Другие секторы

SODIUM ERYTHORBATE
SYNONYMS Isoascorbic acid, sodium salt; D-Araboascorbic acid, monosodium salt; D-erythro-Hex-2-enonic acid, gamma-lactone, monosodium salt; Erythorbic Acid Monosodium Salt; Monosodium erythorbate; Neo-cebitate; 2,3-Didehydro-3-O-sodio- D-erythro- hexono-1,4-Lactone; 2,3-Didehidro-3-O-sodio-D- eritro-hexono- 1,4-Lactona: 2,3-Didéhydro-3-O-sodio-D- érythro-hexono-1,4-Lactone; Sodium D-araboascorbate; sodium D-isoascorbate; CAS NO. 6381-77-7
SODIUM ERYTHORBATE ( Érythorbate de sodium ) Sodium isoascorbate
ETHYL 4-HYDROXYBENZOATE SODIUM SALT ETHYL-4-HYDROXYBENZOIC ACID SODIUM SALT ETHYL-P-HYDROXYBENZOATE SODIUM SALT p-Hydroxybenzoic acid ethyl ester sodium salt sodium 4-ethoxycarbonylphenoxide SODIUM ETHYL 4-HYDROXYBENZOATE SODIUM ETHYL-P-HYDROXYBENZOATE benzoicacid,4-hydroxy-,ethylester,sodiumsalt Benzoicacid,p-hydroxy-,ethylester,sodiumderiv. 4-Hydroxybenzoic acid ethyl ester sodium salt SODIUM ETHYLPARABEN EthylParabenSodium ETHYL4-HYDROBENZOATESODIUMSALT BENZOICACID,PARA-HYDROXY-,ETHYLESTER,SODIUMSALT 4-(Sodiooxy)benzoic acid ethyl ester 4-Sodiooxybenzoic acid ethyl ester CAS :35285-68-8
SODIUM ETHYL PARABENE
Chemical name Sodium Ethyl p-Hydroxybenzoate 35285-68-8Sodium Ethylparaben Sodium Ethyl paraben is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. Nipagin A Sodium is suitable to preserve both rinse- off and leave- on formulations. Nipagin A Sodium is effective against bacteria, molds and yeast. EC / List no.: 252-487-6 CAS no.: 35285-68-8 Mol. formula: C9H9NaO3 Sodium Ethyl P-hydroxybenzoate Odor: characteristic Use: Sodium ethyl p-hydroxybenzoate is widely used in food and pharmaceutical and textile industry for its antiseptic property. Sodium Ethylparaben is also can be used in industries such as cosmetics, feed and so on. Synonyms: benzoic acid, 4-hydroxy-, ethyl ester, sodium salt benzoic acid, p-hydroxy-, ethyl ester, sodium deriv. ethyl p-hydroxybenzoate, sodium salt ethylparaben sodium ethylparaben, sodium salt 4- hydroxybenzoic acid, ethyl ester, sodium salt sodium 4-ethoxycarbonyl phenoxide sodium 4-ethoxycarbonylphenoxide sodium ethyl 4-hydroxybenzoate sodium ethyl p-hydroxybenzoate sodium ethyl paraben sodium;4-ethoxycarbonylphenolate Synonym: Ethyl 4-hydroxybenzoate sodium salt, p-Hydroxybenzoic acid ethyl ester sodium salt, Ethylparaben sodium salt Sodium Ethyl paraben is a Sodium salt of ethylparaben Sodium Ethylparaben uses and applications include: Antimicrobial, preservative, bactericide, fungicide for foods, beer, pharmaceuticals; preservative in cosmetics Sodium Ethylparaben is a water-soluble antiseptic mainly used as a safe, high efficiency, broad-spectrum antibiotic for cosmetics. Sodium Ethyl paraben is in the paraben family of preservatives used by the food, pharmaceutical, and personal care product industries. INCI designation Sodium Ethylparaben. Product properties *) Appearance: White powder Chemical and physical data pH 9.5- 10.5 Water content: max. 5.0 % Assay by non aqueous titration: 99 - 102 % Uses: Sodium Ethyl paraben is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. Sodium Ethyl paraben is suitable to preserve both rinse- off and leave- on formulations. Sodium Ethylparaben is effective against bacteria, molds and yeast. The recommended use level of Nipagin A Sodium to preserve most product types is normally in the range of 0.1- 0.3 % based on the total weight of the finished product. The Paraben esters have many advantages as preservatives,like broad spectrum antimicrobial activity, effective at low use concentrations, compatible with a wide range of cosmetic ingredients, colourless, odourless, well documented toxicological and dermatological acceptability based on human experience (used in cosmetics, food and pharmaceuticals since 1930ies), p-Hydroxybenzoic Acid and a number of its esters occur naturally in a variety of plants and animals, stable and effective over a wide pH- range, etc. The Sodium Parabens, like Sodium Ethylparaben have several additional advantages: - Nipagin A Sodium is highly soluble in cold water for ease of addition. - No heating stage required for incorporation, thus saving energy and plant occupancy. - Increased antimicrobial activity at alkaline pH. Applications: Sodium Ethylparaben is designed for preservation of a wide range of cosmetics and toiletries. Sodium Ethylparaben is suitable to preserve both rinse- off and leave- on formulations. Formulations which are prone to bacteria contamination an additional antibacterial preservative, like Nipaguard DMDMH might be necessary to add as Sodium Ethylparaben provides a higher efficacy against fungi than against bacteria. Solubility Water up to 50 % Sodium Ethylparaben SINGLE PRESERVATIVE Sodium Ethylparaben is a highly water-soluble short-chain paraben in sodium salt form. The major benefit offered by the sodium salts is their high solubility in cold water, thereby enabling the introduction of parabens without heating or pre-dissolving in solvents. Benefits Sodium Ethylparaben has high solubility in cold water Sodium Ethylparaben performs broad spectrum of activity against bacteria and fungi Sodium Ethylparaben shows effectiveness at low concentrations Sodium Ethylparaben has stability over a broad pH-range Water-soluble Biodegradability at environmental concentrations Global acceptance in personal care applications Ethylparaben Sodium, also known as Ethyl paraben or Ethyl parahydroxybenzoate, can be used as a food additive and as an antifungal preservative Incorporation: Sodium Ethylparaben is highly soluble in water and so easily incorporated into cosmetic formulations. It is important to note that, whilst the aqueous solubility in alkaline solution is high, if the pH of the formulated product is acidic the sodium salt reverts to the ester and the low solubility is regained. Microbial activity: Sodium Ethylparaben has a broad spectrum of activity which includes the following common spoilage organisms. Microorganisms MIC level (%) Gram-negative bacteria Pseudomonas aeruginosa 0.113 Escherichia coli 0.056 Klebsiella pneumoniae 0.056 Serratia marcescens 0.056 Proteus vulgaris 0.068 Salmonella enteritidis 0.046 Gram-positive bacteria Staphylococcus aureus 0.079 Streptococcus haemolyticus 0.068 Bacillus cereus 0.028 Yeasts Candida albicans 0.079 Saccharomyces cerevisiae 0.056 Molds Aspergillus niger 0.045 Technical Data Appearance :Powder Active Substance (ca.): 100% INCI-Name: Sodium Ethylparaben Applications Aqueous concentrates may be prepared up to 40% in strength. The concentrate may then be added to the process, preferably slowly and with rapid mixing. Due to the high pH of aqueous solutions of sodium parabens, the pH of the final product requires adjustment. The aqueous solution should be used within a short time of preparation as prolonged storage will result in alkaline hydrolysis of the esters. It is important to note that, at the target pH of the formulation, the parabens will exist as the free esters and not as salts and, therefore, the solubility will also be that of the free esters. Use of the sodium salts will facilitate introduction of the parabens; it will not allow higher concentrations to be used compared with the free esters. pH stability: Sodium Ethylparaben remains fully stable over a wide pH range from 3.0- 11.0. Aqueous solutions of Nipagin A Sodium are not long- term stable at alkaline pH. Temperature stability The recommended maximum handling temperature is 80°C. Storage instructions Sodium Ethylparaben is stable in sealed original containers. Further information on handling, storage and dispatch is given in the EC safety data sheet. Sodium Ethylparaben is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. It is suitable to preserve both rinse- off and leave- on formulations. This product is highly soluble in cold water, which adds to its ease of addition to formulations. Sodium Ethylparaben. Sodium Ethyl paraben provides a broad spectrum of activity against bacteria & fungi. Sodium Ethyl paraben is a short-chain paraben in sodium salt form. Sodium Ethylparaben offers high solubility in cold water, low order of toxicity and stability over a broad pH-range. Sodium Ethylparaben exhibits effectiveness at low concentrations. Sodium Ethylparaben shows good biodegradability at environmental concentrations. Sodium Ethylparaben is used in all kinds of personal care products. Parabene Product description Parabens - esters of the para-hydroxybenzoic acid, are used as preservatives for pharmaceuticals, cosmetics as well as food applications due to their effective antibacterial and fungicidal properties. The grades comply to different pharmaceutical standards as EP, BP or USP. More products available upon request. INCI CAS Methyl Paraben 99-76-3 Sodium Methyl Paraben 5026-62-0 Propyl Paraben 94-13-3 Sodium Propyl Paraben 35285-69-9 Ethyl Paraben 120-47-8 Sodium Ethyl Paraben 35285-68-8 Butyl Paraben 94-26-8 Preservative for the cosmetic industry. Sodium Ethyl p-Hydroxybenzoate, designed for preservation of a wide range of cosmetics and toiletries. Sodium Ethyl Paraben is suitable to preserve both rinse- off and leave- on formulations. Formulations which are prone to bacteria contamination an additional antibacterial preservative might be necessary to add as it provides a higher efficacy against fungi than against bacteria. Sodium Ethyl Paraben is broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. Sodium Ethyl Paraben is suitable to preserve both rinse- off and leave- on formulations. Sodium Ethyl Paraben is effective against bacteria, molds and yeast. Sodium Ethyl Paraben's usage level to preserve most product types is normally in the range of 0.1- 0.3 % based on the total weight of the finished product. Sodium Ethyl Paraben is soluble in cold water for ease; No heating stage required for incorporation, thus saving energy and plant occupancy; Increased antimicrobial activity at alkaline pH.pH stability; remains fully stable over a wide pH range from 3.0- 11.0. Aqueous solutions are not long- term stable at alkaline pH.max. temperature 80°C. This substance is one of the parabens family. Parabens are esters formed by p-hydroxybenzoic acid and an alcohol. They are largely used as biocides in cosmetics and toiletries, medicaments, or food. They have synergistic power with biocides. Parabens can induce allergic contact dermatitis, mainly in chronic dermatitis and wounded skin. • p-Hydroxybenzoic acid ethyl ester sodium salt • SODIUM ETHYL-P-HYDROXYBENZOATE • SODIUM ETHYL 4-HYDROXYBENZOATE • sodium 4-ethoxycarbonylphenoxide • benzoicacid,4-hydroxy-,ethylester,sodiumsalt • Benzoicacid,p-hydroxy-,ethylester,sodiumderiv. • ETHYL-P-HYDROXYBENZOATE SODIUM SALT • ETHYL-4-HYDROXYBENZOIC ACID SODIUM SALT • ETHYL 4-HYDROXYBENZOATE SODIUM SALT • 4-Hydroxybenzoic acid ethyl ester sodium salt • SODIUM ETHYLPARABEN • EthylParabenSodium • ETHYL4-HYDROBENZOATESODIUMSALT • BENZOICACID,PARA-HYDROXY-,ETHYLESTER,SODIUMSALT • 4-(Sodiooxy)benzoic acid ethyl ester • 4-Sodiooxybenzoic acid ethyl ester • p-Hydroxybenzoic acid ethyl ester sodium salt,sodium salt • Sodium 4-(ethoxycarbonyl)phenolate • Benzoic acid,4-hydroxy-, ethyl ester, sodiuM salt (1:1) • Sodium Ethyl-p-hydroxyl Benzoate • 35285-68-8 • Sodium 4-(ethoxycarbonyl) • p-Hydroxybenzoic acid ethyl ester sodium salt fandachem • odium 4-(ethoxycarbonyl)phenolate • 35285-68-8 • C9H9O3Na • Benzoic acid Series • Aromatic Esters Ethyl Paraben Sodium - Names and Identifiers Name p-Hydroxybenzoic acid ethyl ester sodium salt,sodium salt Synonyms p-Hydroxybenzoic acid ethyl ester sodium salt SODIUM ETHYL-P-HYDROXYBENZOATE SODIUM ETHYL 4-HYDROXYBENZOATE sodium 4-ethoxycarbonylphenoxide benzoicacid,4-hydroxy-,ethylester,sodiumsalt Benzoicacid,p-hydroxy-,ethylester,sodiumderiv. ETHYL-P-HYDROXYBENZOATE SODIUM SALT ETHYL-4-HYDROXYBENZOIC ACID SODIUM SALT sodium salt Ethyl 4-hydroxybenzoate,sodium salt Sodium Ethylparaben Ethyl Paraben Sodium sodium 4-(ethoxycarbonyl)phenolate benzoic acid, 4-hydroxy-, ethyl ester, sodium salt (1:1) Ethyl p-hydroxybenzoate sodium Parabens are a family of related ingredients commonly used as preservatives in cosmetics and personal care products. They help prevent the growth of harmful bacteria and mold, protecting both products and consumers. Parabens are highly effective and widely used preservatives that enhance the shelf life and safety of products including all types of cosmetics, as well as foods and drugs, and protect the families who trust and enjoy them. The most commonly used parabens in cosmetics are methylparaben, ethylparaben, propylparaben, and butylparaben. Paraben preservatives all share para-hydroxybenzoic acid, or PHBA, as a common chemical structure. PHBA occurs naturally in many fruits and vegetables. The parabens used in cosmetics are identical to those found in nature, and are quickly eliminated by the body. Any product that contains water is susceptible to being spoiled by the growth of fungi or bacteria, which could cause problems such as discoloration, malodor, or breakdown of the product. Under certain conditions, an inadequately preserved product can become contaminated, allowing harmful levels of microorganisms to grow. Parabens are highly effective preservatives that protect products against such changes, thus enhancing the shelf life and safety of products, and have been used safely for decades. Ethylparaben, also known as e-214 or aseptin a, belongs to the class of organic compounds known as p-hydroxybenzoic acid alkyl esters. These are aromatic compounds containing a benzoic acid, which is esterified with an alkyl group and para-substituted with a hydroxyl group. It is used as an antifungal preservative. Sodium ethyl para-hydroxybenzoate, the sodium salt of ethylparaben, has the same uses and is given the E number E215. Ethylparaben is an extremely weak basic (essentially neutral) compound (based on its pKa). Its formula is HO-C6H4-CO-O-CH2CH3. Ethylparaben is a mild and phenolic tasting compound. Outside of the human body, ethylparaben has been detected, but not quantified in, alcoholic beverages. This could make ethylparaben a potential biomarker for the consumption of these foods. Ethylparaben (ethyl para-hydroxybenzoate) is the ethyl ester of p-hydroxybenzoic acid. Ethylparaben is a potentially toxic compound. As a food additive, it has E number E214. This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as guaranteeing specific properties of the products described on their suitability for a particular application. Any existing industrial property rights must be observed. The quality of our products is guaranteed under our General Conditions of Sale.
SODIUM ETHYL P-HYDROXYBENZOATE (SODIUM ETHYL PARABEN)
Sodium 2-ethylhexyl sulfate; 2-Ethylhexylsulfate, sodium salt; ALKOHOLSULFAT, NA-SALZ I-C8; Sodium (2-ethylhexyl) alcohol sulfate; sodium (2-ethylhexyl) sulfate; Sodium 2-ethylhexyl sulfate; SODIUM ETHYLHEXYL SULFATE, N° CAS : 126-92-1, Nom INCI : SODIUM ETHYLHEXYL SULFATE. Nom chimique : Sodium etasulfate. N° EINECS/ELINCS : 204-812-8. Classification : Sulfate Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Hydrotrope : Augmente la solubilité d'une substance qui est peu soluble dans l'eau. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Ethalsulfate de sodium; ETHALSULFATE SODIQUE; ETHASULFATE SODIUM; ETHYL-2 HEXYLSULFATE DE SODIUM. Noms anglais : 2-ETHYL-1-HEXANOL SODIUM SULFATE ; 2-ETHYLHEXYL SODIUM SULFATE; SODIUM 2-ETHYLHEXYL SULFATE; SODIUM ETASULFATE; SODIUM ETHASULFATE; SULFURIC ACID, MONO(2-ETHYLHEXYL) ESTER, SODIUM SALT; Sodium etasulfate. CAS names: Sulfuric acid, mono(2-ethylhexyl) ester, sodium salt (1:1). : 2-ethylhexyl hydrogen sulfate; 2-ethylhexyl hydrogen sulfate; sodium; 2-Ethylhexylsulfate, sodium salt; ALKOHOLSULFAT, NA-SALZ I-C8; Sodium (2-ethylhexyl) alcohol sulfate; sodium (2-ethylhexyl) sulfate; Sodium 2-ethylhexyl sulfate; sodium etasulphate; sodium ethasulfate; Sodium-2-ethylhexyl sulphate; Sodium-2-ethylhexylsulphate; sodium;2-ethylhexyl sulfate; Sulfuric acid,mono(2-ethylhexyl)ester,sodium salt; 126-92-1 [RN]; 12838560LI 1487; 204-812-8 [EINECS]; 2-Ethylhexyl sulfate sodium salt; 5177087; étasulfate de sodium ; etasulfato de sodio [Spanish] ; MFCD00042047 [MDL number]; MP0700000; natrii etasulfas [Latin] ; Natrium-2-ethylhexylsulfat [German] ; Sodium 2-ethylhexyl sulfate; sodium etasulfate; sodium ethasulfate; Sulfate de sodium et de 2-éthylhexyle [French] ; sulfuric acid, 2-ethylhexyl ester, sodium salt; Sulfuric acid, 2-ethylhexyl ester, sodium salt (1:1); tergemist; UNII:12838560LI; натрия этасульфат [Russian] ; إيتاسولفات صوديوم [Arabic]; 依他硫酸钠 [Chinese]; 11099-08-4 secondary RN [RN] ; 1-Hexanol, 2-ethyl-, hydrogen sulfate, sodium salt; 1-Hexanol, 2-ethyl-, sulfate, sodium salt; 2-Ethyl-1-hexanol hydrogen sulfate sodium salt; 2-Ethyl-1-hexanol sodium sulfate; 2-ethyl-1-hexanol sulfate sodium salt; 2-ethylhexyl hydroxysulfonate, sodium salt; 2-Ethylhexyl sodium sulfate; 2-Ethylhexylsiran sodny [Czech]; 2-Ethylhexylsulfate sodium; 2-Ethylhexylsulphate,sodium salt 75037-31-9 secondary RN [RN]; ammonium 2-ethylhexyl sulphate; Avirol SA 4106; Carsonol SHS; emcol d 5-10; emersal 6465; Etasulfate de sodium [French]; Etasulfato sodico [Spanish] ; Ethasulfate sodium; Hexanol, 2-ethyl-, hydrogen sulfate, sodium salt; Lugalvan TC-EHS; Lutensit TC-EHS; Mono(2-ethylhexyl) sulfate sodium salt; mono(2-ethylhexyl)sulfate sodium salt ; Newcol 1000SN; nia proof 08; Niaproof ; Niaproof 08; Nissan Sintrex EHR; pentrone on; propaste 6708; Rewopol NEHS 40; Rhodapon BOS; Sinolin SO 35; Sintrex EHR; sipex bos ;Sodium (2-Ethylhexyl)Alcohol Sulfate; sodium 2-ethylhexyl sulphate; Sodium Ethylhexyl Sulfate; Sodium mono(2-ethylhexyl) sulfate; Sodium octyl sulfate, iso-; Sodium(2-ethylhexyl)alcohol sulfate ; sodium; sulfuric acid 2-ethylhexyl ester; sodium-2-ethylhexyl sulfate; sodium2-ethylhexylsulfate; sodiumisooctylsulfate; Sole Tege TS 25; Sulfuric Acid Mono(2-ethylhexyl) Ester Sodium Salt ; Sulfuric acid, mono(2-ethylhexyl) ester, sodium salt; Supralate SP; Tergimist; tergitol 08; Tergitol anionic 08; Tergitol-8; Tergitol-8|Niaproof-8|Sodium 2-ethylhexyl sulfate; Texapon 842; Texapon 890; Witcolate D 5-10. Sodium 2-ethylhexyl sulfate is a low-foaming anionic surfactant with excellent wetting properties and outstanding stability in highly electrolyte, alkaline and acidic systems. It is a profound hydrotropic and wetting agent suitable for use in the production of liquid detergents for household and industrial use such as hard-surface cleaners and alkaline and acid metal degreasers. Owing to its wetting and penetrating properties Sodium 2-ethylhexyl sulfate is used as a mercerizing agent in textile industry, in metal galvanization, pickling and brightening, in lye washing and peeling solutions for fruits and vegetables, in fountain solutions for offset printing, wallpaper removal solutions etc. Sodium 2-ethylhexyl sulfate uses and applications include: Wetting agent for electroplating baths, alkaline textile processing aids, industrial cleaners; coemulsifier for polymerization; viscous control in adhesives; food packaging adhesives; in paperpaperboard in contact with aqueousfatty foods; surfactant, detergent, wetting agent, emulsifier, penetrant, stabilizer for cosmetics, pharmaceuticals, textiles, household and industrial cleaners, metal cleaning, paints, plastics, rubber, food packaging and processing, adhesives; washinglye peeling of fruits and vegetables. product carries excellent wetting, spreading and hydrotropic proterties. This material can tolorate alkanline condition. Sodium Ethylhexyl Sulfate is mainly applied as wetting agent in alkaline solutions such as in the textile industry. Sodium Ethylhexyl Sulfate can also be added to the aerosol fulmulated product as the spreading agent. Also the material can be used as the hydrotropic agent.
SODIUM ETHYLHEXYL SULFATE ( ETHYL-2 HEXYLSULFATE DE SODIUM) Sulfate de sodium et de 2-éthylhexyle
cas no 120-47-87 Ethyl 4-hydroxybenzoate; Sodium ethylp-hydroxybenzoate; Sodium ethyl p-hydroxybenzoate;
SODIUM ETHYLPARABEN
Ethyl p-hydroxybenzoate; SODIUM ETHYLPARABEN, N° CAS : 35285-68-8. Nom INCI : SODIUM ETHYLPARABEN. Nom chimique : Sodium 4-ethoxycarbonylphenoxide; N° EINECS/ELINCS : 252-487-6; Classification : Paraben, Perturbateur endocrinien suspecté, Règlementé, Conservateur. Ses fonctions (INCI) : Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.4-Hydroxybenzoic acid, ethyl ester, sodium salt; Benzoic acid, 4-hydroxy-, ethyl ester, sodium salt; Benzoic acid, p-hydroxy-, ethyl ester, sodium deriv.; Ethyl p-hydroxybenzoate, sodium salt ; Ethylparaben sodium; Ethylparaben, sodium salt; Sodium 4-ethoxycarbonylphenoxide; Sodium ethylparaben. CAS names : Benzoic acid, 4-hydroxy-, ethyl ester, sodium salt (1:1); : Ethyl-4-hydroxybenzoat, Natriumsalz; Ethyl-4-hydroxybenzoat, sodium salt; p-Hydroxybenzoic acid ethyl ester sodium salt; sodium 4-(ethoxycarbonyl)benzen-1-olate; sodium 4-(ethoxycarbonyl)phenolate; sodium;4-ethoxycarbonylphenolate; Sodium ethyl p-hydroxybenzoate; 252-487-6 [EINECS]; 35285-68-8 [RN]; 4-(Éthoxycarbonyl)phénolate de sodium [French] ; Benzoic acid, 4-hydroxy-, ethyl ester, sodium salt (1:1) ; E215; ETHYLPARABEN SODIUM; Natrium-4-(ethoxycarbonyl)phenolat [German] [ACD/IUPAC Name]; p-hydroxybenzoic acid ethyl ester sodium salt; Sodium 4-(ethoxycarbonyl)phenolate [ACD/IUPAC Name]; Sodium ethylparaben Z0D00IVA10 [35285-68-8] 4-ethoxycarbonylphenolate 4-Hydroxybenzoic acid, ethyl ester, sodium salt 5026-62-0 [RN] Benzoic acid, 4-hydroxy-, ethyl ester, sodium salt Benzoic acid, 4-hydroxy-, methyl ester, sodium salt BENZOIC ACID, p-HYDROXY-, ETHYL ESTER, SODIUM DERIV. BENZOIC ACID, p-HYDROXY-, METHYL ESTER, SODIUM DERIV. Bonomold OMNa EINECS 225-714-1 EINECS 252-487-6 Ethyl p-hydroxybenzoate, sodium salt ETHYL4-HYDROXYBENZOATESODIUMSALT Ethylparaben sodium salt Ethylparaben, sodium salt Methyl 4-hydroxybenzoate sodium salt METHYL P-HYDROXYBENZOATE, SODIUM SALT Methylparaben sodium [NF] Methylparaben sodium (NF) Methylparaben sodium [USAN] [USAN] methylparaben, sodium salt MFCD00016475 [MDL number] NIPASEPT SODIUM Preserval MS Sodium [ACD/Index Name] [ACD/IUPAC Name] [Wiki] sodium 4-(ethoxycarbonyl)benzen-1-olate SODIUM 4-(ETHOXYCARBONYL)BENZENOLATE Sodium 4-(methoxycarbonyl)phenolate [ACD/IUPAC Name] sodium 4-carbethoxyphenolate sodium 4-carbomethoxyphenolate sodium 4-ethoxycarbonylphenolate Sodium 4-ethoxycarbonylphenoxide sodium 4-methoxycarbonylphenolate sodium and 4-ethoxycarbonylphenolate SODIUM ETHYL PARABEN Sodium Ethyl Parahydroxybenzoate Sodium ethyl p-hydroxybenzoate, tech. Sodium methyl 4-hydroxybenzoate Sodium methyl p-hydroxybenzoate Sodium methylparaben Sodium p-methoxycarbonylphenoxide Sodium, (p-carboxyphenoxy)-, methyl ester (7CI) sodium;4-ethoxycarbonylphenolate Solparol ST5405340 UNII:Z0D00IVA10 UNII-F57SQP06GK UNII-Z0D00IVA10
SODIUM FORMATE
Sodium Formate Sodium formate, HCOONa, is the sodium salt of formic acid, HCOOH. It usually appears as a white deliquescent powder. Properties Chemical formula HCOONa Molar mass 68.007 g/mol Appearance white granules deliquescent Density 1.92 g/cm3 (20 °C) Melting point 253 °C (487 °F; 526 K) Boiling point decomposes Solubility in water 43.82 g/100 mL (0 °C) 97.2 g/100 mL (20 °C) 160 g/100 mL (100 °C) Solubility insoluble in ether soluble in glycerol, alcohol, formic acid Preparation For commercial use, sodium formate is produced by absorbing carbon monoxide under pressure in solid sodium hydroxide at 130 °C and 6-8 bar pressure: CO + NaOH → HCO2Na Because of the low-cost and large-scale availability of formic acid by carbonylation of methanol and hydrolysis of the resulting methyl formate, sodium formate is usually prepared by neutralizing formic acid with sodium hydroxide. Sodium formate is also unavoidably formed as a by-product in the final step of the pentaerythritol synthesis and in the crossed Cannizzaro reaction of formaldehyde with the aldol reaction product trimethylol acetaldehyde [3-hydroxy-2,2-bis(hydroxymethyl)propanal]. In the laboratory, sodium formate can be prepared by neutralizing formic acid with sodium carbonate. It can also be obtained by reacting chloroform with an alcoholic solution of sodium hydroxide. CHCl3 + 4 NaOH → HCOONa + 3 NaCl + 2 H2O or by reacting sodium hydroxide with chloral hydrate. C2HCl3(OH)2 + NaOH → CHCl3 + HCOONa + H2O The latter method is, in general, preferred to the former because the low aqueous solubility of CHCl3 makes it easier to separate out from the sodium formate solution, by fractional crystallization, than the soluble NaCl would be. Sodium formate may also be created via the haloform reaction between ethanol and sodium hypochlorite in the presence of a base. This procedure is well documented for the preparation of chloroform. Properties Physical properties Sodium formate crystallizes in a monoclinic crystal system with the lattice parameters a = 6,19 Å, b = 6,72 Å, c = 6,49 Å and β = 121,7°.[3] Chemical properties On heating, sodium formate decomposes to form sodium oxalate and hydrogen.[4] The resulting sodium oxalate can be converted by further heating to sodium carbonate upon release of carbon monoxide: As a salt of a weak acid (formic acid) and a strong base (sodium hydroxide) sodium formate reacts in aqueous solutions basic: A solution of formic acid and sodium formate can thus be used as a buffer solution. Sodium formate is slightly water-hazardous and inhibits some species of bacteria but is degraded by others. Uses Sodium formate is used in several fabric dyeing and printing processes. It is also used as a buffering agent for strong mineral acids to increase their pH, as a food additive (E237), and as a de-icing agent. In structural biology, sodium formate can be used as a cryoprotectant for X-ray diffraction experiments on protein crystals,[6] which are typically conducted at a temperature of 100 K to reduce the effects of radiation damage. Sodium formate plays a role in the synthesis of formic acid, it is converted by sulfuric acid via the following reaction equation: Sodium formate is converted with sulfuric acid to formic acid and sodium sulfate. The urticating hair of stinging nettles contain sodium formate as well as formic acid. Solid sodium formate is used as a non-corrosive agent at airports for de-icing of runways in mix with corrosion inhibitors and other additives, which rapidly penetrate solid snow and ice layers, detach them from the asphalt or concrete and melt the ice rapidly. Sodium formate was also used as a road deicer in the city of Ottawa from 1987 to 1988. The high freezing point depression e.g. in comparison to the still frequently used urea (which is effective but problematic due to eutrophication) effectively prevents the re-icing, even at temperatures below −15 °C. The thawing effect of the solid sodium formate can even be increased by moistening with aqueous potassium formate or potassium acetate solutions. The degradability of sodium formate is particularly advantageous with a chemical oxygen demand (COD) of 211 mg O2/g compared with the de-icing agents sodium acetate (740 mg O2/g) and urea with (> 2,000 mg O2/g).[8] Saturated sodium formate solutions (as well as mixtures of other alkali metal formates such as potassium and cesium formate) are used as important drilling and stabilizing aids in gas and oil exploration because of their relatively high density. By mixing the corresponding saturated alkali metal formate solutions any densities between 1,0 and 2,3 g/cm3 can be set. The saturated solutions are biocidal and long-term stable against microbial degradation. Diluted, on the other hand, they are fast and completely biodegradable. As alkali metal formates as drilling aids make it unnecessary to add solid fillers to increase the density (such as barytes) and the formate solutions can be recovered and recycled at the drilling site, formates represent an important advance in exploration technology. Applications Biotechnological Sodium formate is used as the carbon source for culturing bacteria. Sodium formate is also useful for increasing yields of DNA isolation by ethanol precipitation. Industrial Sodium formate is used in the textile industry to neutralize sulfuric acid waste streams and also as a photoresist while using aniline dyes. It is also a pickling agent in chrome tanning and helps to impede vulcanization of chloroprene in synthetic rubber production. In processing cotton for disposable cotton pads, Sodium formate is used to eliminate the buildup of static electricity. Concrete longevity Sodium formate is used to mitigate water damage to concrete by acting as a concrete sealant, while also being environmentally benign and cheaper than the commonly used epoxy alternative for sealing concrete against water permeation.[9] Food Sodium formate may be added to food as a seasoning, sometimes in the form of sodium diacetate, a one-to-one complex of Sodium formate and acetic acid,[10] given the E-number E262. It is often used to give potato chips a salt and vinegar flavor.[citation needed] Sodium formate (anhydrous) is widely used as a shelf-life extending agent, pH control agent[11] It is safe to eat at low concentration.[12] Buffer solution A solution of Sodium formate (a basic salt of acetic acid) and acetic acid can act as a buffer to keep a relatively constant pH level. This is useful especially in biochemical applications where reactions are pH-dependent in a mildly acidic range (pH 4–6). Heating pad A hand warmer containing a supersaturated solution of Sodium formate which releases heat upon crystallization Sodium formate is also used in heating pads, hand warmers, and hot ice. Sodium formate trihydrate crystals melt at 136.4 °F/58 °C[13] (to 137.12 °F/58.4 °C),[14] dissolving in their water of crystallization. When they are heated past the melting point and subsequently allowed to cool, the aqueous solution becomes supersaturated. This solution is capable of cooling to room temperature without forming crystals. By pressing on a metal disc within the heating pad, a nucleation center is formed, causing the solution to crystallize back into solid Sodium formate trihydrate. The bond-forming process of crystallization is exothermic.[15] The latent heat of fusion is about 264–289 kJ/kg.[13] Unlike some types of heat packs, such as those dependent upon irreversible chemical reactions, a Sodium formate heat pack can be easily reused by immersing the pack in boiling water for a few minutes, until the crystals are completely dissolved, and allowing the pack to slowly cool to room temperature. Preparation A crystal of Sodium formate trihydrate (length 1.7 centimetres) For laboratory use, Sodium formate is inexpensive and usually purchased instead of being synthesized. It is sometimes produced in a laboratory experiment by the reaction of acetic acid, commonly in the 5–8% solution known as vinegar, with sodium carbonate ("washing soda"), sodium bicarbonate ("baking soda"), or sodium hydroxide ("lye", or "caustic soda"). Any of these reactions produce Sodium formate and water. When a sodium and carbonate ion-containing compound is used as the reactant, the carbonate anion from sodium bicarbonate or carbonate, reacts with hydrogen from the carboxyl group (-COOH) in acetic acid, forming carbonic acid. Carbonic acid readily decomposes under normal conditions into gaseous carbon dioxide and water. This is the reaction taking place in the well-known "volcano" that occurs when the household products, baking soda and vinegar, are combined. Sodium formate appears in sodium methylate at 0.3% The slow decomposition in storage of 98-100% Sodium formate with liberation of carbon monoxide led to rupture of the sealed glass containers. In absence of gas leakage, a full 2.5 L bottle would develop a pressure of over 7 bar during 1 yr at 25 °C. Explosive decomposition of Sodium formate on a clean nickel ... surface was studied, using deuteroSodium formate. A full 1 L bottle of 96% Sodium formate burst when the ambient temp fell to -6 °C overnight and the contents froze and expanded. Gas pressure from previous partial decomposition may also have contributed. Sodium formate decomposes slowly during storage and more rapidly under fire conditions, forming carbon monoxide. Sodium formate is a reagent comprised of the organic chemical Sodium formate that cleaves proteins into peptides at the C- or N-terminal side of an aspartate residue. Enzyme pathways involved in detoxification of hydrogen peroxide, formaldehyde, and Sodium formate, which are produced as a consequence of oxidative demethylation by the cytochrome P-450 system, were examined in isolated hepatocytes from phenobarbital pretreated rats. The formaldehyde produced during oxidative demethylation in isolated hepatocytes is rapidly oxidized to Sodium formate. Depletion of cellular reduced glutathione by pretreatment of rats with diethylmaleate decreases the rate of Sodium formate production, and therefore, it appears that formaldehyde produced by oxidative demethylation is oxidized by formaldehyde dehydrogenase, an enzyme which requires but does not consume reduced glutathione. Because of the rapid nonenzymatic reaction of formaldehyde with reduced glutathione, this enzyme system may be viewed as essential to prevent the loss of reduced glutathione due to S-hydroxymethylglutathione formation. Reduced glutathione concentration in isolated hepatocytes decreased rapidly following addition of substrates undergoing oxidative demethylation. Addition of other cytochrome P-450 substrates which do not undergo demethylation did not result in such a dramatic oxidation of reduced glutathione. Sodium formate, produced during oxidative demethylation acts as a substrate for the peroxidatic mode of catalase, but also binds to catalase as an anionic ligand. This binding decreases the catalase concentration detectable by cyanide titration and therefore appears to inhibit the catalytic reaction mode. Synthesis of Sodium formate by hydrolysis of methyl formate is based on a two-stage process: in the first stage, methanol is carbonylated with carbon monoxide; in the second stage, methyl formate is hydrolyzed to Sodium formate and methanol. Sodium formate is produced as a byproduct in the liquid-phase oxidation of hydrocarbons to acetic acid. In the United States, butane is used as the hydrocarbon, and ca. 50 kg of Sodium formate is produced per ton of acetic acid. In Europe, the oxidation of naphtha is preferred, and up to 250 kg of Sodium formate is produced per ton of acetic acid in this process. The reaction of sodium formate or calcium formate with strong mineral acids, such as sulfuric and nitric acids, is the oldest known process for producing Sodium formate commercially. If formates or sodium hydroxide are available cheaply or occur as byproducts in other processes, Sodium formate can still be produced economically in this manner. A method for analysis of Sodium formate in concentration of approx 0.2 mg/l in body fluids and tissues is described. Formate dehydrogenase analysis is done in two steps. In the first step, a 0.1 ml sample of blood, urine, or tissue extraction is mixed with 0.1 of 10 mmol/l nicotinamide adenine dinucleotide soln, 0.1 ml of potassium phosphate buffer, and 50 ul of formate dehydrogenase soln. The mixture is incubated for 15 min at 37 °C then 0.1 ml of diaphorase soln, 50 ul of resazurin soln and 0.5 ml of phosphate buffer (pH 6.00, 200 mmol/l) are added. Fluorescence is measured. Indirect food substance additives affirmed as generally recognized as safe. (a) Sodium formate (CH2O2, CAS Reg. No. 64-18-6) is also referred to as methanoic acid or hydrogen carboxylic acid. It occurs naturally in some insects and is contained in the free acid state in a number of plants. Sodium formate is prepared by the reaction of sodium formate with sulfuric acid and is isolated by distillation. (b) Sodium formate is used as a constituent of paper and paperboard used for food packaging. (c) The ingredient is used at levels not to exceed good manufacturing practice in accordance with part 186.1(b)(1). (d) Prior sanctions for Sodium formate different from the uses established in this section do not exist or have been waived. An examination of 12 fatalities attributed to methanol poisoning is presented. Six individuals were found deceased, and their postmortem methanol and Sodium formate concentrations ranged from 84 to 543 mg/dL and 64 to 110 mg/dL, respectively. In the other six individuals, hospital treatment such as bicarbonate, ethanol infusion, and hemodialysis was administered. Antemortem methanol and Sodium formate concentrations ranged from 68 to 427 mg/dL and 37 to 91 mg/dL, respectively, whereas corresponding postmortem methanol and Sodium formate levels ranged from undetectable to 49 mg/dL and undetectable to 48 mg/dL, respectively. Hospital treatment of Sodium formate toxicity resulted in significantly reduced postmortem methanol and Sodium formate concentrations In 13-week studies, groups of 10 animals of each species and sex were exposed to Sodium formate at concentrations of 0, 8, 16, 32, 64, and 128 ppm for 6 hr a day, 5 days a week. Two mice, 1 male and 1 female, died in the 128 ppm groups. Body weight gains were significantly decreased in mice exposed to 64 and 128 ppm Sodium formate. Microscopic changes in rats and mice ranged from minimal to mild in severity and generally were limited to animals in the 128 ppm groups. Lesions related to exposure to Sodium formate consisted of squamous metaplasia and degeneration of the respiratory and olfactory epithelia, respectively. Hematologic and serum biochemical changes at interim and terminal time points were minimal to mild and, generally, were consistent with hemoconcentration. Sodium formate's production and use as a preservative in foods and silage; acidulant in dyeing of natural and synthetic fibers, leather tanning; coagulating latex in rubber production, and in chemical synthesis may result in its release to the environment through various waste streams. Its use in hydrofracking to prevent pipe corrosion and application to freshly cut grass prior to ensilation will result in its direct release to the environment. Sodium formate occurs in fruits, vegetables, and leaves and roots of plants, and also in the defensive secretions of numerous insects, particularly of ants. Sodium formate is an intermediary human metabolite that is immediately transformed to formate. If released to air, a vapor pressure of 42.6 mm Hg at 25 °C indicates Sodium formate will exist solely as a vapor in the atmosphere. Vapor-phase Sodium formate will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 36 days. Sodium formate does not absorb at wavelengths >290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight. If released to soil, Sodium formate is expected to have very high mobility based upon an estimated Koc of 1. Volatilization from moist soil surfaces is expected to be an important fate process based upon a Henry's Law constant of 1.67X10-7 atm-cu m/mole. The pKa of Sodium formate is 3.75, indicating that this compound will primarily exist in anion form in the environment and anions generally do not adsorb more strongly to organic carbon and clay than their neutral counterparts. Sodium formate may volatilize from dry soil surfaces based upon its vapor pressure. Theoretical BOD values ranging from 4.3% to 77.6% after 5 days using sewage, activated sludge, fresh water, and synthetic sea water inocula indicate that biodegradation may be an important environmental fate process in soil and water. If released into water, Sodium formate is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is expected to be an important fate process based upon this compound's Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 150 and 1,100 days, respectively. An estimated BCF of 3.2 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis is not expected to be an important environmental fate process since this compound lacks functional groups that hydrolyze under environmental conditions. Occupational exposure to Sodium formate may occur through inhalation and dermal contact with this compound at workplaces where Sodium formate is produced or used. Monitoring data indicate that the general population may be exposed to Sodium formate via inhalation of ambient air, ingestion of food, and dermal contact with this compound in consumer products containing Sodium formate as well as when stung by certain insects and marine cnidarians. Sodium formate occurs in fruits, vegetables, and leaves and roots of plants(1), and also in the defensive secretions of numerous insects, particularly of ants(2). It is also an intermediate product in the decomposition of organic matter in lake sediment(3) and a photooxidation product of alkanes, alkenes, and biogenic terpenes by hydroxyl-radical(4,5). Sodium formate is an intermediary human metabolite that is immediately transformed to formate(6). Based on a classification scheme(1), an estimated Koc value of 1(SRC), determined from a log Kow of -0.54(2) and a regression-derived equation(3), indicates that Sodium formate is expected to have very high mobility in soil(SRC). The pKa of Sodium formate is 3.75(4), indicating that this compound will primarily exist in anion form in the environment and anions generally do not adsorb more strongly to organic carbon and clay than their neutral counterparts(5). Volatilization of Sodium formate from moist soil surfaces is expected to be an important fate process(SRC) given a Henry's Law constant of 1.67X10-7 atm-cu m/mole(6). Sodium formate is expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 42.6 mm Hg(7). Theoretical BOD values ranging from 4.3% to 77.6% after 5 days using sewage and activated sludge inocula(8-13) indicate that biodegradation may be an important environmental fate process in soil(SRC). According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere(1), Sodium formate, which has a vapor pressure of 42.6 mm Hg at 25 °C(2), is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase Sodium formate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 36 days(SRC), calculated from its rate constant of 4.5X10-13 cu cm/molecule-sec at 25 °C(3). Sodium formate does not absorb at wavelengths >290 nm(4) and therefore is not expected to be susceptible to direct photolysis by sunlight(SRC). Sodium formate biodegrades readily in screening tests(1-9). Specific results include: 4.3 and 38.8% of theoretical BOD after 5 and 10 days using a sewage inoculum(1); 43.7-77.6% of theoretical BOD after 5 days with a sewage inoculum(2); 70% of theoretical BOD in 24 hours using activated sludge(3); 66% of theoretical BOD in 12 hours using an activated sludge inoculum(4); 39.9% of theoretical BOD in 24 hours with activated sludge(5); 48 and 51% of theoretical BOD after 5 days with unacclimated and acclimated sewage inoculum, respectively(6); and 40.5 and 51.7% of theoretical BOD after 5 days with sewage inocula in fresh water and synthetic seawater, respectively(7). Microorganisms are present in the air that can degrade formate in rainwater(8). Sodium formate, present at 100 mg/L, reached 110% of its theoretical BOD in 2 weeks using an activated sludge inoculum at 30 mg/L in the Japanese MITI test(9). The rate constant for the vapor-phase reaction of Sodium formate with photochemically-produced hydroxyl radicals is 4.5X10-13 cu cm/molecule-sec at 25 °C(1). This corresponds to an atmospheric half-life of about 36 days at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm(2). Sodium formate is not expected to undergo hydrolysis in the environment due to the lack of hydrolyzable functional groups(3). Sodium formate does not absorb at wavelengths >290 nm(4) and therefore is not expected to be susceptible to direct photolysis by sunlight(SRC). The anhydrous acid catalyzes its own esterification with alcohols and polyols, but often also promotes dehydration to the ether or olefin(5). Anhydrous Sodium formate decomposes to carbon monoxide and water(6). Reactions between hydroxyl radicals and Sodium formate occur in cloud water. During daylight hours, aqueous-phase hydroxyl radical reactions can both produce and destroy Sodium formate in cloud drops and may control the Sodium formate levels in rain(7). The Koc of Sodium formate is estimated as 1(SRC), using a log Kow of -0.54(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that Sodium formate is expected to have very high mobility in soil. The pKa of Sodium formate is 3.75(4), indicating that this compound will primarily exist in anion form in the environment and anions generally do not adsorb more strongly to organic carbon and clay than their neutral counterparts(5). The Henry's Law constant for Sodium formate is 1.67X10-7 atm-cu m/mole(1). This Henry's Law constant indicates that Sodium formate is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 150 days(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 1100 days(SRC). Sodium formate's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of Sodium formate from dry soil surfaces may exist(SRC) based upon a vapor pressure of 42.6 mm Hg(3). Concentrations of Sodium formate in the Ohio River, Little Miami River and Tannes Creek were 12-39 ppb, 18.4-25.2 ppb, and 22.3 ppb, respectively(1). In Lake Kizaki in Japan, surface concentration of Sodium formate was 115 ppb(2). Although the concentration varied with depth (0-28 m) between 0 and 115 ppb, the variation was not a smoothly decreasing one(2). The volume-weighted average concentration of Sodium formate in Venezuelan rains was 7 uM in the continental region(1). Sodium formate was detected in 14 wet precipitation samples collected from 9 sites in southern California between 1982 and 1984 with concentrations ranging from 0.18 uM in snow from rural Wrightwood to 15.85 uM in rain from urban Los Angeles, and an average concentration of 4.12 uM(2). Six in-cloud precipitation samples collected from a cloud in Shenandoah National Park, VA during September 1990 had an average Sodium formate concentration of 8.3 uM(3). Precipitation samples collected at two Wisconsin lakes on the Wisconsin Acid Deposition Monitoring Network contained Sodium formate concentrations ranging from the detection limit of 20 ppb to 2,576 ppb, median 382 ppb(4). The average volume-weighted concentration of Sodium formate in rainwater in a study (154 measurements) at Wilmington, NC was 7.4 umol/L and contributed 19% of the rainwater's acidity(5). Fogwater in Corvallis, OR had a median and high Sodium formate concentration of 61 and 133 umol/L, respectively(6). NIOSH (NOES Survey 1981-1983) has statistically estimated that 158,933 workers (37,338 of these were female) were potentially exposed to Sodium formate in the US(1). The NOES Survey does not include farm workers. Occupational exposure to Sodium formate may occur through inhalation and dermal contact with this compound at workplaces where Sodium formate is produced or used(SRC). Monitoring data indicate that the general population may be exposed to Sodium formate via inhalation of ambient air, ingestion of food, and dermal contact with this compound in consumer products containing Sodium formate as well as when stung by certain insects and marine cnidarians(SRC). Sodium Formate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. About Sodium formate Helpful information Sodium formate is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 100 000 to < 1 000 000 tonnes per annum. Sodium formate is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing. Consumer Uses Sodium formate is used in the following products: washing & cleaning products, polishes and waxes and water treatment chemicals. Other release to the environment of Sodium formate is likely to occur from: indoor use as processing aid. Article service life Other release to the environment of Sodium formate is likely to occur from: outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials) and indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment). Sodium formate can be found in products with material based on: leather (e.g. gloves, shoes, purses, furniture) and metal (e.g. cutlery, pots, toys, jewellery). Widespread uses by professional workers Sodium formate is used in the following products: washing & cleaning products, laboratory chemicals, anti-freeze products and water treatment chemicals. Sodium formate is used in the following areas: mining, health services and municipal supply (e.g. electricity, steam, gas, water) and sewage treatment. Other release to the environment of Sodium formate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use. Formulation or re-packing Sodium formate is used in the following products: leather treatment products, laboratory chemicals and washing & cleaning products. Release to the environment of Sodium formate can occur from industrial use: formulation of mixtures, formulation in materials and of substances in closed systems with minimal release. Other release to the environment of Sodium formate is likely to occur from: indoor use as reactive substance. Uses at industrial sites Sodium formate is used in the following products: leather treatment products, heat transfer fluids, pH regulators and water treatment products and anti-freeze products. Sodium formate is used in the following areas: formulation of mixtures and/or re-packaging, mining and printing and recorded media reproduction. Sodium formate is used for the manufacture of: textile, leather or fur. Release to the environment of Sodium formate can occur from industrial use: in processing aids at industrial sites, in the production of articles, as processing aid, of substances in closed systems with minimal release, as an intermediate step in further manufacturing of another substance (use of intermediates) and formulation of mixtures. Other release to the environment of Sodium formate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners). Manufacture Release to the environment of Sodium formate can occur from industrial use: manufacturing of the substance and as an intermediate step in further manufacturing of another substance (use of intermediates).
SODIUM FUMARATE
cas no 527-07-1 D-Gluconic acid, sodium salt; D-Gluconic acid monosodium salt; Glonsen; Gluconato di sodio; Monosodium D-gluconate; Sodium (2R,3S,4R,5R')-2,3,4,5,6-pentahydroxyhexanoate; 2,3,4,5,6-Pentahydroxycaproic acid sodium salt; Sodium Gluconate;
SODIUM GLYCINATE
SODIUM GLYCOLATE, N° CAS : 2836-32-0 - Glycolate de sodium, Nom INCI : SODIUM GLYCOLATE, N° EINECS/ELINCS : 220-624-9, Ses fonctions (INCI), Régulateur de pH : Stabilise le pH des cosmétiques. Noms français : GLYCOLATE DE SODIUM. Noms anglais : ACETIC ACID, HYDROXY-, MONOSODIUM SALT; GLYCOLIC ACID, MONOSODIUM SALT; SODIUM .ALPHA.-HYDROXYACETATE; SODIUM GLYCOLATE
SODIUM GLYCOLATE ( Glycolate de sodium)
cas no 10124-56-8 Metaphosphoric acid, hexasodium salt; Calgon S; SHMP; Glassy sodium; Hexasodium metaphosphate; Metaphosphoric acid, hexasodium salt; Sodium Polymetaphosphate; sodium polymetaphosphate; Graham's Salt; Graham's salt; SHMP;
SODIUM HEXAMETAPHOSPHATE
Sodium Hexametaphosphate Uses of Sodium hexametaphosphate Sodium hexametaphosphate is used as a sequestrant and has applications within a wide variety of industries, including as a food additive in which Sodium hexametaphosphate is used under the E number E452i. Sodium carbonate is sometimes added to SHMP to raise the pH to 8.0–8.6, which produces a number of Sodium hexametaphosphate products used for water softening and detergents. A significant use for sodium hexametaphosphate is as a deflocculant in the production of clay-based ceramic particles. Sodium hexametaphosphate is also used as a dispersing agent to break down clay and other soil types for soil texture assessment. Sodium hexametaphosphate is used as an active ingredient in toothpastes as an anti-staining and tartar prevention ingredient. The energy drink NOS contains sodium hexametaphosphate. Food additive As a food additive, Sodium hexametaphosphate is used as an emulsifier. Artificial maple syrup, canned milk, cheese powders and dips, imitation cheese, whipped topping, packaged egg whites, roast beef, fish fillets, fruit jelly, frozen desserts, salad dressing, herring, breakfast cereal, ice cream, beer, and bottled drinks, among other foods, can contain Sodium hexametaphosphate. Preparation of Sodium hexametaphosphate Sodium hexametaphosphate is prepared by heating monosodium orthophosphate to generate sodium acid pyrophosphate: 2 NaH2PO4 → Na2H2P2O7 + H2O Subsequently, the pyrophosphate is heated to give the corresponding sodium hexametaphosphate: 3 Na2H2P2O7 → (NaPO3)6 + 3 H2O followed by rapid cooling. Reactions of Sodium hexametaphosphate SHMP hydrolyzes in aqueous solution, particularly under acidic conditions, to sodium trimetaphosphate and sodium orthophosphate. History of Sodium hexametaphosphate Hexametaphosphoric acid was named (but misidentified) in 1849 by the German chemist Theodor Fleitmann. By 1956, chromatographic analysis of hydrolysates of Graham's salt (sodium polyphosphate) indicated the presence of cyclic anions containing more than four phosphate groups; these findings were confirmed in 1961. In 1963, the German chemists Erich Thilo and Ulrich Schülke succeeded in preparing sodium hexametaphosphate by heating anhydrous sodium trimetaphosphate. Safety of Sodium hexametaphosphate Sodium phosphates are recognized to have low acute oral toxicity. Sodium hexametaphosphate concentrations not exceeding 10,000mg/l or mg/kg are considered protective levels by the EFSA and USFDA. Extreme concentrations of this salt may cause acute side effects from excessive blood serum concentrations of sodium, such as: “irregular pulse, bradycardia, and hypocalcemia." Properties of Sodium hexametaphosphate Chemical formula Na6P6O18 Molar mass 611.7704 g mol−1 Appearance White crystals Odor odorless Density 2.484 g/cm3 Melting point 628 °C (1,162 °F; 901 K) Boiling point 1,500 °C (2,730 °F; 1,770 K) Solubility in water soluble Solubility insoluble in organic solvents Refractive index (nD) 1.482 General description of Sodium hexametaphosphate Sodium hexametaphosphate is an inorganic polyphosphate salt commonly used as a corrosion inhibitor, emulsifying agent and as a tooth whitening agent in dentifrice formulations. Application of Sodium hexametaphosphate Sodium hexametaphosphate has been used as a deflocculant to prepare clay suspensions. Final report on the safety assessment of Sodium Metaphosphate, Sodium Trimetaphosphate, and Sodium Hexametaphosphate These inorganic polyphosphate salts all function as chelating agents in cosmetic formulations. In addition, Sodium Metaphosphate functions as an oral care agent, Sodium Trimetaphosphate as a buffering agent, and Sodium Hexametaphosphate as a corrosion inhibitor. Only Sodium Hexametaphosphate is currently reported to be used. Although the typical concentrations historically have been less than 1%, higher concentrations have been used in products such as bath oils, which are diluted during normal use. Sodium Metaphosphate is the general term for any polyphosphate salt with four or more phosphate units. The four-phosphate unit version is cyclic, others are straight chains. The hexametaphosphate is the specific six-chain length form. The trimetaphosphate structure is cyclic. Rats fed 10% Sodium Trimetaphosphate for a month exhibited transient tubular necrosis; rats given 10% Sodium Metaphosphate had retarded growth and those fed 10% Sodium Hexametaphosphate had pale and swollen kidneys. In chronic studies using animals, growth inhibition, increased kidney weights (with calcium deposition and desquamation), bone decalcification, parathyroid hypertrophy and hyperplasia, inorganic phosphaturia, hepatic focal necrosis, and muscle fiber size alterations. Sodium Hexametaphosphate was a severe skin irritant in rabbits, whereas a 0.2% solution was only mildly irritating. A similar pattern was seen with ocular toxicity. These ingredients were not genotoxic in bacterial systems nor were they carcinogenic in rats. No reproductive or developmental toxicity was seen in studies using rats exposed to Sodium Hexametaphosphate or Sodium Trimetaphosphate. In clinical testing, irritation is seen as a function of concentration; concentrations as high as 1% produced no irritation in contact allergy patients. Because of the corrosive nature of Sodium Hexametaphosphate, it was concluded that these ingredients could be used safely if each formulation was prepared to avoid skin irritation; for example, low concentration in a leave-on product or dilution of a higher concentration as part of product usage. Uses of Sodium hexametaphosphate Salt mixture of metaphosphates Great for combining with sodium citrate for making cheese sauces Commonly used as a pH buffer and sequestrant Cold/hot soluble, free flowing powder DESCRIPTION of Sodium hexametaphosphate (SHMP) 100% Pure Food Grade Sodium Hexametaphosphate SHMP (e452i) for use in molecular gastronomy. SHMP is a sequestrant, which allows gelling agents to be hydrated at much lower temperatures. It is the highest performing sequestrant available. And unlike sodium citrate, it has no taste at the concentrations used for gel hydration. OTHER DETAILS of Sodium hexametaphosphate Dietary Attributes: Plant-Based, Gluten-Free, Non-GMO, Kosher (OU), Keto-friendly Ingredient List: Sodium Hexametaphosphate Allergen(s): None Effect of sodium hexametaphosphate concentration and cooking time on the physicochemical properties of pasteurized process cheese Sodium hexametaphosphate (SHMP) is commonly used as an emulsifying salt (ES) in process cheese, although rarely as the sole ES. It appears that no published studies exist on the effect of Sodium hexametaphosphate concentration on the properties of process cheese when pH is kept constant; pH is well known to affect process cheese functionality. The detailed interactions between the added phosphate, casein (CN), and indigenous Ca phosphate are poorly understood. We studied the effect of the concentration of Sodium hexametaphosphate (0.25–2.75%) and holding time (0–20 min) on the textural and rheological properties of pasteurized process Cheddar cheese using a central composite rotatable design. All cheeses were adjusted to pH 5.6. The meltability of process cheese (as indicated by the decrease in loss tangent parameter from small amplitude oscillatory rheology, degree of flow, and melt area from the Schreiber test) decreased with an increase in the concentration of Sodium hexametaphosphate. Holding time also led to a slight reduction in meltability. Hardness of process cheese increased as the concentration of Sodium hexametaphosphate increased. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is attributable to residual colloidal Ca phosphate, was shifted to lower pH values with increasing concentration of Sodium hexametaphosphate. The insoluble Ca and total and insoluble P contents increased as concentration of Sodium hexametaphosphate increased. The proportion of insoluble P as a percentage of total (indigenous and added) P decreased with an increase in ES concentration because of some of the (added) Sodium hexametaphosphate formed soluble salts. The results of this study suggest that Sodium hexametaphosphate chelated the residual colloidal Ca phosphate content and dispersed CN; the newly formed Ca-phosphate complex remained trapped within the process cheese matrix, probably by cross-linking CN. Increasing the concentration of Sodium hexametaphosphate helped to improve fat emulsification and CN dispersion during cooking, both of which probably helped to reinforce the structure of process cheese. Process cheese is made by grinding natural cheese and then heating the cheese in the presence of one or more Ca chelating salts (phosphate or citrates), often called emulsifying salts (ES). In the United States, the Code of Federal Regulations (Department of Health and Human Services, 2004) identifies 13 types of ES that can be used in process cheese manufacture, either singly or in combination, and allows for the addition of up to 3% (wt/wt; Kapoor and Metzger, 2008). These ES help disperse the insoluble CN in natural cheese curd, and it is these solubilized CN that can then act as emulsifiers around the liquid fat released during the heating and shearing of natural cheese. These ES function as ion exchangers, buffers, and Ca sequestrants and cause CN dispersion and peptization. Several reviews exist on the properties of the ES used for process cheese manufacture (Carić et al., 1985; Berger et al., 1998; Zehren and Nusbaum, 2000; Guinee et al., 2004). Long-chain polyphosphates are commonly (but incorrectly) called hexametaphosphates. The real hexametaphosphates are ring forming and are not used in process cheese. Sodium hexametaphosphates (SHMP) have a wide range of uses in the food industry, including increasing the water binding properties of proteins in processed meats, protein precipitation for purification purposes, and prevention of protein sedimentation in sterilized milks (Molins, 1991). Sodium hexametaphosphates are often used in process cheese manufacture either singly or more commonly in a blend of several types of ES. Numerous factors, including pH, affect the melting and textural characteristics of process cheese (Mulsow et al., 2007). Many of these factors, which are not well understood at the molecular level, are interrelated and have a combined effect on meltability and texture. It has been reported that the use of Sodium hexametaphosphate produces hard and poorly meltable process cheese (Thomas, 1973; Gupta et al., 1984; Carić et al., 1985). However, it appears that no studies exist on the effect of Sodium hexametaphosphate on process cheese properties where pH was kept constant (to avoid pH as a confounding factor). Gupta et al. (1984) reported that the use of Sodium hexametaphosphate resulted in process cheese with low pH values, which could have contributed to the poor textural attributes. Lu et al. (2008) reported that increasing the pH resulted in improved meltability for process cheese made with Sodium hexametaphosphate. Cooking time also affects the properties of process cheese (Rayan et al., 1980; Shirashoji et al., 2006). One method by which cooking time affects process cheese is by increasing the extent of shearing of curd and thus improving the emulsification of fat (i.e., by reducing the size of emulsified fat globules; Shimp, 1985; Kapoor and Metzger, 2008). The objective of this study was to investigate the effects of various concentrations of Sodium hexametaphosphate and cooking times on the rheological and textural properties of process cheese. Because pH is well known to influence the texture of process cheese made with Sodium hexametaphosphate (Lu et al., 2008), all samples were adjusted to a constant pH value (∼5.6). Rheological Properties of Sodium hexametaphosphate The effects of ES concentration on the rheological properties of process cheese made with Sodium hexametaphosphate during heating are shown in Figures 1a and b. The rheological properties of the natural Cheddar cheese are also shown for comparison purposes. The G′ value of all cheeses decreased with temperature from 5 to 70°C. The G′ value of the process cheese made with 1.50 and 2.75% ES, as well as natural cheese, increased again at >70°C, although cheese made with 0.25% ES continued to decrease with increasing temperature throughout the entire heating range. This increase in G′ at high temperature was not observed with any of the process cheeses made with trisodium citrate (TSC) in our previous study (Shirashoji et al., 2006). The LT value of process cheese measured at >50°C decreased with an increase in ES concentration. Process cheese made with 2.75% Sodium hexametaphosphate had LT values that were <1 over the entire heating range. Samples with LT values <1 do not exhibit flow (Lucey et al., 2003). Several factors could explain the effect of increasing Sodium hexametaphosphate concentration on cheese texture. Increasing the concentration of Sodium hexametaphosphate (SHMP) used in process cheese resulted in an increase in hardness and the G′ value at 70°C and a decrease in the LT value at 50°C and DOF. These effects were not attributable to any compositional factors because we manufactured the cheeses to a constant composition. We believe that the higher hardness and lower meltability with increasing Sodium hexametaphosphate concentration is attributable to a combination of enhanced CN dispersion, Ca chelation, and ion exchange. One of the key functions of ES, such as Sodium hexametaphosphate, is the ability to disperse (sometimes called peptization) the insoluble CN matrix in natural cheese. Polyphosphates have a greater CN dispersing ability compared with orthophosphates or TSC (Lee et al., 1986; Molins, 1991; Dimitreli et al., 2005; Mizuno and Lucey, 2005). The addition of Sodium hexametaphosphate to milk rapidly causes CN dispersion (Vujicic et al., 1968). The use of Sodium hexametaphosphate in process cheese greatly increases CN dispersion (hydration, peptization, or swelling) compared with TSC or orthophosphates (Lee et al., 1986; Guinee et al., 2004), although in these studies the pH of cheese was not kept constant. Increasing the concentration of polyphosphate used in process cheese resulted in an increase in soluble nitrogen content (indicating greater CN dispersion; Lee and Alais, 1980). Hot process cheese after holding at 80°C for 10 min exhibited very large LT values compared with process cheeses made with low ES concentration. The high LT values in hot process cheese made with high ES concentrations suggest that increasing the concentration of Sodium hexametaphosphate greatly increased CN dispersion. The ability of Sodium hexametaphosphate to disperse CN is pH-dependent with low ability near pH 5 (Dimitreli et al., 2005). Our cheeses were all at pH 5.6, and at this pH value Sodium hexametaphosphate should still be effective at causing CN dispersion. These highly dispersed CN molecules then reassociate during cooling to form a fine-structured gel network (some CN reassociation may be occurring in the hot product as evidenced by the increase in G′ values during the holding of cheese at 80°C). The greater the degree of CN dispersion, the firmer, more cross-linked, and less meltable is the final process cheese. This agrees with the similar trend reported for process cheese made with increasing concentrations of TSC (Shirashoji et al., 2006). Johnston and Murphy (1992) reported that there was greater CN dispersion in milk with an increase in Sodium hexametaphosphate levels; acid gels made from these Sodium hexametaphosphate-treated milks had improved gel textural properties. Polyphosphates also have a strong ability to complex Ca, and we can rank phosphates and citrates in the following order: long-chain phosphates > tripolyphosphate > pyrophosphate > citrate > orthophosphate (Van Wazer and Callis, 1958). The strong Ca binding properties of Sodium hexametaphosphate should result in greater dispersion of CN because of the loss of CCP cross-links present in natural cheese. The highly charged anionic nature of polyphosphates causes them to be attracted to the oppositely charged groups on other long-chain polyelectrolytes, such as proteins (Van Wazer and Callis, 1958). In our process cheeses, association of polyphosphate with CN should increase the charge repulsion between CN molecules. In some circumstances the addition of phosphates to milk can cause gelation (Mizuno and Lucey, 2007). Sodium hexametaphosphate was less effective at gelling CN than tetrasodium pyrophosphate. One factor that inhibits gelation of CN is that polyphosphates introduce more charge repulsion to CN because of their multiple negative charges (i.e., polyelectrolyte nature) compared with tetrasodium pyrophosphate. Another possible factor that could contribute to the increased hardness and reduced meltability of cheese made with high concentration of Sodium hexametaphosphate (SHMP) is the formation of new Ca phosphate linkages within the cheese network (Gupta et al., 1984). Taneya et al. (1980) reported that long protein strands were observed in a process cheese made with sodium polyphosphate, whereas these long strands were not observed in a process cheese made with TSC. Long CN strands in process cheese could have resulted from the formation of new Ca phosphate linkages between CN. The insoluble Ca and insoluble P content (Table 3) of process cheese increased with increasing Sodium hexametaphosphate concentration. The addition of Sodium hexametaphosphate to milk protein concentrate at pH 5.8 increased CN-bound Ca (Mizuno and Lucey, 2005). Polyphosphates bind Ca from the native CCP (which help to disperse the CN micelles), but these new Ca phosphates complexes can associate with the dispersed CN (Odagiri and Nickerson, 1965; Mizuno and Lucey, 2005). Lee and Alais (1980) reported that the use of polyphosphates resulted in a high level of insoluble P in process cheese. Johnston and Murphy (1992) reported that skim milk solutions with polyphosphate contained a high proportion of nonsedimentable (soluble) CN. Apart from the lowest ES concentration, all other process cheese samples exhibited an increase in G′ at temperatures >70°C during heating. Udayarajan et al. (2005) suggested that the increase in G′ value of natural Cheddar cheese at high temperature was attributable to the heat-induced formation of additional Ca phosphate cross-links between CN. The acid-base buffering profiles of process cheese indicate that the addition of Sodium hexametaphosphate caused a shift in the pH value where the buffering peak occurred during acidification. Lucey et al. (1993) suggested that a change in location or shape of the buffering peak observed during the acidification of milk might be attributable to some shift in the structure, or composition, or both, of the indigenous CCP. The buffering profiles of process cheese suggest that increasing the Sodium hexametaphosphate content altered the type and concentration of Ca phosphate salts present in the cheese network. A small quantity of Sodium hexametaphosphate (0.25%) was not enough to efficiently disperse the CN network even with the use of long holding times during the cooking step. Consequently, fat was poorly emulsified (results not shown) and the process cheese was relatively soft and had good meltability. Holding time resulted in a significant decrease in the LT value at 50°C, DOF, and Schreiber melt area and a significant increase in hardness and the G′ value at 70°C. Long holding times have previously been reported to reduce melt and increase hardness of process cheese (Rayan et al., 1980). An increase in the hold time also increases the extent of shear applied to the process cheese; this creates smaller homogenized fat globules that reinforce the matrix formed during cooling. During prolonged holding time at high temperatures, it is likely that some heat-induced CN aggregation occurred. Although increasing the concentration of ES used in process cheese resulted in an increase in the initial measured LT of the hot product (i.e., measured after a holding time of 10 min at 80°C), during (further) prolonged holding there was a substantial decrease in the LT and an increase in G′ values. Panouillé et al. (2003) observed that heat-induced aggregation and gelation of CN micelles could occur in the presence of sodium polyphosphates. Holding time had no significant effect on the insoluble Ca or P content. Because Sodium hexametaphosphate is a very effective Ca chelating agent, the time required to heat the process cheese to 80°C was likely sufficient to allow Sodium hexametaphosphate to chelate Ca from CN (i.e., a holding time at 80°C was not required to facilitate Ca chelation). In solution, polyphosphates can undergo hydrolysis to orthophosphates, particularly at higher temperatures (>60°C; Maurer-Rothmann and Scheurer, 2005). In practice, Sodium hexametaphosphate (SHMP) is likely that the hydrolytic breakdown is low in most process cheese applications (Maurer-Rothmann and Scheurer, 2005). During holding of process cheese at high temperature some hydrolysis of Sodium hexametaphosphate may have occurred (Lee and Alais, 1980); however, holding time had no significant effect on the concentration of insoluble P in process cheese. It has been claimed (Roesler, 1966) that hydrolysis also occurs in process cheese during storage. Because the process cheese samples were not analyzed until after 7 d of storage, any (possible) hydrolysis should already have occurred before testing of cheese. Comparing the results reported by Shirashoji et al. (2006) for process cheese made with TSC to those made with Sodium hexametaphosphate in the present study, we observed that cheese made with Sodium hexametaphosphate had lower LT values at 50°C and lower DOF values for all experimental conditions. The experimental work for our previous study (Shirashoji et al., 2006) was actually performed around the same time period as the current study. The hardness values for process cheese made with various concentrations of TSC were much lower (range: 1,572–2,685 g; Shirashoji et al., 2006) compared with cheese made with Sodium hexametaphosphate (range: 1,892–4,490 g). Conclusions The concentration of Sodium hexametaphosphate used as an ES in the manufacture of pasteurized process Cheddar cheese greatly affected the textural and melting properties, even when these cheeses had a similar pH value. The added Sodium hexametaphosphate appeared to convert the original form of CCP to a new type of Ca phosphate salt during cooking. A small quantity of Sodium hexametaphosphate (0.25%) was not enough to efficiently disperse the CN network even with long holding times during cooking; consequently, fat was poorly emulsified and the process cheese was soft and highly meltable. Holding times increased hardness and decreased meltability. High levels of Sodium hexametaphosphate produced firm and poorly meltable cheese because CN were highly dispersed during cooking, Sodium hexametaphosphate resulted in the formation of new Ca phosphate-CN linkages, and a fine-stranded network was formed during cooling. The results of this study will assist process cheese manufacturers in understanding the role of Sodium hexametaphosphate as an ES and demonstrates the effect of ES concentration and holding time on process cheese functionality. Sodium hexametaphosphate (SHMP) Chemical Properties,Uses,Production Outline Sodium hexametaphosphate is a kind of sodium metaphosphate polymers. Sodium hexametaphosphate is also known as "polyvinylidene sodium," "sodium multiple metaphosphate", "sodium metaphosphate vitreous body", and "Graham salt". Sodium hexametaphosphate is a colorless transparent glass-like solid or white powder with greater solubility but low dissolving rate in water. Its aqueous solution exhibits acidic property. Its complex of divalent metal ion is relatively more stable than the complexes of mono-valent metal ion. Sodium hexametaphosphate can easily be hydrolyzed to orthophosphate in warm water, acid or alkali solution. Hexametaphosphate has a relative strong hygroscopicity with being sticky after absorbing moisture. For certain metal ions (e.g., calcium, magnesium, etc.), it has the ability to form soluble complexes, and thus being able to being used for demineralizing water. Sodium hexametaphosphate can also from precipitate with lead and silver ions with precipitate being re-dissolved in excess amount of sodium hexametaphosphate solution to form a complex salt. Its barium salt can also form complexes with the sodium hexametaphosphate. Sodium hexametaphosphate can be used as a kind of highly efficient water softener of power stations, rolling stock boiler water; as detergent additive, as corrosion-controlling or anti-corrosion agents; as cement hardening accelerator; as streptomycin purification agent, and the cleaning agent of textile industry and dyeing industry. Sodium hexametaphosphate can also be used as a kind of sedative drug, preservative, stabilizer, and fruit juice precipitant in food industry. In the oil industry, it is used for control of drilling pipe rust and adjusting the viscosity of oil drilling mud. Sodium hexametaphosphate also has applications in fabric dyeing, tanning, paper, color film, soil analysis, radiation chemistry and analytical chemistry and other departments. Our GB2760-1996 provisions that hexametaphosphate is allowable food additives (water retention agent) for being used for canned food, fruit juice drinks, dairy products, soy products; it can also be used as a dye dispersant, and water treatment agent. Toxicity of Sodium hexametaphosphate Adl 0~70 mg/kg (in terms of phosphorus); LD50:4g/kg (rat, oral). According to the provision of the GB2760-86, it is allowed for being applied to canned food, fruit juice drinks, dairy products, soy milk as quality improver; the maximum usage amount is 1.0 g/kg. When being used as composite phosphate, calculated as the total phosphate, the canned meat products shall not exceed 1.0 g/kg; for condensation of milk, it shall not exceed 0.50 g/kg. Chemical Properties of Sodium hexametaphosphate Sodium hexametaphosphate is colorless and transparent glass flake or white granular crystals. It is easily soluble in water but insoluble in organic solvents. Uses of Sodium hexametaphosphate Sodium hexametaphosphate can be used as a food quality improver in food industry, pH adjusting agent, metal ion chelating agents, dispersants, extenders, etc. Sodium hexametaphosphate can be used as a kind of common analytical reagents, water softener, and also used for photofinishing and printing. Sodium hexametaphosphate can be used as a water softener, detergent, preservative, cement hardening accelerator, fiber dyeing and cleaning agents; it can also used for medicine, food, petroleum, printing and dyeing, tanning, and paper industry. Sodium hexametaphosphate can be used as texturizing agent; emulsifiers; stabilizer; chelating agent. Sodium hexametaphosphate is less frequently for being used alone and is generally used in mixture with pyrophosphate and metaphosphate. The mixture is mainly used for ham, sausage, surimi such as the tissue improver for water retention, tendering and meat softening. It can also be used for prevention of crystallization of canned crab as well as dissolving agent of pectin. Sodium hexametaphosphate can be used as the water softening agent of boiler water and industrial water (including water for the production of dyes, water for the production of titanium dioxide, water for printing and dyeing, and slurry mixing, water for cleaning color copy of the film, as well as chemical industrial water and the water for the medicines, reagents production, etc.) as well as the water treatment agent for the industrial cooling water; it can also be used as a corrosion inhibitor, flotation agent, dispersant agent, high temperature binding agent, dyeing auxiliaries, metal surface treatment, rust inhibitors, detergent additives and also cement hardening accelerator. Coated paper production can use it as pulp dispersants in order to improve the penetration capability. In addition, it can also be apply to the washing utensils and chemical fiber in order to remove iron ions of the pulp. In the oil industry, it can be used for the antirust of the drilling pipe and adjusting the slurry viscosity upon the control of oil drilling. Sodium hexametaphosphate can be used as the quality improver with various effects of increasing the complex metal ions of food, pH, ionic strength, thereby improving the adhesive capability as well as the water holding ability of food. China provides that it can be applied to the dairy products, poultry products, ice cream, instant noodles and meat with the maximum permitted amount being 5.0 g/kg; the maximal permitted usage amount in canned food, fruit juice (flavored) drinks and vegetable protein drink is 1.0g/kg. Sodium hexametaphosphate can be used as a food quality improver in food industry and applied to canned food, fruit juice drinks, dairy products, and soy milk. Sodium hexametaphosphate can be used as Ph adjusting agent, metal ion chelate agent, adhesive and bulking agents. When being applied to beans and canned fruits and vegetables, it can be stabilize the natural pigment and protect the food color and lustre; when being used in canned meat, it can be used for preventing the emulsification of the fat and maintaining its uniform texture; when being applied to meat, it can be used to increase the water holding capacity and prevent the deterioration of fat in the meat. Sodium hexametaphosphate can also help to clarify the wine when being supplied to beer and further prevent turbidity. Chemical Properties of Sodium hexametaphosphate The sodium polyphosphates class consists of several amorphous, water soluble polyphosphates composed of linear chains of metaphosphate units, (NaPO3)x where x ≥ 2, terminated by Na2PO4- groups. They are usually identified by their Na2O/ P2O5 ratio or their P2O5 content. The Na2O/P2O5 ratios vary from about 1.3 for sodium tetrapolyphosphate, where x = approximately 4; through about 1.1 for Graham’s salt, commonly called sodium hexametaphosphate, where x = 13 to 18; to about 1.0 for the higher molecular weight sodium polyphosphates, where x = 20 to 100 or more. The pH of their solution varies from about 3 to 9. For additional details of description, refer to Burdock (1997). Uses of Sodium hexametaphosphate Sodium Hexametaphosphate is a sequestrant and moisture binder that is very soluble in water but dissolves slowly. solutions have a ph of 7.0. Sodium hexametaphosphate permits peanuts to be salted in the shell by making it possible for the salt brine to penetrate the peanuts. in canned peas and lima beans, Sodium hexametaphosphate functions as a tenderizer when added to the water used to soak or scald the vegetables prior to canning. Sodium hexametaphosphate improves whipping properties in whipping proteins. Sodium hexametaphosphate functions as a seques- trant for calcium and magnesium, having the best sequestering power of all the phosphates. it prevents gel formation in sterilized milk. it is also termed sodium metaphosphate and graham’s salt. Uses For industrial use, such as oil field, paper-making, textile, dyeing, petrochemical industry,tanning industry, metallurgical industry and building material industry, It is mainly used as a water sortening agent in solution for printing, dyeing ,and boiler; Diffusant in papermersing medium, high temperature agglomerant,detergent and soil analytical chemistry reagent, Uses sodium hexametaphosphate is a chelating agent and a corrosion inhibitor. This is an inorganic salt. Preparation of Sodium hexametaphosphate Sodium hexametaphosphate is prepared by heating monosodium phosphate (NaH2PO4) rapidly to a clear melt, which occurs slightly above 625°C. Rapid chilling of this melt produces a very soluble glass, which is then crushed or milled. Agricultural Uses of Sodium hexametaphosphate Sodium metaphosphate is the salt of metaphosphoric acid having a molecular formula (NaPO3)n, where n ranges from 3 to 10 (for cyclic molecules) or may be much larger (for polymers).
SODIUM HUMATE
SODIUM HYDROSULFITE, N° CAS : 7775-14-6, Nom INCI : SODIUM HYDROSULFITE, Nom chimique : Sodium dithionite, N° EINECS/ELINCS : 231-890-0. Ses fonctions (INCI), Agent réducteur : Modifie la nature chimique d'une autre substance en ajoutant de l'hydrogène ou en éliminant l'oxygène. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM HYDROXIDE
SYNONYMS Caustic soda; Sodium hydrate; soda lye; Lye;White Caustic CAS NO. 1310-73-2
SODIUM HYDROXIDE
IUPAC name: Sodium hydroxide
CAS Number: 1310-73-2
EC Number: 215-185-5
Chemical formula: NaOH
Molar mass: 39.9971 g/mol

Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH.
Sodium hydroxide is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH−.

Sodium hydroxide is a highly caustic base and alkali that decomposes proteins at ordinary ambient temperatures and may cause severe chemical burns.
Sodium hydroxide is highly soluble in water, and readily absorbs moisture and carbon dioxide from the air.
Sodium hydroxide forms a series of hydrates NaOH·nH2O.

The monohydrate NaOH·H2O crystallizes from water solutions between 12.3 and 61.8 °C.
The commercially available "sodium hydroxide" is often this monohydrate, and published data may refer to it instead of the anhydrous compound.

As one of the simplest hydroxides, sodium hydroxide is frequently used alongside neutral water and acidic hydrochloric acid to demonstrate the pH scale to chemistry students.

Sodium hydroxide is used in many industries: in the manufacture of pulp and paper, textiles, drinking water, soaps and detergents, and as a drain cleaner.
Worldwide production in 2004 was approximately 60 million tons, while demand was 51 million tons.

Properties
Physical properties
Pure sodium hydroxide is a colorless crystalline solid that melts at 318 °C (604 °F) without decomposition, and with a boiling point of 1,388 °C (2,530 °F).
Sodium hydroxide is highly soluble in water, with a lower solubility in polar solvents such as ethanol and methanol.
NaOH is insoluble in ether and other non-polar solvents.

Similar to the hydration of sulfuric acid, dissolution of solid sodium hydroxide in water is a highly exothermic reaction where a large amount of heat is liberated, posing a threat to safety through the possibility of splashing.

The resulting solution is usually colorless and odorless.
As with other alkaline solutions, it feels slippery with skin contact due to the process of saponification that occurs between NaOH and natural skin oils.

Viscosity
Concentrated (50%) aqueous solutions of sodium hydroxide have a characteristic viscosity, 78 mPa·s, that is much greater than that of water (1.0 mPa·s) and near that of olive oil (85 mPa·s) at room temperature.
The viscosity of aqueous NaOH, as with any liquid chemical, is inversely related to its service temperature, i.e., its viscosity decreases as temperature increases, and vice versa.
The viscosity of sodium hydroxide solutions plays a direct role in its application as well as its storage.

Hydrates
Sodium hydroxide can form several hydrates NaOH·nH2O, which result in a complex solubility diagram that was described in detail by S.U. Pickering in 1893.
The known hydrates and the approximate ranges of temperature and concentration (mass percent of NaOH) of their saturated water solutions are:

Heptahydrate, NaOH·7H2O: from −28 °C (18.8%) to −24 °C (22.2%).
Pentahydrate, NaOH·5H2O: from −24 °C (22.2%) to −17.7 (24.8%).
Tetrahydrate, NaOH·4H2O, α form: from −17.7 (24.8%) to +5.4 °C (32.5%).
Tetrahydrate, NaOH·4H2O, β form: metastable.
Trihemihydrate, NaOH·3.5H2O: from +5.4 °C (32.5%) to +15.38 °C (38.8%) and then to +5.0 °C (45.7%).
Trihydrate, NaOH·3H2O: metastable.
Dihydrate, NaOH·2H2O: from +5.0 °C (45.7%) to +12.3 °C (51%).
Monohydrate, NaOH·H2O: from +12.3 °C (51%) to 65.10 °C (69%) then to 62.63 °C (73.1%).
Early reports refer to hydrates with n = 0.5 or n = 2/3, but later careful investigations failed to confirm their existence.

The only hydrates with stable melting points are NaOH·H2O (65.10 °C) and NaOH·3.5H2O (15.38 °C).
The other hydrates, except the metastable ones NaOH·3H2O and NaOH·4H2O (β) can be crystallized from solutions of the proper composition, as listed above.

However, solutions of NaOH can be easily supercooled by many degrees, which allows the formation of hydrates (including the metastable ones) from solutions with different concentrations.

For example, when a solution of NaOH and water with 1:2 mole ratio (52.6% NaOH by mass) is cooled, the monohydrate normally starts to crystallize (at about 22 °C) before the dihydrate.
However, the solution can easily be supercooled down to −15 °C, at which point it may quickly crystallize as the dihydrate.

When heated, the solid dihydrate might melt directly into a solution at 13.35 °C; however, once the temperature exceeds 12.58 °C.
Sodium hydroxide often decomposes into solid monohydrate and a liquid solution.
Even the n = 3.5 hydrate is difficult to crystallize, because the solution supercools so much that other hydrates become more stable.

A hot water solution containing 73.1% (mass) of NaOH is an eutectic that solidifies at about 62.63 °C as an intimate mix of anhydrous and monohydrate crystals.

A second stable eutectic composition is 45.4% (mass) of NaOH, that solidifies at about 4.9 °C into a mixture of crystals of the dihydrate and of the 3.5-hydrate.

The third stable eutectic has 18.4% (mass) of NaOH. Sodium hydroxide solidifies at about −28.7 °C as a mixture of water ice and the heptahydrate NaOH·7H2O.

When solutions with less than 18.4% NaOH are cooled, water ice crystallizes first, leaving the NaOH in solution.

The α form of the tetrahydrate has density 1.33 g/cm3. Sodium hydroxide melts congruously at 7.55 °C into a liquid with 35.7% NaOH and density 1.392 g/cm3, and therefore floats on it like ice on water. However, at about 4.9 °C it may instead melt incongruously into a mixture of solid NaOH·3.5H2O and a liquid solution.

The β form of the tetrahydrate is metastable, and often transforms spontaneously to the α form when cooled below −20 °C.[17] Once initiated, the exothermic transformation is complete in a few minutes, with a 6.5% increase in volume of the solid. The β form can be crystallized from supercooled solutions at −26 °C, and melts partially at −1.83 °C.

The "sodium hydroxide" of commerce is often the monohydrate (density 1.829 g/cm3). Physical data in technical literature may refer to this form, rather than the anhydrous compound.

Crystal structure
NaOH and its monohydrate form orthorhombic crystals with the space groups Cmcm (oS8) and Pbca (oP24), respectively.
The monohydrate cell dimensions are a = 1.1825, b = 0.6213, c = 0.6069 nm.
The atoms are arranged in a hydrargillite-like layer structure /O Na O O Na O/...

Each sodium atom is surrounded by six oxygen atoms, three each from hydroxyl anions HO− and three from water molecules.
The hydrogen atoms of the hydroxyls form strong bonds with oxygen atoms within each O layer.
Adjacent O layers are held together by hydrogen bonds between water molecules.

Chemical properties
Reaction with acids
Sodium hydroxide reacts with protic acids to produce water and the corresponding salts.
For example, when sodium hydroxide reacts with hydrochloric acid, sodium chloride is formed:

NaOH(aq) + HCl(aq) → NaCl(aq) +H2O(l)
In general, such neutralization reactions are represented by one simple net ionic equation:

OH−(aq) + H+(aq) → H2O(l)
This type of reaction with a strong acid releases heat, and hence is exothermic.
Such acid–base reactions can also be used for titrations. However, sodium hydroxide is not used as a primary standard because it is hygroscopic and absorbs carbon dioxide from air.

Reaction with acidic oxides
Sodium hydroxide also reacts with acidic oxides, such as sulfur dioxide.
Such reactions are often used to "scrub" harmful acidic gases (like SO2 and H2S) produced in the burning of coal and thus prevent their release into the atmosphere.
For example,

2 NaOH + SO2 → Na2SO3 + H2O
Reaction with metals and oxides
Glass reacts slowly with aqueous sodium hydroxide solutions at ambient temperatures to form soluble silicates.
Because of this, glass joints and stopcocks exposed to sodium hydroxide have a tendency to "freeze".

Flasks and glass-lined chemical reactors are damaged by long exposure to hot sodium hydroxide, which also frosts the glass. Sodium hydroxide does not attack iron at room temperatures, since iron does not have amphoteric properties (i.e., it only dissolves in acid, not base).

Nevertheless, at high temperatures (e.g. above 500 °C), iron can react endothermically with sodium hydroxide to form iron(III) oxide, sodium metal, and hydrogen gas.

This is due to the lower enthalpy of formation of iron(III) oxide (−824.2 kJ/mol) compared to sodium hydroxide (-500 kJ/mol) and positive entropy change of reaction, which imply spontaneity at high temperatures (ΔST>ΔH, ΔG<0) and non-spontaneity at low temperatures (ΔST<ΔH, ΔG>0).
Consider the following reaction between molten sodium hydroxide and finely divided iron filings:

4 Fe + 6 NaOH → 2 Fe2O3 + 6 Na + 3 H2
A few transition metals, however, may react vigorously with sodium hydroxide under milder conditions.

In 1986, an aluminium road tanker in the UK was mistakenly used to transport 25% sodium hydroxide solution, causing pressurization of the contents and damage to the tanker.
The pressurization was due to the hydrogen gas which is produced in the reaction between sodium hydroxide and aluminium:

2 Al + 2 NaOH + 6 H2O → 2 NaAl(OH)4 + 3 H2

Precipitant
Unlike sodium hydroxide, which is soluble, the hydroxides of most transition metals are insoluble, and therefore sodium hydroxide can be used to precipitate transition metal hydroxides. The following colours are observed:

Copper - blue
Iron(II) - green
Iron(III) - yellow / brown
Zinc and lead salts dissolve in excess sodium hydroxide to give a clear solution of Na2ZnO2 or Na2PbO2.

Aluminium hydroxide is used as a gelatinous flocculant to filter out particulate matter in water treatment. Aluminium hydroxide is prepared at the treatment plant from aluminium sulfate by reacting it with sodium hydroxide or bicarbonate.

