 15 минут (время от времени поднимая верхние и нижние веки) и обратиться за медицинской помощью.

При вдыхании или проглатывании Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) немедленно обратитесь за медицинской помощью.
В случае разлива удалите все источники возгорания, пропитайте Trigonox A-W70 (трет-бутилгидроперекись, 70% раствор в воде) подушкой для разлива или негорючим абсорбирующим материалом, поместите в соответствующий контейнер и утилизируйте надлежащим образом.
Средства защиты органов дыхания могут потребоваться в случае крупного разлива или выброса в замкнутом пространстве.

Очистка безводного Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) и концентрированных растворов требует особых мер предосторожности и должна выполняться обученным персоналом, работающим из-за щитка.
Ожидается, что Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) будет обладать высокой подвижностью в почве.
При попадании в воздух трет-бутилгидропероксид будет существовать исключительно в виде паров в окружающей атмосфере.

Ожидается, что в водных средах Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) не адсорбируется осадком или взвешенными твердыми частицами, и ожидается, что улетучивание будет основным процессом участивания.
Период полураспада этого соединения в различных средах позволяет осуществлять умеренный перенос на большие расстояния, но не на невероятные расстояния.
Расчетный коэффициент биоконцентрации (BCF), равный 3, был рассчитан для Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) Syracuse Research Corporation (SRC) с использованием оценочного log Kow, равного 0,94, и уравнения, полученного на основе регрессии.

Согласно классификационной схеме, этот BCF предполагает, что потенциальная биоконцентрация в водных организмах низкая.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) коммерчески доступен в различных концентрациях и формах, включая растворы в растворителях, таких как вода или ацетон.
Эти решения часто используются для простоты обращения и дозирования в лабораторных и промышленных условиях.

Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обычно используется в качестве инициатора в радикальных реакциях, в частности, при производстве различных полимеров.
Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) добавляют в реакционную смесь для образования свободных радикалов, которые инициируют процесс полимеризации.
Радикалы вступают в реакцию с мономерами, образуя полимерные цепи.

Общий механизм перехода металл-катализируемых окислительных реакций Манниха N, N-диалкиланилинов с тригоноксом A-W70 (трет-бутилгидропероксид, 70% раствор в воде) в качестве окислителя заключается в однородном одноэлектронном переносе (SET), определяющем скорость, от 4-метокси- до 4-циано-N, N-диметиланилинов.

Радикал Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является основным окислителем на стадии определения скорости SET, за которым следует конкурирующее обратное SET и необратимое гетеролитическое расщепление углерод-водородной связи в α-положении к азоту.
Второй SET завершает превращение N, N-диметиланилина в ион иминия, который впоследствии захватывается нуклеофильным растворителем или окислителем до образования аддукта Манниха.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может индуцировать окислительный стресс в митохондриях печени при низких концентрациях.

Использует:
Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в качестве инициатора радикальной полимеризации.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в качестве окислителя почти для всех асимметричных эпоксидов, катализируемых титаном.
В качестве инициатора радикальной полимеризации используется Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде).

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в различных процессах окисления, таких как эпоксидирование без острых окислений.
Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется при окислении дибензотиофенов.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой органическую перекись, широко используемую в различных процессах окисления, например, эпоксидировании Шарплесса.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в различных процессах окисления, таких как эпоксидирование без острых окислений.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) участвует в катализируемом осмием вицинальном гидроксилировании олефинов в щелочных условиях.
Кроме того, трет-бутилгидропероксид используется в каталитическом асимметричном окислении сульфидов до сульфоксидов с использованием бинафтола в качестве хирального вспомогательного средства Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется при окислении дибензотиофена.

Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) играет важную роль для введения пероксигрупп в органический синтез.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обычно используется в качестве инициатора в реакциях радикальной полимеризации, помогая запустить процесс полимеризации путем образования свободных радикалов.
Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в органическом синтезе для различных реакций окисления, включая превращение алкенов в эпоксиды и окисление спиртов до кетонов или альдегидов.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) также используется в синтезе различных органических соединений, включая фармацевтические препараты и специальные химикаты.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может использоваться в качестве источника кислорода в некоторых промышленных процессах.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой органическую перекись, широко используемую в различных процессах окисления, например, эпоксидировании Шарплесса.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обычно поставляется в виде 69–70% водного раствора.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой алкилгидроперекись в котором алкильной группой является трет-бутил.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в производстве клеев и герметиков, где может выступать в качестве отвердителя или ингредиента для улучшения свойств конечного продукта.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в процессах отделки текстиля для изменения свойств поверхности текстиля, таких как повышение водоотталкивающих свойств и долговечности.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может использоваться в бумажной промышленности в качестве отбеливателя и делигнифицирующего агента целлюлозы, помогая в производстве высококачественной бумажной продукции.
В процессах водоподготовки Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется для окисления органических загрязнителей, помогая очищать воду и сточные воды.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в методах аналитической химии, таких как хемилюминесцентный анализ и реакции окисления, для обнаружения и количественного определения конкретных соединений.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) служит важным промежуточным продуктом в синтезе фармацевтических соединений, способствуя производству различных лекарственных молекул.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может быть задействован в синтезе агрохимикатов и пестицидов, которые необходимы для защиты растений и продуктивности сельского хозяйства.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) рассматривается в качестве добавки для улучшения свойств топлив, в том числе для повышения октанового числа бензина.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в текстильной промышленности для окислительного закрепления красителей на тканях в процессе текстильной печати.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) можно найти в составах косметики и средств личной гигиены в качестве ингредиента для повышения стабильности продукта или в качестве окислителя в средствах по уходу за волосами.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется для модификации поверхностей таких материалов, как полимеры, металлы и наночастицы, с целью адаптации их свойств к конкретным приложениям, таким как улучшение адгезии или гидрофобности.
В химических исследовательских лабораториях Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в качестве универсального реагента для широкого спектра синтетических превращений и окислительных реакций.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) широко используется в различных окислительных процессах.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой органическое соединение с формулой (CH3)3COOH.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является одним из наиболее широко используемых гидропероксидов в различных процессах окисления, например, в процессе Халкона.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обычно поставляется в виде 69–70% водного раствора.
Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в качестве инициатора радикальной полимеризации и в различных процессах окисления, таких как эпоксидирование без остря.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) участвует в катализируемом осмием вицинальном гидроксилировании олефинов в щелочных условиях.

Кроме того, Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется при каталитическом асимметричном окислении сульфидов до сульфоксидов с использованием бинафтола в качестве хирального вспомогательного средства и при окислении дибензотиофена.
Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) играет важную роль для введения пероксигрупп в органический синтез.
Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в следующих продуктах: полимеры.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в следующих областях: рецептура смесей и/или переупаковка.
Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется для изготовления: химикатов.
Выброс в окружающую среду Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) мо��ет происходить при промышленном использовании: в качестве промежуточного этапа в дальнейшем производстве другого вещества (использование промежуточных продуктов) и в качестве технологической добавки.

Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может быть использован в:осмий-катализируемом вицинальном гидроксилировании олефинов в щелочных условиях каталитическое асимметричное окисление сульфидов до сульфоксидов с использованием бинафтола в качестве хирального вспомогательного окисления дибензотиофена.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) широко используется в различных окислительных процессах.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) выполняет роль антибактериального средства.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обычно используется в качестве инициатора в реакциях радикальной полимеризации.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) генерирует свободные радикалы, которые запускают процесс полимеризации, позволяя синтезировать различные полимеры и сополимеры.
Полимеры, произведенные с использованием инициаторов Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде), могут найти применение в пластмассах, клеях, покрытиях и многом другом.

Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в качестве окислителя в органическом синтезе для облегчения окисления различных соединений.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может превращать алкены в эпоксиды, спирты в кетоны или альдегиды и другие функциональные групповые превращения.
Эти реакции необходимы в производстве фармацевтических препаратов, тонких химикатов и специальных материалов.

В некоторых промышленных процессах в качестве источника атомов кислорода используется Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде).
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может выделять кислород при необходимости, что делает его полезным в тех случаях, когда требуется контролируемый перенос кислорода, например, в производстве химикатов и промежуточных продуктов.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является ключевым реагентом в синтезе специальных химикатов и промежуточных продуктов, используемых в производстве различных продуктов, включая фармацевтические препараты, агрохимикаты и красители.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется при эпоксидировании жиров и масел, что является важным этапом в производстве эпоксидированных растительных масел, используемых в качестве пластификаторов и стабилизаторов в полимерной промышленности.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) обычно используется в научно-исследовательских лабораториях для его универсального применения в органическом синтезе и в качестве инициатора в различных химических реакциях.

Тригонокс A-W70 (трет-бутилгидропероксид, 70% раствор в воде) исследован в качестве энергоносителя для топливных элементов.
В этом контексте он может быть использован в качестве потенциального источника энергии для различных применений.

В качестве окислителя используется Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде).
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) представляет собой водянистую бесцветную жидкость.

Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) является промежуточным продуктом при производстве оксида пропилена и т-бутилового спирта из изобутана и пропилена.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) в основном используется в качестве инициатора и финишного катализатора в методах полимеризации в растворе и эмульсии полистирола и полиакрилатов.
Другие области применения - полимеризация винилхлорида и винилацетата, а также в качестве катализатора окисления и сульфирования в операциях отбеливания и дезодорации.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является сильным окислителем и бурно реагирует с горючими и восстановительными материалами, соединениями металлов и серы.
Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) применяют для приготовления окиси пропилена.
В процессе Halcon для этой реакции используются катализаторы на основе молибдена:
(CH3)3COOH + CH2=CHCH3 → (CH3)3COH + CH2OCHCH3

Побочный продукт т-бутанол, который может быть обезвожен до изобутена и преобразован в МТБЭ.
В гораздо меньших масштабах Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется для получения некоторых тонких химических веществ путем эпоксидирования по Шарплессу.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) используется в качестве окислителя почти для всех асимметричных эпоксидов, катализируемых титаном.

Хранение:
Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) следует хранить в темноте при комнатной температуре отдельно от окисляемых соединений, легковоспламеняющихся веществ и кислот.
Реакции с участием Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) следует проводить за защитным экраном.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) следует обрабатывать в лаборатории с использованием «основных мер предосторожности», описанных в дополнении дополнительными мерами предосторожности при работе с химически активными и взрывчатыми веществами.

В частности, Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) следует хранить в темноте при комнатной температуре (не хранить в холодильнике) отдельно от окисляемых соединений, легковоспламеняющихся веществ и кислот.
Реакции с участием Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) следует проводить за защитным экраном.

Профиль безопасности:
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) умеренно токсичен при приеме внутрь и вдыхании.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) сильное раздражающее средство для кожи и глаз.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) очень опасен при воздействии тепла или пламени, или в результате спонтанной химической реакции, например, с восстановителями.

Умеренно взрывоопасный; может взорваться во время дистилляции.
Бурная реакция со следами кислоты.
Концентрированные растворы могут самовоспламеняться при контакте с молекулярным ситом.

Смеси с солями переходных металлов могут бурно реагировать и выделять кислород.
Образует неустойчивый раствор с 1,2-дихлорэтаном. Для борьбы с огнем используют спиртовую пену, СО2, сухое химическое вещество.
При нагревании до разложения выделяет едкий дым и пары.

Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) является опасным химическим веществом, и с ним следует обращаться осторожно.
Trigonox A-W70 (трет-бутилгидропероксид, 70% раствор в воде) может разлагаться взрывоопасно при определенных условиях, особенно при воздействии тепла или загрязнения.
Правильное хранение в прохладном, хорошо проветриваемом помещении вдали от источников тепла и открытого огня имеет важное значение.

Опасность для здоровья:
Тригонокс А-W70 (трет-бутилгидропероксид, 70% раствор в воде) является сильным раздражителем.
Флойд и Стокингер (1958) отметили, что прямое накожное применение у крыс не вызывало немедленного дискомфорта, но отсроченное действие было тяжелым.
Симптомами были эритема и отек в течение 2–3 дней.
TRIGONOX B-C30
Trigonox B-C30 представляет собой бледно-желтую прозрачную жидкость.
Trigonox B-C30 нерастворим в воде.
Trigonox B-C30 с химической формулой C8H18O2 представляет собой органическое пероксидное соединение.


Номер CAS: 110-05-4
Номер ЕС: 203-733-6
Номер леев: MFCD00008803
Линейная формула: (CH3)3COOC(CH3)3
Химическая формула: C8H18O2.



СИНОНИМЫ:
2-(трет-Бутилперокси)-2-метилпропан, трет-Бутилпероксид, Ди-трет-бутилпероксид, 110-05-4, Ди-трет-бутилпероксид, трет-Бутилпероксид, Cadox, Пероксид, бис(1, 1-диметилэтил), Trigonox B, Cadox TBP, Kayabutyl D, Perbutyl D, Interox DTB, пероксид бис(трет-бутил), ди-трет-бутилпероксид, третичный пероксид бутила, ди-трет-бутилпероксид, ди-трет- Гидропероксид бутила, ди-трет-бутилпероксид, Perossido dibutile terziario, NSC 673, пероксид бис(1,1-диметилэтил), ди-трет-бутилпероксид, M7ZJ88F4R1, DTXSID2024955, NSC-673, (трибутил)пероксид, DTXCID704955, бис (т-бутил)пероксид, 2,2'-диоксибис(2-метилпропан), CAS-110-05-4, UNII-M7ZJ88F4R1, трет-бутилпероксид, tBuOOtBu, ди-трет-бутилпероксид, ди-трет-бутилпероксид, ди-трет-бутилпероксид , MFCD00008803, ди-трет-бутилпероксид, ди-трет-бутилпероксид, ди-трет-бутилпероксид, ди-трет-бутилпероксид, ди-трет-бутилпероксид, ди-трет-бутилпероксид, пероксид, трет-бутил-, ди(трет-бутил)пероксид, ди(трет. бутил) пероксид, ди-трет-бутилпер��ксид, ди-трет-бутилпероксид, (трет-C4H9O)2, ди-трет-бутилпероксид, ДТБП [MI], Пероксид, бис-трет-бутил-, EC 203-733-6 , SCHEMBL14861, NSC673, CHEMBL1558599, (CH3)3CO-OC(CH3)3, 2-трет-бутилдиокси-2-метилпропан, Tox21_201461, Tox21_300099, AKOS015902599, NCGC00091801-01, NCGC00091801- 02, NCGC00091801-03, NCGC00254065-01, NCGC00259012-01, трет-Бутилпероксид (Luperox DI), 97%, Luperox(R) DI, трет-Бутилпероксид, 98%, D3411, NS00006093, БИС(1,1-ДИМЕТИЛЭТИЛ)ПЕРОКСИД [HSDB], A802134, Q413043 , трет-бутилпероксид бис(1,1-диметилэтил)пероксид, J-002365, J-520402, WLN: 1X1 & 1 & OOX1 & 1 & 1, F0001-0215, ди-трет-бутилпероксид, трет- пероксид бутила, ди-т-бутилпероксид, кадокс, пероксид, бис-1,1-диметилэтил, dtbp, тригонокс b, т-бутилпероксид, cadox tbp, каябутил d, пероксид, бис(1,1- диметилэтил), трет- Перекись бутила, пероксид бис(трет-бутила), Cadox TBP, DTBP, Trigonox B, (трет-C4H9O)2, Cadox, ди-трет-бутилпероксид, ди-трет-бутилпероксид, Perossido dibutile terziario, третичный бутиловый пероксид , т-бутилпероксид, бис(1,1-диметилэтил)пероксид, ди-т-бутилпероксид, ди-трет-бутилпероксид, т-бутилпероксид, бис(1,1-диметилэтил)пероксид, пероксид, трет- бутил-, Interox DTB, Каябутил D, NSC 673, Пербутил D, Пероксид, бис-трет-бутил-, ди-трет-бутилпероксид, трет-бутилпероксид, ди-т-бутилпероксид, кадокс, пероксид, бис 1, 1-диметилэтил, dtbp, тригонокс b, т-бутилпероксид, cadox tbp, каябутил d, бис (1,1-диметилэтил) пероксид, бис (т-бутил) пероксид, бис (трет-бутил) пероксид, Cadox, Cadox TBP , DTBP, Ди-т-бутилпероксид, Ди-трет-Бутилгидропероксид, Тригонокс B, трет-Бутилпероксид, трет-Бутилпероксид, UN3107, трет-Бутилпероксид, Luperox(R) DI, трет-Бутилпероксид, (трет -C4H9O)2, (трибутил)пероксид, 2-(трет-Бутилперокси)-2-метилпропан, ацтекский ди-т-бутилпероксид, бис(1,1-диметилэтил)пероксид, бис(т-бутил)пероксид, бис (трет-бутил)пероксид, бис(трет-бутил)пероксид, ДТБФ, 2-(трет-бутилперокси)-2-метилпропан, ТЕРТ-БУТИЛПЕРОКСИД, ДИ-Т-БУТИЛПЕРОКСИД, Trigonox b, (трибутил)пероксид, бис (трет-бутил)пероксид, ДИ-ТРЕТ-БУТИЛПЕРОКСИД, Cadox, cadoxtbp,



Trigonox B-C30 — высокоэффективный инициатор для производства полиэтилена низкой плотности (ПЭВД).
Trigonox B-C30 является инициатором (со)полимеризации этилена и (мет)акрилатов.
Trigonox B-C30 — органическое соединение, используемое в химии полимеров и органическом синтезе в качестве радикального инициатора.


Trigonox B-C30 представляет собой прозрачную жидкость белого или желтого цвета.
Trigonox B-C30 нерастворим в воде.
Trigonox B-C30 представляет собой бледно-желтую прозрачную жидкость.


Trigonox B-C30 нерастворим в воде.
Trigonox B-C30 — это активная форма кислорода, которая используется в качестве окислителя в органическом синтезе.
Trigonox B-C30 обычно получают путем окисления трет-бутанола перекисью водорода и цитратом натрия.


Было показано, что Trigonox B-C30 обладает высокой устойчивостью к разложению даже при высоких значениях pH.
Trigonox B-C30 является одним из наиболее стабильных органических пероксидов из-за объемистости трет-бутильных групп.
Trigonox B-C30 представляет собой бесцветную жидкость.


Trigonox B-C30 представляет собой прозрачную бесцветную жидкость.
Trigonox B-C30 представляет собой прозрачную жидкость белого цвета.
Trigonox B-C30 имеет удельный вес 0,79, что легче воды и плавает на поверхности.


Trigonox B-C30 неполярен и нерастворим в воде.
Trigonox B-C30 является сильным окислителем и может воспламенить органические материалы или взорваться при ударе или контакте с восстановителями.
Trigonox B-C30 не только является окислителем, но и легко воспламеняется.


Trigonox B-C30 имеет температуру кипения 231°F (110°C) и температуру вспышки 65°F (18°C).
Обозначение NFPA 704: здоровье 3, воспламеняемость 2 и реактивность 4.
Приставка «окси» для обозначения окислителя помещена в белую часть внизу ромба 704.


Trigonox B-C30 представляет собой прозрачную бесцветную жидкость.
Trigonox B-C30 — бесцветная летучая жидкость со сладким запахом.
Trigonox B-C30 с химической формулой C8H18O2 представляет собой органическое пероксидное соединение.


Trigonox B-C30 находит широкое применение как в исследованиях, так и в промышленности.
Trigonox B-C30 является эффективным инициатором производства полиэтилена низкой плотности (ПЭВД).
Trigonox B-C30 играет решающую роль в качестве инициатора реакций полимеризации и действует как катализатор органического синтеза.


Кроме того, Trigonox B-C30 способствует производству полимеров и различных материалов, выступая в качестве сшивателя при синтезе полиолефинов.
Trigonox B-C30 используется как для трубчатых, так и для автоклавных процессов.
В большинстве случаев используется комбинация Trigonox B-C30 с другими пероксидами для обеспечения широкого диапазона реакционной способности.


Trigonox B-C30 также известен как ДТБФ, пероксид бис(1,1-диметилэтил) и трет-бутилпероксид.
Trigonox B-C30 представляет собой прозрачную жидкость, химическая формула которой имеет C8H18O2.
Также было показано, что Trigonox B-C30 вызывает гибель нейронов in vivo, что может быть связано с его способностью продуцировать гидроксильные радикалы и другие активные формы кислорода.


Механизмы этих реакций все еще изучаются.
Trigonox B-C30 представляет собой прозрачную жидкость, химическая формула которой имеет C8H18O2.
Trigonox B-C30 — бесцветная летучая жидкость со сладким запахом.


Trigonox B-C30 с химической формулой C8H18O2 представляет собой органическое пероксидное соединение.
Trigonox B-C30 находит широкое применение как в исследованиях, так и в промышленности.
Trigonox B-C30 играет решающую роль в качестве инициатора реакций полимеризации и действует как катализатор органического синтеза.


Кроме того, Trigonox B-C30 способствует производству полимеров и различных материалов, выступая в качестве сшивателя при синтезе полиолефинов.
Trigonox B-C30 представляет собой органическое соединение, состоящее из пероксидной группы, связанной с двумя трет-бутильными группами.
Trigonox B-C30 можно использовать для очистки сточных вод, поскольку он реагирует с органическими веществами и образует меньше осадка, чем хлор.


Trigonox B-C30 также способен реагировать с химическими веществами различными способами, включая реакции переноса, такие как добавление спиртов или сложных эфиров.
Trigonox B-C30 является эффективным инициатором (30% активного ингредиента в уайт-спиритах без запаха) для производства полиэтилена низкой плотности (ПЭНП) и (мет)акрилатов.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ TRIGONOX B-C30:
Trigonox B-C30 используется как для трубчатых, так и для автоклавных процессов.
В большинстве случаев используется комбинация Trigonox B-C30 с другими пероксидами для обеспечения широкого диапазона реакционной способности.
Trigonox B-C30 используется как для трубчатых, так и для автоклавных процессов.


Срок годности Тригонокс В-С30 – 3 месяца.
Trigonox B-C30 используется в качестве инициатора (со)полимеризации этилена, стирола, акрилатов и метакрилатов.
Будучи термически нестабильным веществом, оно может подвергаться самоускоряющемуся разложению.


Trigonox B-C30 используется для трубчатых и автоклавных процессов.
В дальнейшем Trigonox B-C30 находит свое применение при полимеризации и сополимеризации стирола, олефинов и акриловых смол, а также в качестве модификатора деградации полипропилена.


Trigonox B-C30 используется в рецептурах или при переупаковке, на промышленных объектах и в производстве.
Выброс Trigonox B-C30 в окружающую среду может происходить в результате промышленного использования: при составлении смесей и в составе материалов.
Trigonox B-C30 используется в следующих продуктах: полимеры.


Это вещество используется для изготовления: пластмассовых изделий и химикатов.
Выброс Trigonox B-C30 в окружающую среду может происходить в результате промышленного использования: в качестве технологической добавки и в качестве технологической добавки.
Выброс Trigonox B-C30 в окружающую среду может произойти в результате промышленного использования: производства вещества.


Trigonox B-C30 используется в качестве инициатора при производстве полиэтилена низкой плотности (ПЭНП).
Trigonox B-C30 может использоваться в сегментах рынка: производство полимеров, сшивка полимеров и производство акриловых материалов с их различными приложениями/функциями.


Trigonox B-C30 является эффективным инициатором производства полиэтилена низкой плотности (ПЭВД).
В дальнейшем Trigonox B-C30 находит свое применение при полимеризации и сополимеризации стирола, олефинов и акриловых смол, а также в качестве модификатора деградации полипропилена.


Для синтеза используется Trigonox B-C30.
Trigonox B-C30 может использоваться в сегментах рынка: производство полимеров, сшивка полимеров и производство акриловых материалов с их различными приложениями/функциями.


Реакция разложения протекает через образование метильных радикалов.
Пероксидная связь подвергается гомолизу при температуре выше 100°С.
Следовательно, Trigonox B-C30 обычно используется в качестве радикального инициатора в органическом синтезе и химии полимеров.


Trigonox B-C30 в принципе можно использовать в двигателях с ограниченным содержанием кислорода, поскольку молекула поставляет как окислитель, так и топливо.
Trigonox B-C30 используется как для трубчатых, так и для автоклавных процессов.
В большинстве случаев используется комбинация с другими пероксидами для обеспечения широкого диапазона реакционной способности.


Trigonox B-C30 использовался в качестве радикального инициатора для индукции свободнорадикальной полимеризации.
Trigonox B-C30 также использовался в качестве усилителя цетанового числа в исследовании по определению фазового поведения обратных мицеллярных микроэмульсий поверхностно-активных веществ на основе карбоксилатов с этанолом и смесями растительного масла и дизельного топлива.


Trigonox B-C30 может использоваться в сегментах рынка: производство полимеров, сшивка полимеров и производство акриловых материалов с их различными приложениями/функциями.
Trigonox B-C30 также может использоваться для полимеризации и сополимеризации стирола в диапазоне температур 95-185°С.


На практике комбинации двух или более пероксидов с разной активностью используются для снижения содержания остаточного мономера в конечном полимере и повышения эффективности реактора.
Trigonox B-C30 используется в качестве инициатора высокотемпературной полимеризации этилена и галогенированного этилена при высоком давлении.


Trigonox B-C30 используется в синтезе поликетонов.
Trigonox B-C30 используется в качестве катализатора отделки полистирола.
Trigonox B-C30 используется в качестве катализатора полимеризации акрилонитрильных полимеров и смол (включая олефины, стирол, стирол-алкиды и силиконы).


Trigonox B-C30 используется в качестве отвердителя для стирол-алкидов и силиконовых каучуков.
Trigonox B-C30 используется в качестве ускорителя воспламенения дизельного топлива.
Trigonox B-C30 используется в качестве сшивающего агента (каучука и смол).


Trigonox B-C30 используется в качестве инициатора при производстве полиэтилена низкой плотности (ПЭНП).
Trigonox B-C30 — эффективный инициатор (30% активного ингредиента в уайт-спирите без запаха) для производства полиэтилена низкой плотности (ПЭНП).
Trigonox B-C30 используется как для трубчатых, так и для автоклавных процессов.


В большинстве случаев используется комбинация с другими пероксидами для обеспечения широкого диапазона реакционной способности.
Trigonox B-C30 используется как для трубчатых, так и для автоклавных процессов.
В большинстве случаев используется комбинация с другими пероксидами для обеспечения широкого диапазона реакционной способности.


Trigonox B-C30 используется в трубчатых и автоклавных процессах.
В большинстве случаев для обеспечения широкого диапазона реакций используются комбинации с другими пероксидами.



ФУНКЦИИ И ИСПОЛЬЗОВАНИЕ TRIGONOX B-C30:
Trigonox B-C30 используется в качестве модификатора олифы, добавление этого продукта позволяет значительно улучшить высыхающие свойства касторового, китового, тунгового, соевого и льняного масел.

Добавление к другим пластикам может улучшить блеск и химическую стойкость Trigonox B-C30.
В качестве сшивающего агента Trigonox B-C30 можно использовать в силиконовом каучуке, синтетическом и натуральном каучуке, полиэтилене, этиленвинилацетате, этиленпропиленовом каучуке и т. д.
В качестве инициатора полимеризации Trigonox B-C30 можно использовать для полистирола и полиэтилена.



ПРОФИЛЬ РЕАКЦИОННОЙ СПОСОБНОСТИ TRIGONOX B-C30:
Взрывная нестабильность низших диалкилпероксидов (например, диметилпероксида) и 1,1-бис-пероксидов быстро снижается с увеличением длины цепи и степени разветвления, при этом ди-трет-алкилпроизводные относятся к наиболее стабильному классу пероксидов.

Хотя сообщалось о многих 1,1-бис-пероксидах, лишь немногие из них были очищены из-за более высокой опасности взрыва по сравнению с монофункциональными пероксидами.
Trigonox B-C30 маловероятно, что это производное будет особенно нестабильным по сравнению с другими пероксидами этого класса, Bretherick 1979v.



ХМЕИЧЕСКИЕ СВОЙСТВА TRIGONOX B-C30:
Trigonox B-C30 состоит из пероксидной группы, связанной с двумя трет-бутильными группами.
Поскольку трет-бутильные группы объемные, Trigonox B-C30 является одним из наиболее стабильных органических пероксидов.



РЕАКЦИИ ТРИГОНОКСА B-C30:
Пероксидная связь подвергается гомолизу при температуре выше 100°С.
По этой причине Trigonox B-C30 обычно используется в качестве радикального инициатора в органическом синтезе и химии полимеров.

Реакция разложения протекает через образование метильных радикалов.
(CH3)3COOC(CH3)3 → 2 (CH3)3CO•(CH3)3CO• → (CH3)2CO + CH•3
2 СН•3 → C2H6
Trigonox B-C30 в принципе можно использовать в двигателях с ограниченным содержанием кислорода, поскольку молекула поставляет как окислитель, так и топливо.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА TRIGONOX B-C30:
Химическая формула: C8H18O2.
Молярная масса: 146,230 g•mol−1
Плотность: 0,796 г/см3
Температура плавления: -40 ° C (-40 ° F; 233 К)
Точка кипения: от 109 до 111 ° C (от 228 до 232 ° F; от 382 до 384 К)
Номер CAS: 110-05-4
Молекулярный вес: 146,23
Байльштайн: 1735581
Номер ЕС: 203-733-6
Номер леев: MFCD00008803
Физическое состояние: прозрачное, жидкое.
Цвет: бесцветный
Запах: очень слабый

Точка плавления/точка замерзания:
Точка плавления/диапазон: < -29 °C -
Начальная температура кипения и диапазон кипения: 109 – 110 °С – лит.
Горючесть (твердого тела, газа): Данные отсутствуют.
Верхний/нижний пределы воспламеняемости или взрывоопасности:
Верхний предел взрываемости: > 99 %(В)
Температура вспышки: 6 °C при примерно 1,013 гПа – в закрытом тигле.
Температура самовоспламенения: Нет данных.
Температура разложения: Данные отсутствуют.
pH: данные отсутствуют
Вязкость
Вязкость, кинематическая: Нет данных.
Вязкость, динамическая: 7,5 мПа•с при 20 °C
Растворимость в воде: 0,171 г/л при 20°С.
Коэффициент распределения: н-октанол/вода:

log Pow: 3,2 при 22 °C
Давление пара: 53 гПа при 20 °C.
Плотность: 0,796 г/мл при 25 °C – лит.
Относительная плотность: данные отсутствуют.
Относительная плотность пара: данные отсутствуют.
Характеристики частиц: данные отсутствуют.
Взрывоопасные свойства: данные отсутствуют.
Окислительные свойства: нет
Другая информация по безопасности: данные отсутствуют.
Молекулярный вес: 146,23 г/моль
XLogP3-AA: 2.1
Количество доноров водородной связи: 0
Количество акцепторов водородной связи: 2
Количество вращающихся облигаций: 3
Точная масса: 146,130679813 г/моль.