Al2(SO4)3 + 6 NaOH → 2 Al(OH)3 + 3 Na2SO4
Al2(SO4)3 + 6 NaHCO3 → 2 Al(OH)3 + 3 Na2SO4 + 6 CO2

Saponification
Sodium hydroxide can be used for the base-driven hydrolysis of esters (as in saponification), amides and alkyl halides.
However, the limited solubility of sodium hydroxide in organic solvents means that the more soluble potassium hydroxide (KOH) is often preferred.
Touching a sodium hydroxide solution with bare hands, while not recommended, produces a slippery feeling.

This happens because oils on the skin such as sebum are converted to soap.
Despite solubility in propylene glycol it is unlikely to replace water in saponification due to propylene glycol's primary reaction with fat before reaction between sodium hydroxide and fat.

Production
For historical information, see Alkali manufacture.
Sodium hydroxide is industrially produced as a 50% solution by variations of the electrolytic chloralkali process.

Chlorine gas is also produced in this process.
Solid sodium hydroxide is obtained from this solution by the evaporation of water.
Solid sodium hydroxide is most commonly sold as flakes, prills, and cast blocks.

In 2004, world production was estimated at 60 million dry tonnes of sodium hydroxide, and demand was estimated at 51 million tonnes.
In 1998, total world production was around 45 million tonnes.
North America and Asia each contributed around 14 million tonnes, while Europe produced around 10 million tonnes.

In the United States, the major producer of sodium hydroxide is Olin, which has annual production around 5.7 million tonnes from sites at Freeport, Texas, and Plaquemine, Louisiana, St Gabriel, Louisiana, McIntosh, Alabama, Charleston, Tennessee, Niagara Falls, New York, and Becancour, Canada.
Other major US producers include Oxychem, Westlake, Shintek and Formosa.
All of these companies use the chloralkali process.

Historically, sodium hydroxide was produced by treating sodium carbonate with calcium hydroxide in a metathesis reaction which takes advantage of the fact that sodium hydroxide is soluble, while calcium carbonate is not.
This process was called causticizing.

Ca(OH)2(aq) + Na2CO3(s) → CaCO3(s) + 2 NaOH(aq)
This process was superseded by the Solvay process in the late 19th century, which was in turn supplanted by the chloralkali process which is in use today.

Sodium hydroxide is also produced by combining pure sodium metal with water. The byproducts are hydrogen gas and heat, often resulting in a flame.

2 Na + 2 H2O → 2 NaOH + H2
This reaction is commonly used for demonstrating the reactivity of alkali metals in academic environments; however, it is not commercially viable, as the isolation of sodium metal is typically performed by reduction or electrolysis of sodium compounds including sodium hydroxide.

Uses
Sodium hydroxide is a popular strong base used in industry.
Sodium hydroxide is used in the manufacture of sodium salts and detergents, pH regulation, and organic synthesis.
In bulk, it is most often handled as an aqueous solution, since solutions are cheaper and easier to handle.

Sodium hydroxide is used in many scenarios where it is desirable to increase the alkalinity of a mixture, or to neutralize acids.

For example, in the petroleum industry, sodium hydroxide is used as an additive in drilling mud to increase alkalinity in bentonite mud systems, to increase the mud viscosity, and to neutralize any acid gas (such as hydrogen sulfide and carbon dioxide) which may be encountered in the geological formation as drilling progresses.

Another use is in Salt spray testing where pH needs to be regulated. Sodium hydroxide is used with hydrochloric acid to balance pH. The resultant salt, NaCl, is the corrosive agent used in the standard neutral pH salt spray test.

Poor quality crude oil can be treated with sodium hydroxide to remove sulfurous impurities in a process known as caustic washing.
As above, sodium hydroxide reacts with weak acids such as hydrogen sulfide and mercaptans to yield non-volatile sodium salts, which can be removed.

The waste which is formed is toxic and difficult to deal with, and the process is banned in many countries because of this.
In 2006, Trafigura used the process and then dumped the waste in Ivory Coast.

Other common uses of sodium hydroxide include:

For making soaps and detergents.
Sodium hydroxide is used for hard bar soap while potassium hydroxide is used for liquid soaps.
Sodium hydroxide is used more often than potassium hydroxide because it is cheaper and a smaller quantity is needed.

As drain cleaners that contain sodium hydroxide convert fats and grease that can clog pipes into soap, which dissolves in water. (see cleaning agent)

For making artificial textile fibres (such as Rayon).

In the manufacture of paper. Around 56% of sodium hydroxide produced is used by industry, 25% of which is used in the paper industry. (see chemical pulping)

In purifying bauxite ore from which aluminium metal is extracted. This is known as Bayer process. (see dissolving amphoteric metals and compounds)

In de-greasing metals, oil refining, and making dyes and bleaches.

In water treatment plants for pH regulation.
to treat bagels and pretzel dough, giving the distinctive shiny finish.

Chemical pulping
Main article: Pulp (paper)
Sodium hydroxide is also widely used in pulping of wood for making paper or regenerated fibers.
Along with sodium sulfide, sodium hydroxide is a key component of the white liquor solution used to separate lignin from cellulose fibers in the kraft process.

Sodium hydroxide also plays a key role in several later stages of the process of bleaching the brown pulp resulting from the pulping process.
These stages include oxygen delignification, oxidative extraction, and simple extraction, all of which require a strong alkaline environment with a pH > 10.5 at the end of the stages.

Tissue digestion
In a similar fashion, sodium hydroxide is used to digest tissues, as in a process that was used with farm animals at one time. This process involved placing a carcass into a sealed chamber, then adding a mixture of sodium hydroxide and water (which breaks the chemical bonds that keep the flesh intact).

This eventually turns the body into a liquid with coffee-like appearance, and the only solid that remains are bone hulls, which could be crushed between one's fingertips.

Sodium hydroxide is frequently used in the process of decomposing roadkill dumped in landfills by animal disposal contractors.
Due to its availability and low cost, it has been used by criminals to dispose of corpses.
Sodium hydroxidealian serial killer Leonarda Cianciulli used this chemical to turn dead bodies into soap.
In Mexico, a man who worked for drug cartels admitted disposing of over 300 bodies with it.

Sodium hydroxide is a dangerous chemical due to its ability to hydrolyze protein.
If a dilute solution is spilled on the skin, burns may result if the area is not washed thoroughly and for several minutes with running water.
Splashes in the eye can be more serious and can lead to blindness.

Dissolving amphoteric metals and compounds
Strong bases attack aluminium. Sodium hydroxide reacts with aluminium and water to release hydrogen gas.
The aluminium takes the oxygen atom from sodium hydroxide, which in turn takes the oxygen atom from the water, and releases the two hydrogen atoms.
The reaction thus produces hydrogen gas and sodium aluminate.
In this reaction, sodium hydroxide acts as an agent to make the solution alkaline, which aluminium can dissolve in.

2 Al + 2 NaOH + 2 H2O → 2 NaAlO2 + 3 H2
Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications.
Pure sodium aluminate (anhydrous) is a white crystalline solid having a formula variously given as NaAlO2, Na3AlO3, NaAl(OH)4, Na2O·Al2O3 or Na2Al2O4.
Formation of sodium tetrahydroxoaluminate(III) or hydrated sodium aluminate is given by:[38]

2 Al + 2 NaOH + 6 H2O → 2 NaAl(OH)4 + 3 H2
This reaction can be useful in etching, removing anodizing, or converting a polished surface to a satin-like finish, but without further passivation such as anodizing or alodining the surface may become degraded, either under normal use or in severe atmospheric conditions.

In the Bayer process, sodium hydroxide is used in the refining of alumina containing ores (bauxite) to produce alumina (aluminium oxide) which is the raw material used to produce aluminium metal via the electrolytic Hall-Héroult process.
Since the alumina is amphoteric, it dissolves in the sodium hydroxide, leaving impurities less soluble at high pH such as iron oxides behind in the form of a highly alkaline red mud.

Other amphoteric metals are zinc and lead which dissolve in concentrated sodium hydroxide solutions to give sodium zincate and sodium plumbate respectively.

Esterification and transesterification reagent
Sodium hydroxide is traditionally used in soap making (cold process soap, saponification).
Sodium hydroxide was made in the nineteenth century for a hard surface rather than liquid product because it was easier to store and transport.

For the manufacture of biodiesel, sodium hydroxide is used as a catalyst for the transesterification of methanol and triglycerides.
This only works with anhydrous sodium hydroxide, because combined with water the fat would turn into soap, which would be tainted with methanol.
NaOH is used more often than potassium hydroxide because it is cheaper and a smaller quantity is needed.
Due to production costs, NaOH, which is produced using common salt is cheaper than potassium hydroxide.

Food preparation
Food uses of sodium hydroxide include washing or chemical peeling of fruits and vegetables, chocolate and cocoa processing, caramel coloring production, poultry scalding, soft drink processing, and thickening ice cream.

Olives are often soaked in sodium hydroxide for softening; Pretzels and German lye rolls are glazed with a sodium hydroxide solution before baking to make them crisp.
Owing to the difficulty in obtaining food grade sodium hydroxide in small quantities for home use, sodium carbonate is often used in place of sodium hydroxide.
Sodium hydroxide is known as E number E524.

Specific foods processed with sodium hydroxide include:

German pretzels are poached in a boiling sodium carbonate solution or cold sodium hydroxide solution before baking, which contributes to their unique crust.
Lye-water is an essential ingredient in the crust of the traditional baked Chinese moon cakes.
Most yellow coloured Chinese noodles are made with lye-water but are commonly mistaken for containing egg.
One variety of zongzi uses lye water to impart a sweet flavor.

Sodium hydroxide is also the chemical that causes gelling of egg whites in the production of Century eggs.
Some methods of preparing olives involve subjecting them to a lye-based brine.
The Filipino dessert (kakanin) called kutsinta uses a small quantity of lye water to help give the rice flour batter a jelly like consistency. A similar process is also used in the kakanin known as pitsi-pitsi or pichi-pichi except that the mixture uses grated cassava instead of rice flour.

The Norwegian dish known as lutefisk (from lutfisk, "lye fish").
Bagels are often boiled in a lye solution before baking, contributing to their shiny crust.
Hominy is dried maize (corn) kernels reconstituted by soaking in lye-water.
These expand considerably in size and may be further processed by frying to make corn nuts or by drying and grinding to make grits.

Hominy is used to create Masa, a popular flour used in Mexican cuisine to make Corn tortillas and tamales. Nixtamal is similar, but uses calcium hydroxide instead of sodium hydroxide.

Cleaning agent
Main article: Cleaning agent
Sodium hydroxide is frequently used as an industrial cleaning agent where it is often called "caustic".
Sodium hydroxide is added to water, heated, and then used to clean process equipment, storage tanks, etc. Sodium hydroxide can dissolve grease, oils, fats and protein-based deposits.

Sodium hydroxide is also used for cleaning waste discharge pipes under sinks and drains in domestic properties.
Surfactants can be added to the sodium hydroxide solution in order to stabilize dissolved substances and thus prevent redeposition.
A sodium hydroxide soak solution is used as a powerful degreaser on stainless steel and glass bakeware.
Sodium hydroxide is also a common ingredient in oven cleaners.

A common use of sodium hydroxide is in the production of parts washer detergents.
Parts washer detergents based on sodium hydroxide are some of the most aggressive parts washer cleaning chemicals.
The sodium hydroxide-based detergents include surfactants, rust inhibitors and defoamers.
A parts washer heats water and the detergent in a closed cabinet and then sprays the heated sodium hydroxide and hot water at pressure against dirty parts for degreasing applications.

Sodium hydroxide used in this manner replaced many solvent-based systems in the early 1990s[citation needed] when trichloroethane was outlawed by the Montreal Protocol. Water and sodium hydroxide detergent-based parts washers are considered to be an environmental improvement over the solvent-based cleaning methods.

Storage
Careful storage is needed when handling sodium hydroxide for use, especially bulk volumes.
Following proper NaOH storage guidelines and maintaining worker/environment safety is always recommended given the chemical's burn hazard.

Sodium hydroxide is often stored in bottles for small-scale laboratory use, within intermediate bulk containers (medium volume containers) for cargo handling and transport, or within large stationary storage tanks with volumes up to 100,000 gallons for manufacturing or waste water plants with extensive NaOH use.

Common materials that are compatible with sodium hydroxide and often utilized for NaOH storage include: polyethylene (HDPE, usual, XLPE, less common), carbon steel, polyvinyl chloride (PVC), stainless steel, and fiberglass reinforced plastic (FRP, with a resistant liner).

Sodium hydroxide must be stored in airtight containers to preserve its normality as it will absorb water from the atmosphere.

History
Sodium hydroxide was first prepared by soap makers.
A procedure for making sodium hydroxide appeared as part of a recipe for making soap in an Arab book of the late 13th century: Al-mukhtara' fi funun min al-suna' (Inventions from the Various Industrial Arts), which was compiled by al-Muzaffar Yusuf ibn 'Umar ibn 'Ali ibn Rasul (d. 1295), a king of Yemen.

The recipe called for passing water repeatedly through a mixture of alkali (Arabic: al-qily, where qily is ash from saltwort plants, which are rich in sodium; hence alkali was impure sodium carbonate) and quicklime (calcium oxide, CaO), whereby a solution of sodium hydroxide was obtained. European soap makers also followed this recipe.

When in 1791 the French chemist and surgeon Nicolas Leblanc (1742–1806) patented a process for mass-producing sodium carbonate, natural "soda ash" (impure sodium carbonate that was obtained from the ashes of plants that are rich in sodium): was replaced by this artificial version.
However, by the 20th century, the electrolysis of sodium chloride had become the primary method for producing sodium hydroxide.

Appearance: White, hard (when pure), opaque crystals
Odor: odorless
Density: 2.13 g/cm3
Melting point: 323 °C
Boiling point: 1,388 °C
Solubility in water: 418 g/L (0 °C) - 1000 g/L (25 °C) - 3370 g/L (100 °C)
Solubility: soluble in glycerol - negligible in ammonia - insoluble in ether - slowly soluble in propylene glycol
Solubility in methanol: 238 g/L
Solubility in ethanol: <<139 g/L
Vapor pressure: <2.4 kPa (at 20 °C)
Acidity (pKa): 15.7
Magnetic susceptibility (χ): −15.8·10−6 cm3/mol (aq.)[5]
Refractive index (nD): 1.3576
Crystal structure: Orthorhombic, oS8
Space group: Cmcm, No. 63
Lattice constant: a = 0.34013 nm, b = 1.1378 nm, c = 0.33984 nm
Formula units (Z): 4
Hydrogen Bond Donor Count: 1
Hydrogen Bond Acceptor Count: 1
Rotatable Bond Count: 0
Exact Mass: 39.99250893
Monoisotopic Mass: 39.99250893
Topological Polar Surface Area: 1 Ų
Heavy Atom Count: 2
Complexity: 2
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 0
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 0
Undefined Bond Stereocenter Count: 0
Covalently-Bonded Unit Count: 2
Compound Is Canonicalized: Yes

Thermochemistry
Heat capacity (C): 59.5 J/mol K
Std molar entropy (So298): 64.4 J·mol−1·K−1
Std enthalpy of formation (ΔfH⦵298): −425.8 kJ·mol−1
Gibbs free energy (ΔfG˚): -379.7 kJ/mol

About Sodium hydroxide
Sodium hydroxide is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 10 000 000 tonnes per annum.

Sodium hydroxide is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses
Other release to the environment of Sodium hydroxide is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use, indoor use in close systems with minimal release (e.g. cooling liquids in refrigerators, oil-based electric heaters), outdoor use in close systems with minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and break fluids), indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment), outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials), indoor use in long-life materials with high release rate (e.g. release from fabrics, textiles during washing, removal of indoor paints) and outdoor use in long-life materials with high release rate (e.g. tyres, treated wooden products, treated textile and fabric, brake pads in trucks or cars, sanding of buildings (bridges, facades) or vehicles (ships)).

Article service life
Other release to the environment of Sodium hydroxide is likely to occur from: outdoor use, indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment) and indoor use in long-life materials with high release rate (e.g. release from fabrics, textiles during washing, removal of indoor paints).

Sodium hydroxide can be found in products with material based on: fabrics, textiles and apparel (e.g. clothing, mattress, curtains or carpets, textile toys), leather (e.g. gloves, shoes, purses, furniture), metal (e.g. cutlery, pots, toys, jewellery) and stone, plaster, cement, glass or ceramic (e.g. dishes, pots/pans, food storage containers, construction and isolation material).

Widespread uses by professional workers
Sodium hydroxide is used in the following areas: mining.
Sodium hydroxide is used for the manufacture of: chemicals.
Release to the environment of Sodium hydroxide can occur from industrial use: formulation of mixtures and formulation in materials.
Other release to the environment of Sodium hydroxide is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use, indoor use in close systems with minimal release (e.g. cooling liquids in refrigerators, oil-based electric heaters), outdoor use in close systems with minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and break fluids), outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials), indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment), outdoor use in long-life materials with high release rate (e.g. tyres, treated wooden products, treated textile and fabric, brake pads in trucks or cars, sanding of buildings (bridges, facades) or vehicles (ships)) and indoor use in long-life materials with high release rate (e.g. release from fabrics, textiles during washing, removal of indoor paints).