Моноизотопная масса: 146,130679813 г/моль.
Топологическая площадь полярной поверхности: 18,5 Å ²
Количество тяжелых атомов: 10
Официальное обвинение: 0
Сложность: 80,8
Количество атомов изотопа: 0
Определенное количество стереоцентров атома: 0
Неопределенное количество стереоцентров атома: 0
Определенное количество стереоцентров связи: 0
Неопределенное количество стереоцентров связи: 0
Количество единиц ковалентной связи: 1
Соединение канонизировано: Да
Номер CAS: 110-05-4
Индексный номер ЕС: 617-001-00-2
Номер ЕС: 203-733-6
Формула Хилла: C₈H₁₈O₂
Молярная масса: 146,23 г/моль
Код ТН ВЭД: 2909 60 90
Плотность: 0,80 г/см3 (20 °C)

Температура вспышки: 6 °C
Температура воспламенения: 182 °С
Точка плавления: -40 °С.
Давление пара: 53 гПа (20 °C)
Растворимость: 0,063 г/л.
Номер CB: CB8852799
Молекулярная формула: C8H18O2
Молекулярный вес: 146,23
Номер лея:MFCD00008803
Файл MOL:110-05-4.mol
Температура плавления: -30 °С.
Точка кипения: 109-110 °C(лит.)
Плотность: 0,796 г/мл при 25 °C (лит.)
давление пара: 40 мм рт. ст. (20 °C)
показатель преломления: n20/D 1,3891(лит.)
Температура вспышки: 34 °F
Температура хранения: Хранить при температуре от +15°C до +25°C.
растворимость: 0,063 г/л
форма: Жидкость

цвет: Прозрачный
Запах: характерный запах
Растворимость в воде: несмешивается
Мерк: 14,3461
РН: 1735581
Стабильность: Может взрывоопасно разлагаться при нагревании.
подвергали шоку или обрабатывали восстановителями.
InChIKey: LSXWFXONGKSEMY-UHFFFAOYSA-N
LogP: 3,2 при 22 ℃
Ссылка на базу данных CAS: 110-05-4 (ссылка на базу данных CAS)
Косвенные добавки, используемые в веществах, контактирующих с пищевыми продуктами: ТЕРТ-БУТИЛОВЫЙ ПЕРОКСИД.
FDA 21 CFR: 176.170; 177.2600
Оценка еды по версии EWG: 1
FDA UNII: M7ZJ88F4R1
Справочник по химии NIST: Ди-трет-бутилпероксид (110-05-4)
Система регистрации веществ EPA: Ди-трет-бутилпероксид (110-05-4)
Молекулярная формула: C8H18O2.
Молекулярный вес: 146,22 Номер CAS: 110-05-4
Плотность: 0,794 (20 ℃ )

Температура плавления: -40 ℃ .
Молекулярная формула/молекулярный вес: C8H18O2 = 146,23.
Физическое состояние (20 град.C): Жидкость
Температура хранения: <0°C
Состояние, которого следует избегать: термочувствительность
РН КАС: 110-05-4
Регистрационный номер Reaxys: 1735581
Идентификатор вещества PubChem: 87558545
Индекс Мерка (14): 3461
Точка плавления: -30°C
Плотность: 0,8000 г/мл
Точка кипения: от 109°C до 110°C.
Температура вспышки: 6°C
Инфракрасный спектр: подлинный
Процентный диапазон анализа: макс. 0,1%. Трет-бутилгидропероксид (GC)
Линейная формула: (CH3)3COOC(CH3)3
Индекс преломления: от 1,3880 до 1,39.
Индекс Мерк: 15, 3508
Удельный вес: 0,8

Информация о растворимости: Растворимость в воде: несмешивается.
Другие растворимости: растворим в большинстве органических растворителей.
Название ИЮПАК: 2-трет-бутилперокси-2-метилпропан.
Вязкость: 0,9 мПа•с (20°C)
Формула Вес: 146,23
Процент чистоты: 99%
Физическая форма: Жидкость
Цвет: Прозрачный
Растворимость в воде: несмешивается
Формула: C₈H₁₈O₂
ММ: 146,23 г/моль
Температура кипения: 109 °C (1013 гПа)
Плавление Pt: < –25 °C
Плотность: 0,798 г/см³ (20°С)
Температура вспышки: 12 °C
Номер леев: MFCD00008803
Номер CAS: 110-05-4
ЭИНЭКС: 203-733-6
Индекс Мерк: 12,03515



МЕРЫ ПЕРВОЙ ПОМОЩИ TRIGONOX B-C30:
-Описание мер первой помощи:
*Общие советы:
Покажите этот паспорт безопасности материала лечащему врачу.
*При вдыхании:
После ингаляции:
Свежий воздух.
Вызовите врача.
*При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промойте кожу водой/душем.
Проконсультируйтесь с врачом.
*В случае зрительного контакта:
После зрительного контакта:
Промойте большим количеством воды.
Вызовите офтальмолога.
Снимите контактные линзы.
*При проглатывании:
После глотания:
Немедленно дайте пострадавшему выпить воды (максимум два стакана).
Проконсультируйтесь с врачом.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ TRIGONOX B-C30:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Соблюдайте возможные ограничения по материалам.
Собирать осторожно с материалом, впитывающим жидкость.
Утилизируйте должным образом.
Очистите пораженный участок.



МЕРЫ ПОЖАРОТУШЕНИЯ TRIGONOX B-C30:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Углекислый газ (CO2)
Мыло
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дальнейшая информация:
Удалить контейнер из опасной зоны и охладить водой.
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА TRIGONOX B-C30:
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
Безопасные очки
*Защита кожи:
Полный контакт:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,4 мм.
Время прорыва: 480 мин.
Всплеск контакта:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 30 мин.
*Защита тела:
Огнестойкая антистатическая защитная одежда.
*Защита органов дыхания:
Рекомендуемый тип фильтра: Респиратор.
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ TRIGONOX B-C30:
-Меры безопасного обращения:
*Советы по защите от пожара и взрыва:
Примите меры предосторожности против статического разряда.
*Гигиенические меры:
Сменить загрязненную одежду.
Мойте руки после работы с веществом.
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
* Стабильность хранения:
Рекомендуемая температура хранения:
2–8 °С



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ TRIGONOX B-C30:
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура).
-Несовместимые материалы:
Данные недоступны