Formulation or re-packing
ECHA has no public registered data indicating whether or in which chemical products the substance might be used.
Release to the environment of Sodium hydroxide can occur from industrial use: formulation of mixtures, formulation in materials, as processing aid, as processing aid, in pro
SODIUM HYDROXIDE FLAKES
Caustic soda; Sodium hydrate; soda lye; Lye;White Caustic; Hydroxyde De Sodium (French); Natriumhydroxid (German); Natriumhydroxyde (Dutch); Sodio(Idrossido Di); cas no: 1310-73-2
SODIUM HYDROXIDE LIQUID
Sodium Hydroxide Liquid Sodium hydroxide liquid, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH−. Sodium hydroxide liquid is a highly caustic base and alkali that decomposes proteins at ordinary ambient temperatures and may cause severe chemical burns. It is highly soluble in water, and readily absorbs moisture and carbon dioxide from the air. It forms a series of hydrates NaOH·nH2O. The monohydrate NaOH·H2O crystallizes from water solutions between 12.3 and 61.8 °C. The commercially available "Sodium hydroxide liquid" is often this monohydrate, and published data may refer to it instead of the anhydrous compound. As one of the simplest hydroxides, Sodium hydroxide liquid is frequently utilized alongside neutral water and acidic hydrochloric acid to demonstrate the pH scale to chemistry students. Sodium hydroxide liquid is used in many industries: in the manufacture of pulp and paper, textiles, drinking water, soaps and detergents, and as a drain cleaner. Worldwide production in 2004 was approximately 60 million tonnes, while demand was 51 million tonnes. Properties of Sodium hydroxide liquid Chemical formula NaOH Molar mass 39.9971 g mol−1 Appearance White, waxy, opaque crystals Odor odorless Density 2.13 g/cm3 Melting point 323 °C (613 °F; 596 K) Boiling point 1,388 °C (2,530 °F; 1,661 K) Solubility in water 418 g/L (0 °C) 1000 g/L (25 °C) 3370 g/L (100 °C) Solubility soluble in glycerol negligible in ammonia insoluble in ether slowly soluble in propylene glycol Solubility in methanol 238 g/L Solubility in ethanol <<139 g/L Vapor pressure <2.4 kPa (at 20 °C) Basicity (pKb) 0.2 Magnetic susceptibility (χ) −15.8·10−6 cm3/mol (aq.) Refractive index (nD) 1.3576 Properties of Sodium hydroxide liquid Physical properties Sodium hydroxide liquid Pure Sodium hydroxide liquid is a colorless crystalline solid that melts at 318 °C (604 °F) without decomposition, and with a boiling point of 1,388 °C (2,530 °F). It is highly soluble in water, with a lower solubility in polar solvents such as ethanol and methanol. NaOH is insoluble in ether and other non-polar solvents. Similar to the hydration of sulfuric acid, dissolution of solid Sodium hydroxide liquid in water is a highly exothermic reaction where a large amount of heat is liberated, posing a threat to safety through the possibility of splashing. The resulting solution is usually colorless and odorless. As with other alkaline solutions, it feels slippery with skin contact due to the process of saponification that occurs between NaOH and natural skin oils. Viscosity of Sodium hydroxide liquid Concentrated (50%) aqueous solutions of Sodium hydroxide liquid have a characteristic viscosity, 78 mPa·s, that is much greater than that of water (1.0 mPa·s) and near that of olive oil (85 mPa·s) at room temperature. The viscosity of aqueous NaOH, as with any liquid chemical, is inversely related to its service temperature, i.e., its viscosity decreases as temperature increases, and vice versa. The viscosity of Sodium hydroxide liquid solutions plays a direct role in its application as well as its storage. Hydrates Sodium hydroxide liquid can form several hydrates NaOH·nH2O, which result in a complex solubility diagram that was described in detail by S. U. Pickering in 1893. The known hydrates and the approximate ranges of temperature and concentration (mass percent of NaOH) of their saturated water solutions are: Heptahydrate, NaOH·7H2O: from −28 °C (18.8%) to −24 °C (22.2%). Pentahydrate, NaOH·5H2O: from −24 °C (22.2%) to −17.7 (24.8%). Tetrahydrate, NaOH·4H2O, α form: from −17.7 (24.8%) to +5.4 °C (32.5%). Tetrahydrate, NaOH·4H2O, β form: metastable. Trihemihydrate, NaOH·3.5H2O: from +5.4 °C (32.5%) to +15.38 °C (38.8%) and then to +5.0 °C (45.7%). Trihydrate, NaOH·3H2O: metastable. Dihydrate, NaOH·2H2O: from +5.0 °C (45.7%) to +12.3 °C (51%). Monohydrate, NaOH·H2O: from +12.3 °C (51%) to 65.10 °C (69%) then to 62.63 °C (73.1%). Early reports refer to hydrates with n = 0.5 or n = 2/3, but later careful investigations failed to confirm their existence. The only hydrates with stable melting points are NaOH·H2O (65.10 °C) and NaOH·3.5H2O (15.38 °C). The other hydrates, except the metastable ones NaOH·3H2O and NaOH·4H2O (β) can be crystallized from solutions of the proper composition, as listed above. However, solutions of NaOH can be easily supercooled by many degrees, which allows the formation of hydrates (including the metastable ones) from solutions with different concentrations. For example, when a solution of Sodium hydroxide liquid and water with 1:2 mole ratio (52.6% Sodium hydroxide liquid by mass) is cooled, the monohydrate normally starts to crystallize (at about 22 °C) before the dihydrate. However, the solution can easily be supercooled down to −15 °C, at which point it may quickly crystallize as the dihydrate. When heated, the solid dihydrate might melt directly into a solution at 13.35 °C; however, once the temperature exceeds 12.58 °C. it often decomposes into solid monohydrate and a liquid solution. Even the n = 3.5 hydrate is difficult to crystallize, because the solution supercools so much that other hydrates become more stable. A hot water solution containing 73.1% (mass) of Sodium hydroxide liquid is an eutectic that solidifies at about 62.63 °C as an intimate mix of anhydrous and monohydrate crystals. A second stable eutectic composition is 45.4% (mass) of Sodium hydroxide liquid, that solidifies at about 4.9 °C into a mixture of crystals of the dihydrate and of the 3.5-hydrate. The third stable eutectic has 18.4% (mass) of Sodium hydroxide liquid. It solidifies at about −28.7 °C as a mixture of water ice and the heptahydrate Sodium hydroxide liquid·7H2O. When solutions with less than 18.4% Sodium hydroxide liquid are cooled, water ice crystallizes first, leaving the Sodium hydroxide liquid in solution. The α form of the tetrahydrate has density 1.33 g/cm3. It melts congruously at 7.55 °C into a liquid with 35.7% Sodium hydroxide liquid and density 1.392 g/cm3, and therefore floats on it like ice on water. However, at about 4.9 °C it may instead melt incongruously into a mixture of solid Sodium hydroxide liquid·3.5H2O and a liquid solution. The β form of the tetrahydrate is metastable, and often transforms spontaneously to the α form when cooled below −20 °C. Once initiated, the exothermic transformation is complete in a few minutes, with a 6.5% increase in volume of the solid. The β form can be crystallized from supercooled solutions at −26 °C, and melts partially at −1.83 °C. The "sodium hydroxide" of commerce is often the monohydrate (density 1.829 g/cm3). Physical data in technical literature may refer to this form, rather than the anhydrous compound. Crystal structure of Sodium hydroxide liquid Sodium hydroxide liquid and its monohydrate form orthorhombic crystals with the space groups Cmcm (oS8) and Pbca (oP24), respectively. The monohydrate cell dimensions are a = 1.1825, b = 0.6213, c = 0.6069 nm. The atoms are arranged in a hydrargillite-like layer structure /O Na OO NaO/... Each sodium atom is surrounded by six oxygen atoms, three each from hydroxyl anions HO− and three from water molecules. The hydrogen atoms of the hydroxyls form strong bonds with oxygen atoms within each O layer. Adjacent O layers are held together by hydrogen bonds between water molecules. Chemical properties of Sodium hydroxide liquid Reaction with acids of Sodium hydroxide liquid Sodium hydroxide liquid reacts with protic acids to produce water and the corresponding salts. For example, when Sodium hydroxide liquid reacts with hydrochloric acid, sodium chloride is formed: NaOH(aq) + HCl(aq) → NaCl(aq) +H2O(l) In general, such neutralization reactions are represented by one simple net ionic equation: OH−(aq) + H+(aq) → H2O(l) This type of reaction with a strong acid releases heat, and hence is exothermic. Such acid-base reactions can also be used for titrations. However, Sodium hydroxide liquid is not used as a primary standard because it is hygroscopic and absorbs carbon dioxide from air. Reaction with acidic oxides Sodium hydroxide liquid also reacts with acidic oxides, such as sulfur dioxide. Such reactions are often used to "scrub" harmful acidic gases (like SO2 and H2S) produced in the burning of coal and thus prevent their release into the atmosphere. For example, 2 NaOH + SO2 → Na2SO3 + H2O Reaction with metals and oxides Glass reacts slowly with aqueous Sodium hydroxide liquid solutions at ambient temperatures to form soluble silicates. Because of this, glass joints and stopcocks exposed to Sodium hydroxide liquid have a tendency to "freeze". Flasks and glass-lined chemical reactors are damaged by long exposure to hot Sodium hydroxide liquid, which also frosts the glass. Sodium hydroxide liquid does not attack iron at room temperatures, since iron does not have amphoteric properties (i.e., it only dissolves in acid, not base). Nevertheless, at high temperatures (e.g. above 500 °C), iron can react endothermically with Sodium hydroxide liquid to form iron(III) oxide, sodium metal, and hydrogen gas. This is due to the lower enthalpy of formation of iron(III) oxide (−824.2 kJ/mol compared to Sodium hydroxide liquid (-500 kJ/mol), thus the reaction is thermodynamically favorable, although its endothermic nature indicates non-spontaneity. Consider the following reaction between molten Sodium hydroxide liquid and finely divided iron filings: 4 Fe + 6 NaOH → 2 Fe2O3 + 6 Na + 3 H2 A few transition metals, however, may react vigorously with Sodium hydroxide liquid. In 1986, an aluminium road tanker in the UK was mistakenly used to transport 25% Sodium hydroxide liquid solution, causing pressurization of the contents and damage to the tanker. The pressurization was due to the hydrogen gas which is produced in the reaction between Sodium hydroxide liquid and aluminium: 2 Al + 2 NaOH + 6 H2O → 2 NaAl(OH)4 + 3 H2 Precipitant Unlike Sodium hydroxide liquid, which is soluble, the hydroxides of most transition metals are insoluble, and therefore Sodium hydroxide liquid can be used to precipitate transition metal hydroxides. The following colours are observed: Copper - blue Iron(II) - green Iron(III) - yellow / brown Zinc and lead salts dissolve in excess Sodium hydroxide liquid to give a clear solution of Na2ZnO2 or Na2PbO2. Aluminium hydroxide is used as a gelatinous flocculant to filter out particulate matter in water treatment. Aluminium hydroxide is prepared at the treatment plant from aluminium sulfate by reacting it with Sodium hydroxide liquid or bicarbonate. Al2(SO4)3 + 6 NaOH → 2 Al(OH)3 + 3 Na2SO4Al2(SO4)3 + 6 NaHCO3 → 2 Al(OH)3 + 3 Na2SO4 + 6 CO2 Saponification Sodium hydroxide liquid can be used for the base-driven hydrolysis of esters (as in saponification), amides and alkyl halides. However, the limited solubility of Sodium hydroxide liquid in organic solvents means that the more soluble potassium hydroxide (KOH) is often preferred. Touching Sodium hydroxide liquid solution with the bare hands, while not recommended, produces a slippery feeling. This happens because oils on the skin such as sebum are converted to soap. Despite solubility in propylene glycol it is unlikely to replace water in saponification due to propylene glycol primary reaction with fat before reaction between Sodium hydroxide liquid and fat. Production For historical information, see Alkali manufacture. Sodium hydroxide liquid is industrially produced as a 50% solution by variations of the electrolytic chloralkali process. Chlorine gas is also produced in this process. Solid Sodium hydroxide liquid is obtained from this solution by the evaporation of water. Solid Sodium hydroxide liquid is most commonly sold as flakes, prills, and cast blocks. In 2004, world production was estimated at 60 million dry tonnes of Sodium hydroxide liquid, and demand was estimated at 51 million tonnes. In 1998, total world production was around 45 million tonnes. North America and Asia each contributed around 14 million tonnes, while Europe produced around 10 million tonnes. In the United States, the major producer of Sodium hydroxide liquid is the Dow Chemical Company, which has annual production around 3.7 million tonnes from sites at Freeport, Texas, and Plaquemine, Louisiana. Other major US producers include Oxychem, Westlake, Olin, Shintek and Formosa. All of these companies use the chloralkali process. Historically, Sodium hydroxide liquid was produced by treating sodium carbonate with calcium hydroxide in a metathesis reaction which takes advantage of the fact that Sodium hydroxide liquid is soluble, while calcium carbonate is not. This process was called causticizing. Ca(OH)2(aq) + Na2CO3(s) → CaCO3(s) + 2 NaOH(aq) This process was superseded by the Solvay process in the late 19th century, which was in turn supplanted by the chloralkali process which we use today. Sodium hydroxide liquid is also produced by combining pure sodium metal with water. The byproducts are hydrogen gas and heat, often resulting in a flame. 2 Na + 2 H2O → 2 NaOH + H2 This reaction is commonly used for demonstrating the reactivity of alkali metals in academic environments; however, it is not commercially viable, as the isolation of sodium metal is typically performed by reduction or electrolysis of sodium compounds including Sodium hydroxide liquid. Uses Sodium hydroxide liquid is a popular strong base used in industry. Sodium hydroxide liquid is used in the manufacture of sodium salts and detergents, pH regulation, and organic synthesis. In bulk, it is most often handled as an aqueous solution, since solutions are cheaper and easier to handle. Sodium hydroxide liquid is used in many scenarios where it is desirable to increase the alkalinity of a mixture, or to neutralize acids. For example, in the petroleum industry, Sodium hydroxide liquid is used as an additive in drilling mud to increase alkalinity in bentonite mud systems, to increase the mud viscosity, and to neutralize any acid gas (such as hydrogen sulfide and carbon dioxide) which may be encountered in the geological formation as drilling progresses. Another use is in Salt spray testing where pH needs to be regulated. Sodium hydroxide liquid is used with hydrochloric acid to balance pH. The resultant salt, NaCl, is the corrosive agent used in the standard neutral pH salt spray test. Poor quality crude oil can be treated with Sodium hydroxide liquid to remove sulfurous impurities in a process known as caustic washing. As above, Sodium hydroxide liquid reacts with weak acids such as hydrogen sulfide and mercaptans to yield non-volatile sodium salts, which can be removed. The waste which is formed is toxic and difficult to deal with, and the process is banned in many countries because of this. In 2006, Trafigura used the process and then dumped the waste in Ivory Coast. Other common uses of Sodium hydroxide liquid include: It is used for making soaps and detergents. Sodium hydroxide liquid is used for hard bar soap while potassium hydroxide is used for liquid soaps.Sodium hydroxide liquid is used more often than potassium hydroxide because it is cheaper and a smaller quantity is needed. It is used as drain cleaners that contain Sodium hydroxide liquid convert fats and grease that can clog pipes into soap, which dissolves in water. (see cleaning agent) It is used for making artificial textile fibres (such as Rayon). It is used in the manufacture of paper. Around 56% of Sodium hydroxide liquid produced is used by industry, 25% of which is used in the paper industry. (see chemical pulping) It is used in purifying bauxite ore from which aluminium metal is extracted. This is known as Bayer process. (see dissolving amphoteric metals and compounds) It is used in de-greasing metals, oil refining, and making dyes and bleaches. Chemical pulping Sodium hydroxide liquid is also widely used in pulping of wood for making paper or regenerated fibers. Along with sodium sulfide, Sodium hydroxide liquid is a key component of the white liquor solution used to separate lignin from cellulose fibers in the kraft process. It also plays a key role in several later stages of the process of bleaching the brown pulp resulting from the pulping process. These stages include oxygen delignification, oxidative extraction, and simple extraction, all of which require a strong alkaline environment with a pH > 10.5 at the end of the stages. Tissue digestion In a similar fashion, Sodium hydroxide liquid is used to digest tissues, as in a process that was used with farm animals at one time. This process involved placing a carcass into a sealed chamber, then adding a mixture of Sodium hydroxide liquid and water (which breaks the chemical bonds that keep the flesh intact). This eventually turns the body into a liquid with coffee-like appearance, and the only solid that remains are bone hulls, which could be crushed between one's fingertips. Sodium hydroxide liquid is frequently used in the process of decomposing roadkill dumped in landfills by animal disposal contractors. Due to its availability and low cost, it has been used by criminals to dispose of corpses. Italian serial killer Leonarda Cianciulli used this chemical to turn dead bodies into soap. In Mexico, a man who worked for drug cartels admitted disposing of over 300 bodies with it. Sodium hydroxide liquid is a dangerous chemical due to its ability to hydrolyze protein. If a dilute solution is spilled on the skin, burns may result if the area is not washed thoroughly and for several minutes with running water. Splashes in the eye can be more serious and can lead to blindness. Dissolving amphoteric metals and compounds Strong bases attack aluminium. Sodium hydroxide liquid reacts with aluminium and water to release hydrogen gas. The aluminium takes the oxygen atom from Sodium hydroxide liquid, which in turn takes the oxygen atom from the water, and releases the two hydrogen atoms, The reaction thus produces hydrogen gas and sodium aluminate. In this reaction, Sodium hydroxide liquid acts as an agent to make the solution alkaline, which aluminium can dissolve in. 2 Al + 2 NaOH + 2 H2O → 2 NaAlO2 + 3H2 Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications. Pure sodium aluminate (anhydrous) is a white crystalline solid having a formula variously given as NaAlO2, NaAl(OH)4< (hydrated), Na2O.Al2O3, or Na2Al2O4. Formation of sodium tetrahydroxoaluminate(III) or hydrated sodium aluminate is given by: 2Al + 2NaOH + 6H2O → 2 NaAl(OH)4 + 3 H2 This reaction can be useful in etching, removing anodizing, or converting a polished surface to a satin-like finish, but without further passivation such as anodizing or alodining the surface may become degraded, either under normal use or in severe atmospheric conditions. In the Bayer process, Sodium hydroxide liquid is used in the refining of alumina containing ores (bauxite) to produce alumina (aluminium oxide) which is the raw material used to produce aluminium metal via the electrolytic Hall-Héroult process. Since the alumina is amphoteric, it dissolves in the Sodium hydroxide liquid, leaving impurities less soluble at high pH such as iron oxides behind in the form of a highly alkaline red mud. Other amphoteric metals are zinc and lead which dissolve in concentrated Sodium hydroxide liquid solutions to give sodium zincate and sodium plumbate respectively. Esterification and transesterification reagent Sodium hydroxide liquid is traditionally used in soap making (cold process soap, saponification). It was made in the nineteenth century for a hard surface rather than liquid product because it was easier to store and transport. For the manufacture of biodiesel, Sodium hydroxide liquid is used as a catalyst for the transesterification of methanol and triglycerides. This only works with anhydrous Sodium hydroxide liquid, because combined with water the fat would turn into soap, which would be tainted with methanol. NaOH is used more often than potassium hydroxide because it is cheaper and a smaller quantity is needed. Due to production costs, NaOH, which is produced using common salt is cheaper than potassium hydroxide. Food preparation Food uses of Sodium hydroxide liquid include washing or chemical peeling of fruits and vegetables, chocolate and cocoa processing, caramel coloring production, poultry scalding, soft drink processing, and thickening ice cream. Olives are often soaked in Sodium hydroxide liquid for softening; Pretzels and German lye rolls are glazed with a Sodium hydroxide liquid solution before baking to make them crisp. Owing to the difficulty in obtaining food grade Sodium hydroxide liquid in small quantities for home use, sodium carbonate is often used in place of Sodium hydroxide liquid. It is known as E number E524. Specific foods processed with Sodium hydroxide liquid include: German pretzels are poached in a boiling sodium carbonate solution or cold Sodium hydroxide liquid solution before baking, which contributes to their unique crust. Lye-water is an essential ingredient in the crust of the traditional baked Chinese moon cakes. Most yellow coloured Chinese noodles are made with lye-water but are commonly mistaken for containing egg. One variety of zongzi uses lye water to impart a sweet flavor. Sodium hydroxide liquid is also the chemical that causes gelling of egg whites in the production of Century eggs. Some methods of preparing olives involve subjecting them to a lye-based brine. The Filipino dessert (kakanin) called kutsinta uses a small quantity of lye water to help give the rice flour batter a jelly like consistency. A similar process is also used in the kakanin known as pitsi-pitsi or pichi-pichi except that the mixture uses grated cassava instead of rice flour. The Norwegian dish known as lutefisk (from lutfisk, "lye fish"). Bagels are often boiled in a lye solution before baking, contributing to their shiny crust. Hominy is dried maize (corn) kernels reconstituted by soaking in lye-water. These expand considerably in size and may be further processed by frying to make corn nuts or by drying and grinding to make grits. Hominy is used to create Masa, a popular flour used in Mexican cuisine to make Corn tortillas and tamales. Nixtamal is similar, but uses calcium hydroxide instead of Sodium hydroxide liquid. Cleaning agent Sodium hydroxide liquid is frequently used as an industrial cleaning agent where it is often called "caustic". It is added to water, heated, and then used to clean process equipment, storage tanks, etc. It can dissolve grease, oils, fats and protein-based deposits. It is also used for cleaning waste discharge pipes under sinks and drains in domestic properties. Surfactants can be added to the Sodium hydroxide liquid solution in order to stabilize dissolved substances and thus prevent redeposition. A Sodium hydroxide liquid soak solution is used as a powerful degreaser on stainless steel and glass bakeware. It is also a common ingredient in oven cleaners. A common use of Sodium hydroxide liquid is in the production of parts washer detergents. Parts washer detergents based on Sodium hydroxide liquid are some of the most aggressive parts washer cleaning chemicals. The Sodium hydroxide liquid-based detergents include surfactants, rust inhibitors and defoamers. A parts washer heats water and the detergent in a closed cabinet and then sprays the heated Sodium hydroxide liquid and hot water at pressure against dirty parts for degreasing applications. Sodium hydroxide liquid used in this manner replaced many solvent-based systems in the early 1990s when trichloroethane was outlawed by the Montreal Protocol. Water and Sodium hydroxide liquid detergent-based parts washers are considered to be an environmental improvement over the solvent-based cleaning methods. Hardware stores grade Sodium hydroxide liquid to be used as a type of drain cleaner. Paint stripping with caustic soda Sodium hydroxide liquid is used in the home as a type of drain opener to unblock clogged drains, usually in the form of a dry crystal or as a thick liquid gel. The alkali dissolves greases to produce water soluble products. It also hydrolyzes the proteins such as those found in hair which may block water pipes. These reactions are sped by the heat generated when Sodium hydroxide liquid and the other chemical components of the cleaner dissolve in water. Such alkaline drain cleaners and their acidic versions are highly corrosive and should be handled with great caution. Sodium hydroxide liquid is used in some relaxers to straighten hair. However, because of the high incidence and intensity of chemical burns, manufacturers of chemical relaxers use other alkaline chemicals in preparations available to average consumers. Sodium hydroxide liquid relaxers are still available, but they are used mostly by professionals. A solution of Sodium hydroxide liquid in water was traditionally used as the most common paint stripper on wooden objects. Its use has become less common, because it can damage the wood surface, raising the grain and staining the colour. Water treatment of Sodium hydroxide liquid Sodium hydroxide liquid is sometimes used during water purification to raise the pH of water supplies. Increased pH makes the water less corrosive to plumbing and reduces the amount of lead, copper and other toxic metals that can dissolve into drinking water. Historical uses of Sodium hydroxide liquid Sodium hydroxide liquid has been used for detection of carbon monoxide poisoning, with blood samples of such patients turning to a vermilion color upon the addition of a few drops of Sodium hydroxide liquid. Today, carbon monoxide poisoning can be detected by CO oximetry. In cement mixes, mortars, concrete, grouts Sodium hydroxide liquid is used in some cement mix plasticisers. This helps homogenise cement mixes, preventing segregation of sands and cement, decreases the amount of water required in a mix and increases workability of the cement product, be it mortar, render or concrete. Summer-winter heat storage EMPA researchers are experimenting with concentrated Sodium hydroxide liquid (NaOH) as the thermal storage or seasonal reservoir medium for domestic space-heating. If water is added to solid or concentrated Sodium hydroxide liquid (NaOH), heat is released. The dilution is exothermic – chemical energy is released in the form of heat. Conversely, by applying heat energy into a dilute Sodium hydroxide liquid solution the water will evaporate so that the solution becomes more concentrated and thus stores the supplied heat as latent chemical energy. Neutron Moderator Seaborg is working on a reactor design in which NaOH is used as a neutron moderator. Safety of Sodium hydroxide liquid Like other corrosive acids and alkalis, drops of Sodium hydroxide liquid solutions can readily decompose proteins and lipids in living tissues via amide hydrolysis and ester hydrolysis, which consequently cause chemical burns and may induce permanent blindness upon contact with eyes. Solid alkali can also express its corrosive nature if there is water, such as water vapor. Thus, protective equipment, like rubber gloves, safety clothing and eye protection, should always be used when handling this chemical or its solutions. The standard first aid measures for alkali spills on the skin is, as for other corrosives, irrigation with large quantities of water. Washing is continued for at least ten to fifteen minutes. Moreover, dissolution of Sodium hydroxide liquid is highly exothermic, and the resulting heat may cause heat burns or ignite flammables. It also produces heat when reacted with acids. Sodium hydroxide liquid is also mildly corrosive to glass, which can cause damage to glazing or cause ground glass joints to bind. Sodium hydroxide liquid is corrosive to several metals, like aluminium which reacts with the alkali to produce flammable hydrogen gas on contact: 2 Al + 6 NaOH → 3 H2 + 2 Na3AlO3 2 Al + 2 NaOH + 2 H2O → 3 H2 + 2 NaAlO2 2 Al + 2 NaOH + 6 H2O → 3 H2 + 2 NaAl(OH)4 Storage Careful storage is needed when handling Sodium hydroxide liquid for use, especially bulk volumes. Following proper NaOH storage guidelines and maintaining worker/environment safety is always recommended given the chemical's burn hazard. Sodium hydroxide liquid is often stored in bottles for small-scale laboratory use, within intermediate bulk containers (medium volume containers) for cargo handling and transport, or within large stationary storage tanks with volumes up to 100,000 gallons for manufacturing or waste water plants with extensive NaOH use. Common materials that are compatible with Sodium hydroxide liquid and often utilized for NaOH storage include: polyethylene (HDPE, usual, XLPE, less common), carbon steel, polyvinyl chloride (PVC), stainless steel, and fiberglass reinforced plastic (FRP, with a resistant liner). Sodium hydroxide liquid must be stored in airtight containers to preserve its normality as it will absorb water from the atmosphere. History of Sodium hydroxide liquid Sodium hydroxide liquid was first prepared by soap makers. A procedure for making Sodium hydroxide liquid appeared as part of a recipe for making soap in an Arab book of the late 13th century: Al-mukhtara` fi funun min al-suna` (Inventions from the Various Industrial Arts), which was compiled by al-Muzaffar Yusuf ibn `Umar ibn `Ali ibn Rasul (d. 1295), a king of Yemen. The recipe called for passing water repeatedly through a mixture of alkali (Arabic: al-qily, where qily is ash from saltwort plants, which are rich in sodium ; hence alkali was impure sodium carbonate) and quicklime (calcium oxide, CaO), whereby a solution of Sodium hydroxide liquid was obtained. European soap makers also followed this recipe. When in 1791 the French chemist and surgeon Nicolas Leblanc (1742–1806) patented a process for mass-producing sodium carbonate, natural "soda ash" (impure sodium carbonate that was obtained from the ashes of plants that are rich in sodium) was replaced by this artificial version. However, by the 20th century, the electrolysis of sodium chloride had become the primary method for producing Sodium hydroxide liquid. Sodium hydroxide liquid solution appears as a colorless liquid. More dense than water. Contact may severely irritate skin, eyes, and mucous membranes. Toxic by ingestion. Corrosive to metals and tissue. Caustic soda reacts with all the mineral acids to form the corresponding salts. It also reacts with weak-acid gases, such as hydrogen sulfide, sulfur dioxide, and carbon dioxide. Caustic soda reacts with amphoteric metals (Al, Zn, Sn) and their oxides to form complex anions such as AlO2(-), ZnO2(-2), SNO2(-2), and H2 (or H2O with oxides). All organic acids also react with sodium hydroxide liquid to form soluble salts. Another common reaction of caustic soda is dehydrochlorination. Because of its high-level alkalinity, sodium hydroxide in aqueous solution directly causes bond breakage in proteins (especially disulfide bridges). Hair and fingernails are found to be dissolved after 20 hours of direct contact with sodium hydroxide at pH values higher than 9.2. Sodium hydroxide has depilatory effects which have been described after accidental contact with solutions in the workplace. The breakage of bonds in proteins may lead to severe necrosis to the application site. The level of corrosion depends on the period of contact with the tissue, and on the concentration of sodium hydroxide. Liquid or solid sodium hydroxide is a severe skin irritant. It causes second and third degree burns on short contact and is very injurious to the eyes. The organic chemical industry uses Sodium hydroxide liquid for saponification reactions, production of nucleophilic anionic intermediates, etherification and esterification, basic catalysis, and the production of free organic bases. Sodium hydroxide liquid solution is used for scrubbingwaste gases and neutralizing wastewater. In inorganic chemistry, Sodium hydroxide liquid is used in the manufacture of sodium salts, for alkaline ore digestion, and for pH regulation.
SODIUM HYDROXYMETHANE SULFONATE
SYNONYMS Sodium chloride oxide; Sodium oxychloride; Hypochlorite sodium; Bleach Liquor; active chlorine; Hychlorite; Hipofosfito De Sodio; Hypochlorous acid sodium salt; CAS NO. 7681-52-9
SODIUM HYPOCHLORITE
Sodium Hypochlorite Sodium hypochlorite is most often encountered as a pale greenish-yellow dilute solution referred to as liquid bleach, which is a household chemical widely used (since the 18th century) as a disinfectant or a bleaching agent. In solution, the compound is unstable and easily decomposes, liberating chlorine which is the active principle of such products. Sodium hypochlorite is the oldest and still most important chlorine-based bleach. Its corrosive properties, common availability, and reaction products make it a significant safety risk. In particular, mixing liquid bleach with other cleaning products, such as acids or ammonia, may produce toxic fumes. Properties of Sodium Hypochlorite Chemical formula NaOCl Molar mass 74.442 g/mol Appearance greenish-yellow solid (pentahydrate) Odor chlorine-like and sweetish Density 1.11 g/cm3 Melting point 18 °C (64 °F; 291 K) pentahydrate Boiling point 101 °C (214 °F; 374 K) (decomposes) Solubility in water 29.3 g/100mL (0 °C) Acidity (pKa) 7.5185 Basicity (pKb) 6.4815 Chemistry of Sodium hypochlorite Stability of the solid Anhydrous sodium hypochlorite can be prepared but, like many hypochlorites, it is highly unstable and decomposes explosively on heating or friction. The decomposition is accelerated by carbon dioxide at atmospheric levels. It is a white solid with the orthorhombic crystal structure. Sodium hypochlorite can also be obtained as a crystalline pentahydrate NaOCl·5H2O, which is not explosive and is much more stable than the anhydrous compound. The formula is sometimes given as 2NaOCl·10H2O. The transparent light greenish yellow orthorhombic crystals contain 44% NaOCl by weight and melt at 25–27 °C. The compound decomposes rapidly at room temperature, so it must be kept under refrigeration. At lower temperatures, however, it is quite stable: reportedly only 1% decomposition after 360 days at 7 °C. A 1966 US patent claims that stable solid sodium hypochlorite dihydrate NaOCl·2H2O can be obtained by carefully excluding chloride ions (Cl−), which are present in the output of common manufacturing processes and are said to catalyze the decomposition of hypochlorite into chlorate (ClO−3) and chloride. In one test, the dihydrate was claimed to show only 6% decomposition after 13.5 months storage at −25 °C. The patent also claims that the dihydrate can be reduced to the anhydrous form by vacuum drying at about 50 °C, yielding a solid that showed no decomposition after 64 hours at −25 °C. Equilibria and stability of solutions At typical ambient temperatures, sodium hypochlorite is more stable in dilute solutions that contain solvated Na+ and OCl− ions. The density of the solution is 1.093 g/mL at 5% concentration, and 1.21 g/mL at 14%, 20 °C. Stoichiometric solutions are fairly alkaline, with pH 11 or higher since hypochlorous acid is a weak acid: OCl− + H2O ⇌ HOCl + OH− The following species and equilibria are present in solutions of NaOCl: HOCl (aq) ⇌ H+ + OCl−HOCl (aq) + Cl− + H+ ⇌ Cl2 (aq) + H2OCl2 (aq) + Cl− ⇌ Cl−3Cl2 (aq) ⇌ Cl2 (g) The second equilibrium equation above will be shifted to the right if the chlorine Cl2 is allowed to escape as gas. The ratios of Cl2, HOCl, and OCl− in solution are also pH dependent. At pH below 2, the majority of the chlorine in the solution is in the form of dissolved elemental Cl2. At pH greater than 7.4, the majority is in the form of hypochlorite ClO−. The equilibrium can be shifted by adding acids (such as hydrochloric acid) or bases (such as sodium hydroxide) to the solution: ClO− (aq) + 2 HCl (aq) → Cl2 (g) + H2O (aq) + Cl− (aq)Cl2 (g) + 2 OH− → ClO− (aq) + Cl− (aq) + H2O (aq) At a pH of about 4, such as obtained by the addition of strong acids like hydrochloric acid, the amount of undissociated (nonionized) HOCl is highest. The reaction can be written as: ClO− + H+ ⇌ HClO Sodium hypochlorite solutions combined with acid evolve chlorine gas, particularly strongly at pH < 2, by the reactions: HOCl (aq) + Cl− + H+ ⇌ Cl2 (aq) + H2OCl2 (aq) ⇌ Cl2 (g) At pH > 8, the chlorine is practically all in the form of hypochlorite anions (OCl−). The solutions are fairly stable at pH 11–12. Even so, one report claims that a conventional 13.6% NaOCl reagent solution lost 17% of its strength after being stored for 360 days at 7 °C. For this reason, in some applications one may use more stable chlorine-releasing compounds, such as calcium hypochlorite Ca(ClO)2 or trichloroisocyanuric acid (CNClO)3. Anhydrous sodium hypochlorite is soluble in methanol, and solutions are stable. Decomposition to chlorate or oxygen In solution, under certain conditions, the hypochlorite anion may also disproportionate (autoxidize) to chloride and chlorate: 3 ClO− + H+ → HClO3 + 2 Cl− In particular, this reaction occurs in sodium hypochlorite solutions at high temperatures, forming sodium chlorate and sodium chloride: 3 NaOCl (aq) → 2 NaCl (aq) + NaClO3 (aq) This reaction is exploited in the industrial production of sodium chlorate. An alternative decomposition of hypochlorite produces oxygen instead: 2 OCl− → 2 Cl− + O2 In hot sodium hypochlorite solutions, this reaction competes with chlorate formation, yielding sodium chloride and oxygen gas: 2 NaOCl (aq) → 2 NaCl (aq) + O2 (g) These two decomposition reactions of NaClO solutions are maximized at pH around 6. The chlorate-producing reaction predominates at pH above 6, while the oxygen one becomes significant below that. For example, at 80 °C, with NaOCl and NaCl concentrations of 80 mM, and pH 6–6.5, the chlorate is produced with ∼95% efficiency. The oxygen pathway predominates at pH 10. This decomposition is affected by light and metal ion catalysts such as copper, nickel, cobalt, and iridium. Catalysts like sodium dichromate Na2Cr2O7 and sodium molybdate Na2MoO4 may be added industrially to reduce the oxygen pathway, but a report claims that only the latter is effective. Titration Titration of hypochlorite solutions is often done by adding a measured sample to an excess amount of acidified solution of potassium iodide (KI) and then titrating the liberated iodine (I2) with a standard solution of sodium thiosulfate or phenyl arsine oxide, using starch as indicator, until the blue color disappears. According to one US patent, the stability of sodium hypochlorite content of solids or solutions can be determined by monitoring the infrared absorption due to the O–Cl bond. The characteristic wavelength is given as 140.25 μm for water solutions, 140.05 μm for the solid dihydrate NaOCl·2H 2O, and 139.08 μm for the anhydrous mixed salt Na2(OCl)(OH). Oxidation of organic compounds Oxidation of starch by sodium hypochlorite, that adds carbonyl and carboxyl groups, is relevant to the production of modified starch products. In the presence of a phase-transfer catalyst, alcohols are oxidized to the corresponding carbonyl compound (aldehyde or ketone). Sodium hypochlorite can also oxidize organic sulfides to sulfoxides or sulfones, disulfides or thiols to sulfonyl chlorides or bromides, imines to oxaziridines. It can also de-aromatize phenols. Oxidation of metals and complexes Heterogeneous reactions of sodium hypochlorite and metals such as zinc proceed slowly to give the metal oxide or hydroxide: NaOCl + Zn → ZnO + NaCl Homogeneous reactions with metal coordination complexes proceed somewhat faster. This has been exploited in the Jacobsen epoxidation. Other reactions of Sodium hypochlorite If not properly stored in airtight containers, sodium hypochlorite reacts with carbon dioxide to form sodium carbonate: 2 NaOCl + CO2 + H2O → Na2CO3 + 2 HOCl Sodium hypochlorite reacts with most nitrogen compounds to form volatile monochloramine, dichloramines, and nitrogen trichloride: NH3 + NaOCl → NH2Cl + NaOHNH2Cl + NaOCl → NHCl2 + NaOHNHCl2 + NaOCl → NCl3 + NaOH Neutralization Sodium thiosulfate is an effective chlorine neutralizer. Rinsing with a 5 mg/L solution, followed by washing with soap and water, will remove chlorine odor from the hands. Production of Sodium hypochlorite Chlorination of soda Potassium hypochlorite was first produced in 1789 by Claude Louis Berthollet in his laboratory on the Quai de Javel in Paris, France, by passing chlorine gas through a solution of potash lye. The resulting liquid, known as "Eau de Javel" ("Javel water"), was a weak solution of potassium hypochlorite. Antoine Labarraque replaced potash lye by the cheaper soda lye, thus obtaining sodium hypochlorite (Eau de Labarraque). Cl2 (g) + 2 NaOH (aq) → NaCl (aq) + NaClO (aq) + H2O (aq) Hence, chlorine is simultaneously reduced and oxidized; this process is known as disproportionation. The process is also used to prepare the pentahydrate NaOCl·5H 2O for industrial and laboratory use. In a typical process, chlorine gas is added to a 45–48% NaOH solution. Some of the sodium chloride precipitates and is removed by filtration, and the pentahydrate is then obtained by cooling the filtrate to 12 °C . From calcium hypochlorite Another method involved by reaction of sodium carbonate ("washing soda") with chlorinated lime ("bleaching powder"), a mixture of calcium hypochlorite Ca(OCl)2, calcium chloride CaCl2, and calcium hydroxide Ca(OH)2: Na2CO3 (aq) + Ca(OCl)2 (aq) → CaCO3 (s) + 2 NaOCl (aq) Na2CO3 (aq) + CaCl2 (aq) → CaCO3 (s) + 2 NaCl (aq) Na2CO3 (aq) + Ca(OH)2 (s) → CaCO3 (s) + 2 NaOH (aq) This method was commonly used to produce hypochlorite solutions for use as a hospital antiseptic that was sold after World War I under the names "Eusol", an abbreviation for Edinburgh University Solution Of (chlorinated) Lime – a reference to the university's pathology department, where it was developed. Electrolysis of brine Near the end of the nineteenth century, E. S. Smith patented the chloralkali process: a method of producing sodium hypochlorite involving the electrolysis of brine to produce sodium hydroxide and chlorine gas, which then mixed to form sodium hypochlorite. The key reactions are: 2 Cl− → Cl2 + 2 e− (at the anode) 2 H2O + 2 e− → H2 + 2 HO− (at the cathode) Both electric power and brine solution were in cheap supply at the time, and various enterprising marketers took advantage of the situation to satisfy the market's demand for sodium hypochlorite. Bottled solutions of sodium hypochlorite were sold under numerous trade names. Today, an improved version of this method, known as the Hooker process (named after Hooker Chemicals, acquired by Occidental Petroleum), is the only large-scale industrial method of sodium hypochlorite production. In the process, sodium hypochlorite (NaClO) and sodium chloride (NaCl) are formed when chlorine is passed into cold dilute sodium hydroxide solution. The chlorine is prepared industrially by electrolysis with minimal separation between the anode and the cathode. The solution must be kept below 40 °C (by cooling coils) to prevent the undesired formation of sodium chlorate. Commercial solutions always contain significant amounts of sodium chloride (common salt) as the main by-product, as seen in the equation above. From hypochlorous acid and soda A 1966 patent describes the production of solid stable dihydrate NaOCl·2H2O by reacting a chloride-free solution of hypochlorous acid HClO (such as prepared from chlorine monoxide ClO and water), with a concentrated solution of sodium hydroxide. In a typical preparation, 255 mL of a solution with 118 g/L HClO is slowly added with stirring to a solution of 40 g of NaOH in water 0 °C. Some sodium chloride precipitates and is removed by fitration. The solution is vacuum evaporated at 40–50 °C and 1–2 mmHg until the dihydrate crystallizes out. The crystals are vacuum-dried to produce a free-flowing crystalline powder. The same principle was used in another 1991 patent to produce concentrated slurries of the pentahydrate NaClO·5H 2O. Typically, a 35% solution (by weight) of HClO is combined with sodium hydroxide at about or below 25 °C. The resulting slurry contains about 35% NaClO, and are relatively stable due to the low concentration of chloride. From ozone and salt Sodium hypochlorite can be easily produced for research purposes by reacting ozone with salt. NaCl + O3 → NaClO + O2 This reaction happens at room temperature and can be helpful for oxidizing alcohols. Packaging and sale Main article: Bleach Bleach packaged for household use, with 2.6% sodium hypochlorite Household bleach sold for use in laundering clothes is a 3–8% solution of sodium hypochlorite at the time of manufacture. Strength varies from one formulation to another and gradually decreases with long storage. Sodium hydroxide is usually added in small amounts to household bleach to slow down the decomposition of NaClO. A 10–25% solution of sodium hypochlorite is, according to Univar's safety sheet, supplied with synonyms or trade names bleach, Hypo, Everchlor, Chloros, Hispec, Bridos, Bleacol, or Vo-redox 9110. A 12% solution is widely used in waterworks for the chlorination of water, and a 15% solution is more commonly used for disinfection of waste water in treatment plants. Sodium hypochlorite can also be used for point-of-use disinfection of drinking water, taking 0.2-2 mg of sodium hypochlorite per liter of water. Dilute solutions (50 ppm to 1.5%) are found in disinfecting sprays and wipes used on hard surfaces. Uses of Sodium hypochlorite Bleaching Household bleach is, in general, a solution containing 3–8% sodium hypochlorite, by weight, and 0.01–0.05% sodium hydroxide; the sodium hydroxide is used to slow the decomposition of sodium hypochlorite into sodium chloride and sodium chlorate. Cleaning of Sodium hypochlorite Sodium hypochlorite has destaining properties. Among other applications, it can be used to remove mold stains, dental stains caused by fluorosis, and stains on crockery, especially those caused by the tannins in tea. It has also been used in laundry detergents and as a surface cleaner. Its bleaching, cleaning, deodorizing and caustic effects are due to oxidation and hydrolysis (saponification). Organic dirt exposed to hypochlorite becomes water-soluble and non-volatile, which reduces its odor and facilitates its removal. Disinfection of Sodium hypochlorite See also: Hypochlorous acid Sodium hypochlorite in solution exhibits broad spectrum anti-microbial activity and is widely used in healthcare facilities in a variety of settings. It is usually diluted in water depending on its intended use. "Strong chlorine solution" is a 0.5% solution of hypochlorite (containing approximately 5000 ppm free chlorine) used for disinfecting areas contaminated with body fluids, including large blood spills (the area is first cleaned with detergent before being disinfected). It may be made by diluting household bleach as appropriate (normally 1 part bleach to 9 parts water). Such solutions have been demonstrated to inactivate both C. difficile and HPV. "Weak chlorine solution" is a 0.05% solution of hypochlorite used for washing hands, but is normally prepared with calcium hypochlorite granules. "Dakin's Solution" is a disinfectant solution containing low concentration of sodium hypochlorite and some boric acid or sodium bicarbonate to stabilize the pH. It has been found to be effective with NaOCl concentrations as low as 0.025%. US government regulations allow food processing equipment and food contact surfaces to be sanitized with solutions containing bleach, provided that the solution is allowed to drain adequately before contact with food, and that the solutions do not exceed 200 parts per million (ppm) available chlorine (for example, one tablespoon of typical household bleach containing 5.25% sodium hypochlorite, per gallon of water). If higher concentrations are used, the surface must be rinsed with potable water after sanitizing. A similar concentration of bleach in warm water is used to sanitize surfaces prior to brewing of beer or wine. Surfaces must be rinsed with sterilized (boiled) water to avoid imparting flavors to the brew; the chlorinated byproducts of sanitizing surfaces are also harmful. The mode of disinfectant action of sodium hypochlorite is similar to that of hypochlorous acid. Solutions containing more than 500 ppm available chlorine are corrosive to some metals, alloys and many thermoplastics (such as acetal resin) and need to be thoroughly removed afterwards, so the bleach disinfection is sometimes followed by an ethanol disinfection. Liquids containing sodium hypochlorite as the main active component are also used for household cleaning and disinfection, for example toilet cleaners. Some cleaners are formulated to be viscous so as not to drain quickly from vertical surfaces, such as the inside of a toilet bowl. The undissociated (nonionized) hypochlorous acid is believed to react with and inactivate bacterial and viral enzymes. Neutrophils of the human immune system produce small amounts of hypochlorite inside phagosomes, which digest bacteria and viruses. Deodorizing of Sodium hypochlorite Sodium hypochlorite has deodorizing properties, which go hand in hand with its cleaning properties. Waste water treatment of Sodium hypochlorite Sodium hypochlorite solutions have been used to treat dilute cyanide waste water, such as electroplating wastes. In batch treatment operations, sodium hypochlorite has been used to treat more concentrated cyanide wastes, such as silver cyanide plating solutions. Toxic cyanide is oxidized to cyanate (OCN−) that is not toxic, idealized as follows: CN− + OCl− → OCN− + Cl− Sodium hypochlorite is commonly used as a biocide in industrial applications to control slime and bacteria formation in water systems used at power plants, pulp and paper mills, etc., in solutions typically of 10–15% by weight. Endodontics Sodium hypochlorite is the medicament of choice due to its efficacy against pathogenic organisms and pulp digestion in endodontic therapy. Its concentration for use varies from 0.5% to 5.25%. At low concentrations it dissolves mainly necrotic tissue; at higher concentrations it also dissolves vital tissue and additional bacterial species. One study has shown that Enterococcus faecalis was still present in the dentin after 40 minutes of exposure of 1.3% and 2.5% sodium hypochlorite, whereas 40 minutes at a concentration of 5.25% was effective in E. faecalis removal. In addition to higher concentrations of sodium hypochlorite, longer time exposure and warming the solution (60 °C) also increases its effectiveness in removing soft tissue and bacteria within the root canal chamber. 2% is a common concentration as there is less risk of an iatrogenic hypochlorite incident. A hypochlorite incident is an immediate reaction of severe pain, followed by edema, haematoma, and ecchymosis as a consequence of the solution escaping the confines of the tooth and entering the periapical space. This may be caused by binding or excessive pressure on the irrigant syringe, or it may occur if the tooth has an unusually large apical foramen. Nerve agent neutralization At the various nerve agent (chemical warfare nerve gas) destruction facilities throughout the United States, 50% sodium hypochlorite is used to remove all traces of nerve agent or blister agent from Personal Protection Equipment after an entry is made by personnel into toxic areas. 50% sodium hypochlorite is also used to neutralize any accidental releases of nerve agent in the toxic areas. Lesser concentrations of sodium hypochlorite are used in similar fashion in the Pollution Abatement System to ensure that no nerve agent is released in furnace flue gas. Reduction of skin damage Dilute bleach baths have been used for decades to treat moderate to severe eczema in humans, but it has not been clear why they work. According to work published by researchers at the Stanford University School of Medicine in November 2013, a very dilute (0.005%) solution of sodium hypochlorite in water was successful in treating skin damage with an inflammatory component caused by radiation therapy, excess sun exposure or aging in laboratory mice. Mice with radiation dermatitis given daily 30-minute baths in bleach solution experienced less severe skin damage and better healing and hair regrowth than animals bathed in water. A molecule called nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is known to play a critical role in inflammation, aging, and response to radiation. The researchers found that if NF-κB activity was blocked in elderly mice by bathing them in bleach solution, the animals' skin began to look younger, going from old and fragile to thicker, with increased cell proliferation. The effect diminished after the baths were stopped, indicating that regular exposure was necessary to maintain skin thickness. Safety It is estimated that there are about 3,300 accidents needing hospital treatment caused by sodium hypochlorite solutions each year in British homes (RoSPA, 2002). Oxidation and corrosion Sodium hypochlorite is a strong oxidizer. Oxidation reactions are corrosive. Solutions burn the skin and cause eye damage, especially when used in concentrated forms. As recognized by the NFPA, however, only solutions containing more than 40% sodium hypochlorite by weight are considered hazardous oxidizers. Solutions less than 40% are classified as a moderate oxidizing hazard (NFPA 430, 2000). Household bleach and pool chlorinator solutions are typically stabilized by a significant concentration of lye (caustic soda, NaOH) as part of the manufacturing reaction. This additive will by itself cause caustic irritation or burns due to defatting and saponification of skin oils and destruction of tissue. The slippery feel of bleach on skin is due to this process. Storage hazards Contact of sodium hypochlorite solutions with metals may evolve flammable hydrogen gas. Containers may explode when heated due to release of chlorine gas. Hypochlorite solutions are corrosive to common container materials such as stainless steel and aluminium. The few compatible metals include titanium (which however is not compatible with dry chlorine) and tantalum. Glass containers are safe. Some plastics and rubbers are affected too; safe choices include polyethylene (PE), high density polyethylene (HDPE, PE-HD), polypropylene (PP), some chlorinated and fluorinated polymers such as polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF); as well as ethylene propylene rubber, and Viton. Containers must allow venting of oxygen produced by decomposition over time, otherwise they may burst. Reactions with other common products Mixing bleach with some household cleaners can be hazardous. Sodium hypochlorite solutions, such as liquid bleach, may release toxic chlorine gas when heated above 35 °C or mixed with an acid, such as hydrochloric acid or vinegar. A 2008 study indicated that sodium hypochlorite and organic chemicals (e.g., surfactants, fragrances) contained in several household cleaning products can react to generate chlorinated volatile organic compounds (VOCs). These chlorinated compounds are emitted during cleaning applications, some of which are toxic and probable human carcinogens. The study showed that indoor air concentrations significantly increase (8–52 times for chloroform and 1–1170 times for carbon tetrachloride, respectively, above baseline quantities in the household) during the use of bleach containing products. The increase in chlorinated volatile organic compound concentrations was the lowest for plain bleach and the highest for the products in the form of "thick liquid and gel." The significant increases observed in indoor air concentrations of several chlorinated VOCs (especially carbon tetrachloride and chloroform) indicate that the bleach use may be a source that could be important in terms of inhalation exposure to these compounds. The authors suggested that using these cleaning products may significantly increase the cancer risk. In particular, mixing hypochlorite bleaches with amines (for example, cleaning products that contain or release ammonia, ammonium salts, urea, or related compounds and biological materials such as urine) produces chloramines. These gaseous products can cause acute lung injury. Chronic exposure, for example, from the air at swimming pools where chlorine is used as the disinfectant, can lead to the development of atopic asthma. Bleach can react violently with hydrogen peroxide and produce oxygen gas: H2O2 (aq) + NaOCl (aq) → NaCl (aq) + H2O (aq) + O2 (g) Explosive reactions or byproducts can also occur in industrial and laboratory settings when sodium hypochlorite is mixed with diverse organic compounds. Limitations in health care The UK's National Institute for Health and Care Excellence in October 2008 recommended that Dakin's solution should not be used in routine wound care. Environmental impact In spite of its strong biocidal action, sodium hypochlorite per se has limited environmental impact, since the hypochlorite ion rapidly degrades before it can be absorbed by living beings. However, one major concern arising from sodium hypochlorite use is that it tends to form persistent chlorinated organic compounds, including known carcinogens, that can be absorbed by organisms and enter the food chain. These compounds may be formed during household storage and use as well during industrial use. For example, when household bleach and wastewater were mixed, 1–2% of the available chlorine was observed to form organic compounds. As of 1994, not all the byproducts had been identified, but identified compounds include chloroform and carbon tetrachloride. The estimated exposure to these chemicals from use is estimated to be within occupational exposure limits. Sodium hypochlorite (NaOCl) is a compound that can be effectively used for water purification. It is used on a large scale for surface purification, bleaching, odor removal and water disinfection. When was sodium hypochlorite discovered? Sodium hypochlorite has a long history. Around 1785 the Frenchman Berthollet developed liquid bleaching agents based on sodium hypochlorite. The Javel company introduced this product and called it 'liqueur de Javel'. At first, it was used to bleach cotton. Because of its specific characteristics it soon became a popular compound. Hypochlorite can remove stains from clothes at room temperature. In France, sodium hypochlorite is still known as 'eau de Javel'. What are the characteristics of sodium hypochlorite? Sodium hypochlorite is a clear, slightly yellowish solution with a characteristic odor. Sodium hypochlorite has a relative density of is 1,1 (5,5% watery solution). As a bleaching agent for domestic use it usually contains 5% sodium hypochlorite (with a pH of around 11, it is irritating). If it is more concentrated, it contains a concentration 10-15% sodium hypochlorite (with a pH of around 13, it burns and is corrosive). Sodium hypochlorite is unstable. Chlorine evaporates at a rate of 0,75 gram active chlorine per day from the solution. Then heated sodium hypochlorite disintegrates. This also happens when sodium hypochlorite comes in contact with acids, sunlight, certain metals and poisonous and corrosive gasses, including chlorine gas. Sodium hypochlorite is a strong oxidator and reacts with flammable compounds and reductors. Sodium hypochlorite solution is a weak base that is inflammable. These characteristics must be kept in mind during transport, storage and use of sodium hypochlorite. What happens to the pH value when sodium hypochlorite is added to water? Due to the presence of caustic soda in sodium hypo chlorite, the pH of the water is increased. When sodium hypo chlorite dissolves in water, two substances form, which play a role in for oxidation and disinfection. These are hypochlorous acid (HOCl) and the less active hypochlorite ion (OCl-). The pH of the water determines how much hypochlorous acid is formed. While sodium hypochlorite is used, hydrochloric acid (HCl) is used to lower the pH. Sulfuric acid (H2SO4) can be used as an alternative for acetic acid. Less harmful gasses are produced when sulfuric acid is used. Sulfuric acid is a strong acid that strongly reacts with bases and that is very corrosive. How can sodium hypochlorite be produced? Sodium hypochlorite can be produced in two ways: - By dissolving salt in softened water, which results in a concentrated brine solution. The solution is electrolyzed and forms a sodium hypochlorite solution in water. This solution contains 150 g active chlorine (Cl2) per liter. During this reaction the explosive hydrogen gas is also formed. - By adding chlorine gas (Cl2) to caustic soda (NaOH). When this is done, sodium hypochlorite, water (H2O) and salt (NaCl) are produced according to the following reaction: Cl2 + 2NaOH + → NaOCl + NaCl + H2O What are the applications of sodium hypochlorite? Sodium hypochlorite is used on a large scale. For example in agriculture, chemical industries, paint- and lime industries, food industries, glass industries, paper industries, pharmaceutical industries, synthetics industries and waste disposal industries. In the textile industry sodium hypochlorite is used to bleach textile. It is sometimes added to industrial waste water. This is done to reduce odors. Hypochlorite neutralizes sulphur hydrogen gas (SH) and ammonia (NH3). It is also used to detoxify cyanide baths in metal industries. Hypochlorite can be used to prevent algae and shellfish growth in cooling towers. In water treatment, hypochlorite is used to disinfect water. In households, hypochlorite is used frequently for the purification and disinfection of the house. How does sodium hypochlorite disinfection work? By adding hypochlorite to water, hypochlorous acid (HOCl) is formed: NaOCl + H2O → HOCl + NaOH- Hypochlorous acid is divided into hydrochloric acid (HCl) and oxygen (O). The oxygen atom is a very strong oxidator. Sodium hypochlorite is effective against bacteria, viruses and fungi. Sodium hypochlorite disinfects the same way as chlorine does. How is sodium hypochlorite applied in swimming pools? Sodium hypochlorite is applied in swimming pools for water disinfection and oxidation. It has the advantage that microorganisms cannot build up any resistance to it. Sodium hypochlorite is effective against Legionella bacteria and bio film, in which Legionella bacteria can multiply. Hypochlorous acid is produced by the reaction of sodium hydroxide with chlorine gas. In water, the so-called 'active chlorine' is formed. There are various ways to use sodium hypochlorite. For on-site salt electrolysis, a solution of salt (NaCl) in water is applied. Sodium (Na+) and chloride (Cl-) ions are produced. 4NaCl- → 4Na+ + 4Cl- By leading the salty solution over an electrolysis cell, the following reactions take place at the electrodes: 2Cl- → Cl2 + 2e- 2H2O + 2e- → H2 + 20H- 2H20 → O2 + 4H++ 4e- Subsequently, chlorine and hydroxide react to form hypochlorite: OH- + Cl2 → HOCl + Cl- The advantage of the salt electrolysis system is that no transport or storage of sodium hypochlorite is required. When sodium hypochlorite is stored for a long time, it becomes inactive. Another advantage of the on site process is that chlorine lowers the pH and no other acid is required to lower pH. The hydrogen gas that is produced is explosive and as a result ventilation is required for expolsion prevention. This system is slow and a buffer of extra hypochlorous acid needs to be used. The maintenance and purchase of the electrolysis system is much more expensive than sodium hypochlorite. When sodium hypochlorite is used, acetic or sulphuric acid are added to the water. An overdose can produce poisonous gasses. If the dosage is too low, the pH becomes to high and can irritate the eyes. Because sodium hypochlorite is used both to oxidize pollutions (urine, sweat, cosmetics) and to remove pathogenic microorganisms, the required concentration of sodium hypochlorite depends on the concentrations of these pollutions. Especially the amount of organic pollution determines the required concentration. If the water is filtered before sodium hypochlorite is applied, less sodium hypochlorite is needed.
SODIUM ISETHIONATE
SODIUM ISOBUTYLPARABEN N° CAS : 84930-15-4 Origine(s) : Synthétique Nom INCI : SODIUM ISOBUTYLPARABEN Nom chimique : Sodium isobutyl 4-oxidobenzoate N° EINECS/ELINCS : 284-595-4 Classification : Paraben, Perturbateur endocrinien suspecté, Règlementé, Conservateur, Interdit en Europe Restriction en Europe : II/1375 La concentration maximale autorisée dans les préparations cosmétiques prêtes à l'emploi est de : - 0,4 % (en acide) pour un ester - 0,8 % (en acide) pour les mélanges d'esters Ses fonctions (INCI) Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes
SODIUM ISOBUTYLPARABEN
SODIUM ISOSTEARATE N° CAS : 64248-79-9 Nom INCI : SODIUM ISOSTEARATE Nom chimique : Isooctadecanoic acid, sodium salt N° EINECS/ELINCS : 264-754-4 Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM ISOSTEARATE
SODIUM LACTATE; N° CAS : 72-17-3 / 867-56-1 - Lactate de sodium; Nom INCI : SODIUM LACTATE; Nom chimique : Sodium lactate; N° EINECS/ELINCS : 200-772-0 / 212-762-3; Additif alimentaire : E325. Compatible Bio (Référentiel COSMOS). Ses fonctions (INCI). Régulateur de pH : Stabilise le pH des cosmétiques. Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau; Kératolytique : Décolle et élimine les cellules mortes de la couche cornée de l'apiderme. Noms français : 2-HYDROXYPROPANOATE SODIUM; HYDROXY-2 PROPANOATE DE SODIUM; Lactate de sodium; PROPANOIC ACID, 2-HYDROXY-, MONOSODIUM SALT; SEL DE SODIUM DE L'ACIDE HYDROXY-2 PROPANOIQUE. Noms anglais : LACTIC ACID SODIUM SALT; LACTIC ACID, MONOSODIUM SALT; LACTIC ACID, SODIUM SALT; Sodium lactate. Utilisation et sources d'émission: Agent anticorrosif. 2-Hydroxypropanoic acid, monosodium salt; Lacolin; Lactic acid sodium salt; Lactic acid, monosodium salt; Lactic acid, sodium salt (VAN); Monosodium 2-hydroxypropanoate; Monosodium lactate; Per-glycerin; Propanoic acid, 2-hydroxy-, monosodium salt; Propanoic acid, 2-hydroxy-, sodium salt (1:1); Sodium (dl)-lactate; Sodium alpha-hydroxypropionate; Sodium lactate; Sodium lactate 0.167 molar in plastic container; Sodium lactate 1/6 molar in plastic container; Sodium lactate in plastic container. IUPAC names: Sodium 2-hydroxy-propanoate; Sodium 2-hydroxypropanoate;Sodium DL-lactate ; sodium;2-hydroxypropanoate; (±)-2-Hydroxypropionic acid sodium salt; 200-772-0 [EINECS]; 2-Hydroxypropanoate de sodium [French] ; 4157; 72-17-3 [RN]; Lactic acid monosodium salt Lactic Acid, Sodium Salt; MFCD00065400 [MDL number]; Natrium-2-hydroxypropanoat [German]; Propanoic acid, 2-hydroxy-, sodium salt (1:1) [ACD/Index Name]; QY1&VQ &&Na salt [WLN] ; Sodium 2-hydroxypropanoate [ACD/IUPAC Name]; Sodium Lactate [JAN] [USAN]; SODIUM LACTATE, L-; Sodium α-hydroxypropionate; Sodium-DL-lactate; [72-17-3];1219802-24-0 [RN] ; 2-Hydroxypropanoic acid, monosodium salt; 2-Hydroxypropionic acid sodium salt; 344299-52-1 [RN]; E325; Lacolin; Lactic acid, monosodium salt (8CI); Lactic acid, sodium salt (VAN) ; MFCD00066576 [MDL number]; Monosodium 2-hydroxypropanoate; P2Y1C6M9PS; Per-glycerin; Pharmakon1600-01300036; Propanoic acid, 2-hydroxy-, monosodium salt; Propanoic acid, 2-hydroxy-, monosodium salt (9CI); Purasal S/SP 60; Sodium (dl)-lactate; Sodium lactate (60% in water); Sodium lactate (7CI); SODIUM LACTATE|SODIUM 2-HYDROXYPROPANOATE ; SODIUM α-HYDROXYPROPIONATE; sodiumlactate; SodiumLactate,(??)-2-Hydroxypropionicacidsodiumsalt,SodiumDL-lactate,Lacolin?; 乳酸ナトリウム [Japanese]
SODIUM LACTATE ( Lactate de sodium)
cas no 867-56-1 (S)-2-Hydroxypropionic acid sodium salt; L-Lactic acid sodium salt; Sarcolactic acid sodium salt; Sodium L-lactate; Sodium L-lactate;
SODIUM LACTATE POWDER
SYNONYMS Disodium monosulfate; Sulfuric acid sodium salt;Disodium sulfate; Sodium sulfate; Sulfuric acid sodium salt; Sulfuric acid disodium salt; Sulfuric acid disodium salt; Salt cake; Bisodium sulfate; Sodium sulfate (2:1); Thenardite; Natriumsulfat; Trona; Dibasic sodium sulfate; CAS NO:7757-82-6
SODIUM LAURETH-11 CARBOXYLATE
SODIUM LAURETH-12 CARBOXYLATE N° CAS : 33939-64-9 Nom INCI : SODIUM LAURETH-12 CARBOXYLATE Classification : Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre
SODIUM LAURETH-12 CARBOXYLATE
SODIUM LAURETH-12 SULFATE N° CAS : 9004-82-4 Nom INCI : SODIUM LAURETH-12 SULFATE N° EINECS/ELINCS : 266-192-5 Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAURETH-12 SULFATE
SODIUM LAURETH-4 CARBOXYLATE N° CAS : 33939-64-9 / 38975-04-1 Nom INCI : SODIUM LAURETH-4 CARBOXYLATE N° EINECS/ELINCS : - / - Classification : Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAURETH-4 CARBOXYLATE
SODIUM LAURETH-4 PHOSPHATE N° CAS : 42612-52-2 Nom INCI : SODIUM LAURETH-4 PHOSPHATE Classification : Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAURETH-4 PHOSPHATE
SODIUM LAURETH-5 CARBOXYLATE N° CAS : 33939-64-9 / 38975-03-0 "Pas terrible" dans toutes les catégories. Nom INCI : SODIUM LAURETH-5 CARBOXYLATE N° EINECS/ELINCS : - / - Classification : Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAURETH-5 CARBOXYLATE
SODIUM LAURETH-6 CARBOXYLATE N° CAS : 33939-64-9 "Pas terrible" dans toutes les catégories. Nom INCI : SODIUM LAURETH-6 CARBOXYLATE Classification : Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAURETH-6 CARBOXYLATE
SODIUM LAURETH-7 SULFATE N° CAS : 9004-82-4 Nom INCI : SODIUM LAURETH-7 SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAURETH-7 SULFATE
SODIUM LAURETH-8 SULFATE N° CAS : 9004-82-4 Nom INCI : SODIUM LAURETH-8 SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAURETH-8 SULFATE
SODIUM LAURIMINODIPROPIONATE N° CAS : 14960-06-6 / 26256-79-1 Nom INCI : SODIUM LAURIMINODIPROPIONATE Nom chimique : Sodium N-(2-carboxyethyl)-N-dodecyl-.beta.-alaninate N° EINECS/ELINCS : 239-032-7 / 247-552-0 Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAURIMINODIPROPIONATE
SODIUM LAUROAMPHOACETATE; N° CAS : 66161-62-4; Nom INCI : SODIUM LAUROAMPHOACETATE. Nom chimique : Glycine, N-(2-hydroxyethyl)-N-[2-(1-oxododecylamino)ethyl]-, monosodium salt; N° EINECS/ELINCS : 266-197-2. Compatible Bio (Référentiel COSMOS). Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre; Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : N-(2-hydroxyéthyl)-N-[2-[(1-oxododécyl)amino]éthyl]glycinate de sodium. Noms anglais : 2-LAURYLAMIDO-N-HYDROXYETHYL-N-(SODIUM CARBOXYMETHYL)ETHYLAMINE; GLYCINE, N-(2-HYDROXYETHYL)-N-(2-((1-OXODODECYL)AMINO)ETHYL)-, MONOSODIUM SALT; Sodium N-(2-hydroxyethyl)-N-[2-[(1-oxododecyl)amino]ethyl]glycinate; sodium 2-[(2-dodecanamidoethyl)(2-hydroxyethyl)amino]acetate; {[2-(Dodecanoylamino)éthyl](2-hydroxyéthyl)amino}acétate de sodium [French] [ACD/IUPAC Name]; 266-197-2 [EINECS]; 66161-62-4 [RN]; Glycine, N-(2-hydroxyethyl)-N-[2-[(1-oxododecyl)amino]ethyl]-, sodium salt (1:1) [ACD/Index Name]; Natrium-{[2-(dodecanoylamino)ethyl](2-hydroxyethyl)amino}acetat [German] [ACD/IUPAC Name]; Sodium {[2-(dodecanoylamino)ethyl](2-hydroxyethyl)amino}acetate [ACD/IUPAC Name]; Sodium lauroamphoacetate; 108538-32-5 [RN]; 2-Laurylamido-N-hydroxyethyl-N-(sodium carboxymethyl)ethylamine EINECS 266-197-2; Glycine, N-(2-hydroxyethyl)-N-(2-((1-oxododecyl)amino)ethyl)-, monosodium salt; Glycine, N-(2-hydroxyethyl)-N-[2-[(1-oxododecyl)amino]ethyl]-, monosodium salt ; Glycine,N-(2-hydroxyethyl)-N-[2-[(1-oxododecyl)amino]ethyl]-, sodium salt (1:1); SODIUM 2-[(2-DODECANAMIDOETHYL)(2-HYDROXYETHYL)AMINO]ACETATE; sodium 2-[2-(dodecanoylamino)ethyl-(2-hydroxyethyl)amino]acetate; sodium 2-[2-(dodecanoylamino)ethyl-(2-hydroxyethyl)amino]ethanoate; sodium 2-[2-hydroxyethyl-[2-(1-oxododecylamino)ethyl]amino]acetate; sodium 2-[2-hydroxyethyl-[2-(lauroylamino)ethyl]amino]acetate; Sodium N-(2-hydroxyethyl)-N-(2-((1-oxododecyl)amino)ethyl)glycinate; sodium N-(2-hydroxyethyl)-N-[2-[(1-oxododecyl)amino]ethyl]glycinate
SODIUM LAUROAMPHOACETATE
cas no 29923-31-7 N-(1-Oxododecyl)-L-glutamic acid monosodium salt; N-Lauroyl-L-glutamic acid monosodium salt; Sodium N-dodecanoylglutamate; Sodium lauroyl glutamate; Monosodium N-lauroyl-L-glutamate;
SODIUM LAUROYL GLUTAMATE
SODIUM LAUROYL GLUTAMATE; N° CAS : 29923-31-7 / 29923-34-0 / 42926-22-7 / 98984-78-2. Origine(s) : Végétale, Synthétique; Nom INCI : SODIUM LAUROYL GLUTAMATE; Nom chimique : Sodium hydrogen N-(1-oxododecyl)-L-glutamate; N° EINECS/ELINCS : 249-958-3 / - / - / -. Classification : Tensioactif non ionique. Compatible Bio (Référentiel COSMOS). Ses fonctions (INCI) ; Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface; Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance; Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation; Lauroyl-L-glutamate-Na, N- sodium hydrogen (2S)-2-dodecanamidopentanedioate; sodium hydrogen 2-(dodecanoylamino)pentanedioate; sodium hydrogen N-(1-oxododecyl)-L-glutamate CAS information ?; Sodium hydrogen N-(1-oxododecyl)-L-glutamate/Sodium Lauroyl Glutamate; Sodium Lauroyl Glutamate; Sodium hydrogen N-(1-oxododecyl)-L-glutamate
SODIUM LAUROYL GLYCINATE
SODIUM LAUROYL ISETHIONATE N° CAS : 7381-01-3 Nom INCI : SODIUM LAUROYL ISETHIONATE Nom chimique : Sodium 2-sulphonatoethyl laurate N° EINECS/ELINCS : 230-949-8 Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Agent d'entretien de la peau : Maintient la peau en bon état Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAUROYL ISETHIONATE
SODIUM LAUROYL METHYL ISETHIONATE, Origine(s) : Végétale, Synthétique, Nom INCI : SODIUM LAUROYL METHYL ISETHIONATE. Nom chimique : Dodecanoic acid, methyl-2-sulfoethyl ester, sodium salt (1:1). Le Sodium Lauroyl Methyl Isethionate ou SLMI est un tensioactif anionique doux dérivé de coco, qui ne contient pas de sulfate. Contrairement au SCI (Sodium Cocoyl Isethionate) qui permet de créer des produits opaques, le SLMI a une excellente solubilité dans l'eau, et permet donc de créer des formulations de shampooings sans sulfate, transparente. Il est souvent utilisé conjointement avec de la CAPB.Ses fonctions (INCI) : Agent nettoyant : Aide à garder une surface propre. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAUROYL METHYL ISETHIONATE
Sodium lauroylsarcosinate; SODIUM LAUROYL SARCOSINATE; N° CAS : 137-16-6; Origine(s) : Végétale, Synthétique; Nom INCI : SODIUM LAUROYL SARCOSINATE; Nom chimique : Sodium N-lauroylsarcosinate; N° EINECS/ELINCS : 205-281-5. Classification : Tensioactif anionique. Le sodium Lauroyl Sarconisate est un tensioactif anionique bien plus doux que les composés sulfatés. Dérivé d'acide gras et d'amine naturelle, il entre dans la composition de produits lavants doux et est aussi utilisé dans les dentifrices.Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent d'entretien de la peau : Maintient la peau en bon état. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques; Noms français : GLYCINE, N-METHYL-N-(1-OXODODECYL)-, SODIUM SALT; Lauroylsarcosinate de sodium; N-lauroylsarcosinate de sodium; Noms anglais : SODIUM N-LAUROYLSARCOSINATE. Utilisation: Agent antiseptique; Sodium N-lauroylsarcosinate; CAS names: Glycine, N-methyl-N-(1-oxododecyl)-, sodium salt (1:1); IUPAC names: 2-[dodecanoyl(methyl)amino]acetic acid; sodium; N-Dodecanoyl-N-methylglycine sodium salt, Sarkosyl NL, Sodium lauroyl sarcosinate; N-Methyl-N-(1-Oxododecyl)Glycine, Sodium Salt; sodium 2-(N-methyldodecanamido)acetate; sodium 2-[dodecanoyl(methyl)amino]acetate; sodium [dodecanoyl(methyl)amino]acetate; SODIUM LAUROYL SARCOSINATE; Sodium Lauryl Sarconinate; Sodium N-lauroylsarcosinate/Sodium lauroylsarcosinate; N-Lauroylsarcosine sodium salt; [Dodecanoyl(méthyl)amino]acétate de sodium [French] 137-16-6 [RN] 205-281-5 [EINECS] 5322974 Glycine, N-methyl-N- (1-oxododecyl)-, sodium salt Glycine, N-methyl-N-(1-oxododecyl)-, sodium salt (1:1) [ACD/Index Name] MFCD00042728 Natrium-[dodecanoyl(methyl)amino]acetat [German] [ACD/IUPAC Name] N-Dodecanoyl-N-methylglycine sodium salt N-Lauroylsarcosine sodium salt solution N-Methyl-N-(1-oxododecyl)glycine Sodium Salt Sarcosine, N-lauroyl-, sodium salt Sarcosyl Sarcosyl NL Sarkosyl NL Sodium [dodecanoyl(methyl)amino]acetate [ACD/IUPAC Name] SODIUM LAUROYL SARCOSINATE Sodium lauroylsarcosinate Sodium N-dodecanoyl-N-methylglycinate SODIUM N-LAUROYL SARCOSINATE Sodium N-lauroylsarcosinate Sodium N-lauroylsarcosinate solution [137-16-6] 2-(N-methyldodecanoylamino)acetic acid, sodium salt EINECS 205-281-5 Gardol Gardol? Glycine, N-methyl-N-(1-oxododecyl)-, sodium salt Hamposyl L-30 Lauroylsarcosine sodium salt Maprosyl 30 Medialan LL-99 N-Dodecanoyl-N-methylglycine, sodium salt N-Dodecanoyl-N-methylglycinesodium salt N-LAUROYL-N-METHYLGLYCINE SODIUM SALT N-Lauroylsarcosine sodium salt, 10% solution N-Lauroylsarcosine sodium salt, 30% solution N-Lauroylsarcosine, sodium N-Lauroylsarcosine, sodium salt N-Lauroylsarcosinesodium salt N-Lauryl sarcosine sodium salt N-Methyl-N-(1-oxododecyl)glycine, sodium salt Sarcosine, N-lauroyl-, sodium salt (8CI) Sarkosyl sodium 2-(dodecanoyl-methylamino)acetate sodium 2-(dodecanoyl-methyl-amino)acetate sodium 2-(dodecanoyl-methyl-amino)ethanoate sodium 2-(lauroyl-methyl-amino)acetate sodium 2-(methyl-(1-oxododecyl)amino)acetate Sodium 2-(N-methyldodecanamido)acetate Sodium lauroylsarcosine Sodium N-Lauroylsarcosinate|N-Dodecanoylsarcosine Sodium Salt|N-Lauroylsarcosine Sodium Salt SODIUM N-LAUROYLSARCOSINE sodium[dodecanoyl(methyl)amino]acetate