TRIISOBUTYL PHOSPHATE
Triisobutyl Phosphate About Triisobutyl phosphate Triisobutyl phosphate is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 1 000 to < 10 000 per annum. Triisobutyl phosphate is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing. Consumer Uses of Triisobutyl phosphate (TIBP) Triisobutyl phosphate is used in the following products: coating products, fillers, putties, plasters, modelling clay, adhesives and sealants, washing & cleaning products, lubricants and greases, finger paints and leather treatment products. Other release to the environment of Triisobutyl phosphate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use. Article service life of Triisobutyl phosphate (TIBP) Other release to the environment of Triisobutyl phosphate is likely to occur from: outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials) and indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment). Triisobutyl phosphate can be found in complex articles, with no release intended: vehicles. Triisobutyl phosphate can be found in products with material based on: stone, plaster, cement, glass or ceramic (e.g. dishes, pots/pans, food storage containers, construction and isolation material) and plastic (e.g. food packaging and storage, toys, mobile phones). Widespread uses by professional workers of Triisobutyl phosphate (TIBP) Triisobutyl phosphate is used in the following products: adhesives and sealants, coating products, metal surface treatment products, non-metal-surface treatment products, pH regulators and water treatment products, hydraulic fluids, laboratory chemicals, lubricants and greases and metal working fluids. Triisobutyl phosphate is used in the following areas: building & construction work and scientific research and development. Triisobutyl phosphate is used for the manufacture of: machinery and vehicles. Other release to the environment of Triisobutyl phosphate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use. Formulation or re-packing of Triisobutyl phosphate (TIBP) Triisobutyl phosphate is used in the following products: metal working fluids, adhesives and sealants, anti-freeze products, coating products, hydraulic fluids, lubricants and greases, washing & cleaning products, extraction agents and oil and gas exploration or production products. Release to the environment of Triisobutyl phosphate can occur from industrial use: formulation of mixtures and formulation in materials. Uses at industrial sites of Triisobutyl phosphate (TIBP) Triisobutyl phosphate is used in the following products: lubricants and greases, hydraulic fluids, heat transfer fluids, metal working fluids, oil and gas exploration or production products and textile treatment products and dyes. Triisobutyl phosphate is used in the following areas: mining and building & construction work. Triisobutyl phosphate is used for the manufacture of: pulp, paper and paper products, textile, leather or fur, rubber products and plastic products. Release to the environment of Triisobutyl phosphate can occur from industrial use: in processing aids at industrial sites, in the production of articles, as an intermediate step in further manufacturing of another substance (use of intermediates), of substances in closed systems with minimal release and as processing aid. Manufacture of Triisobutyl phosphate (TIBP) Release to the environment of Triisobutyl phosphate can occur from industrial use: manufacturing of the substance. Analysis Note Assay (GC, area%): ≥ 99.0 % (a/a) Density (d 20 °C/ 4 °C): 0.963 - 0.967 Identity (IR): passes test Triisobutyl phosphate is a very strong solvent used for liquefying concrete, textile auxiliaries, paper coating compounds, etc. TiBT (Triisobutyl phosphate) is a very strong, polar solvent. Triisobutyl phosphate is mainly used as an antifoaming agent in various aqueous systems where it has the ability to both destroy foam and act as a foam inhibitor. Triisobutyl phosphate is also used in the roduction of solutions of synthetic resins and natural rubber. In both ellulose-based plastics and synthetic resins, it is used as a flame-retarding plasticizer. Triisobutyl phosphate is employed as a pasting agent for pigment pastes. Due to the limited influence of temperature on the viscosity of Triisobutyl phosphate, it also serves as an important component in the manufacture of hydraulic fluids for aircraft. As a very strong wetting agent, Triisobutyl phosphate is used in the textile industry and in the field of adhesives. Bussiness Unit of Triisobutyl phosphate (TIBP) : Rhein Chemie Additives Areas of Applications of Triisobutyl phosphate (TIBP) Antifoam tetile Building industry Concrete additives Construction material Glues and adhesives Catalysis and Chemicals Processing Chemical synthesis Textile Paper and board Manufacturing of glues and adhesives Textiles and fibres Properties & Benefits of Triisobutyl phosphate (TIBP) strong solvent strong antifoaming agent strong wetting agent Synonyms of Triisobutyl phosphate (TIBP) Phosphoric acid triisobutylester Triisobutyl phosphate Tri-iso-butylphosphate Triisobutylphosphate Triisobutyl phosphate, known commonly as TIBP, is an organophosphorus compound with the chemical formula (CH3CH2CH2CH2O)3PO. This colourless, odorless liquid finds some applications as an extractant and a plasticizer. It is an ester of phosphoric acid with n-butanol. Production of Triisobutyl phosphate (TIBP) Triisobutyl phosphate is manufactured by reaction of phosphoryl chloride with n-butanol. POCl3 + 3 C4H9OH → PO(OC4H9)3 + 3 HCl Production is estimated at 3,000–5,000 tonnes worldwide. Use of Triisobutyl phosphate (TIBP) Triisobutyl phosphate is a solvent and plasticizer for cellulose esters such as nitrocellulose and cellulose acetate. It forms stable hydrophobic complexes with some metals; these complexes are soluble in organic solvents as well as supercritical CO2. The major uses of Triisobutyl phosphate in industry are as a component of aircraft hydraulic fluid, brake fluid, and as a solvent for extraction and purification of rare-earth metals from their ores. Triisobutyl phosphate finds its use as a solvent in inks, synthetic resins, gums, adhesives (namely for veneer plywood), and herbicide and fungicide concentrates. As it has no odour, it is used as an anti-foaming agent in detergent solutions, and in various emulsions, paints, and adhesives. Triisobutyl phosphate is also found as a de-foamer in ethylene glycol-borax antifreeze solutions. In oil-based lubricants addition of Triisobutyl phosphate increases the oil film strength. Triisobutyl phosphate is used also in mercerizing liquids, where it improves their wetting properties. It can be used as a heat-exchange medium. Triisobutyl phosphate is used in some consumer products such as herbicides and water-thinned paints and tinting bases. Nuclear chemistry of Triisobutyl phosphate (TIBP) A 15–40% (usually about 30%) solution of Triisobutyl phosphate in kerosene or dodecane is used in the liquid–liquid extraction (solvent extraction) of uranium, plutonium, and thorium from spent uranium nuclear fuel rods dissolved in nitric acid, as part of a nuclear reprocessing process known as PUREX. The shipment of 20 tons of Triisobutyl phosphate to North Korea from China in 2002, coinciding with the resumption of activity at Yongbyon Nuclear Scientific Research Center, was seen by the United States and the International Atomic Energy Agency as cause for concern; that amount was considered sufficient to extract enough material for perhaps three to five potential nuclear weapons. Hazards of Triisobutyl phosphate (TIBP) In contact with concentrated nitric acid the Triisobutyl phosphate-kerosene solution forms hazardous and explosive red oil. Triisobutyl phosphate is a toxic organophosphorous compound widely used in many industrial applications, including significant usage in nuclear processing. The industrial application of this chemical is responsible for occupational exposure and environmental pollution. In this study, (1)H NMR-based metabonomics has been applied to investigate the metabolic response to Triisobutyl phosphate exposure. Male Sprague-Dawley rats were given a Triisobutyl phosphate-dose of 15 mg/kg body weight, followed by 24hr urine collection, as was previously demonstrated for finding most of the intermediates of Triisobutyl phosphate. High-resolution (1)H NMR spectroscopy of urine samples in conjunction with statistical pattern recognition and compound identification allowed for the metabolic changes associated with Triisobutyl phosphate treatment to be identified. Discerning NMR spectral regions corresponding to three Triisobutyl phosphate metabolites, dibutyl phosphate (DBP), N-acetyl-(S-3-hydroxybutyl)-L-cysteine and N-acetyl-(S-3-oxobutyl)-L-cysteine, were identified in Triisobutyl phosphate-treated rats. In addition, the (1)H NMR spectra revealed Triisobutyl phosphate-induced variations of endogenous urinary metabolites including benzoate, urea, and trigonelline along with metabolites involved in the Krebs cycle including citrate, cis-aconitate, trans-aconitate, 2-oxoglutarate, succinate, and fumarate. These findings indicate that Triisobutyl phosphate induces a disturbance to the Krebs cycle energy metabolism and provides a biomarker signature of Triisobutyl phosphate exposure. ... /The/ three metabolites of Triisobutyl phosphate, dibutylphosphate, N-acetyl-(S-3-hydroxybutyl)-L-cysteine and N-acetyl-(S-3-oxobutyl)-L-cysteine, which are not present in the control groups, are the most important factors in separating the Triisobutyl phosphate and control groups (p<0.0023), while the endogenous compounds 2-oxoglutarate, benzoate, fumarate, trigonelline, and cis-aconetate were also important (p<0.01). The rate of metabolism of Triisobutyl phosphate and the nature of the metabolites produced were determined in in vitro tests on rat liver homogenate. It was found that rat liver microsomal enzymes rapidly metabolized Triisobutyl phosphate in the presence of NADPH (within 30 min), but only slight metabolic breakdown (11%) occurred in the absence of added NADPH. Dibutyl(3-hydroxybutyl) phosphate was obtained as a metabolite in the first stage of the test. The extended incubation time in the second stage of the test yielded two further metabolites, butyl di(3-hydroxybutyl) phosphate and dibutyl hydrogen phosphate, which were produced from the primary metabolite dibutyl(3-hydroxybutyl) phosphate. IDENTIFICATION: Triisobutyl phosphate is a colorless to pale yellow, odorless liquid. It is moderately soluble in water. USE: Triisobutyl phosphate is mainly used as a flame-retardant component of aircraft hydraulic fluid. It is used as a solvent for extracting rare earth elements, such as uranium and plutonium. Triisobutyl phosphate is also used in the making of plastics and in cement casings for oil wells. EXPOSURE: Exposure to Triisobutyl phosphate can be from ingestion, inhalation, or skin or eye contact. This exposure will most often happen from occupational use of hydraulic fluid. If Triisobutyl phosphate is released to the environment, it will bind tightly to dust particles in the air. Unbound Triisobutyl phosphate will break down in air. It will move slowly through soil because it will bind with soil particles. It may volatilize slowly from moist soil and water surfaces. It may build up in aquatic organisms. It will be broken down in water by microbes. RISK: Studies of possible health effects in humans exposed to Triisobutyl phosphate are not available. Damage to the urinary bladder was observed in laboratory rats exposed to very high concentrations of Triisobutyl phosphate in their diet for up to 2 years. Some of the rats developed urinary bladder tumors. Triisobutyl phosphate was irritating when applied directly to the skin or eyes of laboratory animals. Other studies of laboratory animals given very high doses of Triisobutyl phosphate by mouth found no clear evidence for abortions, birth defects, impaired reproductive performance, or severe neurological effects. ACGIH (2013) determined that Triisobutyl phosphate is a Confirmed Animal Carcinogen with Unknown Relevance to Humans. The potential for Triisobutyl phosphate to cause cancer in humans has not been assessed by the EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 13th Report on Carcinogens. Triisobutyl phosphate is an indirect food additive for use only as a component of adhesives. Two-cell mouse embryos were exposed in vitro to Triisobutyl phosphate, x rays, or a combination of both. In-vitro development of the embryos was followed microscopically (cleavage to four- and eight-cell embryos, formation of morulae and blastocysts, and hatching of blastocysts). Effects on proliferation were estimated by counting the number of cells per embryo early (48 h p.c. = 48 hours post conceptionem) and late (144 h p.c.) in the preimplantation period. Cytogenetic damage was studied using micronucleus formation as the end point. Triisobutyl phosphate did not reveal toxic effects up to a concentration of about 5 microM after an exposure time of 18 h. At a concentration of about 15 microM, 50% of late preimplantation embryos showed effects on morphological development and on cell proliferation, and at about 40 microM, 90% of the embryos were affected. Triisobutyl phosphate did not induce micronuclei. Small effects by x irradiation were observed between 0.25 Gy and 0.5 Gy, depending on the end point measured in the late preimplantation stage. Fifty percent of the embryos were affected by a dose slightly higher than 1 Gy, and 90% after about 4 Gy. No enhancement in risk was found after combined treatment of the embryos with Triisobutyl phosphate and x rays. IDENTIFICATION AND USE: Triisobutyl phosphate is a colorless to pale-yellow odorless liquid. It is used as a plasticizer for cellulose esters, lacquers, plastics, and vinyl resins. Used in fire-resistant aircraft hydraulic fluids. Other uses include heat-exchange medium, solvent extraction of metal ions from solution of reactor products, solvent for nitrocellulose, cellulose acetate, pigment grinding assistant, antifoaming agent, dielectric. HUMAN EXPOSURE AND TOXICITY: Breathing vapors of Triisobutyl phosphate causes irritation of mucous membranes and if inhalation is prolonged there can be general poisoning with paralysis. In contact with skin Triisobutyl phosphate can cause irritation. Triisobutyl phosphate may cause irritation of the eyes, nose, and throat. It may also cause nausea and headache. In a series of 42 patients with furniture related dermatitis, a positive patch test reaction was seen in 1 patient. In vitro it acts as androgen receptor, and glucocorticoid receptor antagonist. ANIMAL STUDIES: Triisobutyl phosphate was not acutely toxic by dermal exposure in the rabbit and in the guinea pig. Application to either intact or abraded skin of rabbits and guinea pigs produced irritation with edema and erythema. The instillation of Triisobutyl phosphate in the conjunctival sac of rabbits gave rise to mild irritation. Rats subjected to multiple intragastric administrations of Triisobutyl phosphate showed hyperemia of internal organs and brain. Triisobutyl phosphate was not neurotoxic to rats, but induced paralysis in mice. Triisobutyl phosphate did not cause organophosphorus compound-induced delayed neurotoxicity (OPIDN) in the adult hen. Triisobutyl phosphate produced tumors of the bladder urothelium in rats at high doses, with greater effects in males than in females. It does not produce tumors in mice. The chemical was not teratogenic in rats. In the rabbit, maternal and embryo toxicity were suggested at 400 mg/kg/day with no observations of fetotoxicity or teratogenicity in any dosage group. No mutagenic activity was identified after treatment with Triisobutyl phosphate: when tested in the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) mutation assay in Chinese hamster ovary (CHO) cells, both with and without metabolic activation and when testing in Salmonella typhimurium strains TA98, TA100, TA1535, or TA1537 with or without metabolic activations. Triisobutyl phosphate did not induce chromosomal damage in rat bone marrow cells. ECOTOXICITY STUDIES: Rainbow trout treated with Triisobutyl phosphate had severe balance disturbances, which included highly atypical movements like darting, coiling swimming, and backward somersaults. At higher concentrations the fish were immobilized, lying on their sides at the bottom of the water, and some of them died. Triisobutyl phosphate's production and use as an extraction agent for rare earths, uranium, plutonium, and metal ions; heat-exchange medium, solvent, plasticizer, pigment grinding assistant, antifoam agent and dielectric may result in its release to the environment through various waste streams. If released to air, a vapor pressure of 1.13X10-3 mm Hg at 25 °C indicates Triisobutyl phosphate will exist solely as a vapor in the atmosphere. Vapor-phase Triisobutyl phosphate will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 4.4 hours. Triisobutyl phosphate does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. If released to soil, Triisobutyl phosphate is expected to have slight mobility based upon an estimated Koc of 2400. Volatilization from moist soil surfaces is expected to be an important fate process based upon an estimated Henry's Law constant of 1.4X10-6 atm-cu m/mole. However, adsorption to soil is expected to attenuate volatilization. Triisobutyl phosphate is not expected to volatilize from dry soil surfaces based upon its vapor pressure. Utilizing the Japanese MITI test, 3% of the theoretical BOD was reached in 2 weeks, while another test using activated sludge inoculum showed 56-96% biodegradation, indicating that biodegradation may be an important environmental fate process. If released into water, Triisobutyl phosphate is expected to adsorb to suspended solids and sediment based upon the estimated Koc. Aqueous biodegradation test results for Triisobutyl phosphate varied from negligible biodegradation to 30-100% biodegradation. Volatilization from water surfaces is expected to be an important fate process based upon this compound's estimated Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 40 and 300 days, respectively. BCFs of 5.5-20 in carp, 30-35 in killifish and 6-11 in goldfish suggest bioconcentration in aquatic organisms is low to moderate. Hydrolysis is not expected to be an important environmental fate process based on estimated hydrolysis half-lives of 9.9 to 11.5 years(pH 5 to 9). Occupational exposure to Triisobutyl phosphate may occur through inhalation and dermal contact with this compound at workplaces where Triisobutyl phosphate is produced or used. Monitoring data indicate that the general population may be exposed to Triisobutyl phosphate via inhalation of ambient air, ingestion of food and drinking water, and dermal contact with this compound and other products containing