SODIUM LAUROYL SARCOSINATE ( Lauroylsarcosinate de sodium )
SODIUM LAURYL ASPARTATE N° CAS : 267653-39-4 Nom INCI : SODIUM LAURYL ASPARTATE Nom chimique : Aspartic acid, N-dodecyl-, monosodium salt Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM LAURYL ASPARTATE
cas no 3088-31-1 Soudium POE(2) Lauryl Ether Sulfate; Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; Sodium Dioxyethylenedodecyl Ether Sulfate; Sodium Lauryl Alcohol Diglycol Ether Sulfate; Sodium Lauryloxyethoxyethyl Sulfate; Sodiumlaurylglycolether Sulfate; Natrium-2-(2-dodecyloxyethoxy)ethylsulfat (German); Sulfato de sodio y 2-(2-dodeciloxietoxi)etilo (Spanish); Ssulfate de sodium et de 2-(2-dodécyloxyethoxy)éthyle (French);
SODIUM LAURYL GLUCOSE CARBOXYLATE
SODIUM LAURYL GLUCOSE CARBOXYLATE Sodium lauryl glucose carboxylate Derived from: coconut Pronunciation: (\ˈsō-dē-əm\ˈlȯr-əl \ˈglü-ˌkōs \car·box·yl·ate\) Type: Naturally-derived What Is Sodium lauryl glucose carboxylate? Sodium lauryl glucose carboxylate is a yellow liquid derived from coconut. Coconuts grow on the cocos nucifera, or coconut palm tree, around the world in lowland tropical and subtropical areas where annual precipitation is low. Widely cultivated, healthy coconut palms produce 50 nuts per year, and the tree can be used to produce everything from food and drink to fibers, building materials, and natural ingredients. What Does Sodium lauryl glucose carboxylate Do in Our products? Sodium lauryl glucose carboxylate is a surfactant that allows water, oil and dirt to mix, allowing things to become clean. It is also a foam booster and conditioning agent.[6] It can be found in personal care products such as shampoo, body wash, facial cleanser, exfoliants, makeup remover, and other items.[7] Why Puracy Uses Sodium lauryl glucose carboxylate We use sodium lauryl glucose carboxylate as a biodegradable surfactant and cleanser. Whole Foods has deemed the ingredient acceptable in its body care quality standards.[9] Research shows the ingredient is typically not a strong skin irritant or sensitizer.[10,11,12] How Sodium lauryl glucose carboxylate Is Made Sodium lauryl glucose carboxylate is an alkyl polyglucoside made by reacting corn starch with a fatty alcohol to produce a highly biodegradable surfactant. We try to be careful about what we put on our skin. We purchase products from reputable companies. We read ingredient labels, and avoid anything that sounds too chemical or harsh. But there are exceptions to the rules. Sometimes our first instincts are wrong. Take the following two ingredients, for example: Sodium lauryl sulfate Sodium lauryl glucose carboxylate They look similar, right? And they both look, well, chemical. Which means bad, right? Not necessarily. In fact, one of these ingredients is a sheep in wolf’s clothing, and a very good-for-your-skin sheep at that. Do you know which one? What is Sodium Lauryl Sulfate? This is a common ingredient in cleansing products. You’re likely to see it in standard brands of facial cleansers, body washes, shampoos, and other similar items. Called “SLS” for short, it’s a surfactant made by treating lauryl alcohol (from coconut or palm kernel oil) with sulfur trioxade gas, oleum (fuming sulfuric acid), or chlorosulfuric acid to produce hydrogen lauryl sulfate, which is then neutralized with sodium hydroxide or sodium carbonate to produce SLS. This product is an effective cleanser but is too harsh and irritating for skin. It’s highly corrosive, which means it can remove oil and grease—but do you want that effect on your skin? Despite its irritating nature, it’s used in the cosmetic industry as well as in laundry products, engine degreasers, carpet cleaners, car wash soaps, and in other industrial cleaning applications. Studies have verified that this ingredient can be damaging. In the International Journal of Toxicology, researchers noted that it had a “degenerative effect on the cell membranes because of its protein denaturing properties,” and that it could cause skin irritation and corrosion. Researchers later wrote, “The longer these ingredients stay in contact with the skin, the greater the likelihood of irritation, which may or may not be evident to the user.” They add in their discussion of the study that the ingredient was found to cause “severe epidermal changes” where it was applied, and that it could also damage the hair follicle (when used in hair-care products). Even worse—a solution containing a 1-5 percent sodium lauryl sulfate caused acne! The researchers wrote: “These two problems—possible hair loss and comedone [pimple] formation—along with proven irritancy, should be considered in the formulation of cosmetic products.” Their conclusion was that as long as SLS is included at less than one percent and is rinsed off immediately, it appears to be safe. That’s not good enough for most of our customers, especially considering that we use cleansing products a couple times a day, every day, for most of our lives. This is an ingredient that with repeated use can cause hair and skin damage. So the first ingredient is definitely a no-no. But what about the second — sodium lauryl glucoside carboxylate? What is Sodium Lauryl Glucose Carboxylate? This ingredient has to be similar to SLS, right? Potentially just as damaging? Nope. And this is where skin care can get confusing. It’s a similar name, and it’s also a cleaning ingredient, but it’s much nicer to skin. To begin with, it lacks the “sulfate” part of the name, which identifies an ingredient as a salt of sulfuric acid. We don’t have any acid going on in this ingredient. So goodbye harsh irritant! Lauryl glucoside belongs to a class of ingredients called “glucosides” which are made by bonding the base group with sugar (instead of sulfuric acid). Salicylic acid, for example (found in oily skin care products), comes from salicin, which is a glucoside—a combination of salicyl alcohol and glucose (and found naturally in willow bark). To make sodium lauryl glucose carboxylate, lauryl alcohol—an essential fatty acid derived from coconut—is combined with glucose to produce lauryl glucoside, a mild, gentle cleanser that doesn’t dry skin or strip it of it’s natural oil. Ideal for use in facial cleansers and hair care products, it’s listed on the Safe Cosmetics Database and the GoodGuide database as being extremely safe. In addition, it’s approved for use in certified organic cosmetics by both the Organic Food Federation and EcoCert. The nice thing about this ingredient is that even though it’s non-irritating and gentle, it has an excellent performance profile in cleansing products, getting skin clean without damaging it. Sodium lauryl glucose carboxylate is a “sodium carboxymethyl ether” of lauryl glucoside, which simply means that it is a derivative of lauryl glucoside that’s a more economical form of the ingredient. Did We Clear It Up? We hope that this explanation clears up the difference for our readers! When you see the word “glucoside” in any ingredient, remember that it comes from glucose (sugar), and that is a much better source than sulfuric acid! As we move towards using INCI names on our products, we feel it's important to inform you about that these long ingredient names mean. Often we're told ‘if you can't pronounce the ingredient, you probably shouldn't use it,' but this is of course an oversimplification. Sodium lauryl glucose carboxylate is a sugar based surfactant used as an emulsifier and stabilizer in creams and lotions. It is produced from naturally occurring raw materials using natural processes and is perfectly safe with no adverse effects. This ingredient is approved for use in certified organic cosmetics by both Organic Food Federation and EcoCert. SODIUM LAURYL GLUCOSE CARBOXYLATE SODIUM LAURYL GLUCOSE CARBOXYLATE is classified as : Cleansing Surfactant COSING REF No: 59276 Chem/IUPAC Name: Sodium carboxymethyl ether of Lauryl Glucoside sodium lauryl glucose carboxylate Rating: GOOD Categories: Cleansing Agents A gentle cleansing agent that may be derived from coconut or made synthetically. Sodium Lauryl Glucose Carboxylate * A surfactant * Also seen as Lauryl Glucose Carboxylate Very little information is available regarding Sodium Lauryl Glucose Carboxylate, although according to TriNature.com, it is a foaming agent that is derived from glucoside from coconut and corn. It is also used as a natural replacement for the ingredient known as sodium laureth sulfate, or SLES. It is seen in cosmetics and personal care products as a surfactant, most often in cleansing formulas such as mild facial washes and special sulfate-free shampoos Functions: Very little information is available regarding Sodium Lauryl Glucose Carboxylate it is a foaming agent that is derived from glucoside from coconut and corn. It is also used as a natural replacement for the ingredient known as sodium laureth sulfate, or SLES. It is seen in cosmetics and personal care products as a surfactant, most often in cleansing formulas such as mild facial washes and special sulfate-free shampoos . Safety Measures/Side Effects: No studies were found that reported any negative side effects regarding the use of Sodium Lauryl Glucose Carboxylate, although it is not reviewed by the Cosmetics Database or EWG. It is considered a milder form or alternative to sodium laureth sulfate and sodium lauryl sulfate. (Sodium lauryl sulfate has been linked to cases of contact dermatitis and other irritation, in part because of its ability change the structure of proteins, while sodium laureth sulfate does not cause this reaction but can still be irritating.) Lauryl Glucoside and Sodium Lauryl Glucose Carboxylate Plant derived mild surfactants made from coconut oil. Sodium lauryl glucose carboxylate is a sugar based surfactant used as an emulsifier and stabilizer, it is produced from naturally occurring raw materials using natural processes and is safe with no adverse effects. Molecular Weight of Sodium Lauryl Glucose Carboxylate: 282.35 g/mol 2.1 Hydrogen Bond Donor Count of Sodium Lauryl Glucose Carboxylate: 1 Hydrogen Bond Acceptor Count of Sodium Lauryl Glucose Carboxylate: 4 Rotatable Bond Count of Sodium Lauryl Glucose Carboxylate: 13 Exact Mass of Sodium Lauryl Glucose Carboxylate: 282.180704 g/mol 2.1 Monoisotopic Mass of Sodium Lauryl Glucose Carboxylate: 282.180704 g/mol 2.1 Topological Polar Surface Area of Sodium Lauryl Glucose Carboxylate: 69.6 Ų Heavy Atom Count of Sodium Lauryl Glucose Carboxylate: 19 Formal Charge of Sodium Lauryl Glucose Carboxylate: 0 Complexity of Sodium Lauryl Glucose Carboxylate: 200 Isotope Atom Count of Sodium Lauryl Glucose Carboxylate: 0 Defined Atom Stereocenter Count of Sodium Lauryl Glucose Carboxylate: 0 Undefined Atom Stereocenter Count of Sodium Lauryl Glucose Carboxylate: 1 Defined Bond Stereocenter Count of Sodium Lauryl Glucose Carboxylate: 0 Undefined Bond Stereocenter Count of Sodium Lauryl Glucose Carboxylate: 0 Covalently-Bonded Unit Count of Sodium Lauryl Glucose Carboxylate: 2 Compound of Sodium Lauryl Glucose Carboxylate Is Canonicalized?: Yes
SODIUM LAURYL PHOSPHATE
cas no 137-16-6 Sarkosyl; n-lauroylsarcosine, sodium salt; N-Methyl-N-(1-oxododecyl)glycine, sodium salt; Sodium n-Lauriyl Sarcosinate; Natrium-N-lauroylsarkosinat (German); N-Lauroilsarcosinato de sodio (Spanish); N-Lauroylsarcosinate de sodium (French);
SODIUM LAURYL SARCOSINATE
cas no 151-21-3 Dodecyl sodium sulfate; SLS; Sulfuric Acid Monododecyl Ester Sodium Salt; Sodium Dodecanesulfate; Dodecyl Alcohol,Hydrogen Sulfate,Sodium Salt; Akyposal SDS;
SODIUM LAURYL SULFATE
SODIUM LAURYL SULFATE Sodium lauryl sulfate (SLS) or sodium laureth sulfate (SLS), sometimes written sodium laurilsulfate, is a synthetic organic compound with the formula CH3(CH2)11SO4Na. It is an anionic surfactant used in many cleaning and hygiene products. This molecule is an organosulfate and a salt. It consists of a 12-carbon tail attached to a sulfate group, that is, it is the sodium salt of dodecyl hydrogen sulfate, the ester of dodecyl alcohol and sulfuric acid. Its hydrocarbon tail combined with a polar "headgroup" give the compound amphiphilic properties and so make it useful as a detergent.[not verified in body] Also derived as a component of mixtures produced from inexpensive coconut and palm oils, Sodium lauryl sulfate is a common component of many domestic cleaning, personal hygiene and cosmetic, pharmaceutical, and food products, as well as of industrial and commercial cleaning and product formulations. Structure and properties Structure of Sodium lauryl sulfate Sodium lauryl sulfate is in the family of organosulfate compounds,[2] and has the formula, CH3(CH2)11SO4Na. It consists of a 12-carbon tail attached to a sulfate group, that is, it is the sodium salt of a 12-carbon alcohol that has been esterified to sulfuric acid. An alternative description is that it is an alkyl group with a pendant, terminal sulfate group attached. As a result of its hydrocarbon tail, and its anionic "head group", it has amphiphilic properties that allow it to form micelles, and so act as a detergent. Physicochemical properties Bottle of 20% Sodium lauryl sulfate in distilled water for use in the laboratory. The critical micelle concentration (CMC) in pure water at 25 °C is 8.2 mM,[1] and the aggregation number at this concentration is usually considered to be about 62.[3] The micelle ionization fraction (α) is around 0.3 (or 30%). Production of Sodium lauryl sulfate Sodium lauryl sulfate is synthesized by treating lauryl alcohol with sulfur trioxide gas, oleum, or chlorosulfuric acid to produce hydrogen lauryl sulfate.[5] The resulting product is then neutralized through the addition of sodium hydroxide or sodium carbonate.[citation needed] Lauryl alcohol can be used in pure form or may be derived from either coconut or palm kernel oil by hydrolysis (which liberates their fatty acids), followed by hydrogenation.[citation needed] When produced from these sources, commercial samples of these "Sodium lauryl sulfate" products are actually not pure Sodium lauryl sulfate, rather a mixture of various sodium alkyl sulfates with Sodium lauryl sulfate being the main component.[6] For instance, Sodium lauryl sulfate is a component, along with other chain-length amphiphiles, when produced from coconut oil, and is known as sodium coco sulfate (SCS).[7] Sodium lauryl sulfate is available commercially in powder, pellet, and other forms (each differing in rates of dissolution), as well as in aqueous solutions of varying concentrations. Applications of Sodium lauryl sulfate Cleaning and hygiene Sodium lauryl sulfate is mainly used in detergents for laundry with many cleaning applications.[8] It is a highly effective surfactant and is used in any task requiring the removal of oily stains and residues; for example, it is found in higher concentrations with industrial products including engine degreasers, floor cleaners, and car exterior cleaners. In lower concentrations, it is found in hand soap, toothpastes, shampoos, shaving creams, and bubble bath formulations, for its ability to create a foam (lather), for its surfactant properties, and in part for its thickening effect. Food additive of Sodium lauryl sulfate Sodium lauryl sulfate, appearing as its synonym sodium lauryl sulfate (SLS), is considered a generally recognized as safe (GRAS) ingredient for food use according to the USFDA (21 CFR 172.822).[11] It is used as an emulsifying agent and whipping aid.[12] SLS is reported to temporarily diminish perception of sweetness. Laboratory applications of Sodium lauryl sulfate Principal applications of Sodium lauryl sulfate Sodium lauryl sulfate, in science referred to as Sodium lauryl sulfate (Sodium lauryl sulfate), is used in cleaning procedures,[14] and is commonly used as a component for lysing cells during RNA extraction and/or DNA extraction, and for denaturing proteins in preparation for electrophoresis in the Sodium lauryl sulfate-PAGE technique. Denaturation of a protein using Sodium lauryl sulfate In the case of Sodium lauryl sulfate-PAGE, the compound works by disrupting non-covalent bonds in the proteins, and so denaturing them, i.e. causing the protein molecules to lose their native conformations and shapes. By binding to proteins at a ratio of one Sodium lauryl sulfate molecule per 2 amino acid residues, the negatively charged detergent provides all proteins with a similar net negative charge and therefore a similar charge-to-mass ratio.[16] In this way, the difference in mobility of the polypeptide chains in the gel can be attributed solely to their length as opposed to both their native charge and shape.[16][17] It is possible to make separation based on the size of the polypeptide chain to simplify the analysis of protein molecules, this can be achieved by denaturing proteins with the detergent Sodium lauryl sulfate.[18] The association of Sodium lauryl sulfate molecules with protein molecules imparts an associated negative charge to the molecular aggregate formed;[citation needed] this negative charge is significantly greater than the original charge of that protein.[citation needed] The electrostatic repulsion that is created by Sodium lauryl sulfate binding forces proteins into a rod-like shape, thereby eliminating differences in shape as a factor for electrophoretic separation in gels.[citation needed] A dodecyl sulfate molecule has two negative charges at the pH value used for electrophoresis, this will lead the net charge of coated polypeptide chains to be much more negative than uncoated chains.[18] The charge-to-mass ratio is essentially identical for different proteins because Sodium lauryl sulfate coating dominates the charge. Miscellaneous applications of Sodium lauryl sulfate Sodium lauryl sulfate is used in an improved technique for preparing brain tissues for study by optical microscopy. The technique, which has been branded as CLARITY, was the work of Karl Deisseroth and coworkers at Stanford University, and involves infusion of the organ with an acrylamide solution to bind the macromolecules of the organ (proteins, nucleic acids, etc.), followed by thermal polymerization to form a "brain–hydrogel" (a mesh interspersed throughout the tissue to fix the macromolecules and other structures in space), and then by lipid removal using Sodium lauryl sulfate to eliminate light scattering with minimal protein loss, rendering the tissue quasi-transparent.[19][20] Along with sodium dodecylbenzene sulfonate and Triton X-100, aqueous solutions of Sodium lauryl sulfate are popular for dispersing or suspending nanotubes, such as carbon nanotubes. Niche uses of Sodium lauryl sulfate Sodium lauryl sulfate has been proposed as a potentially effective topical microbicide, for intravaginal use, to inhibit and possibly prevent infection by various enveloped and non-enveloped viruses such as the herpes simplex viruses, HIV, and the Semliki Forest virus.[22][23] In gas hydrate formation experiments, Sodium lauryl sulfate is used as a gas hydrate growth promoter.[24][25] [26] Researchers aim for gas hydrate promotions as scale-up of industrial applications of gas hydrates such as desalination process,[27] gas storage, and gas separation technologies.[28] Liquid membranes formed from Sodium lauryl sulfate in water have been demonstrated to work as unusual particle separators.[29] The device acts as a reverse filter, allowing large particles to pass while capturing smaller particles. Toxicology of Sodium lauryl sulfate Carcinogenicity Sodium lauryl sulfate is not carcinogenic when consumed or applied directly, even to amounts and concentrations that exceed amounts used in standard commercial products.[30][31] The earlier review of the Cosmetic Ingredient Review (CIR) program Expert Panel in 1983 reported that Sodium lauryl sulfate (there, abbreviated SLS, for sodium lauryl sulfate) in concentrations up to 2%, in a year-long oral dietary studies in dogs, gave no evidence of tumorigenicity or carcinogenicity, and that no excess chromosomal aberrations or clastogenic effects were observed in rats fed up to 1.13% sodium lauryl sulfate in their diets for 90 days, over those on a control diet.[30]:157, 175 The 2005 review by the same group indicated that further available data lacked any available suggestion that Sodium lauryl sulfate or the related ammonium salt of the same amphiphile could be carcinogenic, stating that "Despite assertions to the contrary on the Internet, the carcinogenicity of these ingredients is only a rumor;" both studies conclude that Sodium lauryl sulfate appears "to be safe in formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin. In products intended for prolonged contact with skin, concentrations should not exceed 1%. Sensitivity of Sodium lauryl sulfate Like all detergents, sodium lauryl sulfate removes oils from the skin, and can cause skin and eye irritation.[citation needed] It has been shown to irritate the skin of the face, with prolonged and constant exposure (more than an hour) in young adults.[32] Sodium lauryl sulfate may worsen skin problems in individuals with chronic skin hypersensitivity, with some people being affected more than others.[33][34][35] Oral concerns of Sodium lauryl sulfate The low cost of Sodium lauryl sulfate,[36] its lack of impact on taste,[36] its potential impact on volatile sulfur compounds (VSCs), which contribute to malodorous breath,[37] and its desirable action as a foaming agent have led to the use of Sodium lauryl sulfate in the formulations of toothpastes.[36] A series of small crossover studies (25-34 patients) have supported the efficacy of SLS in the reduction of VSCs, and its related positive impact on breath malodor, although these studies have been generally noted to reflect technical challenges in the control of study design variables.[37] While primary sources from the group of Irma Rantanen at University of Turku, Finland conclude an impact on dry mouth (xerostomia) from SLS-containing pastes, a 2011 Cochrane review of these studies, and of the more general area, concludes that there "is no strong evidence… that any topical therapy is effective for relieving the symptom of dry mouth."[38] A safety concern has been raised on the basis of several studies regarding the effect of toothpaste Sodium lauryl sulfate on aphthous ulcers, commonly referred to as canker or white sores.[36] A consensus regarding practice (or change in practice) has not appeared as a result of the studies.[39][40] As Lippert notes, of 2013, "very few… marketed toothpastes contain a surfactant other than SLS [Sodium lauryl sulfate]," and leading manufacturers continue to formulate their produce with Sodium lauryl sulfate. Interaction with fluoride Some studies have suggested that SLS in toothpaste may decrease the effectiveness of fluoride at preventing dental caries (cavities). This may be due to SLS interacting with the deposition of fluoride on tooth enamel. Readily pourable, palm-derived, high foaming, anionic surfactant used in the chemical formulating and detergent manufacturing industries. It is a higher foaming variation of Sodium Lauryl Sulfate (SLES). Features of Sodium lauryl sulfate : Free flowing liquid makes it easier to pour. Used in wetting agent formulations, liquid detergents, cleaners, shampoos and laundry detergents. Sodium lauryl sulfate dissolves readily in hard and soft water and provides a consistent foam character. Packaging of Sodium lauryl sulfate : Sodium lauryl sulfate is available in IBCs (1000kg bulk containers) and drums. Safety of Sodium lauryl sulfate : Please consult the SDS on Sodium lauryl sulfate before use. Sodium lauryl sulfate (sodium dodecyl sulphate) is a kind of anionic surfactant, dissolves in the water easily, compatibility with anion and non-ionic, good performances on emulsifying, foaming, osmosis, detergency and de-centrality. Sodium lauryl sulfate Powder Sodium lauryl sulfate Powder is a widely used surfactant often used as a foaming agent in many common products like Bath products, shampoos, foaming powders and mony industrial and commercial cleaners. SaveonCitric offers a highly Active, high quality Sodium lauryl sulfate Powdered Sodium lauryl sulfate. If you are formulating a product like a powdered or tablet cleanser, or blending liquid hard surface or carpet cleaners, try Sodium lauryl sulfate Powder. Check the FIFRa list if you are formulating blends and looking for an accepted surfactant. Sodium lauryl sulfate , synonymously, Sodium lauryl sulfate , or sodium laurilsulfate, is a synthetic organic compound with the formula CH3(CH2)11SO4Na. It is an anionic surfactant used in many cleaning and hygiene products. The sodium salt is of an organosulfate class of organics. It consists of a 12-carbon tail attached to a sulfate group, that is, it is the sodium salt of dodecyl hydrogen sulfate, the ester of dodecyl alcohol and sulfuric acid. Its hydrocarbon tail combined with a polar "headgroup" give the compound amphiphilic properties and so make it useful as a detergent.[not verified in body] Also derived as a component of mixtures produced from inexpensive coconut and palm oils, Sodium lauryl sulfate is a common component of many domestic cleaning, personal hygiene and cosmetic, pharmaceutical, and food products, as well as of industrial and commercial cleaning and product formulations. Sodium lauryl sulfate is a widely used surfactant in cleaning products, cosmetic, and personal care products. Sodium lauryl sulfate 's uses in these products have been thoroughly evaluated and determined to be safe for consumers and the environment. Sodium lauryl sulfate , sodium laurilsulfate or Sodium lauryl sulfate (Sodium lauryl sulfate or NaDS) (C12H25SO4Na) is an anionic surfactant used as an emulsifying cleaning agent in many cleaning and hygiene products. Sodium lauryl sulfate is a highly effective surfactant and is used in any task requiring the removal of oily stains and residues. For example, it is found in higher concentrations with industrial products including engine degreasers, floor cleaners, and car wash soaps. It is used in lower concentrations with toothpastes, shampoos, and shaving foams. It is an important component in bubble bath formulations for its thickening effect and its ability to create a lather. WHAT IS Sodium lauryl sulfate ? Sodium lauryl sulfate , also known as Sodium lauryl sulfate, is a widely used surfactant in cleaning products, cosmetics, and personal care products. The Sodium lauryl sulfate formula is a highly effective anionic surfactant used to remove oily stains and residues. It is found in high concentrations in industrial products, including engine degreasers, floor cleaners, and car wash products, where workplace protections can be implemented to avoid unsafe exposures. Sodium lauryl sulfate is also used in lower concentrations in household and personal care products such as cleaning products, toothpastes, shampoos, and shaving foams. SAFETY Sodium lauryl sulfate has been thoroughly reviewed for its safety by a number of governments. Sodium lauryl sulfate from the requirement of tolerance for residues when used as a component of food contact sanitizing solutions applied to all food contact surfaces in public eating places, dairy-processing equipment, and food-processing equipment and utensils at a maximum level in the end-use concentration of 350 parts per million (ppm). The regulation eliminates the need to establish a maximum permissible level for residues of Sodium lauryl sulfate. The Food and Drug Administration (FDA) includes Sodium lauryl sulfate on its list of multipurpose additives allowed to be directly added to food. Sodium lauryl sulfate and Ammonium Lauryl Sulfate are also approved indirect food additives. For example, both ingredients are permitted to be used as components of coatings. Sodium lauryl sulfate and Ammonium Lauryl Sulfate may be used in cosmetics and personal care products marketed in Europe according to the general provisions of the Cosmetics Directive of the European Union. The Organization of Economic Cooperation and Development, which is an organization of 30-plus developed countries, has reviewed the human and environmental hazards of a category of chemicals that includes Sodium lauryl sulfate. No chronic human health hazards, including carcinogenicity, were identified. The hazard assessment for the category (alkyl sulphates, alkane sulphonates and alpha-olefin sulphonates category) is posted on the OECD website. Sodium lauryl sulfate has also been thoroughly reviewed for human safety by an industry funded, independent panel, which found: There is no evidence of harm from the use of Sodium lauryl sulfate in cosmetic products, where there is intentional, direct contact with the skin. The ingredient was reviewed in 1983 and re-reviewed in 2005 by the Cosmetic Ingredient Review (CIR)1 Expert Panel and found to be safe for use in cosmetic and personal care products. Sodium lauryl sulfate can cause skin irritation in some persons, which is one reason why it is important to follow the label instructions when using a cleaning product. A complete report on Sodium lauryl sulfate is available from CIR. Use: -Detergency: tooth paste, shampoo, cosmetic, detergent, etc. -Construction: plasterboard, additive of concrete, coating, etc. -Pharmaceutical: Medicine, pesticide, etc. -Leather: leather soft agent, wool cleaning agent, etc. -Paper making: penetrant, flocculating agent, deinking agent, etc. -Auxiliaries: textile auxiliaries, plastic auxiliaries, etc. -Fire fighting: oil well fire fighting, fire fighting device, etc. -Mineral choosing: mine flotation, coal water mixture, etc. Overview Sodium lauryl sulfate is one of the ingredients you'll find listed on your shampoo bottle. However, unless you're a chemist, you likely don't know what it is. The chemical is found in many cleaning and beauty products, but it's frequently misunderstood. Urban myths have linked it to cancer, skin irritation, and more. Science may tell a different story. How it works Sodium lauryl sulfate is what's known as a "surfactant." This means it lowers the surface tension between ingredients, which is why it's used as a cleansing and foaming agent. Most concerns about Sodium lauryl sulfate stem from the fact that it can be found in beauty and self-care products as well as in household cleaners. Sodium lauryl sulfate is a surfactant with a similar chemical formula. However, SLES is milder and less irritating than Sodium lauryl sulfate. Where you'll find Sodium lauryl sulfate If you look under your bathroom sink, or on the shelf in your shower, it's very likely you'll find Sodium lauryl sulfate in your home. It's used in a variety of products, including: Grooming products, such as shaving cream, lip balm, hand sanitizer, nail treatments, makeup remover, foundation, facial cleansers, exfoliants, and liquid hand soap Hair products, such as shampoo, conditioner, hair dye, dandruff treatment, and styling gel Dental care products, such as toothpaste, teeth whitening products, and mouthwash Bath products, such as bath oils or salts, body wash, and bubble bath Creams and lotions, such as hand cream, masks, anti-itch creams, hair-removal products, and sunscreen You'll notice that all of these products are topical, or applied directly to the skin or body. Sodium lauryl sulfate is also used as a food additive, usually as an emulsifier or a thickener. It can be found in dried egg products, some marshmallow products, and certain dry beverage bases. Are there dangers? The Food and Drug Administration (FDA) regards Sodium lauryl sulfate as safe as a food additive. Regarding its use in cosmetics and body products, the safety assessment study of Sodium lauryl sulfate , published in 1983 in the International Journal of Toxicology (the most recent assessment), found that it's not harmful if used briefly and rinsed from the skin, as with shampoos and soaps. The report says that products that stay on the skin longer shouldn't exceed 1 percent concentration of Sodium lauryl sulfate. However, the same assessment did suggest some possible, albeit minimal, risk to humans using Sodium lauryl sulfate. For example, some tests found that continuous skin exposure to Sodium lauryl sulfate could cause mild to moderate irritation in animals. Nevertheless, the assessment concluded that Sodium lauryl sulfate is safe in formulations used in cosmetics and personal care products. Because many of these products are designed to be rinsed off after short applications, the risks are minimal. According to most research, Sodium lauryl sulfate is an irritant but not a carcinogen. Studies have shown no link between the use of Sodium lauryl sulfate and increased cancer risk. According to a 2015 study, Sodium lauryl sulfate is safe for use in household cleaning products. About 1/3 of HIV positive mothers transmit the virus to their newborns, and 1/2 of these infections occur during breastfeeding. Sodium lauryl sulfate (SLS), an anionic surfactant, is a common ingredient of cosmetic and personal care products. Sodium lauryl sulfate is "readily biodegradable" with low toxicity and "is of no concern with respect to human health". Up to 1 g of Sodium lauryl sulfate/kg is the maximum safe dose for children. Alkyl sulfates, including Sodium lauryl sulfate, are microbicidal against HIV types 1 and 2, herpes simplex virus type 2 (HSV-2), human papillomaviruses and chlamydia. /The study/ hypothesizes that Sodium lauryl sulfate treatment of milk will inactivate HIV-1 without significant harm to its nutritional value and protective functions and may define a treatment of choice for breastwas at 37 degrees C for 10 min. Sodium lauryl sulfate-PAGE and Lowry were used to analyze protein content. Antibody content and function was studied by rocket immunoelectrophoresis (RIE), immunoturbodimentric (ITM) quantitation and ELISA. The creamatocrit was also analyzed. HIV-1 infectivity was measured by MAGI assay. Sodium lauryl sulfate removal was by Detergent-OutN (Geno Technology, Inc.). Sodium lauryl sulfate quantitation is by methylene blue-chloroform method. Inactivation of HIV-1 with Sodium lauryl sulfate occurs at or above 0.025%. In milk samples, 1% and 0.1% Sodium lauryl sulfate reduced HSV-2 infectivity. At least 90% of Sodium lauryl sulfate can be efficiently removed with Detergent-OutN, with protein recovery of 80%-100%. Gross protein species are conserved as indicated by PAGE analyses. Fat and energy content of Sodium lauryl sulfate-treated breast milk remains unchanged. 0.1% Sodium lauryl sulfate can be removed from human milk without altering the creamatocrit. ELISA of serum IgG (rubella) proved it remains functional in the presence of Sodium lauryl sulfate and after its removal. sIgA, IgG and IgM in breast milk are conserved after Sodium lauryl sulfate-treatment when measured by RIE and ITM. CONCLUSIONS: Sodium lauryl sulfate (0.025%) can inactivate HIV-1 in vitro and HSV-2 in breast milk. Sodium lauryl sulfate can be efficiently removed from milk samples. Sodium lauryl sulfate treatment of milk does not significantly alter protein content. Antibody function in serum and levels in breast milk are maintained after treatment and removal of Sodium lauryl sulfate. 0.1% Sodium lauryl sulfate does not alter fat concentration in milk and energy content is conserved. Sodium lauryl sulfate or related compounds may be used to prevent breast milk transmission of HIV-1. A broad-spectrum vaginal microbicide must be effective against a variety of sexually transmitted disease pathogens and be minimally toxic to the cell types found within the vaginal epithelium, including vaginal keratinocytes. /The study/ assessed the sensitivity of primary human vaginal keratinocytes to potential topical vaginal microbicides nonoxynol-9 (N-9), C31G, and Sodium lauryl sulfate (SLS). Direct immunofluorescence and fluorescence-activated cell sorting analyses demonstrated that primary vaginal keratinocytes expressed epithelial cell-specific keratin proteins. Experiments that compared vaginal keratinocyte sensitivity to each agent during a continuous, 48-hr exposure demonstrated that primary vaginal keratinocytes were almost five times more sensitive to N-9 than to either C31G or Sodium lauryl sulfate. To evaluate the effect of multiple microbicide exposures on cell viability, primary vaginal keratinocytes were exposed to N-9, C31G, or Sodium lauryl sulfate three times during a 78-hr period. In these experiments, cells were considerably more sensitive to C31G than to N-9 or Sodium lauryl sulfate at lower concentrations within the range tested. When agent concentrations were chosen to result in an endpoint of 25% viability after three daily exposures, each exposure decreased cell viability at the same constant rate. When time-dependent sensitivity during a continuous 48-hr exposure was examined, exposure to C31G for 18 hr resulted in losses in cell viability not caused by either N-9 or Sodium lauryl sulfate until at least 24 to 48 hr. Cumulatively, these results reveal important variations in time- and concentration-dependent sensitivity to N-9, C31G, or Sodium lauryl sulfate within populations of primary human vaginal keratinocytes cultured in vitro. These investigations represent initial steps toward both in vitro modeling of the vaginal microenvironment and studies of factors that impact the in vivo efficacy of vaginal topical microbicides. Sodium lauryl sulfate (SLS) is an anionic detergent that can form complexes with protein through hydrophobic interactions. Studies have reported that the hydrodynamic functions of protein-Sodium lauryl sulfate complexes are governed by the length of their polypeptide chains. Thus, Sodium lauryl sulfate-based electrophoretic techniques can separate protein molecules based on their molecular weights. Additionally, Sodium lauryl sulfate can solubilize cell membranes and can extract membrane-bound proteins. Analytical procedures are described for determining residues of Sodium lauryl sulfate in whole blood from guinea pigs. Methods are based on hydrolysis & analysis by electron-capture gas-chromatography. Sodium lauryl sulfate Electrophoresis Sodium lauryl sulfate electrophoresis was the next logical step after disk electrophoresis. While the latter discriminates macromolecules on the basis of both size and surface charge, Sodium lauryl sulfate electrophoresis fractionates polypeptide chains essentially on the basis of their size. It is therefore a simple, yet powerful and reliable method for molecular mass (Mr) determination. In 1967, it was first reported that electrophoretic migration in Sodium lauryl sulfate is proportional to the effective molecular radius and thus to the Mr of the polypeptide chain. This result means that Sodium lauryl sulfate must bind to proteins and cancel out differences in molecular charge, so that all components then migrate solely according to size. Surprisingly large amounts of Sodium lauryl sulfate appear to be bound (an average of 1.4 g Sodium lauryl sulfate per gram of protein), which means that the number of Sodium lauryl sulfate molecules bound is of the order of half the number of amino acid residues in a polypeptide chain. This amount of highly charged surfactant molecules is sufficient to overwhelm effectively the intrinsic charges of the polymer coil, so that their net charge per unit mass becomes approximately constant. If migration in Sodium lauryl sulfate (and disulfide reducing agents, such as 2-mercaptoethanol, in the denaturing step, for a proper unfolding of the proteins) is proportional only to molecular mass, then, in addition to canceling out of charge differences, Sodium lauryl sulfate also equalizes molecular shape differences as well (e.g., globular versus rod-shaped molecules). This seems to be the case for protein–Sodium lauryl sulfate mixed micelles: these complexes can be assumed to behave as ellipsoids of constant minor axis (∼1.8 nm) and with the major axis proportional to the length in amino acids (i.e., to molecular mass) of the protein. The rod length for the 1.4 g Sodium lauryl sulfate/g protein complex is of the order of 0.074 nm per amino acid residue. Sodium lauryl sulfate Sodium lauryl sulfate (SLS), also known as lauryl sulfate, is an ionic detergent that is useful for the rapid disruption of biological membranes. It is a key component of many reagents used to purify nucleic acids because of its abilities to quickly disrupt the tissue architecture and to inhibit both RNase and deoxyribonuclease (DNase) activity. Sodium lauryl sulfate is usually prepared as either a 10% or a 20% (w/v) stock solution and is used most often at a working concentration of 0.1% to 0.5%. The performance of this detergent can be affected significantly by its purity. Sodium lauryl sulfate is easily precipitable in the presence of potassium salts and generally is not added to guanidinium buffers, as it has very low solubility in high-salt, chaotropic solutions. Two classes of proteins show anomalous behavior in Sodium lauryl sulfate electrophoresis: glycoproteins (because their hydrophilic oligosaccharide units prevent hydrophobic binding of Sodium lauryl sulfate micelles) and strongly basic proteins (e.g., histones) (because of electrostatic binding of Sodium lauryl sulfate micelles through their sulfate groups). The first can be partially alleviated by using Tris–borate buffers at alkaline pH, which will increase the net negative charge on the glycoprotein, thus producing migration rates well correlated with molecular size. Migration of histones can be improved by using pore gradient gels and allowing the polypeptide chains to approach the pore limit.
SODIUM LAURYL SULFATE (POWDER)
Sodium Lauryl Sulfate Powder Sodium lauryl sulfate powder (SLS) or sodium laureth sulfate (SLS), sometimes written sodium laurilsulfate, is a synthetic organic compound with the formula CH3(CH2)11SO4Na. It is an anionic surfactant used in many cleaning and hygiene products. This molecule is an organosulfate and a salt. It consists of a 12-carbon tail attached to a sulfate group, that is, it is the sodium salt of dodecyl hydrogen sulfate, the ester of dodecyl alcohol and sulfuric acid. Its hydrocarbon tail combined with a polar "headgroup" give the compound amphiphilic properties and so make it useful as a detergent.[not verified in body] Also derived as a component of mixtures produced from inexpensive coconut and palm oils, Sodium lauryl sulfate powder is a common component of many domestic cleaning, personal hygiene and cosmetic, pharmaceutical, and food products, as well as of industrial and commercial cleaning and product formulations. Structure and properties Structure of Sodium lauryl sulfate powder Sodium lauryl sulfate powder is in the family of organosulfate compounds,[2] and has the formula, CH3(CH2)11SO4Na. It consists of a 12-carbon tail attached to a sulfate group, that is, it is the sodium salt of a 12-carbon alcohol that has been esterified to sulfuric acid. An alternative description is that it is an alkyl group with a pendant, terminal sulfate group attached. As a result of its hydrocarbon tail, and its anionic "head group", it has amphiphilic properties that allow it to form micelles, and so act as a detergent. Physicochemical properties Bottle of 20% Sodium lauryl sulfate powder in distilled water for use in the laboratory. The critical micelle concentration (CMC) in pure water at 25 °C is 8.2 mM,[1] and the aggregation number at this concentration is usually considered to be about 62.[3] The micelle ionization fraction (α) is around 0.3 (or 30%). Production of Sodium lauryl sulfate powder Sodium lauryl sulfate powder is synthesized by treating lauryl alcohol with sulfur trioxide gas, oleum, or chlorosulfuric acid to produce hydrogen lauryl sulfate.[5] The resulting product is then neutralized through the addition of sodium hydroxide or sodium carbonate.[citation needed] Lauryl alcohol can be used in pure form or may be derived from either coconut or palm kernel oil by hydrolysis (which liberates their fatty acids), followed by hydrogenation.[citation needed] When produced from these sources, commercial samples of these "Sodium lauryl sulfate powder" products are actually not pure Sodium lauryl sulfate powder, rather a mixture of various sodium alkyl sulfates with Sodium lauryl sulfate powder being the main component.[6] For instance, Sodium lauryl sulfate powder is a component, along with other chain-length amphiphiles, when produced from coconut oil, and is known as sodium coco sulfate (SCS).[7] Sodium lauryl sulfate powder is available commercially in powder, pellet, and other forms (each differing in rates of dissolution), as well as in aqueous solutions of varying concentrations. Applications of Sodium lauryl sulfate powder Cleaning and hygiene Sodium lauryl sulfate powder is mainly used in detergents for laundry with many cleaning applications.[8] It is a highly effective surfactant and is used in any task requiring the removal of oily stains and residues; for example, it is found in higher concentrations with industrial products including engine degreasers, floor cleaners, and car exterior cleaners. In lower concentrations, it is found in hand soap, toothpastes, shampoos, shaving creams, and bubble bath formulations, for its ability to create a foam (lather), for its surfactant properties, and in part for its thickening effect. Food additive of Sodium lauryl sulfate powder Sodium lauryl sulfate powder, appearing as its synonym Sodium lauryl sulfate powder (SLS), is considered a generally recognized as safe (GRAS) ingredient for food use according to the USFDA (21 CFR 172.822).[11] It is used as an emulsifying agent and whipping aid.[12] SLS is reported to temporarily diminish perception of sweetness. Laboratory applications of Sodium lauryl sulfate powder Principal applications of Sodium lauryl sulfate powder Sodium lauryl sulfate powder, in science referred to as Sodium lauryl sulfate powder (Sodium lauryl sulfate powder), is used in cleaning procedures,[14] and is commonly used as a component for lysing cells during RNA extraction and/or DNA extraction, and for denaturing proteins in preparation for electrophoresis in the Sodium lauryl sulfate powder-PAGE technique. Denaturation of a protein using Sodium lauryl sulfate powder In the case of Sodium lauryl sulfate powder-PAGE, the compound works by disrupting non-covalent bonds in the proteins, and so denaturing them, i.e. causing the protein molecules to lose their native conformations and shapes. By binding to proteins at a ratio of one Sodium lauryl sulfate powder molecule per 2 amino acid residues, the negatively charged detergent provides all proteins with a similar net negative charge and therefore a similar charge-to-mass ratio.[16] In this way, the difference in mobility of the polypeptide chains in the gel can be attributed solely to their length as opposed to both their native charge and shape.[16][17] It is possible to make separation based on the size of the polypeptide chain to simplify the analysis of protein molecules, this can be achieved by denaturing proteins with the detergent Sodium lauryl sulfate powder.[18] The association of Sodium lauryl sulfate powder molecules with protein molecules imparts an associated negative charge to the molecular aggregate formed;[citation needed] this negative charge is significantly greater than the original charge of that protein.[citation needed] The electrostatic repulsion that is created by Sodium lauryl sulfate powder binding forces proteins into a rod-like shape, thereby eliminating differences in shape as a factor for electrophoretic separation in gels.[citation needed] A dodecyl sulfate molecule has two negative charges at the pH value used for electrophoresis, this will lead the net charge of coated polypeptide chains to be much more negative than uncoated chains.[18] The charge-to-mass ratio is essentially identical for different proteins because Sodium lauryl sulfate powder coating dominates the charge. Miscellaneous applications of Sodium lauryl sulfate powder Sodium lauryl sulfate powder is used in an improved technique for preparing brain tissues for study by optical microscopy. The technique, which has been branded as CLARITY, was the work of Karl Deisseroth and coworkers at Stanford University, and involves infusion of the organ with an acrylamide solution to bind the macromolecules of the organ (proteins, nucleic acids, etc.), followed by thermal polymerization to form a "brain–hydrogel" (a mesh interspersed throughout the tissue to fix the macromolecules and other structures in space), and then by lipid removal using Sodium lauryl sulfate powder to eliminate light scattering with minimal protein loss, rendering the tissue quasi-transparent.[19][20] Along with sodium dodecylbenzene sulfonate and Triton X-100, aqueous solutions of Sodium lauryl sulfate powder are popular for dispersing or suspending nanotubes, such as carbon nanotubes. Niche uses of Sodium lauryl sulfate powder Sodium lauryl sulfate powder has been proposed as a potentially effective topical microbicide, for intravaginal use, to inhibit and possibly prevent infection by various enveloped and non-enveloped viruses such as the herpes simplex viruses, HIV, and the Semliki Forest virus.[22][23] In gas hydrate formation experiments, Sodium lauryl sulfate powder is used as a gas hydrate growth promoter.[24][25] [26] Researchers aim for gas hydrate promotions as scale-up of industrial applications of gas hydrates such as desalination process,[27] gas storage, and gas separation technologies.[28] Liquid membranes formed from Sodium lauryl sulfate powder in water have been demonstrated to work as unusual particle separators.[29] The device acts as a reverse filter, allowing large particles to pass while capturing smaller particles. Toxicology of Sodium lauryl sulfate powder Carcinogenicity Sodium lauryl sulfate powder is not carcinogenic when consumed or applied directly, even to amounts and concentrations that exceed amounts used in standard commercial products.[30][31] The earlier review of the Cosmetic Ingredient Review (CIR) program Expert Panel in 1983 reported that Sodium lauryl sulfate powder (there, abbreviated SLS, for Sodium lauryl sulfate powder) in concentrations up to 2%, in a year-long oral dietary studies in dogs, gave no evidence of tumorigenicity or carcinogenicity, and that no excess chromosomal aberrations or clastogenic effects were observed in rats fed up to 1.13% Sodium lauryl sulfate powder in their diets for 90 days, over those on a control diet.[30]:157, 175 The 2005 review by the same group indicated that further available data lacked any available suggestion that Sodium lauryl sulfate powder or the related ammonium salt of the same amphiphile could be carcinogenic, stating that "Despite assertions to the contrary on the Internet, the carcinogenicity of these ingredients is only a rumor;" both studies conclude that Sodium lauryl sulfate powder appears "to be safe in formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin. In products intended for prolonged contact with skin, concentrations should not exceed 1%. Sensitivity of Sodium lauryl sulfate powder Like all detergents, Sodium lauryl sulfate powder removes oils from the skin, and can cause skin and eye irritation.[citation needed] It has been shown to irritate the skin of the face, with prolonged and constant exposure (more than an hour) in young adults.[32] Sodium lauryl sulfate powder may worsen skin problems in individuals with chronic skin hypersensitivity, with some people being affected more than others.[33][34][35] Oral concerns of Sodium lauryl sulfate powder The low cost of Sodium lauryl sulfate powder,[36] its lack of impact on taste,[36] its potential impact on volatile sulfur compounds (VSCs), which contribute to malodorous breath,[37] and its desirable action as a foaming agent have led to the use of Sodium lauryl sulfate powder in the formulations of toothpastes.[36] A series of small crossover studies (25-34 patients) have supported the efficacy of SLS in the reduction of VSCs, and its related positive impact on breath malodor, although these studies have been generally noted to reflect technical challenges in the control of study design variables.[37] While primary sources from the group of Irma Rantanen at University of Turku, Finland conclude an impact on dry mouth (xerostomia) from SLS-containing pastes, a 2011 Cochrane review of these studies, and of the more general area, concludes that there "is no strong evidence… that any topical therapy is effective for relieving the symptom of dry mouth."[38] A safety concern has been raised on the basis of several studies regarding the effect of toothpaste Sodium lauryl sulfate powder on aphthous ulcers, commonly referred to as canker or white sores.[36] A consensus regarding practice (or change in practice) has not appeared as a result of the studies.[39][40] As Lippert notes, of 2013, "very few… marketed toothpastes contain a surfactant other than SLS [Sodium lauryl sulfate powder]," and leading manufacturers continue to formulate their produce with Sodium lauryl sulfate powder. Interaction with fluoride Some studies have suggested that SLS in toothpaste may decrease the effectiveness of fluoride at preventing dental caries (cavities). This may be due to SLS interacting with the deposition of fluoride on tooth enamel. Readily pourable, palm-derived, high foaming, anionic surfactant used in the chemical formulating and detergent manufacturing industries. It is a higher foaming variation of Sodium lauryl sulfate powder (SLES). Features of Sodium lauryl sulfate powder : Free flowing liquid makes it easier to pour. Used in wetting agent formulations, liquid detergents, cleaners, shampoos and laundry detergents. Sodium lauryl sulfate powder dissolves readily in hard and soft water and provides a consistent foam character. Packaging of Sodium lauryl sulfate powder : Sodium lauryl sulfate powder is available in IBCs (1000kg bulk containers) and drums. Safety of Sodium lauryl sulfate powder : Please consult the SDS on Sodium lauryl sulfate powder before use. Sodium lauryl sulfate powder (sodium dodecyl sulphate) is a kind of anionic surfactant, dissolves in the water easily, compatibility with anion and non-ionic, good performances on emulsifying, foaming, osmosis, detergency and de-centrality. Sodium lauryl sulfate powder Powder Sodium lauryl sulfate powder Powder is a widely used surfactant often used as a foaming agent in many common products like Bath products, shampoos, foaming powders and mony industrial and commercial cleaners. SaveonCitric offers a highly Active, high quality Sodium lauryl sulfate powder Powdered Sodium lauryl sulfate powder. If you are formulating a product like a powdered or tablet cleanser, or blending liquid hard surface or carpet cleaners, try Sodium lauryl sulfate powder Powder. Check the FIFRa list if you are formulating blends and looking for an accepted surfactant. Sodium lauryl sulfate powder , synonymously, Sodium lauryl sulfate powder , or sodium laurilsulfate, is a synthetic organic compound with the formula CH3(CH2)11SO4Na. It is an anionic surfactant used in many cleaning and hygiene products. The sodium salt is of an organosulfate class of organics. It consists of a 12-carbon tail attached to a sulfate group, that is, it is the sodium salt of dodecyl hydrogen sulfate, the ester of dodecyl alcohol and sulfuric acid. Its hydrocarbon tail combined with a polar "headgroup" give the compound amphiphilic properties and so make it useful as a detergent.[not verified in body] Also derived as a component of mixtures produced from inexpensive coconut and palm oils, Sodium lauryl sulfate powder is a common component of many domestic cleaning, personal hygiene and cosmetic, pharmaceutical, and food products, as well as of industrial and commercial cleaning and product formulations. Sodium lauryl sulfate powder is a widely used surfactant in cleaning products, cosmetic, and personal care products. Sodium lauryl sulfate powder 's uses in these products have been thoroughly evaluated and determined to be safe for consumers and the environment. Sodium lauryl sulfate powder , sodium laurilsulfate or Sodium lauryl sulfate powder (Sodium lauryl sulfate powder or NaDS) (C12H25SO4Na) is an anionic surfactant used as an emulsifying cleaning agent in many cleaning and hygiene products. Sodium lauryl sulfate powder is a highly effective surfactant and is used in any task requiring the removal of oily stains and residues. For example, it is found in higher concentrations with industrial products including engine degreasers, floor cleaners, and car wash soaps. It is used in lower concentrations with toothpastes, shampoos, and shaving foams. It is an important component in bubble bath formulations for its thickening effect and its ability to create a lather. WHAT IS Sodium lauryl sulfate powder ? Sodium lauryl sulfate powder , also known as Sodium lauryl sulfate powder, is a widely used surfactant in cleaning products, cosmetics, and personal care products. The Sodium lauryl sulfate powder formula is a highly effective anionic surfactant used to remove oily stains and residues. It is found in high concentrations in industrial products, including engine degreasers, floor cleaners, and car wash products, where workplace protections can be implemented to avoid unsafe exposures. Sodium lauryl sulfate powder is also used in lower concentrations in household and personal care products such as cleaning products, toothpastes, shampoos, and shaving foams. SAFETY Sodium lauryl sulfate powder has been thoroughly reviewed for its safety by a number of governments. Sodium lauryl sulfate powder from the requirement of tolerance for residues when used as a component of food contact sanitizing solutions applied to all food contact surfaces in public eating places, dairy-processing equipment, and food-processing equipment and utensils at a maximum level in the end-use concentration of 350 parts per million (ppm). The regulation eliminates the need to establish a maximum permissible level for residues of Sodium lauryl sulfate powder. The Food and Drug Administration (FDA) includes Sodium lauryl sulfate powder on its list of multipurpose additives allowed to be directly added to food. Sodium lauryl sulfate powder and Ammonium Lauryl Sulfate are also approved indirect food additives. For example, both ingredients are permitted to be used as components of coatings. Sodium lauryl sulfate powder and Ammonium Lauryl Sulfate may be used in cosmetics and personal care products marketed in Europe according to the general provisions of the Cosmetics Directive of the European Union. The Organization of Economic Cooperation and Development, which is an organization of 30-plus developed countries, has reviewed the human and environmental hazards of a category of chemicals that includes Sodium lauryl sulfate powder. No chronic human health hazards, including carcinogenicity, were identified. The hazard assessment for the category (alkyl sulphates, alkane sulphonates and alpha-olefin sulphonates category) is posted on the OECD website. Sodium lauryl sulfate powder has also been thoroughly reviewed for human safety by an industry funded, independent panel, which found: There is no evidence of harm from the use of Sodium lauryl sulfate powder in cosmetic products, where there is intentional, direct contact with the skin. The ingredient was reviewed in 1983 and re-reviewed in 2005 by the Cosmetic Ingredient Review (CIR)1 Expert Panel and found to be safe for use in cosmetic and personal care products. Sodium lauryl sulfate powder can cause skin irritation in some persons, which is one reason why it is important to follow the label instructions when using a cleaning product. A complete report on Sodium lauryl sulfate powder is available from CIR. Use: -Detergency: tooth paste, shampoo, cosmetic, detergent, etc. -Construction: plasterboard, additive of concrete, coating, etc. -Pharmaceutical: Medicine, pesticide, etc. -Leather: leather soft agent, wool cleaning agent, etc. -Paper making: penetrant, flocculating agent, deinking agent, etc. -Auxiliaries: textile auxiliaries, plastic auxiliaries, etc. -Fire fighting: oil well fire fighting, fire fighting device, etc. -Mineral choosing: mine flotation, coal water mixture, etc. Overview Sodium lauryl sulfate powder is one of the ingredients you'll find listed on your shampoo bottle. However, unless you're a chemist, you likely don't know what it is. The chemical is found in many cleaning and beauty products, but it's frequently misunderstood. Urban myths have linked it to cancer, skin irritation, and more. Science may tell a different story. How it works Sodium lauryl sulfate powder is what's known as a "surfactant." This means it lowers the surface tension between ingredients, which is why it's used as a cleansing and foaming agent. Most concerns about Sodium lauryl sulfate powder stem from the fact that it can be found in beauty and self-care products as well as in household cleaners. Sodium lauryl sulfate powder is a surfactant with a similar chemical formula. However, SLES is milder and less irritating than Sodium lauryl sulfate powder. Where you'll find Sodium lauryl sulfate powder If you look under your bathroom sink, or on the shelf in your shower, it's very likely you'll find Sodium lauryl sulfate powder in your home. It's used in a variety of products, including: Grooming products, such as shaving cream, lip balm, hand sanitizer, nail treatments, makeup remover, foundation, facial cleansers, exfoliants, and liquid hand soap Hair products, such as shampoo, conditioner, hair dye, dandruff treatment, and styling gel Dental care products, such as toothpaste, teeth whitening products, and mouthwash Bath products, such as bath oils or salts, body wash, and bubble bath Creams and lotions, such as hand cream, masks, anti-itch creams, hair-removal products, and sunscreen You'll notice that all of these products are topical, or applied directly to the skin or body. Sodium lauryl sulfate powder is also used as a food additive, usually as an emulsifier or a thickener. It can be found in dried egg products, some marshmallow products, and certain dry beverage bases. Are there dangers? The Food and Drug Administration (FDA) regards Sodium lauryl sulfate powder as safe as a food additive. Regarding its use in cosmetics and body products, the safety assessment study of Sodium lauryl sulfate powder , published in 1983 in the International Journal of Toxicology (the most recent assessment), found that it's not harmful if used briefly and rinsed from the skin, as with shampoos and soaps. The report says that products that stay on the skin longer shouldn't exceed 1 percent concentration of Sodium lauryl sulfate powder. However, the same assessment did suggest some possible, albeit minimal, risk to humans using Sodium lauryl sulfate powder. For example, some tests found that continuous skin exposure to Sodium lauryl sulfate powder could cause mild to moderate irritation in animals. Nevertheless, the assessment concluded that Sodium lauryl sulfate powder is safe in formulations used in cosmetics and personal care products. Because many of these products are designed to be rinsed off after short applications, the risks are minimal. According to most research, Sodium lauryl sulfate powder is an irritant but not a carcinogen. Studies have shown no link between the use of Sodium lauryl sulfate powder and increased cancer risk. According to a 2015 study, Sodium lauryl sulfate powder is safe for use in household cleaning products. About 1/3 of HIV positive mothers transmit the virus to their newborns, and 1/2 of these infections occur during breastfeeding. Sodium lauryl sulfate powder (SLS), an anionic surfactant, is a common ingredient of cosmetic and personal care products. Sodium lauryl sulfate powder is "readily biodegradable" with low toxicity and "is of no concern with respect to human health". Up to 1 g of Sodium lauryl sulfate powder/kg is the maximum safe dose for children. Alkyl sulfates, including Sodium lauryl sulfate powder, are microbicidal against HIV types 1 and 2, herpes simplex virus type 2 (HSV-2), human papillomaviruses and chlamydia. /The study/ hypothesizes that Sodium lauryl sulfate powder treatment of milk will inactivate HIV-1 without significant harm to its nutritional value and protective functions and may define a treatment of choice for breastwas at 37 degrees C for 10 min. Sodium lauryl sulfate powder-PAGE and Lowry were used to analyze protein content. Antibody content and function was studied by rocket immunoelectrophoresis (RIE), immunoturbodimentric (ITM) quantitation and ELISA. The creamatocrit was also analyzed. HIV-1 infectivity was measured by MAGI assay. Sodium lauryl sulfate powder removal was by Detergent-OutN (Geno Technology, Inc.). Sodium lauryl sulfate powder quantitation is by methylene blue-chloroform method. Inactivation of HIV-1 with Sodium lauryl sulfate powder occurs at or above 0.025%. In milk samples, 1% and 0.1% Sodium lauryl sulfate powder reduced HSV-2 infectivity. At least 90% of Sodium lauryl sulfate powder can be efficiently removed with Detergent-OutN, with protein recovery of 80%-100%. Gross protein species are conserved as indicated by PAGE analyses. Fat and energy content of Sodium lauryl sulfate powder-treated breast milk remains unchanged. 0.1% Sodium lauryl sulfate powder can be removed from human milk without altering the creamatocrit. ELISA of serum IgG (rubella) proved it remains functional in the presence of Sodium lauryl sulfate powder and after its removal. sIgA, IgG and IgM in breast milk are conserved after Sodium lauryl sulfate powder-treatment when measured by RIE and ITM. CONCLUSIONS: Sodium lauryl sulfate powder (0.025%) can inactivate HIV-1 in vitro and HSV-2 in breast milk. Sodium lauryl sulfate powder can be efficiently removed from milk samples. Sodium lauryl sulfate powder treatment of milk does not significantly alter protein content. Antibody function in serum and levels in breast milk are maintained after treatment and removal of Sodium lauryl sulfate powder. 0.1% Sodium lauryl sulfate powder does not alter fat concentration in milk and energy content is conserved. Sodium lauryl sulfate powder or related compounds may be used to prevent breast milk transmission of HIV-1. A broad-spectrum vaginal microbicide must be effective against a variety of sexually transmitted disease pathogens and be minimally toxic to the cell types found within the vaginal epithelium, including vaginal keratinocytes. /The study/ assessed the sensitivity of primary human vaginal keratinocytes to potential topical vaginal microbicides nonoxynol-9 (N-9), C31G, and Sodium lauryl sulfate powder (SLS). Direct immunofluorescence and fluorescence-activated cell sorting analyses demonstrated that primary vaginal keratinocytes expressed epithelial cell-specific keratin proteins. Experiments that compared vaginal keratinocyte sensitivity to each agent during a continuous, 48-hr exposure demonstrated that primary vaginal keratinocytes were almost five times more sensitive to N-9 than to either C31G or Sodium lauryl sulfate powder. To evaluate the effect of multiple microbicide exposures on cell viability, primary vaginal keratinocytes were exposed to N-9, C31G, or Sodium lauryl sulfate powder three times during a 78-hr period. In these experiments, cells were considerably more sensitive to C31G than to N-9 or Sodium lauryl sulfate powder at lower concentrations within the range tested. When agent concentrations were chosen to result in an endpoint of 25% viability after three daily exposures, each exposure decreased cell viability at the same constant rate. When time-dependent sensitivity during a continuous 48-hr exposure was examined, exposure to C31G for 18 hr resulted in losses in cell viability not caused by either N-9 or Sodium lauryl sulfate powder until at least 24 to 48 hr. Cumulatively, these results reveal important variations in time- and concentration-dependent sensitivity to N-9, C31G, or Sodium lauryl sulfate powder within populations of primary human vaginal keratinocytes cultured in vitro. These investigations represent initial steps toward both in vitro modeling of the vaginal microenvironment and studies of factors that impact the in vivo efficacy of vaginal topical microbicides. Sodium lauryl sulfate powder (SLS) is an anionic detergent that can form complexes with protein through hydrophobic interactions. Studies have reported that the hydrodynamic functions of protein-Sodium lauryl sulfate powder complexes are governed by the length of their polypeptide chains. Thus, Sodium lauryl sulfate powder-based electrophoretic techniques can separate protein molecules based on their molecular weights. Additionally, Sodium lauryl sulfate powder can solubilize cell membranes and can extract membrane-bound proteins. Analytical procedures are described for determining residues of Sodium lauryl sulfate powder in whole blood from guinea pigs. Methods are based on hydrolysis & analysis by electron-capture gas-chromatography. Sodium lauryl sulfate powder Electrophoresis Sodium lauryl sulfate powder electrophoresis was the next logical step after disk electrophoresis. While the latter discriminates macromolecules on the basis of both size and surface charge, Sodium lauryl sulfate powder electrophoresis fractionates polypeptide chains essentially on the basis of their size. It is therefore a simple, yet powerful and reliable method for molecular mass (Mr) determination. In 1967, it was first reported that electrophoretic migration in Sodium lauryl sulfate powder is proportional to the effective molecular radius and thus to the Mr of the polypeptide chain. This result means that Sodium lauryl sulfate powder must bind to proteins and cancel out differences in molecular charge, so that all components then migrate solely according to size. Surprisingly large amounts of Sodium lauryl sulfate powder appear to be bound (an average of 1.4 g Sodium lauryl sulfate powder per gram of protein), which means that the number of Sodium lauryl sulfate powder molecules bound is of the order of half the number of amino acid residues in a polypeptide chain. This amount of highly charged surfactant molecules is sufficient to overwhelm effectively the intrinsic charges of the polymer coil, so that their net charge per unit mass becomes approximately constant. If migration in Sodium lauryl sulfate powder (and disulfide reducing agents, such as 2-mercaptoethanol, in the denaturing step, for a proper unfolding of the proteins) is proportional only to molecular mass, then, in addition to canceling out of charge differences, Sodium lauryl sulfate powder also equalizes molecular shape differences as well (e.g., globular versus rod-shaped molecules). This seems to be the case for protein–Sodium lauryl sulfate powder mixed micelles: these complexes can be assumed to behave as ellipsoids of constant minor axis (∼1.8 nm) and with the major axis proportional to the length in amino acids (i.e., to molecular mass) of the protein. The rod length for the 1.4 g Sodium lauryl sulfate powder/g protein complex is of the order of 0.074 nm per amino acid residue. Sodium lauryl sulfate powder Sodium lauryl sulfate powder (SLS), also known as lauryl sulfate, is an ionic detergent that is useful for the rapid disruption of biological membranes. It is a key component of many reagents used to purify nucleic acids because of its abilities to quickly disrupt the tissue architecture and to inhibit both RNase and deoxyribonuclease (DNase) activity. Sodium lauryl sulfate powder is usually prepared as either a 10% or a 20% (w/v) stock solution and is used most often at a working concentration of 0.1% to 0.5%. The performance of this detergent can be affected significantly by its purity. Sodium lauryl sulfate powder is easily precipitable in the presence of potassium salts and generally is not added to guanidinium buffers, as it has very low solubility in high-salt, chaotropic solutions. Two classes of proteins show anomalous behavior in Sodium lauryl sulfate powder electrophoresis: glycoproteins (because their hydrophilic oligosaccharide units prevent hydrophobic binding of Sodium lauryl sulfate powder micelles) and strongly basic proteins (e.g., histones) (because of electrostatic binding of Sodium lauryl sulfate powder micelles through their sulfate groups). The first can be partially alleviated by using Tris–borate buffers at alkaline pH, which will increase the net negative charge on the glycoprotein, thus producing migration rates well correlated with molecular size. Migration of histones can be improved by using pore gradient gels and allowing the polypeptide chains to approach the pore limit.
SODIUM LAURYL SULFOACETATE
cas no 8061-51-6 Sodium base spent sulfite liquor; Llignosol; Sodium lignosulfonate; Desulfonated spent pulping liquor; Sodium lignosulfonate; Sodium lignosulfite; Sodium polignate; Llignosulfonic acids sodium salt; Sulfonated lignin sodium salt;
SODIUM LINOLEATE
SODIUM MAGNESIUM FLUOROSILICATE Nom INCI : SODIUM MAGNESIUM FLUOROSILICATE Ses fonctions (INCI) Agent Abrasif : Enlève les matières présentes en surface du corps, aide à nettoyer les dents et améliore la brillance. Agent Absorbant : Absorbe l'eau (ou l'huile) sous forme dissoute ou en fines particules Opacifiant : Réduit la transparence ou la translucidité des cosmétiques Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM MAGNESIUM FLUOROSILICATE
SODIUM MAGNESIUM SILICATE N° CAS : 101659-01-2 Nom INCI : SODIUM MAGNESIUM SILICATE N° EINECS/ELINCS : 258-476-2 Compatible Bio (Référentiel COSMOS) Ses fonctions (INCI) Agent fixant : Permet la cohésion de différents ingrédients cosmétiques Agent de foisonnement : Réduit la densité apparente des cosmétiques Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM MAGNESIUM SILICATE
SODIUM MALATE N° CAS : 58214-38-3 Nom INCI : SODIUM MALATE Nom chimique : Butanedioic acid, hydroxy-, monosodium salt N° EINECS/ELINCS : 261-169-6 Ses fonctions (INCI) Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau Agent d'entretien de la peau : Maintient la peau en bon état
SODIUM MALATE
SYNONYMS Dinatriumdisulfit; Disulfito de disodio; Disulfite de disodium; Disodium disulfite; Disodium Salt Pyrosulfurous Acid; Disulfurous acid, disodium salt; Pyrosulfurous acid, disodium salt; Sodium Metabisulfite; Sodium disulfite; Sodium Pyrosulfite; CAS NO. 7681-57-4
SODIUM METABISULFITE FOOD
Dinatriumdisulfit; Disulfito de disodio; Disulfite de disodium; Disodium disulfite; Disodium Salt Pyrosulfurous Acid; Disulfurous acid, disodium salt; Pyrosulfurous acid, disodium salt; Sodium Metabisulfite; Sodium disulfite; Sodium Pyrosulfite; cas no: 7681-57-4
SODIUM METABORATE
SODIUM METAPERIODATE N° CAS : 7790-28-5 - Periodate de sodium Nom INCI : SODIUM METAPERIODATE
SODIUM METABORATE
CAS number: 98536584
EC number: 2318916
Molecular formula: NaBO2
Molecular weight: 65.80