Triisobutyl phosphate. Triisobutyl phosphate was judged to biodegrade with acclimation in two aerobic screening tests using acclimated sludge and sewage as inoculum(1-2). In one of these tests, 30.4 and 90.8% of theoretical CO2 was evolved in 7 and 28 days, respectively, after 14 days acclimation. In a simulated semi-continuous activated sludge biological treatment test, 96% and 56% degradation occurred in 13 and 21 weeks at respective feed rates of 3 and 13 ppm. After a 2 day lag, 13% and 100% of Triisobutyl phosphate present degraded in a river die-away test (Mississippi River water) in 4 and 7 days, respectively. Triisobutyl phosphate, present at 100 mg/L, reached 3% of its theoretical BOD in 2 weeks using an activated sludge inoculum at 30 mg/L in the Japanese MITI test. While 0-13% of theoretical CO2 was evolved when trench leachate from Maxey Flats, KY containing Triisobutyl phosphate was incubated with sewage for 24 days, this percentage increased to 38% when a source of nitrogen was added to the test solution. Triisobutyl phosphate was judged to be difficult to biodegrade in seawater and river water based on the results of the 3-day cultivation method by four Japanese institutes(5-6). In a study of contamination of the lower Weser River, Germany, it was found that in the high water periods in the cold months (flow rate >400 cu m/s, avg temp 6.9 °C) biodegradation of Triisobutyl phosphate was negligible, while during low flow periods in warmer months (flow <300 cu m/s, avg temp 14.9 °C) biological degradation was 30-50% over a 4-7 day period. According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, Triisobutyl phosphate, which has a vapor pressure of 1.13X10-3 mm Hg at 25 °C, is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase Triisobutyl phosphate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 4.4 hours, calculated from its rate constant of 7.9X10-11 cu cm/molecule-sec at 25 °C that was derived using a structure estimation method. Triisobutyl phosphate does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. The rate constant for the vapor-phase reaction of Triisobutyl phosphate with photochemically-produced hydroxyl radicals has been estimated as 7.9X10-11 cu cm/molecule-sec at 25 °C using a structure estimation method. This corresponds to an atmospheric half-life of about 4.4 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm. Triisobutyl phosphate is not expected to undergo hydrolysis in the environment due to estimated hydrolysis half-lives of 9.9 to 11.5 years at pH 9 to 5. Triisobutyl phosphate does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. The Henry's Law constant for Triisobutyl phosphate is estimated as 1.4X10-6 atm-cu m/mole derived from its vapor pressure, 1.13X10-3 mm Hg, and water solubility, 280 mg/L. This Henry's Law constant indicates that Triisobutyl phosphate is expected to volatilize from water surfaces. Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec) is estimated as 40 days. The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec) is estimated as 300 days. Triisobutyl phosphate's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur. Triisobutyl phosphate is not expected to volatilize from dry soil surfaces based upon its vapor pressure. NIOSH (NOES Survey 1981-1983) has statistically estimated that 109,402 workers (19,015 of these are female) were potentially exposed to Triisobutyl phosphate in the US. Occupational exposure to Triisobutyl phosphate may occur through inhalation and dermal contact with this compound at workplaces where Triisobutyl phosphate is produced or used. Triisobutyl phosphate was detected in 12 indoor air samples collected from the dismantling hall of a electronic products recycling plant with a concentration of 9-18 ng/cu m. Potentially 43,000 aircraft mechanics and another 300 aircraft industry employees are exposed to aircraft hydraulic fluid containing Triisobutyl phosphate. In addition, 500 Triisobutyl phosphate manufacturing, processing, and distribution workers are potentially exposed to Triisobutyl phosphate during handling, transfer, and packaging of products, equipment cleaning and repair, and cleaning up spills. Triisobutyl phosphate was detected in 3 offices at 4.5-8.1 ng/cu m; in 2 furniture stores at 14-17 ng/cu m and in 3 electronic stores at 1.7-17 ng/cu m; all samples were collected in and around Zurich, Switzerland. Triisobutyl phosphate was detected in three offices, three health care rooms, three workshops and four stores at 3-7, 1-2, 1-24 and 5-172 ng/cu m, respectively. Monitoring data indicate that the general population may be exposed to Triisobutyl phosphate via inhalation of ambient air, ingestion of food and drinking water, and dermal contact with this compound and other products containing Triisobutyl phosphate. In EPA's National Human Monitoring Program's National Human Adipose Tissue Survey, broad scan survey for 1982, Triisobutyl phosphate was detected at 120 ng/g in 1 of 46 composite samples analyzed. The sample came from the 0-14 age group of the east north central census region. Triisobutyl phosphate was detected at 10 ppb in plaque from the aorta of one of two autopsied heart attack victims.
TRIISOCETYL CITRATE
TRIISONONANOIN, N° CAS : 56554-53-1 / 206354-95-2; Nom INCI : TRIISONONANOIN; Nom chimique : Propane-1,2,3-triyl 3,5,5-trimethylhexanoate; N° EINECS/ELINCS : 260-257-1 / -, Ses fonctions (INCI), Agent d'entretien de la peau : Maintient la peau en bon état, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétique
TRIISONONANOIN
TRIISOPALMITIN N° CAS : 68957-79-9 Nom INCI : TRIISOPALMITIN Nom chimique : 1,2,3-Propanetriyl triisohexadecanoate N° EINECS/ELINCS : 273-364-3 Ses fonctions (INCI) Emollient : Adoucit et assouplit la peau Agent d'entretien de la peau : Maintient la peau en bon état Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
TRIISOPALMITIN
Tris(2-hydroxypropyl)amine;1,1',1''-nitrilotri-2-propanol; Tris-(2-hydroxy-1-propyl)amine; 1,1',1''-Nitrilotripropan-2-ol; Nitrilotris(2-propanol); 3,3',3"-Nitrilotri(2-propanol); Tris(2-propanol)amine; Tri-2-propanolamine cas no: 122-20-3
TRIISOPROPANOL AMINE (TIPA)
TIPA; TRIISOPROPANOLAMINE, N° CAS : 122-20-3, Nom INCI : TRIISOPROPANOLAMINE, Nom chimique : 1,1',1''-Nitrilotripropan-2-ol, N° EINECS/ELINCS : 204-528-4, Classification : Ses fonctions (INCI),Régulateur de pH : Stabilise le pH des cosmétiques; Noms français : 1,1',1''-NITRILOTRI(2-PROPANOL); 1,1',1''-NITRILOTRI-2-PROPANOL ; 1,1',1''-NITRILOTRIS-2-PROPANOL; TRI-2-PROPANOLAMINE; TRI-ISO-PROPANOLAMINE; Triisopropanolamine; TRIS(2-HYDROXY-1-PROPYL)AMINE; TRIS(2-HYDROXYPROPYL)AMINE; TRIS(2-PROPANOL)AMINE. Noms anglais : Triisopropanolamine; Utilisation et sources d'émission : Agent émulsifiant. 1,1',1''-Nitrilotri-2-propanol; 1,1',1''-Nitrilotris(2-propanol); 1,1',1'-nitrilotripropan-2-ol; 2-Propanol, 1,1',1''-nitrilotri-; 2-Propanol, 1,1',1''-nitrilotris-; 3,3',3''-Nitrilotri(2-propanol); TIPA; Tri-2-propanolamine; Triisopropanolamine; Tris(2-hydroxy-1-propyl)amine; Tris(2-hydroxypropyl)amine; Tris(2-propanol)amine. Translated names: 1,1',1"-nitrilotripropan-2-olis (lt); 1,1',1"-nitriltripropān-2-ols (lv); 1,1',1"-нитрилотрипропан-2-oл (bg); 1,1',1''-nitriilitripropan-2-oli (fi); 1,1',1''-nitrilotripropaan-2-ol (nl); 1,1',1''-nitrilotripropaan-2-ool (et); 1,1',1''-nitrilotripropan-2-ol (da); 1,1',1''-nitrilotripropan-2-olo (it); 1,1',1''-nitrilotripropane-2-ol (fr); 1,1',1''-nitrilotripropano-2-ol (pt); 1,1',1''-nitrilotripropán-2-ol (sk); 1,1',1''-νιτριλοτριπροπαν-2-όλ (el); 1,1`,1``-nitrylotripropan-2-ol (pl); 1,1´,1´´-nitrilotripropan-2-ol (cs); 1,1’,1”-nitrilotripropán-2-ol (hu); triisopropanolamin (cs); triisopropanolammina (it); triisopropanoolamiin (et); triizopropanolamin (hr); triizopropanolamina (ro); triizopropanolaminas (lt); triizopropanolamín (sk); triizopropanoloamina (pl); triizopropānolamīns (lv); триизопропаноламин (bg). IUPAC names: 1,1',1''-nitrilopropan-2-ol ; 1,1',1''-nitrilotripropan-2-ol / triisopropanolamine; 1-(bis(2-hydroxypropyl)amino)propan-2-ol; 1-[bis(2-hydroxypropyl)amino]propan-2-ol; 2-Propanol, 1,1,1-nitrilotris-; Triisopropanolamine (mixture of isomer). Trade names 2-Propanol, 1,1',1''-nitrilotri- (6CI, 8CI); 2-Propanol, 1,1',1''-nitrilotris- (9CI); NTP; Tri-iso-propanolamine; TRIISOPROPANOLAMINE 99; TRIISOPROPANOLAMINE LFG 85; TRIISOPROPANOLAMINE, LFG 85; 1,1',1''-Nitrilotri(2-propanol) [ACD/IUPAC Name] 1,1',1''-Nitrilotri(2-propanol) [German] 1,1',1''-Nitrilotri(2-propanol) [French] 1,1',1''-Nitrilotripropan-2-ol 1,1',1''-Nitrilotris-2-propanol 2-Propanol, 1,1',1''-nitrilotris- [ACD/Index Name] Triisopropanolamine UNII:W9EN9DLM98 [122-20-3] 1,1', 1''-Nitrilotri-2-propanol 1,1',1"-Nitrilotri-2-propanol 1,1',1''-Nitrilotri-2-propanol 1,1',1''-Nitrilotris (2-propanol) 1,1',1''-Nitrilotris(2-propanol) 1,1',1''-Nitrilotris(propan-2-ol) 1,1',1''-Nitrilotris[2-propanol] 1,1′,1′′-Nitrilotri(-2-propanol) 1-[bis(2-hydroxypropyl)amino]propan-2-ol 122-20-3 [RN] 204-528-4 [EINECS] 2-Propanol, 1,1', 1''-nitrilotris- 2-Propanol, 1,1',1''-nitrilotri- 3,3',3"-Nitrilotri (2-propanol) 3,3',3"-Nitrilotri(2-propanol) 3,3',3''-Nitrilotri(2-propanol) 4-04-00-01680 [Beilstein] 58901-12-5 [RN] 67952-34-5 [RN] propan-2-ol, 1,1',1''-nitrilotris- TIPA Tri-2-propanolamine Tri-iso-propanolamine TRIISOPROPANOLAMINE, 95% Tris(2-hydroxy-1-propyl)amine TRIS(2-HYDROXYPROPYL)AMINE Tris(2-propanol)amine Tris(isopropanol)amine Trisisopropanolamine
TRIISOSTEARYL CITRATE
TRICHLOROETHYLENE; Trichloroethene; TCE; Acetylene trichloride; Ethinyl trichloride; 1,1,2-Trichlorethylene; 1,1-Dichloro-2-chloroethylene; 1,2,2-Trichloroethylene; 1-Chloro-2,2-dichloroethylene; Benzinol; Blacosolv; Blancosolv; Chlorilen;Chlorylen; Circosolv; Ethylene trichloride; Threthylene; Trichloraethen; Trichloraethen (German); Trichloraethylen, tri (German); Trichloran; Trichlorethene (French); Trichlorethylene, tri (French); Tricloretene (Italian); Tricloroetilene (Italian); Trielina (Italian); cas no: 79-01-6
TRIKLOR ETILEN 
Trimellitic Acid Cyclic 1,2-anhydride; Anhydro trimellitic acid; 1,2,4-benzenetricarboxylic acid cyclic 1,2-anhydride; 1,2,4-Benzenetricarboxylic anhydride; 4-carboxyphthalic anhydride; 1,3-dioxo-5-phthalancarboxylic acid; 5-phthalancarboxylic acid, 1,3-dioxo-TMAN; Trimellitic acid 1,2-anhydride; TMA; TMAN; Benzene-1,2,4-tricarboxylic-1,2-anhydride; Benzol-1,2,4-tricarbonsäure-1,2-anhydrid; 1,2-anhidrido del ácido benceno-1,2,4-tricarboxílico; 1,2-Anhydride de l'acide benzene-1,2,4-tricarboxylique CAS NO:552-30-7
TRILON AS
Trilon AS Trilon AS (NTA) - chelating agents which basic purpose is water demineralizing and removal of the deposits containing Ca2 salts + and Mg2+. According to requirements of the standard tests OECD, Trilon AS possesses high ability to biodegradation. The BASF company is the world's largest producer of nitrilotriuksusny acid and its salts. Thanks to own production technology, the BASF company has opportunity to offer the customers product with the high content of active component, the low maintenance of by-products and almost free of chlorides and other undesirable ions. We not only offer customers product of high degree of purity, but also we guarantee reliability of its deliveries. NTA shows the best ratio price/quality among chelating agents on the basis of aminocarboxylats, as has caused its wide popularity in the market. Nitrilotriuksusny acid (NTA) is generally used in production of detergents - for water demineralizing and prevention of formation of deposits on different types of surfaces and on fabric. Products of the Trilon AS series, and especially easily loose powder Trilon AS 92 R, are ideal components of system of kompleksoobrazovatel in soap powders. Products of the Trilon AS series are good replacement of the phosphates which are part of means for washing. The demand of besfosfatny detergents and in North America constantly grows in Europe. Practice shows that such chelating aminocarboxyarmour as Trilon AS, are more effective, than citrates, in means for industrial dishwashers, thanks to their higher stability and ability very effectively to delete limy raid and strong pollution. Trilon AS T is an aqueous solution of the trisodium salt of methylglycinediacetic acid (Na3MGDA). It finds application in detergents, cleaning, textiles, soap, metal plating, oil and gas, and water-softening products. Trilon AS is readily biodegradable. Trilon AS, methylglycinediacetic acid trisodium salt (MGDA-Na3) or trisodium α-DL-alanine diacetate (α-ADA), is the trisodium anion of N-(1-carboxyethyl)iminodiacetic acid and a tetradentate complexing agent. It forms stable 1:1 chelate complexes with cations having a charge number of at least +2, e.g. the "hard water forming" cations Ca2+ or Mg2+. α-ADA is distinguished from the isomeric β-alaninediacetic acid by better biodegradability and therefore improved environmental compatibility. Production of Trilon AS The patent literature on the industrial synthesis of Trilon AS describes the approaches for solving the key requirements of a manufacturing process that can be implemented on an industrial scale, characterized by Achieving the highest possible space-time yields Simple reaction control at relatively low pressures and temperatures Realization of continuous process options Achieving the lowest possible levels of impurities, particularly nitrilotriacetic acid, which is suspected of being carcinogenic Use of inexpensive raw materials, e.g. instead of pure L-alanine the raw mixture of Strecker synthesis from methanal, hydrogen cyanide and ammonia Avoidance of complex and yield-reducing isolation steps; instead, direct further use of the crude reaction solutions or precipitates in the following process step. An obvious synthesis route to α-alaninediacetic acid is from racemic α-DL-alanine, which provides racemic α-ADA by double cyanomethylation with methanal and hydrogen cyanide, hydrolysis of the intermediately formed diacetonitrile to the trisodium salt and subsequent acidification with mineral acids in a 97.4% overall yield.[4] In a later patent specification, however, only an overall yield of 77% and an NTA content of 0.1% is achieved with practically the same quantities of substances and under practically identical reaction conditions. MGDA Alanin This later patent specification also indicates a process route via alaninonitrile, which is obtained by Strecker synthesis from hydrogen cyanide, ammonia and methanal and converted to methylglycinonitrile-N,N-diacetonitrile by double cyanomethylation (step 1). The three nitrile groups are then hydrolyzed with sodium hydroxide to α-ADA (step 2). The total yield is given as 72%, the NTA content as 0.07%. MGDA Alaninonitril One variant of the reaction involves iminodiacetonitrile or iminodiacetic acid (step 1'), which reacts in a weakly acidic medium (pH 6) with hydrogen cyanide and ethanal to form methylglycinonitrile-N,N-diacetic acid, the nitrile group of which is hydrolyzed with sodium hydroxide to Trilon AS (step 2'). The reactant iminodiacetic acid is accessible at low cost by dehydrogenation of diethanolamine. Again, the total yield is given as 72%, the NTA content as 0.07%. A further variant is suitable for continuous production, in which ammonia, methanal and hydrogen cyanide react at pH 6 to form iminodiacetonitrile, which in a strongly acidic medium (pH 1.5) reacts with ethanal to produce trinitrile methylglycinonitrile-N,N-diacetonitrile in a very good yield of 92%. (step 1). MGDA Iminodiacetonitril Alkaline hydrolysis (step 2) results in a total yield of 85% Trilon AS with an NTA content of 0.08%. This process variant seems to fulfil the above-mentioned criteria best. A low by-product synthesis route for Trilon AS has recently been described, in which alanine is ethoxylated with ethylene oxide in an autoclave to form bis-hydroxyethylaminoalanine and then oxidized to α-ADA at 190 °C with Raney copper under pressure.[6] MGDA Ethoxylierung The yields are over 90% d.Th., the NTA contents below 1%. The process conditions make this variant rather less attractive. Properties of Trilon AS The commercially available Trilon AS (84% by weight) is a colourless, water-soluble solid whose aqueous solutions are rapidly and completely degraded even by non-adapted bacteria. Aquatic toxicity to fish, daphnia and algae is low.[7] Trilon AS is described as readily biodegradable (OECD 301C) and is eliminated to >90 % in wastewater treatment plants.[8] Trilon AS has not yet been detected in the discharge of municipal and industrial sewage treatment plants. In addition to their very good biodegradability, Trilon AS solutions are characterized by high chemical stability even at temperatures above 200 °C (under pressure) in a wide pH range between 2 and 14 as well as high complex stability compared to other complexing agents of the aminopolycarboxylate type. The complex formation constants of the biodegradable chelators α-ADA and IDS are in a range suitable for industrial use, but clearly below those of the previous standard EDTA. In solid preparations, Trilon AS is stable against oxidizing agents such as perborates and percarbonates, but not against oxidizing acids or sodium hypochlorite. Use of Trilon AS Like other complexing agents in the aminopolycarboxylic acid class, Trilon AS (α-ADA) finds due to its ability to form stable chelate complexes with polyvalent ions (in particular the water hardening agents Ca2+ and Mg2+, as well as transition and heavy metal ions such as Fe3+, Mn2+, Cu2+, etc.) use in water softening, in detergents and cleaning agents, in electroplating, cosmetics, paper and textile production. Due to its stability at high temperatures and pH values, α-ADA should be particularly suitable as a substitute for the phosphates banned in the EU from 2017, such as sodium tripolyphosphate (STPP)[12] in tabs for dishwashers. BASF SE is the most important manufacturer of α-ADA under the brand name Trilon AS, has large-scale plants in Ludwigshafen and Lima, Ohio, and is currently expanding its existing capacities with another large-scale plant at Evonik's site in Theodore, Alabama. Description of Trilon AS Trilon AS is a chelating agent that delivers a non-toxic, environmentally friendly alternative to phosphates and other strong chelates. Methylglycinediacetic acid (MGDA) is the active ingredient and exceeds alternative products, like citrates, at removing lime scale and tough stains. Efficiently dissolve inorganic deposits and scales that produce undesirable effects like striking and spotting in dish wash and hard surface applications or limit the performance of surfactants and other additives in cleaners and detergents. Trilon AS chelating agent improves cleaning performance in hard surface, automatic dishwasher and laundry operations. I&l customers can use lower concentrations, due to its low molecular weight, of this strong complexing agent in their cleaning formulations, making it more cost effective. This product is effective in both alkaline and acidic cleaners, and also demonstrates effective cleaning ability in a variety of applications, including general purpose cleaners, floor care products, warewashing detergents, disinfectants and sanitizers, laundry detergents, automatic dishwashers, vehicle wash aids, and hand cleansers. Trilon AS is extremely efficient in combating hard water and allowing for the best cleaning performance to shine through. In formulas with anionic surfactants, it is especially important to have an effective chelating agent like Trilon AS, particularly in hard water conditions. Other chelating agents just don’t perform as well, and without the addition of one at all, there is hardly any cleaning shown. The Trilon AS are very effective complexing agents for calcium in the alkaline pH range. This is an advantage in many detergent and cleaner applications. ➔ The Trilon AS are less likely to crystallise in the acidic pH range than other aminocarboxylic acids, and they are still capable of complexing iron ions effectively in the pH 2 – 3 range. Comparison with weak complexing agents: Weak complexing agents are incapable of reducing the concentration of free metal ions in aqueous systems to the same extent as the Trilon AS, and the result is that they are unable to prevent metal ions from playing a disruptive role in chemical processes. The Trilon AS are chemically very stable. The Trilon AS have been shown to be very stable compared to other organic complexing agents such as citric acid, tartaric acid and gluconates, especially at high temperatures. Whereas inorganic sequestring agents (eg. phosphates) may hydrolyse at high temperatures, Trilon AS are stable – even when heated to 200 °C under pressure. Trilon M Powder and Trilon M Granules begin to decompose at approx. 300 °C. The Trilon AS are resistant to strong acids and strong bases. They are gradually broken down by chromic acid, potassium permanganate and other strong oxidizing agents. Stability in the presence of hydrogen peroxide, percarbonate and perborate is sufficient for joint application. Nevertheless, we do not recommend combining Trilon AS and peroxides in liquid formulations. Sodium hypochlorite and other substances that release chlorine cause the Trilon AS to decompose. Alkaline earth and heavy metal complexes are broken down. ➔ Formulations that contain complexing agents have to remain chemically unchanged in storage and during transport in order to be able to unfold their full action. Many readily biodegradable complexing agents such as iminodisuccinates (IDS) and citrates are not sufficiently stable. The Trilon AS have excellent chemical stability under a wide range of conditions, and this ensures that formulations that contain Trilon AS remain effective over long periods. pH stability The Trilon AS are resistant to being broken down across the whole pH 2 – 14 range, even at elevated temperatures. For instance, formulations that contain Trilon AS and high concentrations of sodium hydroxide remain stable and do not precipitate. Other readily biodegradable complexing agents such as iminodisuccinate precipitate in alkaline media, and these weak complexing agents are then no longer able to keep metal ions in solution. The miscibility and stability of the Trilon AS are excellent, even in highly acidic solutions. Many complexing agents cannot be employed in acidic formulations because they precipitate in the form of their sparingly soluble free acids. The Trilon AS have the advantage that they remain soluble and chemically stable, even in the acidic pH range. ➔ The Trilon AS boost the performance of highly alkaline formulations. ➔ The Trilon AS can also be employed in acidic formulations. ➔ The Trilon AS do not decompose even at an extreme pH. Corrosion The Trilon AS stabilize polyvalent metal ions, which means that they can increase the rate at which metals dissolve. Nevertheless, with the exception of aluminium, an oxidizing agent such as air always has to be present for corrosion to take place. Unalloyed steel is prone to corrosion in media that contain air, but corrosion can be reduced substantially if the pH is in the alkaline range and can be eliminated almost completely if oxygen and other oxidizing agents are excluded. Steel cleaned with the Trilon AS in the slightly alkaline range, which is the optimum pH range for the Trilon AS, is much less prone to corrosion than if it is cleaned with acids. The only type of corrosion that has been observed with the Trilon AS is uniform corrosion: pitting or stress cracking have not been observed in media with a low chloride content. One of the advantages of the Trilon AS is that they can be supplied with a very low chloride content (< 20 mg/kg). The following information on materials is of a very general nature, because corrosion depends on many different factors such as exposure to air, galvanic corrosion caused by the presence of different metals and by the flow patterns of liquids. The compatibility of Trilon AS with different materials needs to be tested in each individual case. Austenitic stainless steels such as AISI/SAE 304, 316 Ti and 321 are very effective for vessels used to store and transport Trilon AS. The corrosion resistance of ferritic carbon steel such as ASTM A201 Grade B (European Material No. P265GH) is limited. A rate of corrosion of 0.01 mm/a has been measured at 50 °C and air exclusion. Crevice corrosion has also occasionally been observed on welded joints, and so we would not recommend storing the Trilon AS in vessels made from unalloyed carbon steel for any prolonged length of time. The rate of corrosion can be reduced by removing the air from the system. Aluminium and aluminium alloys such as AL 7075 T6 (European Material No. 3.4365) are not resistant to Trilon AS, because Trilon AS is alkaline and aluminium is quickly corroded by strong bases. Solutions that contain Trilon AS are much less corrosive to aluminium if their pH is adjusted to 5 – 7. The following points need to be taken into account when comparing the performance of the Trilon AS with weaker complexing agents. ➔ The quantity of complexing agent that is required to sequester a given concentration of calcium ions depends on the strength of the complexing agent. The Trilon AS have a more effective complexing action, and much smaller quantities are required to obtain the same effect as with IDS. ➔ The quantities of complexing agents that need to be applied also depend on their active content. The Trilon AS have a higher active content than many competitors’ products because they contain fewer by-products. Inhibiting calcium carbonate Phosphonates and water-soluble polymers are often used to prevent scale calcium carbonate from precipitating and forming scale. These substances act by temporarily delaying the onset of crystallisation. Chelating agents such as the Trilon AS act differently, because they prevent salts from precipitating and forming scale by sequestering the calcium ions. Scale can form if phosphonates or water-soluble polymers are used, depending on the concentrations of calcium ions and polymer or phosphonates, because the calcium ions do not form permanent bonds. ➔ The Trilon AS can be used to boost the action of polyacrylates and phosphonates in inhibiting scale formation. They can enhance the overall performance of scale inhibitor formulations. There is a need for phosphonates to be replaced in many applications because of issues concerning the effects of phosphorus compounds on aquatic life and water quality. Aminocarboxylates often perform better at a high pH, but phosphonates perform better at a low pH because they are more soluble than many aminocarboxylates. The solubility of the Trilon AS at a low pH is very good and they are quite capable of competing with phosphonates. The Trilon AS are an effective alternative to EDTA for removing calcium phosphate scale. The high performance of EDTA remains unsurpassed, but the performance of the Trilon AS is by far the best of all of the readily biodegradable complexing agents. Weak complexing agents such as iminodisuccinate (IDS), ethylenediaminedisuccinate (EDDS), hydroxyethyliminodiacetate (HEIDA) and citrate are completely ineffective for dissolving stubborn calcium phosphate scale. ➔ The Trilon AS are the best choice when it comes to finding a readily biodegradable complexing agent for dissolving calcium phosphate scale. Organic scale Calcium stearate and calcium oleate (lime soaps) Fatty acids and soaps also react with calcium ions to form sparingly soluble deposits in the kitchen, in the bathroom and on textiles. Lime, magnesium and heavy metals can form soaps that precipitate and give rise to spots and stains, dull surfaces, a rancid odour and poor wettability. They can also cause uneven dyeing, turbidity and changes in colour and cause rubber to perish. The Trilon AS are very effective for dissolving the scale formed by lime soaps and preventing scale from building up, and they are much more effective than weak complexing agents such as IDS or HEIDA. The Trilon AS can be used to stabilise bleach. They prevent hydrogen peroxide decomposing too quickly by sequestering iron, manganese and copper ions. The Trilon AS are an effective alternative to established bleach stabilisers such as EDTA, but the performance of EDTA is still unsurpassed. If local restrictions prevent EDTA from being used, the Trilon AS and Trilon P Liquid supplied by BASF are effective alternatives for stabilising bleach. Trilon AS is an inherently bioeliminable complexing agent that can also be used in combination with the Trilon AS to sequester iron, manganese and copper ions. We know of no ill effects that could have resulted from using the Trilon AS for the purpose for which they are intended and from processing them in accordance with current practice. According to the experience we have gained over many years and other information at our disposal, the Trilon AS do not exert any harmful effects on health, provided that they are used properly, due attention is given to the precautions necessary for handling chemicals, and the information and advice given in our Safety Data Sheets are observed. Storage Trilon AS should not be stored at temperatures below 0 °C, because this can cause them to precipitate. It can be reconstituted by heating it briefly to 40 – 50 °C and stirring. Trilon M Powder is hygroscopic, and so it should be kept in tightly sealed containers. The Trilon AS have a shelf life of one year in their tightly sealed original packaging. We would recommend storing Trilon AS in tanks made from AISI 316 Ti or AISI 321 stainless steel. Ecology and toxicology The Trilon AS have an excellent ecological and toxicological profile and there are no restrictions on their use in many applications. The active ingredient contained in the Trilon AS, MGDA, is classified as being readily biodegradable according to the OECD criteria. In these tests, the test substance is broken down by bacteria under standardised conditions. ➔ The Trilon AS are classified as being readily biodegradable. The products supplied by BASF conform to ecological and toxicological stringent standards in order to protect the environment. BASF has submitted the Trilon AS to a thorough programme of tests and possesses a very extensive collection of data on the Trilon AS. Trilon AS T is an aqueous solution of the trisodium salt of methylglycinediacetic acid (Na3MGDA). It finds application in detergents, cleaning, textiles, soap, metal plating, oil and gas, and water-softening products. Trilon AS is readily biodegradable. Trilon AS, methylglycinediacetic acid trisodium salt (MGDA-Na3) or trisodium α-DL-alanine diacetate (α-ADA), is the trisodium anion of N-(1-carboxyethyl)iminodiacetic acid and a tetradentate complexing agent. It forms stable 1:1 chelate complexes with cations having a charge number of at least +2, e.g. the "hard water forming" cations Ca2+ or Mg2+. α-ADA is distinguished from the isomeric β-alaninediacetic acid by better biodegradability and therefore improved environmental compatibility. Production of Trilon AS The patent literature on the industrial synthesis of Trilon AS describes the approaches for solving the key requirements of a manufacturing process that can be implemented on an industrial scale, characterized by Achieving the highest possible space-time yields Simple reaction control at relatively low pressures and temperatures Realization of continuous process options Achieving the lowest possible levels of impurities, particularly nitrilotriacetic acid, which is suspected of being carcinogenic Use of inexpensive raw materials, e.g. instead of pure L-alanine the raw mixture of Strecker synthesis from methanal, hydrogen cyanide and ammonia Avoidance of complex and yield-reducing isolation steps; instead, direct further use of the crude reaction solutions or precipitates in the following process step. An obvious synthesis route to α-alaninediacetic acid is from racemic α-DL-alanine, which provides racemic α-ADA by double cyanomethylation with methanal and hydrogen cyanide, hydrolysis of the intermediately formed diacetonitrile to the trisodium salt and subsequent acidification with mineral acids in a 97.4% overall yield.[4] In a later patent specification, however, only an overall yield of 77% and an NTA content of 0.1% is achieved with practically the same quantities of substances and under practically identical reaction conditions. MGDA Alanin This later patent specification also indicates a process route via alaninonitrile, which is obtained by Strecker synthesis from hydrogen cyanide, ammonia and methanal and converted to methylglycinonitrile-N,N-diacetonitrile by double cyanomethylation (step 1). The three nitrile groups are then hydrolyzed with sodium hydroxide to α-ADA (step 2). The total yield is given as 72%, the NTA content as 0.07%. MGDA Alaninonitril One variant of the reaction involves iminodiacetonitrile or iminodiacetic acid (step 1'), which reacts in a weakly acidic medium (pH 6) with hydrogen cyanide and ethanal to form methylglycinonitrile-N,N-diacetic acid, the nitrile group of which is hydrolyzed with sodium hydroxide to Trilon AS (step 2'). The reactant iminodiacetic acid is accessible at low cost by dehydrogenation of diethanolamine. Again, the total yield is given as 72%, the NTA content as 0.07%. A further variant is suitable for continuous production, in which ammonia, methanal and hydrogen cyanide react at pH 6 to form iminodiacetonitrile, which in a strongly acidic medium (pH 1.5) reacts with ethanal to produce trinitrile methylglycinonitrile-N,N-diacetonitrile in a very good yield of 92%. (step 1). MGDA Iminodiacetonitril Alkaline hydrolysis (step 2) results in a total yield of 85% Trilon AS with an NTA content of 0.08%. This process variant seems to fulfil the above-mentioned criteria best. A low by-product synthesis route for Trilon AS has recently been described, in which alanine is ethoxylated with ethylene oxide in an autoclave to form bis-hydroxyethylaminoalanine and then oxidized to α-ADA at 190 °C with Raney copper under pressure. BTC offers under the brand name Trilon AS a broad product range of high performance and innovative complexing agents, also known as chelating agents. Chelating agents are able to prevent the deleterious impact of calcification in detergents and cleaning agents. The chelating agents of the Trilon AS product range are used, besides others, to avoid the formation of poorly soluble precipitations, to prevent the undesirable decomposition of constituents of formulations, to prevent discolouration or rancidity. They bind and mask reliably the metal ions and guarantee smooth processing and efficient employment of water. The production of detergents and cleaners triggers a huge demand complexing agents which can be fulfilled with BTCs Trilon AS grades. Brands Trilon AS Properties of Trilon AS grades for the prevention of calcification in detergents and cleaning agents BTC’s Trilon AS chelating agents belong mainly to the class of amino carboxylates which are organic complexing agents. They are available in powder or in liquid form, or as granules; as pure acid version or salt version; in very high purity as high-quality grades for special applications Household and industrial cleaning formulations include chelating additives to soften hard water. Thus, the formation of lime scale, inorganic scale formation is prevented. Trilon AS grades form typically 1:1 complexes. The high stability of these compounds makes them ideal for many industrial processes. They show a very good solubilisation property of the formed complexes. Based on the used amino carboxylic acid the following organic chelating additives are available: Trilon AS B grades; ethylenediamine tetraacetic acid, or Na-salt (EDTA) Trilon AS M grades; methylglycine diacetic acid (MGDA) Trilon AS Ultimate grades; modified MGDA Trilon AS P grade (modified anionic polyamine) The Trilon AS P grade is a non-amino polycarboxylate. It provides outstanding chelating properties especially for chelating iron molecules in alkaline areas. Trilon AS M grades represent the newest generation of complexing agents. Based on methylglycine diacetic acid the product provides a very good chelating performance in addition with a readily biodegradability property. The excellent ecological and toxicological profile of Trilon AS M has been verified in various repeated studies. The Trilon AS M grades offer versatile synergistic properties like enhanced stain removal property; substitute for sodium tripolyphosphate. The strongly limited use of phosphates as a builder in detergents, especially in home care automatic dish washing formulations, triggers the need of phosphate-free alternatives. Trilon AS M Max grades provide extra performance like colour stability. Trilon AS M Max based now on renewable resources. Trilon AS M Max BioBased and Trilon AS M Max EcoBalanced. Thus sustainability of chelating agents are taken to the next level. Trilon AS M Max BioBased is produced from sugar-based Alanin, thus the content of bio-based carbon is measurable. Trilon AS M Max BioBased guarantees a bio-based Carbon Content of 43% with a total bio-based content of 32% (also considering other elements such as oxygen, nitrogen and hydrogen). Trilon AS M Max EcoBalanced, the first renewables-based Trilon AS M grade produced according to the biomass balance approach. This approach replaces fossil feedstock with renewable feedstock such as bio-naphtha or biogas at the very beginning of production. The renewable feedstock is then allocated to Trilon AS M Max EcoBalanced, using a TÜV Nord-certified method. This allows BASF to fully replace fossil feedstock by renewables, not only saving scarce fossil resources, but also reducing damaging greenhouse gas emissions. The Trilon AS M Max EcoBalanced is 100 percent renewables-based, thus helping to protect the environment and the climate without compromising on the high quality BASF customers expect. Trilon AS M Max EcoBalanced has now been awarded certification based on the global REDcert2 scheme. In 2019, BASF transferred certification of biomass balanced products to the new global REDcert2 scheme for the chemical industry. BASF has established a closed chain of custody for the biomass balance approach that extends from the renewable feedstock right through to the final product. Independent certification by TÜV Nord in compliance with the global REDcert2 scheme confirms to the customer that BASF has fully replaced the entire quantity of fossil feedstock required to make Trilon AS M Max EcoBalanced with renewables right from the start of the production process. Trilon AS Ultimate grades are modified MGDA grades. They show besides others improved anti glass corrosiveness. Applications of Trilon AS grades for the prevention of calcification in detergents and cleaning agents BTC’s Trilon AS grades are used in applications like formulations for automatic dish washing, either liquid or solid; chelate based and phosphate-free builder systems; laundry formulations; formulations for floor and hard surface cleaners, toilet cleaners and car cleaners. Further applications for our Trilon AS grades include industrial and institutional cleaners for the food and beverage industry; cleaners for the dairy industry; ware washing and professional car, truck and bus cleaning formulations.