APPLICATION AND BENEFITS
Adhesives:
Sodium Metaborate’s high alkalinity and the crosslinking reaction of borate anions with polyhydroxy groups makes it an excellent choice for starch and dextrinbased adhesives.
The adhesives Sodium Metaborate helps to produce are essential for use in corrugated boxes, paper bags, laminated paper boards, carton and case sealing, gummed tape, and tube winding.

Photography:
Sodium Metaborate is also a component of photographic developers and replenishers.
Sodium Metaborates principal function is as a buffering agent, used to tightly control the pH of the solutions.
As such, Sodium Metaborate produces highquality finegrain blackandwhite developers and helps to ensurethe correct color balance in color developers.

Bleaching agent:
Textiles, such as cotton, are bleached with hydrogen peroxide solutions.
These solutions can be stabilized by using sodium metaborate.
Sodium Metaborate also neutralizes the acidic oxidation byproducts that form during bleaching.
And, textile manufacturers can control textile sizing by incorporating sodium metaborateproduced starch adhesive material within the thread and binding all the fibers together to increase the thread’s tensile strength.

Cleaners:
As an ingredient in hardsurface cleaners, sodium metaborate helps to remove oil, grease, rust, scale, and other particulates from metal or glass surfaces.
The borate imparts alkaline conditions that enhance the product’s cleaning action.
Sodium Metaborate can also be incorporated into liquid laundry detergents for pH control, enzyme stabilization, and its builder properties.

Many proprietary watertreatment chemicals also include sodium metaborate to control pH and inhibit corrosion.
Such chemicals are used on heating systems and cooling towers as protection against corrosion.
In automotive and industrial fluids, sodium metaborate can be used for anticorrosion and reaction with acidic degradation products.
Borates are also being developed as an alkaline agent in several enhanced oil recover (EOR) processes, such as alkalipolymer and alkalisurfactantpolymer (ASP) flooding.
Tertiary oil recovery from boratebased ASP core floods is comparable to that obtained with similar formulations that contain conventional alkalis and exhibit no injectivity problems in core flood trials.

Sodium Metaborate is stable at ordinary temperatures.
However, if exposed to the atmosphere for extended periods, it picks up carbon dioxide from the air and forms sodium carbonate and borax.
Sodium Metaborate 4 mol will convert to 8 mol when exposed to a humid atmosphere.

Sodium Metaborate 4 mol crystalline salt begins to lose water at about 194°F (90°C).
The anhydrous salt fuses to a clear glass at 1770°F (966°C).
Some vaporization occurs above 2246°F (1230°C).

Sodium Metaborate 8 mol crystalline salt begins to lose water at about 128°F (53.5°C).
The anhydrous salt fuses to a clear glass at 1770°F (966°C), and some vaporization occurs above 2246°F (1230°C).
Aqueous solutions of sodium metaborate 4 mol and 8 mol show a moderate increase in pH with increasing concentrations.

Sodium Metaborate is the sodium salt of Metaborate.
Sodium Metaborate is used in the manufacturing of borosilicate glasses.
Sodium Metaborate is also a component of herbicides and antifreeze.
Sodium Metaborate can also be used as an oil additive with antiwear properties.

Agricultural Uses:
Herbicide
Insecticide
Fungicide
Nematocid

Sodium Metaborate electroreduction in the alkaline system can act as a novel desulphurization process of coal water slurry.
Sodium Metaborate also has role in hydrolysis of sodium borohydride to minimize the water utilization.
Sodium Metaborate can also act as a novel alkali in alkali/surfactant/polymer flooding.
Sodium Metaborate is also useful in the thermochemical production of sodium borohydride, which is a safe and practical hydrogen storage material for onboard hydrogen production.
Also available commercially as octahydrate and tetrahydrate.

Sodium Metaborate tetrahydrate is used In textile industry
Sodium Metaborate is used as additives, process aid and flame retardant.
Sodium Metaborate Octahydrate is generally immediately available in most volumes.
High purity, submicron and nanopowder forms may be considered.

Sources/Uses:
Sodium Metaborate is used in;
-cleansersdetergents
-adhesives
-photographic solutions

Also Sodium Metaborate is used as:
-a fire retardant in sodium chlorate
-a defoliant
-a textile finishing agent
-a sequestrant;

Preparation:
Sodium Metaborate is prepared by the fusion of sodium carbonate and boron oxide B2O3 or borax Na2B4O7.
Another way to create the compound is by the fusion of borax with sodium hydroxide at 700 °C:
B2O3 + 2 NaOH → 2 NaBO2 + H2O
The boiling point of sodium metaborate (1434 °C) is lower than that of boron oxide (1860 °C) and borax (1575 °C) In fact, while the metaborate boils without change of composition, borax gives off a vapor of sodium metaborate with a small excess of sodium oxide Na2O

Electrochemical Conversion to Borax:
Electrolysis of a concentrated solution of 20% NaBO2·4H2O with an anion exchange membrane and inert anode (such as gold, palladium, or borondoped diamond) converts the metaborate anion to tetraborate B4O2−7, and the sodium salt of the later (borax) precipitates as a white powder

Reduction to Sodium Borohydride:
Sodium Metaborate is also a byproduct of hydrolysis of sodium borohydride NaBH4, a proposed hydrogen storage material for hydrogenfueled vehicles that is safer (stable in dry air) and more efficient on a weight basis than most other alternatives.
The reaction is:
NaBH4 + 2 H2O → NaBO2 + 4 H2 and requires a catalyst.

To be economical, that approach would require a cheap and efficient method to recycle the metaborate to the borohydride.
Several methods have been studied, such as the reaction with various reducing agents at high temperatures and pressure, or with magnesium hydride MgH2 by ball milling at room temperature, followed by extraction of the NaBH4 with isopropylamine.

NaBO2 + 2 MgH2 → NaBH4 + 2 MgO
Another alternative that has been considered is the electrolytic reduction of a concentrated sodium metaborate solution, namely
BO2−2 + 6 H2O + 8 e− → BH−4 + 8 HO−
However, this method is not efficient since it competes with the reduction of hydroxide, 4 HO−→ 2 H2O + O2 + 4 e−

Conversion to Sodium Alkoxides:
Anhydrous sodium metaborate refluxed with methanol yields the corresponding sodium methoxyborate:
Na+[BO2]− + 4 CH3OH → Na+[B(OCH3)4]− + 2 H2O
The analogous reaction with ethanol yields the ethoxyborate.

Metabolism/Metabolites:
Boric acid, sodium salt and borates are not metabolized, neither do they accumulate in the body except for low deposit in bone.
No organic boron compounds have been reported as metabolites.

Essential Buffering Agent
Used in the preparation of starch and dextrin adhesives, this product provides increased viscosity, quicker tack, and better fluidity.
In textile processing, sodium metaborate helps to stabilize hydrogen peroxide solutions and neutralizes acidic oxidation byproducts.

Hydrates and Solubility:
The following hydrates crystallize from solutions of the proper composition in various temperature ranges:

tetrahydrate NaBO2·4H2O from −6 to 53.6 °C
dihydrate NaBO2·2H2O from 53.6 °C to 105 °C
hemihydrate NaBO2·0.5H2O from 105 °C to the boiling point.

Early reports of a monohydrate NaBO2·H2O have not been confirmed.
The anhydrous salt can be prepared from the tetraborate by heating to 270 °C in vacuum

Tetrahydrate: Used as
an insecticide
fungicide
nematocide
herbicide (noncrop land, cotton production, and under asphalt)

Sodium Metaborate is a colorless solid chemical compound of sodium, boron, and oxygen.
Sodium Metaborate is an inorganic sodium salt having metaborate as the counterion.
Sodium Metaborate is an inorganic sodium salt and a member of borate salts.

Sodium Metaborate is a colorless solid chemical compound of sodium, boron, and oxygen with formula NaBO2.
Sodium Metaborate is a colorless solid chemical compound of sodium, boron, and oxygen with formula NaBO₂.
The formula can be written also as Na₂O·B₂O₃ to highlight the relation to the main oxides of sodium and boron.

Sodium Metaborate, a derivative of the borax compound, has a wide range of industrial applications.
Recently, Sodium Metaborate is used as a source of boron in the production of sodium borohydride (NaBH4), which is a medium for hydrogen storage.
In the present study, sodium metaborate tetrahydrate (SMT, NaB(OH)(4)center dot 2H(2)O) was produced by the reaction of borax (B) with the sodium hydroxide (SH) solution under ultrasonic irradiation.

The effect of the reaction parameters (amount of water. temperature, particle size, and time) on the production of sodium metaborate tetrahydrate was investigated in the present study.
Sodium Metaborate was shown that the reaction parameters (amount of water, temperature, and time) played a significant role in the synthesis of sodium metaborate tetrahydrate.
In addition, the concentration of characteristic BO group in the reaction solution was quantitatively determined by Fourier Transform Infrared Spectroscopy (FTIR).

The optimum condition for the production process included 26% water by weight, borax particles of size 250+150 mu m and irradiation time of 60 min at 80 degrees C.
Sodium Metaborate is An alkaline salt with excellent buffering properties.
Sodium Metaborate Can also be used in the production of adhesives due to the high degree of alkalinity and the crosslinking reaction of borate anions with polyhydroxy groups.
The formula can be written also as Na2O·B2O3 to highlight the relation to the main oxides of sodium and boron

Uses of Sodium Metaborate:
Sodium Metaborate is used in the manufacturing of borosilicate glasses.
Sodium Metaborate is also a component of herbicides and antifreeze products.

Solid anhydrous sodium metaborate crystallizes in the hexagonal space group.
Sodium Metaborate actually contains the trimeric anion [B3O6]3−.
The six oxygen atoms are evenly divided into two distinct structural sites, with different B–O bond lengths (about 128 and 143 pm, respectively)

Sodium Metaborate, a derivative of the borax compound, has a wide range of industrial applications.
Sodium Metaborate is used as a source of boron in the production of sodium borohydride (NaBH 4 ), which is a medium for hydrogen storage.

PHYSICAL PROPERTIES OF SODIUM METABORATE:
Molecular Weight: 65.80
Exact Mass: 65.9889037
Monoisotopic Mass: 65.9889037
Topological Polar Surface Area: 40.1 Ų
Physical Description: Liquid
Color: White
Form: powder/White hexagonal crystals
Odor: Odorless
Boiling Point: 1434 °C
Melting Point: 966 °C
Solubility: In water, 36 g/100 g
Density: 2.46 g/cu cm
Stability/Shelf Life: Stable on storage
pH: Solution is strongly alkaline when dissolved in water
Enthalpy of fusion: 36.2 kJ/mol at 966 °C

CHEMICAL PROPERTIES OF SODIUM METABORATE:
Hydrogen Bond Donor Count: 0
Hydrogen Bond Acceptor Count: 2
Rotatable Bond Count: 0
Heavy Atom Count: 4
Formal Charge: 0
Complexity: 13.5
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 0
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 0
Undefined Bond Stereocenter Count: 0
CovalentlyBonded Unit Count: 2
Compound Is Canonicalized: Yes
Corrosivity: NONCORROSIVE TO FERROUS METALS

APPLICATIONS OF SODIUM METABORATE:
-Adhesives
-Photography
-Bleaching agent
-Cleaners
-Paper industry
-Plating
-Cleaning agents
-Industry derived products
-Manufacture of heat resistant products

STORAGE OF SODIUM METABORATE:
Sodium Metaborate should be stored at room temperature.
Sodium Metaborate should be stored in a moisturefree environment.
Sodium Metaborate should be stored in dry place.

Sodium Metaborate is often used as a component of most photographic developers and replenishers.
Typically, Sodium Metaborate acts as a buffering agent in order to control acidity levels.
In addition to such applications, the compound is commonly utilized as an adhesive as well.
A very specific effect of the compound can be seen in the preparation of starch and dextrin adhesives due to its high degree of alkalinity.

An interchain linkage will produce an adhesive that has powerful viscosity, along with quicker tack and much more fluid properties.
All of these qualities make this adhesive essential in a wide variety of different industries.
Sodium Metaborate can be commonly used in corrugated boxes, most paper bags, various paper boards, and gummed tape.
Such versatile applications make Sodium Metaborate a desired compound for most household items and applications

Sodium Metaborate, a derivative of the borax compound, has a wide range of industrial applications.
Recently, Sodium Metaborate is used as a source of boron in the production of sodium borohydride (NaBH₄), which is a medium for hydrogen storage.
In the present study, sodium metaborate tetrahydrate (SMT, NaB(OH)₄·2H₂O) was produced by the reaction of borax (B) with the sodium hydroxide (SH) solution under ultrasonic irradiation.