TRILON M LIQUID
Trilon M Liquid Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) T is an aqueous solution of the trisodium salt of methylglycinediacetic acid (Na3MGDA). It finds application in detergents, cleaning, textiles, soap, metal plating, oil and gas, and water-softening products. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is readily biodegradable. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID), methylglycinediacetic acid trisodium salt (MGDA-Na3) or trisodium α-DL-alanine diacetate (α-ADA), is the trisodium anion of N-(1-carboxyethyl)iminodiacetic acid and a tetradentate complexing agent. It forms stable 1:1 chelate complexes with cations having a charge number of at least +2, e.g. the "hard water forming" cations Ca2+ or Mg2+. α-ADA is distinguished from the isomeric β-alaninediacetic acid by better biodegradability and therefore improved environmental compatibility. Production of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) The patent literature on the industrial synthesis of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) describes the approaches for solving the key requirements of a manufacturing process that can be implemented on an industrial scale, characterized by Achieving the highest possible space-time yields Simple reaction control at relatively low pressures and temperatures Realization of continuous process options Achieving the lowest possible levels of impurities, particularly nitrilotriacetic acid, which is suspected of being carcinogenic Use of inexpensive raw materials, e.g. instead of pure L-alanine the raw mixture of Strecker synthesis from methanal, hydrogen cyanide and ammonia Avoidance of complex and yield-reducing isolation steps; instead, direct further use of the crude reaction solutions or precipitates in the following process step. An obvious synthesis route to α-alaninediacetic acid is from racemic α-DL-alanine, which provides racemic α-ADA by double cyanomethylation with methanal and hydrogen cyanide, hydrolysis of the intermediately formed diacetonitrile to the trisodium salt and subsequent acidification with mineral acids in a 97.4% overall yield.[4] In a later patent specification, however, only an overall yield of 77% and an NTA content of 0.1% is achieved with practically the same quantities of substances and under practically identical reaction conditions. MGDA Alanin This later patent specification also indicates a process route via alaninonitrile, which is obtained by Strecker synthesis from hydrogen cyanide, ammonia and methanal and converted to methylglycinonitrile-N,N-diacetonitrile by double cyanomethylation (step 1). The three nitrile groups are then hydrolyzed with sodium hydroxide to α-ADA (step 2). The total yield is given as 72%, the NTA content as 0.07%. MGDA Alaninonitril One variant of the reaction involves iminodiacetonitrile or iminodiacetic acid (step 1'), which reacts in a weakly acidic medium (pH 6) with hydrogen cyanide and ethanal to form methylglycinonitrile-N,N-diacetic acid, the nitrile group of which is hydrolyzed with sodium hydroxide to Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) (step 2'). The reactant iminodiacetic acid is accessible at low cost by dehydrogenation of diethanolamine. Again, the total yield is given as 72%, the NTA content as 0.07%. A further variant is suitable for continuous production, in which ammonia, methanal and hydrogen cyanide react at pH 6 to form iminodiacetonitrile, which in a strongly acidic medium (pH 1.5) reacts with ethanal to produce trinitrile methylglycinonitrile-N,N-diacetonitrile in a very good yield of 92%. (step 1). MGDA Iminodiacetonitril Alkaline hydrolysis (step 2) results in a total yield of 85% Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) with an NTA content of 0.08%. This process variant seems to fulfil the above-mentioned criteria best. A low by-product synthesis route for Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) has recently been described, in which alanine is ethoxylated with ethylene oxide in an autoclave to form bis-hydroxyethylaminoalanine and then oxidized to α-ADA at 190 °C with Raney copper under pressure.[6] MGDA Ethoxylierung The yields are over 90% d.Th., the NTA contents below 1%. The process conditions make this variant rather less attractive. Properties of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) The commercially available Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) (84% by weight) is a colourless, water-soluble solid whose aqueous solutions are rapidly and completely degraded even by non-adapted bacteria. Aquatic toxicity to fish, daphnia and algae is low.[7] Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is described as readily biodegradable (OECD 301C) and is eliminated to >90 % in wastewater treatment plants.[8] Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) has not yet been detected in the discharge of municipal and industrial sewage treatment plants. In addition to their very good biodegradability, Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) solutions are characterized by high chemical stability even at temperatures above 200 °C (under pressure) in a wide pH range between 2 and 14 as well as high complex stability compared to other complexing agents of the aminopolycarboxylate type. The complex formation constants of the biodegradable chelators α-ADA and IDS are in a range suitable for industrial use, but clearly below those of the previous standard EDTA. In solid preparations, Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is stable against oxidizing agents such as perborates and percarbonates, but not against oxidizing acids or sodium hypochlorite. Use of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) Like other complexing agents in the aminopolycarboxylic acid class, Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) (α-ADA) finds due to its ability to form stable chelate complexes with polyvalent ions (in particular the water hardening agents Ca2+ and Mg2+, as well as transition and heavy metal ions such as Fe3+, Mn2+, Cu2+, etc.) use in water softening, in detergents and cleaning agents, in electroplating, cosmetics, paper and textile production. Due to its stability at high temperatures and pH values, α-ADA should be particularly suitable as a substitute for the phosphates banned in the EU from 2017, such as sodium tripolyphosphate (STPP)[12] in tabs for dishwashers. BASF SE is the most important manufacturer of α-ADA under the brand name Trilon M liquid (Trilon M sıvı, TRILON M LIQUID), has large-scale plants in Ludwigshafen and Lima, Ohio, and is currently expanding its existing capacities with another large-scale plant at Evonik's site in Theodore, Alabama. Description of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is a chelating agent that delivers a non-toxic, environmentally friendly alternative to phosphates and other strong chelates. Methylglycinediacetic acid (MGDA) is the active ingredient and exceeds alternative products, like citrates, at removing lime scale and tough stains. Efficiently dissolve inorganic deposits and scales that produce undesirable effects like striking and spotting in dish wash and hard surface applications or limit the performance of surfactants and other additives in cleaners and detergents. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) chelating agent improves cleaning performance in hard surface, automatic dishwasher and laundry operations. I&l customers can use lower concentrations, due to its low molecular weight, of this strong complexing agent in their cleaning formulations, making it more cost effective. This product is effective in both alkaline and acidic cleaners, and also demonstrates effective cleaning ability in a variety of applications, including general purpose cleaners, floor care products, warewashing detergents, disinfectants and sanitizers, laundry detergents, automatic dishwashers, vehicle wash aids, and hand cleansers. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is extremely efficient in combating hard water and allowing for the best cleaning performance to shine through. In formulas with anionic surfactants, it is especially important to have an effective chelating agent like Trilon M liquid (Trilon M sıvı, TRILON M LIQUID), particularly in hard water conditions. Other chelating agents just don’t perform as well, and without the addition of one at all, there is hardly any cleaning shown. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are very effective complexing agents for calcium in the alkaline pH range. This is an advantage in many detergent and cleaner applications. ➔ The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are less likely to crystallise in the acidic pH range than other aminocarboxylic acids, and they are still capable of complexing iron ions effectively in the pH 2 – 3 range. Comparison with weak complexing agents: Weak complexing agents are incapable of reducing the concentration of free metal ions in aqueous systems to the same extent as the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID), and the result is that they are unable to prevent metal ions from playing a disruptive role in chemical processes. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are chemically very stable. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) have been shown to be very stable compared to other organic complexing agents such as citric acid, tartaric acid and gluconates, especially at high temperatures. Whereas inorganic sequestring agents (eg. phosphates) may hydrolyse at high temperatures, Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are stable – even when heated to 200 °C under pressure. Trilon M Powder and Trilon M Granules begin to decompose at approx. 300 °C. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are resistant to strong acids and strong bases. They are gradually broken down by chromic acid, potassium permanganate and other strong oxidizing agents. Stability in the presence of hydrogen peroxide, percarbonate and perborate is sufficient for joint application. Nevertheless, we do not recommend combining Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) and peroxides in liquid formulations. Sodium hypochlorite and other substances that release chlorine cause the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) to decompose. Alkaline earth and heavy metal complexes are broken down. ➔ Formulations that contain complexing agents have to remain chemically unchanged in storage and during transport in order to be able to unfold their full action. Many readily biodegradable complexing agents such as iminodisuccinates (IDS) and citrates are not sufficiently stable. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) have excellent chemical stability under a wide range of conditions, and this ensures that formulations that contain Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) remain effective over long periods. pH stability The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are resistant to being broken down across the whole pH 2 – 14 range, even at elevated temperatures. For instance, formulations that contain Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) and high concentrations of sodium hydroxide remain stable and do not precipitate. Other readily biodegradable complexing agents such as iminodisuccinate precipitate in alkaline media, and these weak complexing agents are then no longer able to keep metal ions in solution. The miscibility and stability of the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are excellent, even in highly acidic solutions. Many complexing agents cannot be employed in acidic formulations because they precipitate in the form of their sparingly soluble free acids. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) have the advantage that they remain soluble and chemically stable, even in the acidic pH range. ➔ The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) boost the performance of highly alkaline formulations. ➔ The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) can also be employed in acidic formulations. ➔ The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) do not decompose even at an extreme pH. Corrosion The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) stabilize polyvalent metal ions, which means that they can increase the rate at which metals dissolve. Nevertheless, with the exception of aluminium, an oxidizing agent such as air always has to be present for corrosion to take place. Unalloyed steel is prone to corrosion in media that contain air, but corrosion can be reduced substantially if the pH is in the alkaline range and can be eliminated almost completely if oxygen and other oxidizing agents are excluded. Steel cleaned with the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) in the slightly alkaline range, which is the optimum pH range for the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID), is much less prone to corrosion than if it is cleaned with acids. The only type of corrosion that has been observed with the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is uniform corrosion: pitting or stress cracking have not been observed in media with a low chloride content. One of the advantages of the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is that they can be supplied with a very low chloride content (< 20 mg/kg). The following information on materials is of a very general nature, because corrosion depends on many different factors such as exposure to air, galvanic corrosion caused by the presence of different metals and by the flow patterns of liquids. The compatibility of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) with different materials needs to be tested in each individual case. Austenitic stainless steels such as AISI/SAE 304, 316 Ti and 321 are very effective for vessels used to store and transport Trilon M liquid (Trilon M sıvı, TRILON M LIQUID). The corrosion resistance of ferritic carbon steel such as ASTM A201 Grade B (European Material No. P265GH) is limited. A rate of corrosion of 0.01 mm/a has been measured at 50 °C and air exclusion. Crevice corrosion has also occasionally been observed on welded joints, and so we would not recommend storing the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) in vessels made from unalloyed carbon steel for any prolonged length of time. The rate of corrosion can be reduced by removing the air from the system. Aluminium and aluminium alloys such as AL 7075 T6 (European Material No. 3.4365) are not resistant to Trilon M liquid (Trilon M sıvı, TRILON M LIQUID), because Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is alkaline and aluminium is quickly corroded by strong bases. Solutions that contain Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are much less corrosive to aluminium if their pH is adjusted to 5 – 7. The following points need to be taken into account when comparing the performance of the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) with weaker complexing agents. ➔ The quantity of complexing agent that is required to sequester a given concentration of calcium ions depends on the strength of the complexing agent. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) have a more effective complexing action, and much smaller quantities are required to obtain the same effect as with IDS. ➔ The quantities of complexing agents that need to be applied also depend on their active content. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) have a higher active content than many competitors’ products because they contain fewer by-products. Inhibiting calcium carbonate Phosphonates and water-soluble polymers are often used to prevent scale calcium carbonate from precipitating and forming scale. These substances act by temporarily delaying the onset of crystallisation. Chelating agents such as the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) act differently, because they prevent salts from precipitating and forming scale by sequestering the calcium ions. Scale can form if phosphonates or water-soluble polymers are used, depending on the concentrations of calcium ions and polymer or phosphonates, because the calcium ions do not form permanent bonds. ➔ The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) can be used to boost the action of polyacrylates and phosphonates in inhibiting scale formation. They can enhance the overall performance of scale inhibitor formulations. There is a need for phosphonates to be replaced in many applications because of issues concerning the effects of phosphorus compounds on aquatic life and water quality. Aminocarboxylates often perform better at a high pH, but phosphonates perform better at a low pH because they are more soluble than many aminocarboxylates. The solubility of the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) at a low pH is very good and they are quite capable of competing with phosphonates. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are an effective alternative to EDTA for removing calcium phosphate scale. The high performance of EDTA remains unsurpassed, but the performance of the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is by far the best of all of the readily biodegradable complexing agents. Weak complexing agents such as iminodisuccinate (IDS), ethylenediaminedisuccinate (EDDS), hydroxyethyliminodiacetate (HEIDA) and citrate are completely ineffective for dissolving stubborn calcium phosphate scale. ➔ The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are the best choice when it comes to finding a readily biodegradable complexing agent for dissolving calcium phosphate scale. Organic scale Calcium stearate and calcium oleate (lime soaps) Fatty acids and soaps also react with calcium ions to form sparingly soluble deposits in the kitchen, in the bathroom and on textiles. Lime, magnesium and heavy metals can form soaps that precipitate and give rise to spots and stains, dull surfaces, a rancid odour and poor wettability. They can also cause uneven dyeing, turbidity and changes in colour and cause rubber to perish. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are very effective for dissolving the scale formed by lime soaps and preventing scale from building up, and they are much more effective than weak complexing agents such as IDS or HEIDA. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) can be used to stabilise bleach. They prevent hydrogen peroxide decomposing too quickly by sequestering iron, manganese and copper ions. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are an effective alternative to established bleach stabilisers such as EDTA, but the performance of EDTA is still unsurpassed. If local restrictions prevent EDTA from being used, the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) and Trilon P Liquid supplied by BASF are effective alternatives for stabilising bleach. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is an inherently bioeliminable complexing agent that can also be used in combination with the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) to sequester iron, manganese and copper ions. We know of no ill effects that could have resulted from using the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) for the purpose for which they are intended and from processing them in accordance with current practice. According to the experience we have gained over many years and other information at our disposal, the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) do not exert any harmful effects on health, provided that they are used properly, due attention is given to the precautions necessary for handling chemicals, and the information and advice given in our Safety Data Sheets are observed. Storage Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) should not be stored at temperatures below 0 °C, because this can cause them to precipitate. It can be reconstituted by heating it briefly to 40 – 50 °C and stirring. Trilon M Powder is hygroscopic, and so it should be kept in tightly sealed containers. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) have a shelf life of one year in their tightly sealed original packaging. We would recommend storing Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) in tanks made from AISI 316 Ti or AISI 321 stainless steel. Ecology and toxicology The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) have an excellent ecological and toxicological profile and there are no restrictions on their use in many applications. The active ingredient contained in the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID), MGDA, is classified as being readily biodegradable according to the OECD criteria. In these tests, the test substance is broken down by bacteria under standardised conditions. ➔ The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) are classified as being readily biodegradable. The products supplied by BASF conform to ecological and toxicological stringent standards in order to protect the environment. BASF has submitted the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) to a thorough programme of tests and possesses a very extensive collection of data on the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID). Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) T is an aqueous solution of the trisodium salt of methylglycinediacetic acid (Na3MGDA). It finds application in detergents, cleaning, textiles, soap, metal plating, oil and gas, and water-softening products. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) is readily biodegradable. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID), methylglycinediacetic acid trisodium salt (MGDA-Na3) or trisodium α-DL-alanine diacetate (α-ADA), is the trisodium anion of N-(1-carboxyethyl)iminodiacetic acid and a tetradentate complexing agent. It forms stable 1:1 chelate complexes with cations having a charge number of at least +2, e.g. the "hard water forming" cations Ca2+ or Mg2+. α-ADA is distinguished from the isomeric β-alaninediacetic acid by better biodegradability and therefore improved environmental compatibility. Production of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) The patent literature on the industrial synthesis of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) describes the approaches for solving the key requirements of a manufacturing process that can be implemented on an industrial scale, characterized by Achieving the highest possible space-time yields Simple reaction control at relatively low pressures and temperatures Realization of continuous process options Achieving the lowest possible levels of impurities, particularly nitrilotriacetic acid, which is suspected of being carcinogenic Use of inexpensive raw materials, e.g. instead of pure L-alanine the raw mixture of Strecker synthesis from methanal, hydrogen cyanide and ammonia Avoidance of complex and yield-reducing isolation steps; instead, direct further use of the crude reaction solutions or precipitates in the following process step. An obvious synthesis route to α-alaninediacetic acid is from racemic α-DL-alanine, which provides racemic α-ADA by double cyanomethylation with methanal and hydrogen cyanide, hydrolysis of the intermediately formed diacetonitrile to the trisodium salt and subsequent acidification with mineral acids in a 97.4% overall yield.[4] In a later patent specification, however, only an overall yield of 77% and an NTA content of 0.1% is achieved with practically the same quantities of substances and under practically identical reaction conditions. MGDA Alanin This later patent specification also indicates a process route via alaninonitrile, which is obtained by Strecker synthesis from hydrogen cyanide, ammonia and methanal and converted to methylglycinonitrile-N,N-diacetonitrile by double cyanomethylation (step 1). The three nitrile groups are then hydrolyzed with sodium hydroxide to α-ADA (step 2). The total yield is given as 72%, the NTA content as 0.07%. MGDA Alaninonitril One variant of the reaction involves iminodiacetonitrile or iminodiacetic acid (step 1'), which reacts in a weakly acidic medium (pH 6) with hydrogen cyanide and ethanal to form methylglycinonitrile-N,N-diacetic acid, the nitrile group of which is hydrolyzed with sodium hydroxide to Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) (step 2'). The reactant iminodiacetic acid is accessible at low cost by dehydrogenation of diethanolamine. Again, the total yield is given as 72%, the NTA content as 0.07%. A further variant is suitable for continuous production, in which ammonia, methanal and hydrogen cyanide react at pH 6 to form iminodiacetonitrile, which in a strongly acidic medium (pH 1.5) reacts with ethanal to produce trinitrile methylglycinonitrile-N,N-diacetonitrile in a very good yield of 92%. (step 1). MGDA Iminodiacetonitril Alkaline hydrolysis (step 2) results in a total yield of 85% Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) with an NTA content of 0.08%. This process variant seems to fulfil the above-mentioned criteria best. A low by-product synthesis route for Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) has recently been described, in which alanine is ethoxylated with ethylene oxide in an autoclave to form bis-hydroxyethylaminoalanine and then oxidized to α-ADA at 190 °C with Raney copper under pressure. BTC offers under the brand name Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) a broad product range of high performance and innovative complexing agents, also known as chelating agents. Chelating agents are able to prevent the deleterious impact of calcification in detergents and cleaning agents. The chelating agents of the Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) product range are used, besides others, to avoid the formation of poorly soluble precipitations, to prevent the undesirable decomposition of constituents of formulations, to prevent discolouration or rancidity. They bind and mask reliably the metal ions and guarantee smooth processing and efficient employment of water. The production of detergents and cleaners triggers a huge demand complexing agents which can be fulfilled with BTCs Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) grades. Brands Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) Properties of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) grades for the prevention of calcification in detergents and cleaning agents BTC’s Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) chelating agents belong mainly to the class of amino carboxylates which are organic complexing agents. They are available in powder or in liquid form, or as granules; as pure acid version or salt version; in very high purity as high-quality grades for special applications Household and industrial cleaning formulations include chelating additives to soften hard water. Thus, the formation of lime scale, inorganic scale formation is prevented. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) grades form typically 1:1 complexes. The high stability of these compounds makes them ideal for many industrial processes. They show a very good solubilisation property of the formed complexes. Based on the used amino carboxylic acid the following organic chelating additives are available: Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) B grades; ethylenediamine tetraacetic acid, or Na-salt (EDTA) Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M grades; methylglycine diacetic acid (MGDA) Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) Ultimate grades; modified MGDA Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) P grade (modified anionic polyamine) The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) P grade is a non-amino polycarboxylate. It provides outstanding chelating properties especially for chelating iron molecules in alkaline areas. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M grades represent the newest generation of complexing agents. Based on methylglycine diacetic acid the product provides a very good chelating performance in addition with a readily biodegradability property. The excellent ecological and toxicological profile of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M has been verified in various repeated studies. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M grades offer versatile synergistic properties like enhanced stain removal property; substitute for sodium tripolyphosphate. The strongly limited use of phosphates as a builder in detergents, especially in home care automatic dish washing formulations, triggers the need of phosphate-free alternatives. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max grades provide extra performance like colour stability. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max based now on renewable resources. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max BioBased and Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max EcoBalanced. Thus sustainability of chelating agents are taken to the next level. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max BioBased is produced from sugar-based Alanin, thus the content of bio-based carbon is measurable. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max BioBased guarantees a bio-based Carbon Content of 43% with a total bio-based content of 32% (also considering other elements such as oxygen, nitrogen and hydrogen). Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max EcoBalanced, the first renewables-based Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M grade produced according to the biomass balance approach. This approach replaces fossil feedstock with renewable feedstock such as bio-naphtha or biogas at the very beginning of production. The renewable feedstock is then allocated to Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max EcoBalanced, using a TÜV Nord-certified method. This allows BASF to fully replace fossil feedstock by renewables, not only saving scarce fossil resources, but also reducing damaging greenhouse gas emissions. The Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max EcoBalanced is 100 percent renewables-based, thus helping to protect the environment and the climate without compromising on the high quality BASF customers expect. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max EcoBalanced has now been awarded certification based on the global REDcert2 scheme. In 2019, BASF transferred certification of biomass balanced products to the new global REDcert2 scheme for the chemical industry. BASF has established a closed chain of custody for the biomass balance approach that extends from the renewable feedstock right through to the final product. Independent certification by TÜV Nord in compliance with the global REDcert2 scheme confirms to the customer that BASF has fully replaced the entire quantity of fossil feedstock required to make Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) M Max EcoBalanced with renewables right from the start of the production process. Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) Ultimate grades are modified MGDA grades. They show besides others improved anti glass corrosiveness. Applications of Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) grades for the prevention of calcification in detergents and cleaning agents BTC’s Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) grades are used in applications like formulations for automatic dish washing, either liquid or solid; chelate based and phosphate-free builder systems; laundry formulations; formulations for floor and hard surface cleaners, toilet cleaners and car cleaners. Further applications for our Trilon M liquid (Trilon M sıvı, TRILON M LIQUID) grades include industrial and institutional cleaners for the food and beverage industry; cleaners for the dairy industry; ware washing and professional car, truck and bus cleaning formulations.
TRIMELLITIC ANHYDRIDE (TMA)
2-Ethyl-2-(hydroxymethyl)-1,3-propanediol; TMP; Trimethylolpropane; Trimethylol propane; Propylidynetrimethanol; 1,1,1-Tris(hydroxymethyl)propane; Ethriol; Ethyltrimethylolmethane; Hexaglycerine; 2,2-Bis(hydroxymethyl)-1-butanol; Propylidintrimethanol (German); Propilidintrimetanol (Spanish); Propylidynetriméthanol (French); cas no: 77-99-6
TRIMER FATTY ACIDS
cas no 68937-90-6 Fatty acids, C18-unsatd., trimers; FATTY ACIDS(C18), UNSATURATED, TRIMERS;
TRIMETHYLOL PROPANE
Trimethylolpropane trioleate; 2-ethyl-2-[[(1-oxooleyl)oxy]methyl]-1,3-propanediyl dioleate cas no: 57675-44-2
TRIMETHYLOL PROPANE TRIOLEATE
TMPTA; Trimethylolpropane triacrylate;1,1,1-Trimethylolpropane triacrylate; 2-Ethyl-2-(((1-oxoallyl)oxy)methyl)-1,3-propanediyl diacrylate; 2-Propenoic acid 2-ethyl-2-(((1-oxo-2-propenyl)oxy)methyl)-1,3-propanediyl ester; Other RN: 100465-65-4, 116335-81-0, 117079-82-0, 159251-16-8, 162193-38-6, 199685-35-3, 255831-11-9, 352031-28-8, 58998-51-9, 72269-91-1 cas no: 15625-89-5
TRIMETHYLOLPROPANE
Hexaglycerine; Hexaglycerol; TRIMETHYLOLPROPANE, N° CAS : 77-99-6, Nom INCI : TRIMETHYLOLPROPANE, Nom chimique : 2-Ethyl-2-Hydroxymethyl-1,3-Propanediol; 1,1,1-Tris(hydroxymethyl)propane; propylidynetrimethanol; TMP, N° EINECS/ELINCS : 201-074-9, Ses fonctions (INCI) : Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau, Solvant : Dissout d'autres substances. 1,1,1-TRIMETHYLOLPROPANE; 1,3-PROPANEDIOL, 2-ETHYL-2-(HYDROXYMETHYL)-; ,2-BIS (HYDROXYMETHYL)-1-BUTANOL; 2-ETHYL-2-(HYDROXYMETHYL) ; PROPANEDIOL; ETTRIOL; HEXAGLYCERINE; PROPANE, 1,1,1-TRIS(HYDROXYMETHYL)-; TRI(HYDROXYMETHYL)-1,1,1 PROPANE; TRIMETHYLOLPROPANE; Noms anglais :ETHRIOL; Utilisation et sources d'émission: Fabrication de résines, fabrication de vernis; 1,1,1-trimethylolpropane; 1,1,1-Tris(hydroxymethyl)propane; Propylidynetrimethanol; CAS names: 1,3-Propanediol, 2-ethyl-2-(hydroxymethyl)-. IUPAC names: 1,1,1-Trimethylolpropane (TMP); 2-(hydroxymethyl)-2-ethylpropane-1,3-diol; 2-ethyl-2-(hydroxymethyl)propane-1,3-diol; TMP; Trimethylol propane; TRIMETHYLOLPROPAN; TRIMETHYLOLPROPANE; Trimethylpropane; Trimethylpropane (CAS 77-99-6). Trade names: 1,1,1-Tri(hydroxymethyl)propane; 1,1,1-TRIMETHYLOLPROPAN; 1,1,1-TRIS(HYDROXYMETHYL)PROPAN; 1,3-Propanediol, 2-ethyl-2-(hydroxymethyl)- (8CI, 9CI); 2,2-Bis(hydroxymethyl)-1-butanol; 2,2-DIHYDROXYMETHYLBUTANOL-1; 2-Ethyl-2-(hydroxymethyl)-1,3-propanediol; 2-ETHYL-2-(HYDROXYMETHYL)PROPAN-1.3-DIOL; 2-Ethyl-2-(hydroxymethyl)propanediol; Ethriol; ETHYLTRIMETHYLOLMETHAN; Ethyltrimethylolmethane; Ettriol; HEXAGLYCERIN; Propane, 1,1,1-tris(hydroxymethyl)-; PROPYL-1,1,1-TRIS(METHANOL); RC Crosslinker TR; TMP (alcohol);Trimethylolpropane (TMP); TRIS(HYDROXYMETHYL)PROPAN; Tris(hydroxymethyl)propane; 1,1,1-Trimethylolpropane 1,3-Propanediol, 2-ethyl-2-(hydroxymethyl)- [ACD/Index Name] 1698309 [Beilstein] 201-074-9 [EINECS] 2-Ethyl-2-(hydroxymethyl)-1,3-propandiol [German] 2-Ethyl-2-(hydroxymethyl)-1,3-propanediol 2-Éthyl-2-(hydroxyméthyl)-1,3-propanediol [French] 2-Ethyl-2-hydroxymethyl-1,3-propanediol 77-99-6 [RN] MFCD00004694 [MDL number] Q1X2&1Q1Q [WLN] Trimethylolpropane TY6470000 1,1,1-Tri(hydroxymethyl)propane 1,1,1-Tri(hydroxymethyl)propane; 1,1,1-Trimethylolpropane; 1,1,1-Tris(hydroxymethyl)propane; 2,2-Bis(hydroxymethyl)-1-butanol; 2-(Hydroxymethyl)-2-ethyl-1,3-propanediol 1,1,1-trimethylolpropane 97% 1,1,1-Trimethylolpropane, propoxylated 1,1,1-tris(hydroxymethyl)propane (tmp) 1,1,1-tris(hydroxymethyl)propane 98% 101377-62-2 [RN] 2-(hydroxymethyl)-2-ethylpropane-1,3-diol 2,2-Bis(hydroxymethyl)-1-butanol 2-ethyl-2-(hydroxymethyl) 1,3-propanediol 2-ethyl-2-(hydroxymethyl)-1,3-propanediol, 98% 2-Ethyl-2-(hydroxymethyl)propanediol 2-Ethyl-2-hydroxymethyl-propane-1,3-diol 2-ethyl-2-methylol-propane-1,3-diol 4-01-00-02786 (Beilstein Handbook Reference) [Beilstein] 824-11-3 [RN] 9D2 Butan-1-ol, 2,2-bis(hydroxymethyl)- butane-1,1,1-triol Butanol, 2,2-bis(hydroxymethyl)- c6h14o3 EINECS 201-074-9 Ethriol ethyl-2-(hydroxymethyl)-1,3-propanediol Ethyltrimethylolmethane Etriol Ettriol Hexaglycerine Hexaglycerol Methanol, (propanetriyl)tris- METHANOL, [(1,1-DIMETHYLPROPYL)DIOXY]- MFCD00152500 Oprea1_508416 Propane, 1,1,1-tris(hydroxymethyl)- Propylidynetrimethanol TMP Tri(hydroxymethyl)propane Trimethylol propane trimethylolpropane, ??? Tris(hydroxymethyl)propane