The effect of the reaction parameters (amount of water, temperature, particle size, and time) on the production of sodium metaborate tetrahydrate was investigated in the present study.
Sodium Metaborate was shown that the reaction parameters (amount of water, temperature, and time) played a significant role in the synthesis of sodium metaborate tetrahydrate.
In addition, the concentration of characteristic B–O group in the reaction solution was quantitatively determined by Fourier Transform Infrared Spectroscopy (FTIR).
The optimum condition for the production process included 26% water by weight, borax particles of size −250+150μm and irradiation time of 60min at 80°C

SYNONYMS:
disodium borate, heptahydrate
disodium borate, monohydrate
Komex
monosodium metaborate
sodium borate
sodium borate (NaBO2)
sodium diborate
sodium meta borate
sodium metaborate
sodium tetraborat
Kodalk
sodium;oxido(oxo)borane
Boric acid, monosodium salt
UNIIZ6Q395A23R
Sodium(1+), (metaboratoO)
Borosoap
Z6Q395A23R
Boric acid (HBO2), sodium salt (1:1)
Sodium Metaborate, anhydrous
Sodium borate (NaBO2)
SODIUMMETABORATE
NaBO2
EC 2318916
SODIUM METABORATE GR
DTXSID2034386
CHEBI:75227
AKOS024426998
SODIUM METAPERIODATE
SYNONYMS Metso Beads, Silicic acid, disodium salt; Sodium-m-Silicate; Orthosil; Disodium metasilicate; Disodium Monosilicate; Waterglass; Disodium trioxosilicate CAS NO. 6834-92-0 (Anhydrous), 10213-79-3 (Pentahydrate), 13517-24-3 (Nonahydrate)
SODIUM METASILICATE ANHYDRATE
cas no 10213-79-3 Metso Beads, Silicic acid, disodium salt; Sodium-m-Silicate; Orthosil; Disodium metasilicate; Disodium Monosilicate; Waterglass; Disodium trioxosilicate;
SODIUM METHYL ISETHIONATE
SYNONYMS Methyl 4-hydroxybenzoate, sodium salt; Sodium 4-(methoxycarbonyl)phenolate; Natrium-4-(methoxycarbonyl)phenolat; 4-(metoxicarbonil)fenolato de sodio; 4-(méthoxycarbonyl)phénolate de sodium; Methyl paraben sodium salt; Sodium methyl 4-hydroxybenzoate; methyl-4-oxide-benzoate, sodium salt; Methyl p-hydroxybenzoate, sodium salt; CAS NO. 5026-62-0
SODIUM METHYL P-HYDROXYBENZOATE (SODIUM METHYLPARABEN)
cas no 5026-62-0 Methyl 4-hydroxybenzoate, sodium salt; Sodium 4-(methoxycarbonyl)phenolate; Natrium-4-(methoxycarbonyl)phenolat; 4-(metoxicarbonil)fenolato de sodio; 4-(méthoxycarbonyl)phénolate de sodium; Methyl paraben sodium salt; Sodium methyl 4-hydroxybenzoate; methyl-4-oxide-benzoate, sodium salt; Methyl p-hydroxybenzoate, sodium salt;
SODIUM METHYLPARABENE
Chemical name: Sodium Methyl p-Hydroxybenzoate. Sodium methylparaben (sodium methyl para-hydroxybenzoate) is a compound with formula Na(CH3(C6H4COO)O). Sodium methylparaben is the sodium salt of methylparaben. Sodium methylparaben is a food additive with the E number E219 which is used as a preservative. IUPAC name: Sodium 4-(methoxycarbonyl)phenolate Use: Sodium methyl paraben is widely used in food and pharmaceutical and textile industry for its antiseptic property. Sodium methyl paraben is also can be used in other industries such as cosmetics, feed and so on. Use: Preservative, Cosmetics, Feed, Pharmaceutical, Antimicrobial, Antifungal, Antibacterial, Soft Drink, Alcohol Beverage, Beverage Powder, Fruit Juice, Puddings, Sauces, Baking Food, Sauage, Food Colors, Milk, Wine, Flavoring Agent. Sodium methyl p-hydroxybenzoate; Methylparaben sodium salt; E219 CAS Number: 5026-62-0 Sodium methylparaben is a sodium salt of methylparaben, which is used as an additive for food preservation. Sodium methylparaben is prepared by adding p-hydroxybenzoate to sodium hydroxide and after reaction is finished, standing for crystallization, centrifugally filtering and finally carrying out vacuum drying. Sodium methylparaben is a constituent of cloudberry, yellow passion fruit, white wine, and botrytis wine. Sodium methylparaben is extensively used to produce foods, beverages, pharmaceuticals, cosmetics, agriculture/ animal feed, flavoring agents, and medicines as an antimicrobial agent. Sodium methylparaben has a faint characteristic odor or is odorless and has a slight burnt taste. INCI designation Sodium Methylparaben. Product properties Appearance: White powder Chemical and physical data pH: 9.5- 10.5 Water content: max. 5.0 % Assay by non aqueous titration: 99 - 102 % Uses Sodium Methylparaben is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. Sodium Methylparaben is suitable to preserve both rinse- off and leave-on formulations. Sodium Methylparaben is effective against bacteria, molds and yeast. The recommended use level of Sodium Methylparaben to preserve most product types is normally in the range of 0.1- 0.3 % based on the total weight of the finished product. The Paraben esters have many advantages as preservatives,like broad spectrum antimicrobial activity, effective at low use concentrations, compatible with a wide range of cosmetic ingredients, colourless, odourless, well documented toxicological and dermatological acceptability based on human experience (used in cosmetics, food and pharmaceuticals since 1930ies), p-Hydroxybenzoic Acid and a number of its esters occur naturally in a variety of plants and animals, stable and effective over a wide pH- range, etc. The Sodium Parabens, like Sodium Methylparaben have several additional advantages: Sodium Methylparaben is highly soluble in cold water for ease of addition. No heating stage required for incorporation, thus saving energy and plant occupancy. Increased antimicrobial activity at alkaline pH. Applications Sodium Methylparaben is designed for preservation of a wide range of cosmetics and toiletries. Sodium Methyl paraben is suitable to preserve both rinse- off and leave- on formulations. Formulations which are prone to bacteria contamination an additional antibacterial preservative, like DMDMH might be necessary to add as Sodium Methylparaben provides a higher efficacy against fungi than against bacteria. Solubility Water up to 33 % Incorporation Sodium Methylparaben is highly soluble in water and so easily incorporated into cosmetic formulations. It is important to note that, whilst the aqueous solubility in alkaline solution is high, if the pH of the formulated product is acidic the sodium salt reverts to the ester and the low solubility is regained. pH stability Sodium Methyl paraben remains fully stable over a wide pH range from 3.0- 11.0. Aqueous solutions of Sodium Methylparaben are not long- term stable at alkaline pH. Temperature stability The recommended maximum handling temperature is 80°C. Microbial activity Sodium Methylparaben has a broad spectrum of activity which includes the following common spoilage organisms. Microorganisms MIC level (%) Bacteria Pseudomonas aeruginosa 0.228 Staphylococcus aureus 0.17 Microorganisms MIC level (%) Yeasts Candida albicans 0.114 Molds Aspergillus niger 0.114 Regulatory Status Sodium Methylparaben can be used up to a maximum concentration of 0.4 % in cosmetic products, no further restrictions. Storage instructions Sodium Methyl paraben is stable in sealed original containers. Further information on handling, storage and dispatch is given in the EC safety data sheet. Sodium Methyl paraben is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries, and topical pharmaceuticals. It is suitable to preserve both rinse-off and leave-on formulations. This product is highly soluble in cold water for ease of addition. Sodium Methylparaben is designed for preservation of a wide range of cosmetics and toiletries. Sodium Methylparaben is suitable to preserve both rinse- off and leave- on formulations. Sodium Methylparaben is a broad spectrum antimicrobial agent designed forpreservation of a wide range of cosmetics, toiletries pharmaceuticals. Sodium Methylparaben is suitable to preserve both rinse- off and leave- onformulations.Sodium Methylparaben is effective against bacteria, molds and yeast. The recommended use level of Sodium Methylparaben to preserve most product types is normally in the range of 0.1 - 0.3 % based on the total weight of the finished product. The Paraben esters have many advantages as preservatives, like broad spectrumantimicrobial activity, effective at low use concentrations, compatible with awide range of cosmetic ingredients, colourless, odourless, well documentedtoxicological and dermatological acceptability based on human experience (usedin cosmetics, food and pharmaceuticals since 1930ies), p-Hydroxybenzoic Acidand a number of its esters occur naturally in a variety of plants and animals,stable and effective over a wide pH- range, etc. The Sodium Parabens, like Sodium Methylparaben have several additional advantages: Sodium Methyl paraben is highly soluble in cold water for ease of addition. No heating stage required for incorporation, thus saving energy and plant occupancy. Increased antimicrobial activity at alkaline pH. Sodium Methylparaben is a highly water-soluble short-chain paraben in sodium salt form. The major benefit offered by the sodium salts is their high solubility in cold water, thereby enabling the introduction of parabens without heating or pre-dissolving in solvents. Benefits High solubility in cold water Broad spectrum of activity against bacteria and fungi Low order of toxicity Effectiveness at low concentrations Stability over a broad pH-range Water-soluble Biodegradability at environmental concentrations Global acceptance in personal care applications Sodium Methylparaben Market: Segmentation Overview Based on end-user, the sodium methylparaben market is divided into food & beverages, cosmetics, and pharmaceuticals. Sodium methyl paraben is used as a food preservative in the food & beverage industry. Sodium Methyl paraben is used to inhibit the Clostridium botulinum bacteria, which causes fatal botulism. Sodium Methyl paraben is used in baked foods, creams & pastes, jams & jellies, syrups, dairy products, and beverages. Sodium Methyl paraben is employed as a preservative in cosmetics with other parabens. Sodium methyl paraben is utilized in makeup, hair care products, moisturizers & lotions, shaving products, and toothpastes. Sodium Methyl paraben is also used to protect pharmaceutical products from microorganism. The cosmetics and food & beverages segments are expected to account for large shares of the market. In terms of value, the cosmetics segment is anticipated to expand at a considerable pace during the forecast period. In terms of application, the global sodium methylparaben market is segmented into antimicrobial preservatives, anti-fungal agents, and others. The antimicrobial preservative segment is projected to expand at a steady pace during the forecasted period. Based on product type, the sodium methylparaben market is bifurcated into powder and liquid. Sodium Methylparaben. Sodium Methyl paraben by Clariant is a water-soluble preservative. Sodium Methyl paraben is a short-chain paraben in sodium salt form. Sodium Methylparaben offers a broad spectrum of activity against bacteria & fungi and stability over a broad pH-range. Sodium Methylparaben exhibits effectiveness at low concentrations. Sodium Methylparaben shows high solubility in cold water, low order of toxicity and good biodegradability at environmental concentrations. Sodium Methylparaben is used in all kinds of personal care products.
SODIUM MOLYBDATE







Sodium molybdate, Na2MoO4, is useful as a source of molybdenum. This white, crystalline salt is often found as the dihydrate, Na2MoO4·2H2O.

CAS Number
10102-40-6 (dihydrate)
7631-95-0


EC / List no.: 600-158-6
CAS no.: 10102-40-6

Molybdate (MoO42-), sodium, hydrate (1:2:2), (T-4)-

IUPAC names
disodium dioxido(dioxo)molybdenum dihydrate
disodium;dioxido(dioxo)molybdenum;dihydrate
Molybdate (MoO42-), sodium, hydrate (1:2:2), (T-4)-
Molybdenan sodný dihydrát
Natriummolybdat-Dihydrat
sodium molibdate 2h2o
Sodium Molybdate
sodium molybdate
sodium molybdate dhydrate
Sodium molybdate dihydrate
sodium molybdate dihydrate

disodium molibdate
Molybdate (MoO4(2-)), disodium, dihydrate, (T-4)
Sodium Molybdate
Sodium molybdate dihydrate







EC / List no.: 231-551-7
CAS no.: 7631-95-0
Disodium molybdate
CAS names: Molybdate (MoO42-), sodium (1:2), (T-4)-


IUPAC names
Dinatriumdioxido(dioxo)molybdon
Dinatriummolybdat dihydrat
Disodium dioxido (dioxo)molybdate
disodium dioxido(dioxo)molybdenum
disodium dioxido(dioxo)molybdenum dihydrate
disodium dioxido-dioxomolybdenum
disodium dioxomolybdenumbis(olate)
Disodium Molybdate
Disodium tetraoxomolybdate
disodium tetraoxomolybdate dihydrate
disodium;dioxido(dioxo)molybdenum
SODIUM MOLYBDATE
Sodium molybdate dihydrate
Sodium molybdate(VI) dihydrate


NaMo
Sodium Molybdate
Sodium Molybdate Anhydrous
Sodium Molybdate Crystalline (SMC)
Sodium Molybdate Dihydrate
SoMo





WHAT IS SODIUM MOLYBDATE?
There are two main forms of Sodium Molybdate.
Sodium Molybdate, Dihydrate is a crystalline powder.
It loses its water of crystallization at 100 degrees Celsius.
It is known to be less toxic than the other corresponding compounds of group 6B elements in the periodic table.
Sodium Molybdate, Dihydrate is used in the manufacturing of inorganic and organic pigments, as a corrosion inhibitor, as a bath additive for finishing metals finishing, as a reagent for alkaloids, and as an essential micronutrient for plants and animals.


Sodium Molybdate, Anhydrous is a small, lustrous, crystalline plate.
It has the melting point of 687 degrees Celsius and a density of 3.28 (18C).
It is soluble in water and also noncombustible.
It can be used for reagent in analytical chemistry, paint pigment, production of molybdated toners and lakes, metal finishing, brightening agent for zinc plating, corrosion inhibitor, catalyst in dye and pigment production, additive for fertilizers and feeds, and micronutrient.


SODIUM MOLIBDATE is a Plant Nutrient that is directly involved in the metabolic functions of nitrogen in the plant.
Sodium molybdate helps with the uptake of nitrogen, ensuring efficient nitrogen-fixing for these plants, and allowing nitrogen to be synthesized into ammonia and essential amino acids.

Sodium molybdate is a source of molybdenum oxide, and this chemical has a variety of useful industrial, commercial, and agricultural purposes

SODIUM MOLIBDATE is a crystalline powder of 100% sodium molybdate, which may be used either as a seeddressing or foliar spray to combat molybdenum deficiency in agricultural crops.


Sodium Molybdate (Sodium Molybdate Dihydrate) is widely used in manufacturing, including agricultural fertilizers, pigments, catalysts, fire retardants, corrosion inhibitors, as well as water treatment.




CROP RATE OF APPLICATION REMARKS

LUCERN: 125 – 250 g/ha
Seed treatment simultaneously with inoculation.

GRASS/CLOVER PASTURES: 155 g/ha
Foliar spray onto young regrowth after cutting.

TOMATOES: 250 g/ha Molybdenum deficiency occurs generally in the Transvaal Lowveld, especially on acid soils.
Apply to the planting furrow just before transplanting, or as a foliar spray.

MAIZE: 60 g/1,25 ℓ water
Place 100 kg seed in a drum with watertight lid.
Add the solution and turn the drum over for 15 to 20 minutes by rolling or by turning on an axle by means of a handle.
The seed may be treated any time before planting.

CRUCIFEROUS CROPS: 100 – 250 g/ha
Spray the young plants with a solution of water.

CUCURBITS: 2 g/1 ℓ water
Let the seed soak overnight in a 0,2% solution and plant directly afterwards.

SUNFLOWER: 25 g/25 g seed A solution of the trace element should be applied uniformly to the seed.
50 g/100 ℓ water Apply to the seedling as a full cover foliar spray.




Why Sodium Molybdate Is Used In Agriculture Industry

In recent times, the agriculture sector is used the best chemical compounds for fertilizer.
One of the popular chemicals for fertilizer application is sodium molybdate.
The fertilizer uses this chemical easily soluble in water and soaks into the soil that reduces the runoff.
It helps to reduce the waste chemical compound, which can harm the environment.
Sodium Molybdate is mostly used as an important micronutrient for animals and plants, additive for metals finishing, and much more.

Overview of sodium molybdate

It is available in different forms such as Sodium Molybdate and Dihydrate, which is a crystalline powder.
This chemical is lower toxic when compared to other compounds of group 6B parts in the table.
It is mostly used in organic and inorganic pigment manufacturing.
Anhydrous is a small crystalline plate that has a 687 degrees Celsius melting point.
This chemical is easily soluble in water.
It is mostly used for reagents in paint pigment, molybdated toner production, brightening agent for zinc plating, paint pigment, and much more.


Benefits of using Sodium Molybdate

Nowadays, Sodium Molybdate is used in different sectors such as printing, manufacturing, metalwork, agriculture, and others due to its benefits.
Over one million pounds of this chemical fertilizer are used every year. Followings are some common benefits of using this mineral.

The molybdate contains lots of elements in the highest oxidation state. It helps to the high solubility of chemical compounds in the water.
Sodium Molybdate is beneficial for fertilizer application in the agriculture sector.
Sodium Molybdate is used as a delivery vessel for important micronutrients in the plant.
It is the main reason for using this chemical compound for fertilizer in agriculture.

Farmers mostly use sodium molybdate that provides important micronutrients.
Sodium Molybdate helps to drive the function of the plant effectively. The efficiency of the plant is not only by the smaller amount required to make an impact on the plant.
It can administer the chemical in absorbing water-based substances quickly.

Sodium Molybdate is mostly used by people who focus on leguminous plants such as peanut, peas, lentils, alfalfa, and much more.
Sodium Molybdate aids with the nitrogen intake and assures effective nitrogen-fixing for some plants.
This chemical lets to fix atmospheric nitrogen available in the surrounding by the bacteria.
It converts the nitrogen to synthesize into the amino acid, ammonia, and others in the plant.


Agricultural Additive For Fertilizer
Sodium molybdate is widely used as an agricultural additive on farms.
It’s an ideal choice for fertilizer applications.
This is because the basic chemistry of molybdate compounds like sodium molybdate include molybdenum oxide at its highest oxidation state.

This means that Sodium molybdate is highly-soluble in water.
This means that fertilizers using sodium molybdate easily combine and mix with water and soak into soil, delivering molybdenum oxide and other valuable micronutrients into the roots and minimizing runoff, which wastes chemical compounds and can have negative environmental consequences.

Sodium molybdate is particularly popular among farmers who primarily focus on legumes like lentils, beans, alfalfa, and peanuts.
Sodium molybdate helps with the uptake of nitrogen, ensuring efficient nitrogen-fixing for these plants, and allowing nitrogen to be synthesized into ammonia and essential amino acids.


Hydroponic Farming & Agriculture
Similarly to traditional soil-based fertilizer applications, sodium molybdate can be used in hydroponic farming, which uses inert substrates as the growing medium instead of soil.
Mineral nutrient solutions are delivered directly to the plants using water, so highly-soluble nutrients and fertilizers – such as sodium molybdate – are very desirable for these purposes.


Corrosion Inhibitor
Sodium molybdate is commonly used as a metal corrosion inhibitor for iron and steel, and is commonly found in water treatment products like chiller systems, where bimetallic design and construction can raise the risk of metal corrosion.

This additive is primarily used in closed-loop systems, and is regarded to be far superior to other corrosion inhibitors like sodium nitrate.
At concentrations of just 50 to 100 ppm, sodium molybdate offers superior performance compared to 800+ ppm concentrations of sodium nitrate.


Sodium Molybdate is used in water treatment, including industrial water treatment due to its low toxicity.
The advantage of Sodium Molybdate in water treatment is that it is effective in low dosages, which maintains low conductivity of water and prevents corrosion by reducing galvanic corrosion potentials.

Sodium Molybdate is also used for metal surface treatment, including galvanizing and polishing.



Nutritional Supplement
Some people may choose to supplement their diets with sodium molybdate.
These products can be found on their own, but molybdenum is typically found in multivitamins and complex vitamins.
Typical doses for dietary supplements range from about 50 mcg to 500 mcg (micrograms) of sodium molybdate.

Most people do not need an additional source of molybdenum, as this micronutrient is present in a wide variety of foods, such as legumes, yogurt, potatoes, whole-grain bread, beef liver, spinach, corn, cheese, tuna, and more.

However, in individuals who may have an improper diet or who wish to ensure they get adequate micronutrients, sodium molybdate is a good option.
Cases of toxicity due to excessive intake of molybdenum are rare, and usually only occur due to exposure in the mining and metalworking industries, so supplementing with sodium molybdate is typically harmless.




Molybdenum importance for appropriate plant functioning and growth is inconsistent by the most of the plants in respect to the total quantity that is obligatory for them.
Molybdenum is a micronutrient that is directly involved in the metabolic functions of nitrogen in the plant.
The transition metal molybdenum, in molybdate form, is essential for plants as a number of enzymes use it to catalyze most important reactions in the nitrogen acclimatization, the synthesis of the phytohormone, degradation of the purine and the detoxification of the sulfite.
There are more than known 50 different enzymes that need Mo, whether direct or indirect impacts on plant growth and development, primarily phytohormones and the N-metabolism involving processes.



Molybdenum deficiency in plants

Molybdenum (Mo) is one of the six ‘minor’ chemical elements required by green plants.
The other five are iron, copper, zinc, manganese and boron.
These elements are termed ‘minor’ because plants need them in only very small amounts (in comparison with the ‘major’ elements nitrogen, phosphorus,potassium, sulfur, calcium and magnesium).
But they are essential for normal growth.
Of these six minor elements, molybdenum is needed in smaller quantities than any of the others.
As little as 50 grams of molybdenum per hectare will satisfy the needs of most crops.
Molybdenum is often present in farmyard manure, in seeds or other planting material such as tubers and corms, and as impurities in some artificial fertilisers.
The molybdenum supply from the seed appears to be significant only where the size of the seed is fairly large.
For example, the molybdenum content of bean, pea and maize seed can be important, but that of tomato seed is probably of little significance

SOIL ACIDITY
Molybdenum in acid soils tends to be unavailable to plants. This is why most molybdenum deficiencies occur on acid, rather than on neutral or alkaline soils.
A few cases of molybdenum deficiency have been reported on soils with a pH above 6.0, but most occur where pH is 5.5 or less.
(Note: On the pH scale 7.0 is neutral. Less than 7 indicates acidity, and above 7.0 alkalinity.)

FUNCTION IN PLANTS
Molybdenum is needed by plants for chemical changes associated with nitrogen nutrition.
In non-legumes (such as cauliflowers, tomatoes, lettuce, sunflowers and maize), molybdenum enables the plant to use the nitrates taken up from the soil.
Where the plant has insufficient molybdenum the nitrates accumulate in the leaves and the plant cannot use them to make proteins.
The result is that the plant becomes stunted, with symptoms similar to those of nitrogen deficiency.
At the same time, the edges of the leaves may become scorched by the accumulation of unused nitrates.
In legumes such as clovers, lucerne, beans and peas, molybdenum serves two functions.
The plant needs it to break down any nitrates taken up from the soil—in the same way as non-legumes use molybdenum.
And it helps in the fixation of atmospheric nitrogen by the root nodule bacteria.
Legumes need more molybdenum to fix nitrogen than to utilise nitrates.

SYMPTOMS
The main symptoms of molybdenum deficiency in non-legumes are stunting and failure of leaves to develop a healthy dark green colour.
The leaves of affected plants show a pale green or yellowish green colour between the veins and along the edges.
In advanced stages, the leaf tissue at the margins of the leaves dies.
The older leaves are the more severely affected.
In cauliflowers, the yellowing of the tissue on the outer leaves is followed by the death of the edges of the small heart leaves.
When these develop, the absence of leaf tissue on their edges results in the formation of narrow, distorted leaves to which the name ‘whiptail’ has been applied.
Affected leaves are usually slightly thickened and the leaf edges tend to curl upwards, especially in tomatoes.
It has been mentioned that legumes such as peas and beans need molybdenum either for utilisation of nitrates (as do non-legumes), or for nitrogen fixation by root nodule bacteria.
Where molybdenum is deficient, and adequate nitrogen is available from fertilisers applied to the soil, symptoms of molybdenum deficiency are similar to those seen in non-legumes, namely, interveinal and marginal leaf chlorosis followed by death of the tissue on the leaf margins.
These symptoms are seen in a condition found in french beans in the Gosford district, to which the name ‘scald’ has been applied.
In lucerne, clover and other pasture legumes, the main symptoms are associated with an inability to fix atmospheric nitrogen.
This stunting and yellowing is identical with nitrogen deficiency and resembles legumes having no nodules and grown in poor soils.

DIAGNOSIS
In some crops, especially cauliflowers, there are very characteristic molybdenum deficiency symptoms.
In others it is not always possible to diagnose with certainty whether a plant or a crop is suffering from a low supply of molybdenum.
The best way to find out is to apply a solution of sodium molybdate or ammonium molybdate to the leaves of the plants or to the soil at their base, and see whether there is any response.
This would be in the form of improved growth or development of a healthy leaf colour, compared with similar, untreated plants.
Certain chemical tests can help diagnose molybdenum deficiency.
In addition, the following can often help determine whether it is worthwhile making a trial application of molybdenum:
• Occurrence of whiptail in cauliflowers in the same locality.
Cauliflowers have a high molybdenum requirement.
If they are growing well on an unlimed soil, and without any trace of whiptail disease, it is unlikely that other crops in that area would suffer from molybdenum deficiency.
• Soil acidity. As mentioned earlier, molybdenum deficiency is more likely on acid soils having a pH of 5.5 or less
• Use of farmyard manure. Where large amounts of farmyard manure have been used, molybdenum deficiency is less likely.
• Patchy distribution of affected plants. Patchy distribution is characteristic of molybdenum deficiency.
The whole crop may be affected, but it is much more usual to find patches of affected plants in an otherwise healthy crop, or vice versa.

CONTROL
In most soils, molybdenum present in an unavailable form will be released by applying lime or dolomite.
The effect of liming on molybdenum availability is slow and it may take several months to correct the deficiency.
The amounts of lime or dolomite needed may range from 2 to 8 tonnes per hectare, depending on initial pH of the soil and whether it is sandy or heavy textured.
Unless lime is likely to be beneficial for other reasons, it is quicker and cheaper to apply a molybdenum compound to the soil or to the crop.
Where one of the molybdenum compounds is used, the quantities recommended vary from 75 g to 1 kg/ ha depending on the crop and the molybdenum material.
Molybdenum can be applied in the following ways:
• mixed with fertiliser; or
• in solution, to — seedlings in the seedbed before transplanting; — the leaves of plants in the field; or — the soil at the base of plants in the field.


CROP RECOMMENDATIONS
Clovers and lucerne Molybdenum trioxide (or equivalent amounts of sodium molybdate or ammonium molybdate): 75 g/ ha mixed with superphosphate. Vegetable crops
(a) Mixed with fertiliser. Ammonium molybdate or sodium molybdate, 1 kg/ha.
(b) Seedbed application to crops such as cauliflower, broccoli, cabbage and tomato.
Ammonium molybdate or sodium molybdate, 40 g dissolved in 50 L water and watered on to each 10 m2 of seedbed about one to two weeks before transplanting.
(Following such seedbed applications, cauliflower seedlings often develop a distinct blue colour in the stems and leaves.
This blue colour gradually disappears when they are transplanted.)
(c) Field application to growing crops. About 50 g of ammonium molybdate or sodium molybdate in 100 L water.
This may be sprayed onto the leaves of plants such as tomatoes and beans or it can be applied to the ground at the base of the plants, giving each cauliflower or tomato plant about 150 mL of solution.
These recommendations are usually more than enough to supply the molybdenum requirements of crops.
Lower rates may be adequate, but more than the recommended rate is a waste of money, and may injure the plants.

Mo COMPOUNDS AVAILABLE
Molybdenum compounds used for crops include molybdenum trioxide, sodium molybdate and ammonium molybdate.
Choice of the material to be used depends on whether it is to be applied with fertilizer or as a solution Molybdenum trioxide is only partially soluble in water.
It is the form usually used in molybdenized superphosphate but is not suitable for making up sprays to treat a growing crop.
Molybdenum trioxide (also called molybdic oxide) contains 66 per cent molybdenum.
Ammonium molybdate contains 54 per cent molybdenum.
Though it is soluble in water, it is frequently sold in large lumps which dissolve slowly in cold water.
It is better either to use hot water to dissolve the lumps or to crush them to a fine powder before adding to the water
Sodium molybdate is usually sold in a form containing 39 per cent molybdenum.
It is sold as fine crystals which dissolve readily in cold water and this material is undoubtedly the most convenient for the preparation of solutions to be used for spraying


Sodium Molybdate is a free flowing soluble crystalline fertiliser and is used to supply the trace element molybdenum to crops and livestock in various situations.
Sodium Molybdate is only required in very small quantities to satisfy annual plant requirements.
Sodium Molybdate is suitable for foliar or fertigation application on a wide range of horticultural and broad acre crops and pastures.


SODIUM MOLYBDATE BENEFITS
• Supplies the essential trace element molybdenum to crops and livestock
• Foliar applied to crops and pastures grown on acid soils where plant availability is low
• Essential for conversion of nitrates in leaves to amino acids and proteins
• Suitable for foliar or fertigation
• Ideal for brassica, beans, peas, grapes, cucurbits, canola, clover and other crops and pastures susceptible to molybdenum deficiency.

SODIUM MOLYBDATE
Sodium Molybdate Sodium molybdate, Na2MoO4, is useful as a source of molybdenum.[2] It is often found as the dihydrate, Na2MoO4·2H2O. The molybdate(VI) anion is tetrahedral. Two sodium cations coordinate with every one anion. Sodium Molybdate is a crystalline powder essential for the metabolism and development of plants and animals as a cofactor for enzymes. History Sodium molybdate was first synthesized by the method of hydration.[4] A more convenient synthesis is done by dissolving MoO3 in sodium hydroxide at 50–70 °C and crystallizing the filtered product.[3] The anhydrous salt is prepared by heating to 100 °C. MoO3 + 2NaOH + H2O → Na2MoO4·2H2O Uses The agriculture industry uses 1 million pounds per year as a fertilizer. In particular, its use has been suggested for treatment of whiptail in broccoli and cauliflower in molybdenum-deficient soils.[5][6] However, care must be taken because at a level of 0.3 ppm sodium molybdate can cause copper deficiencies in animals, particularly cattle.[3] It is used in industry for corrosion inhibition, as it is a non-oxidizing anodic inhibitor.[3] The addition of sodium molybdate significantly reduces the nitrite requirement of fluids inhibited with nitrite-amine, and improves the corrosion protection of carboxylate salt fluids.[7] In industrial water treatment applications where galvanic corrosion is a potential due to bimetallic construction, the application of sodium molybdate is preferred over sodium nitrite. Sodium molybdate has the advantage in that the dosing of lower ppm's of molybdate allow for lower conductivity of the circulating water. Sodium molybdate at levels of 50-100 ppm offer the same levels of corrosion inhibition that sodium nitrite at levels of 800+ ppm. By utilizing lower concentrations of sodium molybdate, conductivity is kept at a minimum and thus galvanic corrosion potentials are decreased. Reactions When reacted with sodium borohydride, molybdenum is reduced to lower valent molybdenum(IV) oxide: Na2MoO4 + NaBH4 + 2H2O → NaBO2 + MoO2 + 2NaOH + 3H2 Sodium molybdate reacts with the acids of dithiophosphates: Na2MoO4 + (R = Me, Et)(RO)2PS2H → [MoO2(S2P(OR)2)2] which further reacts to form [MoO3(S2P(OR)2)4]. Compound Formula H4Na2MoO6 Molecular Weight 241.95 Appearance White powder or crystals Melting Point 100 °C Boiling Point N/A Density 2.37 g/cm3 Solubility in H2O N/A Exact Mass 243.885735 Monoisotopic Mass 243.885735 Chemical Identifiers Linear Formula Na2MoO4 • 2H2O MDL Number MFCD00149170 EC No. 231-551-7 Pubchem CID 16211258 IUPAC Name disodium; dioxido(dioxo)molybdenum; dihydrate SMILES [Na+].[Na+]. O.O.[O-][Mo] ([O-])(=O)=O InchI Identifier InChI=1S/Mo.2Na.2H2O.4O/h;;;2*1H2;;;;/q;2*+1;;;;;2*-1 InchI Key FDEIWTXVNPKYDL-UHFFFAOYSA-N Safety Sodium molybdate is incompatible with alkali metals, most common metals and oxidizing agents. It will explode on contact with molten magnesium. It will violently react with interhalogens (e.g., bromine pentafluoride; chlorine trifluoride). Its reaction with hot sodium, potassium or lithium is incandescent. It is a molybdenum transition metal and in its pure form it is silvery white in color and very hard. Its melting temperature is quite high. Further hardening of the steel can be achieved by adding a small amount. Molybdenum is also important in the nutrition of plants and is involved in some enzymes. Swedish chemist Carl Wilhelm Scheele showed in 1778 that the mineral (molybdenite), which was previously thought to be a lead ore or graphite, was a sulfur compound of an unknown metal. Swedish chemist Peter Jacob Hjelm also separated molybdenum into metal in 1782 and named it after the Greek word molybdos, which means "like lead". Although molybdenum is found in minerals such as wulfenite (PbMoO4) or powellite (CaMoO4), the main commercial source of molybdenum is molybdenite (MoS2). Molybdenum can also be obtained by direct mining and as a byproduct during copper mining. Molybdenum is found in its ores in amounts varying from 0.01% to 0.5%. About half of the world's molybdenum mining is carried out in the USA (Phelps Dodge Corporation). Molybdenum, which is similar to chromium and wolfram in terms of chemical properties; It has superior properties such as high melting and boiling point, high heat resistance, high thermal conductivity and low thermal expansion. Molybdenum melts at 2623 ° C. With this feature, it takes the sixth place among metals. Molybdenum boiling at 4639 ° C is not affected by air in cold, oxidized in incandescent state, affected by nitric and sulfuric acids, decomposes water vapor at high temperatures. The density of molybdenum is 10.28 gr / cm3. Usage areas The agricultural industry uses up to £ 1 million a year of fertilizer. In particular, it has been suggested to be used for processing broccoli and cauliflower seeds in molybdenum deficient soils. However, caution should be exercised as sodium molybdate at a level of 0.3 ppm can cause copper deficiencies in animals, especially cattle. It is used in industry for corrosion prevention because it is a non-oxidizing anodic inhibitor. The addition of sodium molybdate significantly reduces the nitrite requirement of nitrite-amine inhibited liquids and improves the corrosion protection of carboxylate salt fluids. In industrial water treatment applications where galvanic corrosion is potential due to the bimetal structure, sodium molybdate application is preferred over sodium nitrite. Sodium molybdate has the advantage that lower ppm molybdate dosing has lower conductivity of circulating water. Sodium molybdate at 50-100 ppm levels offers the same levels of corrosion inhibition as sodium nitrite at 800+ ppm levels. By using lower concentrations of sodium molybdate, conductivity is kept to a minimum, thus reducing galvanic corrosion potential Sodium Molybdate Dihydrate is generally immediately available in most volumes. Hydrate or anhydrous forms may be purchased. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. WHAT IS SODIUM MOLYBDATE? There are two main forms of Sodium Molybdate. Sodium Molybdate, Dihydrate is a crystalline powder. It loses its water of crystallization at 100 degrees Celsius. It is known to be less toxic than the other corresponding compounds of group 6B elements in the periodic table. Sodium Molybdate, Dihydrate is used in the manufacturing of inorganic and organic pigments, as a corrosion inhibitor, as a bath additive for finishing metals finishing, as a reagent for alkaloids, and as an essential micronutrient for plants and animals. Sodium Molybdate, Anhydrous is a small, lustrous, crystalline plate. It has the melting point of 687 degrees Celsius and a density of 3.28 (18C). It is soluble in water and also noncombustible. It can be used for reagent in analytical chemistry, paint pigment, production of molybdated toners and lakes, metal finishing, brightening agent for zinc plating, corrosion inhibitor, catalyst in dye and pigment production, additive for fertilizers and feeds, and micronutrient. WHY THE AGRICULTURE INDUSTRY USES SODIUM MOLYBDATE Sodium Molybdate uses cover a wide range of fields, including manufacturing, metalwork, printing, and more. But the impact it can have on plants and animals has brought it into the forefront of use for the agriculture industry, to the tune of more than 1 million pounds of sodium molybdate fertilizer used per year. The basic chemistry of a molybdate, such as sodium molybdate, contains the element molybdenum in its highest oxidation state, which in turn helps contribute to a high solubility of the chemical in water, a benefit in fertilizer application. This characteristic, when combined with sodium molybdate’s use as a delivery vessel for essential micronutrients (such as molybdenum) in plants, serves as another key reason for the choice of sodium molybdate fertilizer over other types of fertilizers used in agriculture. Another touchpoint for this usage ties back to the hydroponic nutrient practice that is growing in popularity. Hydroponics is an agricultural method in which plants are grown without soil. Instead, they receive their essential micronutrients through a water solvent, a practice that has shown growth rates almost 50 percent faster than traditional soil-grown plants, in addition to a higher yield from hydroponic plants. Sodium molybdate has seen a particularly strong uptick in usage among farmers of leguminous plants, such as alfalfa, peas, beans, lentils and peanuts. Included in fertilizer, it provides these plants with enhanced uptake of the essential nitrogen element, while also allowing for efficient fixing of atmospheric nitrogen found in the atmosphere by bacteria in the legumes. These bacteria convert the nitrogen into ammonia to synthesize amino acids within the plant. Overall, the use of sodium molybdate in the agricultural industry can be summarized in that it is one of the few chemicals that can provide essential micronutrients and help drive plant function in a form that is both efficient and effective. Efficiency is shown not only by the relatively small amounts needed to make an impact on the treated plants, but also in the ability to administer the chemical in easily-absorbed water-based formats. Use of Sodium Molybdate Dihydrate as an Efficient Heterogeneous Catalyst for the Synthesis of Benzopyranopyrimidine Derivatives Sodium molybdate dihydrate (Na2MoO4.2H2O) has been investigated as a heterogeneous catalyst for the one-pot pseudo–four-component synthesis of the benzopyranopyrimidine derivatives. This efficient and facile technique avoids the use of difficult workup and harsh reaction conditions. SODIUM MOLYBDATE Sodium Molybdate is a free flowing soluble crystalline fertiliser and is used to supply the trace element molybdenum to crops and livestock in various situations. Sodium Molybdate is only required in very small quantities to satisfy annual plant requirements. Sodium Molybdate is suitable for foliar or fertigation application on a wide range of horticultural and broad acre crops and pastures. SODIUM MOLYBDATE BENEFITS • Supplies the essential trace element molybdenum to crops and livestock • Foliar applied to crops and pastures grown on acid soils where plant availability is low • Essential for conversion of nitrates in leaves to amino acids and proteins • Suitable for foliar or fertigation • Ideal for brassica, beans, peas, grapes, cucurbits, canola, clover and other crops and pastures susceptible to molybdenum deficiency. Application Sodium Molybdate can be used as a foliar or fertigation application in a regular nutrition program for applicable crops and pastures. Multiple applications may be required if leaf analyses reveal ongoing deficiency. Note: Molybdenum can be toxic when levels become too high. One spray per crop is generally sufficient, except where deficiency is noted. Susceptible crops such as brassicas and cucurbits may require two sprays three weeks apart Molybdate Stabilization It is well known that sodium molybdate forms stable complexes with thiols (Kay and Mitchell, 1968; Kaul et al., 1987). Ever since Pratt described the ability of molybdate to stabilize the steroid binding activity of receptors, and to block activation (or transformation) (Leach et al., 1979), it has been suspected that molybdate exerted its effects by interacting with cysteines of the receptor. A series of indirect experiments led to the postulate that the sequence of 644–671, and especially cysteines 656 and 661, were required for molybdate stabilization (Dalman et al., 1991a). Experiments with receptor fragments of wild-type and mutant receptors have supported the involvement of this region. However, they have also ruled out the involvement of Cys-656 and 661 in any of molybdate’s effects (Modarress et al., 1994) (see Section III,E,4). Chemicals Cobalt thiocyanate, cobalt acetate dihydrate, glacial acetic acid, isopropylamine, acetaldehyde, ammonium vanadate, formaldehyde, para-dimethylaminobenzaldehyde, ferric chloride, vanillin, sodium molybdate, selenius acid, copper sulfate pentahydrate, sodium nitroprusside, 2-chloroacetophenone, and sodium carbonate were purchased from Sigma-Aldrich Chemical (St. Louis, MO, USA). Methanol, hexane, and chloroform were obtained from Burdick and Jackson (Muskegon, MI, USA). Hydrochloric acid, sulfuric acid, nitric acid, and pyridine were purchased from Mallinckrodt Baker, (Paris, KY, USA). Ethanol was obtained from Quantum Chemical (Tuscola, IL, USA). The drugs were purchased in powder form from Sigma-Aldrich Chemical (St. Louis, MO, USA), Alltech-Applied Science (State College, PA, USA) or Research Triangle Institute (RTI, NC, USA). Animal Water-insoluble molybdenite (MoS2) is practically nontoxic; rats dosed with up to 500 mg molybdenite daily for 44 days exhibited no adverse effects. In contrast, animals dosed subchronically with water-soluble molybdenum compounds exhibited gastrointestinal disturbances, growth retardation, anemia, hypothyroidism, bone and joint deformities, liver and kidney abnormalities, and death. Fifty percent mortality was reported in rats maintained for 40 days on molybdenum-enhanced diets containing 125 mg Mo kg−1 (as molybdenum trioxide, MoO3), 100 mg Mo kg−1 (as calcium molybdate, CaMoO4), or 333 mg Mo kg−1 (as ammonium molybdate, (NH4)2MoO4). A dietary level of 0.1% sodium molybdate (Na2MoO4·2H2O) for several weeks was lethal to rabbits. Growth retardation was observed in rats maintained on diets containing 0.04–0.12% molybdenum. Evidence that the toxic effects of molybdenum might be caused by a secondarily acquired copper deficiency was shown in a study where a significant reduction in growth occurred in rats after 11 weeks on a diet containing 20 ppm molybdenum and 5 ppm copper; whereas, growth was not affected by molybdenum dietary levels as high as 80 ppm when the dietary level of copper was increased to 20 ppm. Hypothyroidism, as evidenced by decreased levels of plasma thyroxin, was found in rabbits maintained on a diet containing 0.3% Mo (as sodium molybdate) for several weeks or longer. Anemia, as well as anorexia, weight loss, alopecia, and bone deformities occurred in young rabbits maintained for 4–17 weeks on a diet containing 0.1% molybdenum (as sodium molybdate). Anemia was also observed in rats maintained on a diet containing 0.04% Mo (as sodium molybdate) for 5 weeks, in rabbits on a dietary level of 0.2% sodium molybdate for 5 weeks, and in chicks on a dietary level of 0.4% sodium molybdate for 4 weeks. Signs of anemia and marked erythroid hyperplasia of the bone marrow were observed in rabbits maintained for 11 days on a diet containing 0.4% sodium molybdate. Bone and connective tissue disorders observed in animals receiving dietary levels of molybdenum 0.04% for 4 weeks or longer included mandibular exostoses, joint deformities, detachment of tendons, epiphyseal line fractures, and epiphyseal plate widening. Acute and Short-Term Toxicity There is considerable variability in the toxicity of molybdenum, depending on the chemical form and the animal species. Generally, soluble compounds are more toxic than insoluble compounds. In animals, acutely toxic oral doses of molybdenum result in severe gastrointestinal irritation with diarrhea, coma, and death from cardiac failure. The rat oral lethal doses (LD50s) values are 188 mg kg−1 for molybdenum trioxide, and 680 mg kg−1 for ammonium molybdate. The LD50 for water-insoluble molybdentite (MoS2) is >500 mg kg−1 and exposures at this level for 44 days exhibited no adverse effects. Oral subchronic median LD50s for molybdenum oxide, calcium molybdate, and ammonium molybdate in rats were 125, 101, and 330 mg kg−1 day−1, respectively, with deaths occurring over a period of 8–232 days. Molybdenum compounds produce varying degrees of eye and skin irritation, with molybdenum trioxide producing eye and respiratory irritation. Rabbits exposed to dietary doses of ammonium molybdate at 0.025, 0.5, 5, and 50 mg kg−1 day−1 for 6 months resulted in liver changes that generated a NOAEL of 0.5 mg kg−1 day−1. Guinea pigs are a less-sensitive species after dietary exposure to sodium molybdate for 8 weeks yielded a LOAEL of 75 mg kg−1 day−1. Anemia, as well as anorexia, weight loss, alopecia, and bone deformities occurred in young rabbits maintained for 4–17 weeks on a diet containing 0.1% molybdenum (as sodium molybdate). Anemia was also observed in rats maintained on a diet containing 0.04% Mo (as sodium molybdate) for 5 weeks, in rabbits on a dietary level of 0.2% sodium molybdate for 5 weeks, and in chicks on a dietary level of 0.4% sodium molybdate for 4 weeks. Signs of anemia and marked erythroid hyperplasia of the bone marrow were observed in rabbits maintained for 11 days on a diet containing 0.4% sodium molybdate. Bone and connective tissue disorders observed in animals receiving dietary levels of molybdenum 0.04% for 4 weeks or longer included mandibular exostoses, joint deformities, detachment of tendons, epiphyseal line fractures, and epiphyseal plate widening. Medium formulation Chemostat glucose-limited synthetic minimal media contains (per liter) 0.1 g calcium chloride, 0.1 g sodium chloride, 0.5 g magnesium sulfate, 1 g potassium phosphate monobasic, 5 g ammonium sulfate, 500 μg boric acid, 40 μg copper sulfate, 100 μg potassium iodide, 200 μg ferric chloride, 400 μg manganese sulfate, 200 μg sodium molybdate, 400 μg zinc sulfate, 1 μg biotin, 200 μg calcium pantothenate, 1 μg folic acid, 1 mg inositol, 200 μg niacin, 100 μg p-aminobenzoic acid, 200 μg pyridoxine, 100 μg riboflavin, 200 μg thiamine, and 0.08% glucose. Medium is prepared in 10 l quantities, mixed thoroughly, and filter sterilized into an autoclaved glass carboy. Carboy has an outlet port at bottom, leading to a small piece of tubing with a luer lock connector at the end. All entry and exit ports are covered with foil before autoclaving. Outflow tubing is sealed with a metal clamp before filling. Carboy is placed on a shelf above chemostat area. Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on safety and efficacy of sodium molybdate dihydrate for sheep, based on a dossier submitted for the re‐evaluation of the additive. The additive is currently authorised in the EU for all animal species as ‘Nutritional additive’ – ‘Compounds of trace elements’. Taking the optimal Cu:Mo ratio of 3–10, and the highest total copper level authorised in complete feeds for sheep (15 mg/kg), the FEEDAP Panel concluded that 2.5 mg total Mo/kg complete feed is safe for sheep. Considering (i) a safe intake of 0.6 mg Mo/day, (ii) the estimate average intake figure from food in Europe (generally less than 100 μg/day), (iii) the contribution of foods of animal origin to the total molybdenum intake (estimated to be up to 22 %), and (iv) that molybdenum would not accumulate in edible tissues/products of sheep fed molybdenum supplemented diets up to the upper safe level, the FEEDAP Panel concluded that the use of sodium molybdate as a additive in sheep at 2.5 mg total Mo/kg complete feed is safe for consumers. The additive under assessment feed poses no risk by inhalation to users; it is a skin and eye irritant, but it is not considered as a skin sensitiser. Sodium molybdate used up to 2.5 mg Mo/kg complete sheep feed poses no concerns for the safety for the environment. The FEEDAP Panel recognises that molybdenum does not need to be added to diets to cover the nutritional needs of molybdenum of sheep. Molybdenum supplementation in sheep feed is considered effective in order to guarantee an adequate balance with copper, when the Cu:Mo ratio in the diet is in the range 3–10. Summary Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on safety and efficacy of sodium molybdate dihydrate for sheep. The additive is currently authorised in the European Union (EU) under the element Molybdenum‐Mo (E7) for all animal species; the compound is included in the EU Register of Feed Additives under the category ‘Nutritional additives’ and the functional group ‘Compounds of trace elements’. Molybdenum toxicity in farm animals is manifested as antagonism of absorption and/or biological activity of copper, and is greatly enhanced by high sulfur content in the diet. Ruminants, including sheep, are highly susceptible to molybdenum excess, which may induce a clinically severe copper deficiency (molybdenosis). Conversely, low molybdenum in the diet is expected to enhance copper toxicity, if the intake of copper is high. The FEEDAP Panel considered therefore not possible to establish an absolute figure for a dietary molybdenum concentration which is equally safe for sheep and effective in preventing copper toxicity. Considering that (i) the key parameter to ensure the safety of molybdenum supplementation is the optimal Cu:Mo ratio, which in sheep is in the range of 3–10 and (ii) the highest total copper level authorised in complete feeds for sheep is 15 mg/kg, the FEEDAP Panel concluded, that 2.5 mg total Mo/kg complete feed is safe for sheep. Toxicokinetic data in laboratory rodents and farm animals (including sheep), however incomplete, uniformly indicate that molybdenum would not accumulate in edible tissues or products of sheep fed molybdenum supplemented diets up to the upper maximum level of 2.5 mg/kg. The FEEDAP Panel considered that the available data support an upper intake tolerable level (UL) of 0.01 mg/kg body weight (bw) for molybdenum based on the no observed adverse effect level (NOAEL) for female reproductive toxicity and developmental toxicity of 0.9 mg/kg bw per day and the application of a 100‐safety factor. The UL would result in a safe intake of 0.6 mg/day in a 60‐kg individual; this intake is largely higher than the estimate average intake figure from food in Europe (generally less than 100 μg/day). Molybdenum is ubiquitous in foods, surveys in the EU countries provide average intake figures generally lower than 100 μg/day, whereas offals (liver and kidney) are relatively rich sources of molybdenum, the contribution of foods of animal origin to the total molybdenum intake has been estimated to be up to 22%. Molybdenum would not accumulate in edible tissues or products of sheep fed molybdenum supplemented diets up to the upper maximum level of 2.5 mg/kg. Therefore, the FEEDAP Panel considered that the use of sodium molybdate as a feed additive in sheep at 2.5 mg Mo/kg complete feed is safe for consumers. Molybdenum is a potential respiratory toxicant; the available data indicate that the use of the sodium molybdate under evaluation in animal nutrition poses no risk by inhalation to users. The additive is a skin and eye irritant, but it is not considered as a skin sensitiser. The use of sodium molybdate as a feed additive in sheep up to maximum of 2.5 mg of Mo/kg complete feed poses no concerns for the safety for the environment. The FEEDAP Panel recognises that molybdenum does not need to be added to diets to cover the nutritional needs of molybdenum of sheep. Molybdenum supplementation in sheep feed is considered effective in order to guarantee an adequate balance with copper, when the Cu:Mo ratio in the diet is in the range 3–10. Additional information The additive ‘Sodium molybdate’ had been authorised in the European Union (EU) under the element Molybdenum‐Mo (E7) for all animal species ‘Without a time limit’ (Council Directive 70/524/EEC concerning additives in feedingstuffs – List of authorised additives in feedingstuffs (2004/C 50/01). Following the provisions of Article 10(1) of Regulation (EC) No 1831/2003 the compound was included in the EU Register of Feed Additives under the category ‘Nutritional additives’ and the functional group ‘Compounds of trace elements’. The Scientific Committee on Food (SCF) of the European Commission published in the year 2000 an opinion on the tolerable upper intake levels of molybdenum (European Commission, 2000). The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS Panel) delivered an opinion on potassium molybdate as a source of molybdenum added for nutritional purposes to food supplements (EFSA, 2009). The EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA Panel) delivered an opinion on dietary reference values for molybdenum (EFSA NDA Panel, 2013). According to Regulation (EC) no 1170/20092, Molybdenum is listed as mineral which may be used in the manufacture of food supplements (Annex I); the following molybdenum compounds are authorised for use in the manufacture of food supplements: ammonium molybdate (molybdenum (VI)), potassium molybdate (molybdenum (VI)) and sodium molybdate (molybdenum (VI)) (Annex II); the following molybdenum compounds are authorised as mineral substances which may be added to foods: ammonium molybdate (molybdenum (VI)) and sodium molybdate (molybdenum (VI)) (Annex III). The following molybdenum compounds may be added for specific nutritional purposes in foods for particular nutritional uses (Commission Regulation (EC) No 953/2009)3: ammonium molybdate and sodium molybdate. The following types of fertilisers containing molybdenum and described as ‘Fertilisers containing only one micro‐nutrient’ are listed in Annex I of Regulation (EC) No 2003/2003 of the European Parliament and of the Council4 as: (a) sodium molybdate (chemically obtained product containing sodium molybdate as its essential ingredient), (b) ammonium molybdate (chemically obtained product containing ammonium molybdate as its essential ingredient), (c) molybdenum‐based fertiliser Product obtained by mixing types (a) and (b)), and (d) molybdenum‐based fertiliser solution (product obtained by dissolving types ‘(a)’ and/or one of the type ‘(b)’ in water). Effects on skin and eye No original studies were provided by the applicant. The potential of sodium molybdate to elicit skin and ocular irritation or skin sensitization were briefly reviewed in (European Commission, 2000). When tested in rabbits, sodium molybdate (anhydrous form) elicited evident skin irritation for 24 h after application, albeit the skin lesions reversed within 72 . In an eye irritation test on rabbits, a 20% solution did not increase corneal irritation but caused evident conjunctival redness. Based on these findings, sodium molybdate is considered as a skin and eye irritant. The substance is reported not to elicit skin sensitisation (European Commission, 2000 and references herein). Sodium molybdate, Na2MoO4, is useful as a source of molybdenum. It is often found as the dihydrate, Na2MoO4·2H2O. The molybdate(VI) anion is tetrahedral. Two sodium cations coordinate with every one anion. Sodium Molybdate is a crystalline powder essential for the metabolism and development of plants and animals as a cofactor for enzymes. Sodium molybdate (anhydrous) is an inorganic sodium salt having molybdate as the counterion. It has a role as a poison. It contains a molybdate. General description Sodium molybdate dihydrate (SMD) is a molybdic acid disodium salt. It crystallizes in the orthorhombic space group, Pbca.[1] The toxic effect of SMD on the avian species, northern bobwhite quail has been investigated.[2] Its ability to inhibit corrosion of 6082 wrought aluminum alloy has been studied in NaCl solution of chlorosulfonic acid.[3] Application Sodium molybdate dihydrate has been used as one of the phosphatase inhibitor during the Western blot analysis.[4] It may be used to prepare: • Shuttle-like barium molybdate (BaMoO4) microstructures under microwave conditions.[5] • Nickel-molybdenum-zinc (NiMoZn) electrode.[6] • Eu3+ doped lead molybdate (PbMoO4) nanocrystals (NCs) under microwave conditions. Sodium molybdate was first synthesized by the method of hydration.[4] A more convenient synthesis is done by dissolving MoO3 in sodium hydroxide at 50–70 °C and crystallizing the filtered product.[3] The anhydrous salt is prepared by heating to 100 °C. Uses The agriculture industry uses 1 million pounds per year as a fertilizer. In particular, its use has been suggested for treatment of whiptail in broccoli and cauliflower in molybdenum-deficient soils.[5][6] However, care must be taken because at a level of 0.3 ppm sodium molybdate can cause copper deficiencies in animals, particularly cattle.[3] It is used in industry for corrosion inhibition, as it is a non-oxidizing anodic inhibitor.[3] The addition of sodium molybdate significantly reduces the nitrite requirement of fluids inhibited with nitrite-amine, and improves the corrosion protection of carboxylate salt fluids.[7] In industrial water treatment applications where galvanic corrosion is a potential due to bimetallic construction, the application of sodium molybdate is preferred over sodium nitrite. Sodium molybdate has the advantage in that the dosing of lower ppm's of molybdate allow for lower conductivity of the circulating water. Sodium molybdate at levels of 50-100 ppm offer the same levels of corrosion inhibition that sodium nitrite at levels of 800+ ppm. By utilizing lower concentrations of sodium molybdate, conductivity is kept at a minimum and thus galvanic corrosion potentials are decreased. Sodium molybdate is incompatible with alkali metals, most common metals and oxidizing agents. It will explode on contact with molten magnesium. It will violently react with interhalogens (e.g., bromine pentafluoride; chlorine trifluoride). Its reaction with hot sodium, potassium or lithium is incandescent. Usage areas The agricultural industry uses up to £ 1 million a year of fertilizer. In particular, it has been suggested to be used for processing broccoli and cauliflower seeds in molybdenum deficient soils. However, caution should be exercised as sodium molybdate at a level of 0.3 ppm can cause copper deficiencies in animals, especially cattle. It is used in industry for corrosion prevention because it is a non-oxidizing anodic inhibitor. The addition of sodium molybdate significantly reduces the nitrite requirement of nitrite-amine inhibited liquids and improves the corrosion protection of carboxylate salt fluids. In industrial water treatment applications where galvanic corrosion is potential due to the bimetal structure, sodium molybdate application is preferred over sodium nitrite. Sodium molybdate has the advantage that lower ppm molybdate dosing has lower conductivity of circulating water. Sodium molybdate at 50-100 ppm levels offers the same levels of corrosion inhibition as sodium nitrite at 800+ ppm levels. By using lower concentrations of sodium molybdate, conductivity is kept to a minimum, thus reducing galvanic corrosion potential Sodium Molybdate Dihydrate is generally immediately available in most volumes. Hydrate or anhydrous forms may be purchased. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. WHAT IS SODIUM MOLYBDATE? There are two main forms of Sodium Molybdate. Sodium Molybdate, Dihydrate is a crystalline powder. It loses its water of crystallization at 100 degrees Celsius. It is known to be less toxic than the other corresponding compounds of group 6B elements in the periodic table. Sodium Molybdate, Dihydrate is used in the manufacturing of inorganic and organic pigments, as a corrosion inhibitor, as a bath additive for finishing metals finishing, as a reagent for alkaloids, and
SODIUM MYRETH SULFATE
SYNONYMS Ethanol, 2-[2-[2-(tetradecyloxy)ethoxy]ethoxy]-, 1-(hydrogen sulfate), sodium salt (1:1);Ethanol, 2-[2-[2-(tetradecyloxy)ethoxy]ethoxy]-, hydrogen sulfate sodium salt;Ethanol, 2-[2-[2-(tetradecyloxy)ethoxy]ethoxy]-, hydrogen sulfate, sodium salt;Natrium-2-[2-[2-(tetradecyloxy)ethoxy]ethoxy]ethylsulfat;sodium 2-[2-[2-(tetradecyloxy)ethoxy]ethoxy]ethyl sulphate CAS NO:25446-80-4
SODIUM MYRISTATE
SODIUM MYRISTOYL GLUTAMATE N° CAS : 38517-37-2 / 38754-83-5 / 71368-20-2 Nom INCI : SODIUM MYRISTOYL GLUTAMATE Nom chimique : Sodium hydrogen N-(1-oxotetradecyl)-L-glutamate N° EINECS/ELINCS : 253-981-4 Compatible Bio (Référentiel COSMOS) Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM MYRISTOYL GLUTAMATE
SODIUM MYRISTOYL SARCOSINATE N° CAS : 30364-51-3 Nom INCI : SODIUM MYRISTOYL SARCOSINATE Nom chimique : Sodium N-methyl-N-(1-oxotetradecyl)aminoacetate N° EINECS/ELINCS : 250-151-3 Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM MYRISTOYL SARCOSINATE
SODIUM MYRISTYL SULFATE N° CAS : 1191-50-0 Nom INCI : SODIUM MYRISTYL SULFATE Nom chimique : Sodium tetradecyl sulphate N° EINECS/ELINCS : 214-737-2 Classification : Sulfate Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM MYRISTYL SULFATE
cas no 532-02-5 Sodium 2-naphthalenesulfonate; 2-Naphthalenesulfonic acid, sodium salt; Sodium naphthalene-2-sulphonate; Sodium beta-naphthalenesulfonate; Sodium naphthalene-6-sulfonate; beta-Naphthalenesulfonic sodium salt;
SODIUM NAPHTHALENE SULFONATE
SODIUM NAPHTHALENESULFONATE; NAPHTHALENESULFONIC ACID, SODIUM SALT; Sodium naphthalenesulfonate; N° CAS : 532-02-5 / 1321-69-3; Nom INCI : SODIUM ; NAPHTHALENESULFONATE; Nom chimique : 2-Naphthalenesulfonic Acid, Sodium Salt; N° EINECS/ELINCS : 208-523-8 / 215-323-4. Ses fonctions (INCI): Hydrotrope : Augmente la solubilité d'une substance qui est peu soluble dans l'eau. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : B-NAPHTALENE SULFONATE DE SODIUM; SEL DE SODIUM DE L'ACIDE NAPHTALENESULFONIQUE-2; Sel de sodium de l'acide naphtalènesulfonique-2. Noms anglais : 2-NAPHTHALENESULFONIC ACID, SODIUM SALT; SODIUM .BETA.-NAPHTHALENESULFONATE; Sodium naphthalene-2-sulfonate; SODIUM NAPHTHALENE-2-SULPHONATE; 2-Naphthalenesulfonic acid, sodium salt (1:1). IUPAC names : 2-Naphthalinsulfonsäure Natriumsalz; naftalin sülfonat, naftalinsülfonat; Sodium 2-Naphthalenesulfonate; sodium naphthalene-2-sulfonate; 208-523-8 [EINECS]; 2-Naphtalènesulfonate de sodium [French]; 2-Naphthalenesulfonic Acid Sodium Salt; 2-Naphthalenesulfonic acid, sodium salt (1:1); 532-02-5 [RN]; MFCD00064186 [MDL number]; Natrium-2-naphthalinsulfonat [German] ; Natriumnaphthalen-2-sulfonat; QK3678000; Sodium 2-naphthalenesulfonate; sodium naphthalene-2-sulfonate; Sodium β-naphthalenesulfonate; [532-02-5]; 1321-69-3 [RN]; 2/5/532; 215-323-4 [EINECS]; 2-Naphthalene sulfonic acid sodium salt; 2-naphthalenesulfonate sodium;2-NAPHTHALENESULFONIC ACID SODIUM SALT,96%; 2-Naphthalenesulfonic acid, sodium salt; 2-NAPHTHALENESULFONICACIDSODIUMSALT; 2-Naphthalenesulphonic acid sodium salt; 5/2/532;EINECS 208-523-8 ; NAPHTHALENE-2-SULFONIC ACID; Naphthalene-2-sulfonic acid sodium salt; naphthalene-2-sulfonic acid, sodium salt; Naphthalene-2-sulfonic acid; sodium salt; Naphthalene-2-sulphonic acid sodium salt; Naphthalene-2-sulphonic acid, sodium salt; sodium and naphthalene-2-sulfonate; SODIUM NAPHTHALENE-2-SULPHONATE; Sodium naphthalene-2-sulphonate 95%;Sodium naphthalene-6-sulfonate; SODIUM NAPHTHALENESULFONATE; Sodium salt; Sodium salt of β-naphthalenesulfonic acid; Sodium β-naphthalenesulfonate; sodium;naphthalene-2-sulfonate ; sodium2-naphthalenesulfonate; Sodium-2-naphthalenesulfonate; TL8003494; UNII-D3F8YRX7TP; β-Naphthalenesulfonic sodium salt; Noms français : NAPHTALENE SULFONATE DE SODIUM; NAPHTHALENE SULFONIC ACID, SODIUM SALT; SEL DE SODIUM DE L'ACIDE NAPHTALENESULFONIQUE; Sel de sodium de l'acide naphtalènesulfonique; SODIUM NAPHTHALENE SULFONATE. Noms anglais : NAPHTHALENESULFONIC ACID, SODIUM SALT; Sodium naphthalenesulfonate. Utilisation: Fabrication de produits organiques; Sodium naphthalenesulphonate. ; IUPAC names :sodium naphthalene-1-sulfonate; 130-14-3 [RN]; 1-Naphtalènesulfonate de sodium [French] [ACD/IUPAC Name]; 1-Naphthalenesulfonic acid sodium salt;1-Naphthalenesulfonic acid, sodium salt; 1-Naphthalenesulfonic acid, sodium salt (1:1) [ACD/Index Name]; 215-323-4 [EINECS]; MFCD00064964 [MDL number];Natrium-1-naphthalinsulfonat [German] [ACD/IUPAC Name] ; Sodium 1-naphthalenesulfonate [ACD/IUPAC Name]; sodium naphthalene-1-sulfonate; Sodium α-naphthalenesulfonate; α-Naphthalenesulfonic acid sodium salt; [130-14-3]; [1321-69-3] ; 1321-69-3 [RN]; 1-Naphthalene Sulfonic Acid, Monosodium salt; 1-Naphthalene sulphonic acid sodium salt; 1-naphthalenesulfonic acid; sodium; 204-976-0MFCD00064964; 2-Naphthalenesulfonic Acid Sodium Salt; 2-Naphthalenesulfonic acid, sodium salt 36290-04-7 [RN] 532-02-5 [RN] 9008-63-3 [RN] 98% (dry wt.), water <5% EINECS 204-976-0 EINECS 208-523-8 EINECS 215-323-4 Naphthalene sulfonic acid, sodium salt solution Naphthalene sulfonic acid, sodium salt solution (40% or less) naphthalene-1-sulfonic acid naphthalene-1-sulfonic acid sodium salt Naphthalene-1-sulfonic acid; sodium salt Naphthalene-1-sulphonic acid sodium salt Naphthalene-1-sulphonic acid, sodium salt Naphthalene-2-sulfonic acid sodium salt naphthalenesulfonic acid sodium salt Naphthalenesulfonic acid, sodium salt Sodium ??-naphthalenesulfonate Sodium 1-naphthalenesulfonate;Sodium ??-naphthalenesulfonate Sodium 1-naphthalenesulfonate;Sodium ?-naphthalenesulfonate Sodium 2-naphthalenesulfonate [ACD/IUPAC Name] Sodium α-naphthyl acetate Sodium naphthalene sulfonate Sodium naphthalene sulfonate solution Sodium naphthalene sulfonate solution (40% or less) sodium naphthalene-2-sulfonate SODIUM NAPHTHALENE-2-SULPHONATE Sodium naphthalene-6-sulfonate SODIUM NAPHTHALENESULFONATE sodium naphthalenesulphonate Sodium salt Sodium salt of β-naphthalenesulfonic acid Sodium α-naphthalenesulfonate Sodium α-naphthalenesulfonic acid Sodium α-naphthyl acetate Sodium α-naphthylsulfonate Sodium β-naphthalenesulfonate Sodium-2-naphthalenesulfonate UNII-D3F8YRX7TP α salt α-Naphthalenesulfonic acid sodium salt β-Naphthalenesulfonic sodium salt
SODIUM NAPHTHALENESULFONATE ( NAPHTALENE SULFONATE DE SODIUM)
cas no 7631-99-4 Soda Niter; Cubic Niter; Chile Saltpeter; Sodium(I) Nitrate; Nitrate of Soda; Nitrate de sodium (French); Nitric acid sodium salt; Chile salpeter;
SODIUM NITRATE
SYNONYMS Soda Niter; Cubic Niter; Chile Saltpeter; Sodium(I) Nitrate Nitrate of Soda CAS NO7631-99-4
SODIUM N-LAURYLSARCOSINATE ( SARCOSINATE DE SODIUM ET DE N-LAURYLE)
SODIUM OCTYL SULFATE; N° CAS : 142-31-4; Nom INCI : SODIUM OCTYL SULFATE; Classification : Sulfate
SODIUM OCTYL SULFATE
cas no 143-19-1 cis-9-Octadecenoic acid sodium salt; Oleic acid sodium salt; 9-Octadecenoic acid (Z)-, sodium salt; sodium (9Z)-octadec-9-enoate;
SODIUM OLEFIN SULFONATE
Sodium Tetradecene Sulfonate; Sodium C14-16 Olefin Sulfonate; C14-16-alkane hydroxy and C14-16-alkene, sodium salts; Sodium alpha-olefin (c14-16) sulfonate; CAS NO : 68439-57-6
SODIUM OLEOYL ISETHIONATE
SODIUM OLEOYL SARCOSINATE N° CAS : 14351-62-3 Nom INCI : SODIUM OLEOYL SARCOSINATE N° EINECS/ELINCS : 238-312-6
SODIUM OLEOYL SARCOSINATE
SODIUM OLETH SULFATE N° CAS : 27233-34-7 "Pas terrible" dans toutes les catégories. Nom INCI : SODIUM OLETH SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM OLETH SULFATE
E 232; o-phenylphenol sodium salt; SODIUM O-PHENYLPHENATE; Sodium-o-phenylphenate; Sodium-o-phenylphenol; SOPP; N° CAS : 132-27-4 - Orthophénylphénate de sodium; Origine(s) : Synthétique. Nom INCI : SODIUM O-PHENYLPHENATE; Nom chimique : Sodium 2-biphenylate; N° EINECS/ELINCS : 205-055-6; Additif alimentaire : E232. Classification : Règlementé, Conservateur. Ses fonctions (INCI); Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes; Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Principaux synonymes; Noms français : (1,1'-Biphenyl)-2-ol, sodium salt; 2-BIPHENYLOL, SODIUM SALT; 2-HYDROXYDIPHENYL SODIUM; 2-HYDROXYDIPHENYL, SODIUM SALT; 2-PHENYL PHENOL, SODIUM SALT; 2-Phényl phénol, sel de soude; o-phenylphenol sodium salt; o-Phénylphénate de sodium; Ortho-phénylphénate de sodium; Phénylphénate de sodium (ortho-); SODIUM 2-BIPHENOLATE; SODIUM 2-BIPHENYLOLATE; SODIUM 2-HYDROXYDIPHENYL; SODIUM 2-PHENYLPHENATE; Sodium o-phenylphenate; Sodium o-phenylphenol; Sodium o-phenylphenolate; SODIUM O-PHENYLPHENOXIDE; SODIUM ORTHO PHENYLPHENATE; SODIUM ORTHO-PHENYLPHENATE; SODIUM SALT OF O-PHENYLPHENOL; Sodium, 2-phényl phénolate de; Sodium, phénylphénate de (ortho-). Noms anglais : o-phenol, sodium salt; Sodium-2-phenylphenolate. Utilisation et sources d'émission: Fabrication de germicides, fabrication de fongicides; 2-phenylphenol, sodium salt ; sodium 2-biphenylate; 2-phenylphenol, sodium salt; Sodium orthophenylphenoxide. Translated names; 2-Bifenilat de sodiu (ro); 2-Bifenilat tas-sodju (mt); 2-Bifenilato de sodio (es); 2-Bifenilato de sódio (pt); 2-bifenilato di sodio (it); 2-bifenylan sodu (pl) ; 2-bifenylát sodný (cs); 2-biphénylate de sodium (fr); 2-fenil-fenol, natrijeva sol (hr); 2-fenilfenol, natrijeva sol (sl); 2-fenilfenol, nátriumsó (hu); 2-fenilfenola nātrija sāls (lv); 2-fenilfenolis, natrio druska (lt); 2-fenilfenolo, sale di sodio (it); 2-fenylfenol, natriumsalt (no); 2-fenylofenolan sodu (pl); 2-Fenyylifenolin natriumsuola (fi); 2-fenüülfenool, naatriumi sool (et); 2-διφαινυλικό νάτριο (el) ; 2-фенилфенол, натриева сол (bg); bifenyl-2-olan sodu (pl); Naatrium-2-bifenülaat (et); Natrijev 2-bifenilat (hr); Natrio 2-bifeniliatas (lt); Natrium 2-biphenylat (de); Natrium-2-bifenylaat (nl) ; Natrium-2-bifenylaatti (fi); natrium-2-bifenylat (no); natrium-2-biphenylat (da); natrium-bifenyl-2-olát (cs); natriumbifenyl-2-yloksid (no); natriumbifenyl-2-yloxide (nl); natriumbiphenyl-2-yloxid (da) ; Nátrium-2-bifenilát (hu); nátrium-2-bifenylát (sk); nátrium-bifenyl-2-olát (sk); Nātrija 2-bifenilāts (lv); o-Phenylphenol (de); orthophénylphénate de sodium (fr); sare de 2-fenilfenol, sodiu (ro); sodio 2-bifenilato (it); sodiu 2-bifenilat (ro); Sodium 2-biphenylate (no); sodná soľ bifenyl-2-olu (sk); óxido de sodio y de bifenil-2-ilo (es); διφαινυλ-2-υλικό νάτριο (el); Натриев 2-бифенилат (bg); CAS names; [1,1'-Biphenyl]-2-ol, sodium salt (1:1). IUPAC names: (1,1'-Biphenyl)-2-ol, sodium salt, tetrahydrate; (2-biphenylyloxy)sodium; 2-Phenylphenol Sodium Salt Tetrahydrate; Sodium 2 biphenylate; sodium 2-phenylphenolate; sodium biphenyl-2-olate; sodium;2-phenylphenolate; [1,1'-Biphenyl]-2-ol, sodium salt (1:1) [ACD/Index Name]; 132-27-4 [RN]; 205-055-6 [EINECS] ; 2-Biphénylolate de sodium [French] ; Natrium-2-biphenylolat [German] ; natriumbiphenyl-2-olat [German]; o-Phenylphenol sodium; o-Phenylphenol sodium salt; Sodium 2-biphenylolate ; [ACD/IUPAC Name]; Sodium biphenyl-2-olate; sodium o-phenylphenate; sodium o-phenylphenoxide; sodium ortho-phenylphenate; (1,1'-Biphenyl)-2-ol, sodium salt; (1,1'-Biphenyl)-2-ol, sodium salt (1:1); (2-biphenylyloxy)sodium; (2-biphenylyloxy)-Sodium; [1,1'-Biphenyl]-2-ol, sodium salt; [132-27-4]; 2-Bi phenylol, Sodium Salt; 2-Biphenylol sodium salt; 2-Biphenylol, Sodium Salt 2-hydroxybiphenyl sodium salt; 2-Hydroxydiphenyl sodium; 2-Hydroxydiphenyl sodium salt; 2-Hydroxydiphenyl, sodium salt; 2-PHENYL PHENOL SODIUM; 2-phenylphenol sodium ; 2-Phenylphenol Sodium Salt; 2-PHENYLPHENOL, SODIUM SALT; AGN-PC-0H22NM; bactrol; Biphenylol, sodium salt; BR-73024; D.C.S; D.C.S.; dorvicide a; Dowicide; Dowicide A ; Dowicide A & A flakes; Dowicide A Flakes; dowizid; Dowizid A; E232; EINECS 205-055-6; Hydroxydip henyl, sodium salt; Hydroxydiphenyl, sodium salt; MFCD00002209 [MDL number] ; mil-du-rid; Mystox WFA; natriphene; o-Phenyl phenol sodium salt; o-Phenylphenate sodium; o-Phenylphenate, sodium; O-Phenylphenol, na salt; o-Phenylphenol, sodium; o-Phenylphenol, sodium salt; OPP-NA; OPP-sodium; orphenol; Phenylphenol, sodium salt; Preventol ON & ON Extra; Preventol ON extra; preventolon; Preventol-ON; SCHEMBL249962; Sodium (1,1'-biphenyl)-2-olate ; Sodium [1,1`-biphenyl]-2-olate; Sodium [1,1'-biphenyl]-2-olate; Sodium 2-biphenylate; Sodium 2-hydroxydiphenyl; sodium 2-phenylbenzen-1-olate; sodium 2-phenylbenzenolate;Sodium 2-phenylphenate; sodium 2-phenylphenolate; sodium 2-phenylphenoxide; Sodium o-phenylphenol; sodium o-phenylphenolate; Sodium o-phenylphenyolate; Sodium orthophenylphenoxide ; Sodium, (2-biphenylyloxy)-; sodium;2-phenylphenolate; Sodium[1,1'-biphenyl]-2-olate; Sodium-2-biphenylate; Sodium-o-phenylphenate; Sodium-o-phenylphenol; SOPP; stopmold b ; Topane
SODIUM OMADINE
Sodium Omadine Sodium Omadine is the sodium salt form of pyrithione, a fungistatic and antimicrobial derivative of aspergillic acid. Although the exact mechanism of action remains to be fully elucidated, Sodium Omadine appears to interfere with membrane transport ultimately leading to a loss of metabolic control. Metalworking fluids are fertile breeding grounds for microorganisms, particularly bacteria and fungi. Their unchecked growth causes fluids to deteriorate and degrades the fluid performance; this in turn causes damage to the work piece, cutting tools and fluid handling systems. Growth of microorganisms in fluids can also affect workers by causing foul odors, skin irritation and allergic reactions. These problems can be reduced or eliminated through the proper use of an antimicrobial agent. Sodium omadine 2000 Antimicrobial is a proprietary blend based on the antimicrobial active, sodium pyrithione (CAS # 3811-73-2) a fungicidal product with a successful history of use by the metalworking industry. Sodium omadine 2000 Antimicrobial exhibits increased efficacy against a wide variety of microorganisms found in metalworking fluid systems. In addition to its anticipated antifungal performance, Sodium omadine 2000 Antimicrobial also exhibits antibacterial efficacy. The improved antimicrobial performance of Sodium omadine 2000 Antimicrobial is not a result of combinations with formaldehyde-based condensates, phenols, or isothiazoline-based products. This proprietary product is a blend of sodium pyrithione with a potentiator, and an amine coupler. This versatile antimicrobial blend can eliminate the need for formulating with multiple products. Sodium omadine 2000 Antimicrobial provides broad-spectrum antimicrobial control to a variety of metalworking fluid formulations and is suitable for use in both metalworking fluid concentrates and as a post treatment additive. Sodium omadine 2000 Antimicrobial is registered for use with the United States Environmental Protection Agency (US EPA Reg. No. 1258-1238) under the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), for use in metalworking, cutting, cooling and lubricating concentrates and end-use fluids. If you are considering another use, please consult with an Arch Chemicals, Inc. representative. It is a violation of Federal law to use an antimicrobial agent in an application for which it does not have EPA registration. Sodium omadine 2000 AnTIMICROBIAL HAS THE FOLLOWInG PRODUCT ATTRIBUTES. Sodium pyrithione, % 10.0 Form Liquid Color Medium yellow Odor Amine pH @ 10% 11-12 Density@25°C 1.12 ADDRESSInG THE BLUE COLOR PROBLEM Metalworking fluids have been known to change color upon the addition of pyrithione-based biocides. This is often referred to as the ‘blue-color problem’. The color change is due to the presence of ionic iron, which combines with pyrithione to form a highly colored, water insoluble compound. Iron can be introduced through raw materials, dilution water, or certain metalworking fluid operations. In the case of metalworking fluid concentrates, while the levels of ionic iron present are usually low, typically in the range of 5-25 ppm (parts per million), addition of sodium pyrithione will discolor the formulation, turning it gray or at times black. One method for addressing this problem is through the use of iron specific sequestering agents, like ethylenediaminetetraacetic acid (EDTA) or Arch’s Wayhib RW Chelating Agent. A more chronic problem for pryithione-based biocides is with high-speed cast iron machining operations. Metalworking fluid formulations used in these operations tend to accumulate and maintain high levels of ionic iron, making the use of sodium pyrithione unsuitable. In controlled laboratory tests dilute metalworking fluids known to contain 100-150 ppm of ironic iron did not discolor. In addition, this proprietary new antimicrobial can be used in formulations, which accumulate and maintain high levels of iron, while in use. Additions of Sodium omadine 2000 Antimicrobial to dilute metalworking fluids known to contain ionic iron in the range of 100-150 ppm did not turn blue, and the antimicrobial performance remains intact. AnTIMICROBIAL ACTIVITY Below is a summary of data obtained using a test designed to evaluate the effectiveness of Sodium omadine 2000 Antimicrobial in three types of metalworking fluid formulations. The test protocol calls for one hundred milliliters of appropriately diluted fluid (20:1) to be placed into two hundred fifty milliliter Erlenmyer flasks. Sodium omadine 2000 Antimicrobial is added to each flask at the onset of the experiment. The treatment level used for this experiment was 1000 ppm, product as sold. Flasks are maintained at ambient temperature on an orbital shaker and challenged 3 times a week with a mixed inoculum of bacteria and fungi. RECOMMEnDED USE LEVELS The recommended use level for Sodium omadine 2000 Antimicrobial in metalworking fluid concentrates (typically used at 20:1) is between 2.0-4.0%, product as sold. Post treatment dose levels of 1000-3000 ppm, product as sold, have been shown to be very effective in dilute metalworking fluids. The Following United States EPA Guidelines Should be Followed When Using This Biocide: TO INHIBIT THE GROWTH OF FUNGI AND BACTERIA IN AQUEOUS METALWORKING, CUTTING, COOLING AND LUBRICATING FLUIDS: Add up to 5000 parts per million (0. 5% v/v) of Sodium omadine 2000 Antimicrobial to the diluted fluid (5.0 gals per 1000 gals). When adding fresh diluted fluid to compensate for dragout or other losses, add Sodium omadine 2000 Antimicrobial to makeup fluid according to the above directions. Frequent checks (at least once per week) of the bacterial and fungal population in the system should be made using standard microbiological plate count procedures or any of the commercial "dip-stick" type devices. When the bacterial count reaches 105 and/or the fungal count reaches 102 organisms per milliliter, add additional Sodium omadine 2000 Antimicrobial according to the above directions. The fluid should be checked at least once per day with a refractometer (or other suitable means) to determine if water loss by evaporation has occurred. Make-up water should be added daily to compensate for such losses. The fluid should be monitored at least once per week (depending on the metalworking operation involved) for the following: tramp oil, pH, odor, oil droplet size, and anticorrosion properties. If any of these parameters is outside the specifications established for the system in question, they should be brought up to specifications by the addition of suitable additives or the fluid should be discarded and replaced after cleaning the system. Add Sodium omadine 2000 Antimicrobial to the fresh fluid according to the above directions. Contaminated fluid systems should be cleaned prior to the addition of Sodium omadine 2000 Antimicrobial. Drain the system, clean with a cleaner designed for this purpose, rinse with water, and refill with fresh fluid. Sodium omadine 2000 Antimicrobial may be added to the fluid at the time it is prepared (diluted) or to the reservoir (sump) containing the fluid after it is put into use. If it is added to the reservoir, the fluid should be circulated after addition to ensure mixing. LIGHT STABILITY Sodium omadine 2000 Antimicrobial will gradually degrade when exposed to UV light. Formulations containing Sodium omadine 2000 Antimicrobial should be packaged in brown or opaque containers unless tests have shown that photodegradation is not a problem. PH STABILITY Sodium omadine 2000 Antimicrobial is effective over the pH range typical of most metalworking fluids. Below pH 4.5, the sodium salt is in equilibrium with free pyrithione and while pyrithione is microbiologically active, it is very unstable in the presence of light or oxygen. CHEMICAL REACTIVITY Oxidizing agents (such as peroxides and hypohalites) will convert pyrithione first to dipyrithione (2,2'-dithiobis-pyridine-1, 1'- dioxide), which is microbiologically active, and finally to pyrithione sulfinic or sulfonic acid, which are not microbiologically active compounds. SAFETY InFORMATIOn Material Safety Data Sheets containing appropriate health and safety advice on Sodium omadine 2000 Antimicrobial are available from your nearest regional office. PACKAGInG Sodium omadine 2000 Antimicrobial is available from Rochester, NY in 45lb. And 500 lb. Containers and is available from Swords, Republic of Ireland in a 226.8 kg container. To place an order, call our order fulfillment group at 770-805-3301. APPLICATIOn For product application and formulation information please refer to Sodium omadine 2000 Antimicrobial product labeling. Directions for Use of Sodium omadine To inhibit the growth of fungi in aqueous metalworking, cutting, cooling and lubricating fluids: Add up to 1250 ppm (0.125% v/v) of Sodium omadine fungicide to the diluted fluid (1.25 gal per 1000 gal of solution). Typical recommended dose levels are between 200 and 500 ppm, product as sold. Different use and contamination conditions may require different levels of Sodium omadine fungicide and while compatible with most metalworking fluids physical and chemical compatibility testing is recommended. When adding fresh diluted fluid to compensate for dragout or other losses, add Sodium omadine fungicide to make-up fluid according to the above directions. Frequent checks (at least once per week) of the bacterial and fungal population in the system should be made using standard microbiological plate count procedures or any of the commercial “dip-stick” type devices. When the fungal count reaches 102 organisms per milliliter or greater, add additional Sodium omadine fungicide according to the above directions. The fluid should be checked at least once per day with a refractometer (or other suitable means) to determine if water loss by evaporation has occurred. Make-up water should be added daily to compensate for such losses. The fluid should be monitored at least once per week (depending on the metalworking operation involved) for the following: tramp oil, pH, odor, oil droplet size, and anticorrosion properties. If any of these parameters is outside the specifications established for the system in question, they should be brought up to specifications by the addition of suitable additives or the fluid should be discarded and replaced after cleaning the system. Add Sodium omadine fungicide to the fresh fluid according to the above directions. Contaminated fluid systems should be cleaned prior to the addition of Sodium omadine fungicide. Drain the system, clean with a cleaner designed for this purpose, rinse with water, and refill with fresh fluid. Sodium omadine fungicide may be added to the fluid at the time it is prepared (diluted) or to the reservoir (sump) containing the fluid after it is put into use. If it is added to the reservoir, the fluid should be circulated after addition to ensure mixing. To inhibit the growth of fungi in aqueous metalworking, cutting, cooling and lubricating concentrates: Add an amount that will give up to 1250 ppm in the diluted fluid. The amount required in the concentrate will depend on the end use dilution. For example: If the desired level of Sodium omadine fungicide in the diluted fluid is 200 ppm, and the end use dilution of the fluid is 5%, then a 0.4% concentration of Sodium omadine fungicide is required in the concentrate (200 ppm/0.05 = 4,000 ppm or 0.4%). Heat Stability of Sodium omadine Sodium omadine fungicide is stable at 100°C for at least 120 hours. At 150°C, the assay of Sodium omadine fungicide decreases 29% during a 48-hour period. The heat of decomposition, as measured under nitrogen by differential scanning calorimetry, is 158 cal/g for Sodium omadine fungicide. pH Stability of Sodium omadine Sodium omadine fungicide can be used over the pH range from 4.5 to 11.0. Below pH 4.5, the sodium salt is in equilibrium with free pyrithione. Pyrithione is active microbiologically, but is very unstable in the presence of light or oxygen. Light Stability of Sodium omadine Sodium omadine fungicide will gradually degrade when exposed to light, depending on the nature of the formulation. Formulations containing Sodium omadine fungicide should be packaged in brown or opaque containers unless tests have shown that photodegradation is not a problem. Sodium omadine Fungicide is a highly active, broad-spectrum antimicrobial agent that, when used at recommended concentrations, can help to prevent and minimize problems associated with fungal contamination. Sodium omadine is the 40% aqueous sodium salt derivative of pyrithione. Sodium Omadine functions as a wet-state preservative against bacteria and fungus in latex paints. Sodium Omadine is a highly active, very effective water soluble sodium pyrithione. Offers pronounced growth-inhibiting activity against both yeasts and molds. Sodium Omadine possesses non-irritating and non-sensitizing properties. Chemical Properties Clear solution Uses For chemistry of 2-mercaptopyridine-N-oxide, see Aldrichimica Acta.1 Uses sodium pyrithione is a preservative that is not commonly used because of some level of toxicity. It is prohibited in Canada, and it is on the eu Annex II list of substances that must not form part of a cosmetic product composition. Uses Sodium omadine is a bactericide for use in cooling fluids and short-term in-can preservation of vinyl acetate latex, paints, and synthetic-fiber lubricants; preservative for cosmetic rinse-off products. Definition Apparently exists in equilibrium with the -SH form. Forms chelates with iron, manganese, zinc, etc. brand name Sodium Omadine (Olin). Safety Profile Poison by intraperitoneal and intravenous routes. Moderately toxic by ingestion, subcutaneous and parenteral routes. Used in preservation of cosmetics. When heated to decomposition it emits very toxic fumes of Na2O, NOx, and SOx. See also MERCAPTANS. Sodium omadine is the sodium salt form of pyrithione, a fungistatic and antimicrobial derivative of aspergillic acid. Although the exact mechanism of action remains to be fully elucidated, Sodium omadine appears to interfere with membrane transport ultimately leading to a loss of metabolic control. Sodium omadine is the common name of an organosulfur compound with molecular formula C5H5NOS, chosen as an abbreviation of pyridinethione, and found in the Persian shallot. It exists as a pair of tautomers, the major form being the thione 1-hydroxy-2(1H)-pyridinethione and the minor form being the thiol 2-mercaptopyridine N-oxide; it crystallises in the thione form.[5] It is usually prepared from either 2-bromopyridine,[1] 2-chloropyridine, or 2-chloropyridine N-oxide,[8] and is commercially available as both the neutral compound and its sodium salt.[1] It is used to prepare zinc Sodium omadine, which is used primarily to treat dandruff and seborrhoeic dermatitis in medicated shampoos, though is also an anti-fouling agent in paints. Preparation The preparation of Sodium omadine was first reported in 1950[13] by Shaw[14] and was prepared by reaction of 2-chloropyridine N-oxide with sodium hydrosulfide followed by acidification,[8] or more recently with sodium sulfide.[15] 2-chloropyridine N-oxide itself can be prepared from 2-chloropyridine using peracetic acid.[16] Another approach involves treating the same starting N-oxide with thiourea to afford pyridyl-2-isothiouronium chloride N-oxide which undergoes base hydrolysis to Sodium omadine.[1][17] 2-Bromopyridine can be oxidised to its N-oxide using a suitable peracid (as per 2-chloropyridine), both approaches being analogous to that reported in Organic Syntheses for the oxidation of pyridine to its N-oxide. A substitution reaction using either sodium dithionite (Na2S2O4) or sodium sulfide with sodium hydroxide will allow the replacement of the bromo substituent with a thiol functional group. The alternative strategy is to form the mercaptan before introducing the N-oxide moiety. 2-Mercaptopyridine was originally synthesized in 1931 by heating 2-chloropyridine with calcium hydrosulfide,[6] an approach similar that first used to prepare Sodium omadine.[8] The analogous thiourea approach via a uronium salt was reported in 1958 and provides a more convenient route to 2-mercaptopyridine.[7] Oxidation to the N-oxide can then be undertaken. The disulfide diSodium omadine, 2,2'-dithiobis(pyridine-N-oxide) Sodium omadine is found as a natural product in the Allium stipitatum plant, an Asian species of onion, also known as the Persian shallot.[4] Its presence was detected using positive ion mass spectrometry using a DART ion source[19] and the disulfide diSodium omadine [de] (2,2'-disulfanediylbis(pyridine)-1,1'-dioxide) has been reported from the same species.[20] DiSodium omadine can be prepared in a laboratory by oxidation of Sodium omadine with chlorine in the presence of sodium hydroxide: 2 C5H4NOSH + Cl2 + 2 NaOH → ONC5H4–S–S–C5H4NO + 2 NaCl + 2 H2O DiSodium omadine is used as a fungicide and bactericide,[8] and has been reported to possess novel cytotoxic activity by inducing apoptosis.[21] Properties Tautomerisation of the sodium salt of Sodium omadine (thione form on the left, thiolate form on the right) Sodium omadine exists as a pair of prototropes, a form of tautomerism whereby the rapid interconversion of constitutional isomers involves the shift of a single proton, in this case between the sulfur and oxygen atoms (shown in the infobox above). Salts of the conjugate base of Sodium omadine can also be considered to exhibit tautomerism by notionally associating the sodium ion with whichever heteroatom bears the negative charge of the anion (as opposed to the formal charges associated with the N-oxide); however, considering the anion alone, this could also be described as an example of resonance. Sodium omadine is a weak acid with pKa values of −1.95 and +4.6 (thiol proton), but is a markedly stronger acid than either of its parent compounds (pyridine-N-oxide and pyridine-2-thiol), both of which have pKa > 8.[22] It is only slightly soluble in water (2.5 g L−1) but is soluble in many organic solvents (including benzene, chloroform, dichloromethane, dimethylformamide, dimethylsulfoxide, and ethyl acetate) and slight solubility in others (diethyl ether, ethanol, methyl tert-butyl ether, and tetrahydrofuran). Sodium omadine can be used as a source of hydroxyl radical in organic synthesis as it photochemically decomposes to HO• and (pyridin-2-yl)sulfanyl radical. Applications Structures of 1:2 complexes of zinc and the conjugate base of Sodium omadine Top: Structural formula of the monomer Bottom: Ball-and-stick model of the dimer The conjugate base of Sodium omadine (pyrithionate ion) is an anion containing two donor atoms, a sulfur atom and an oxygen atom each bearing a negative formal charge; the nitrogen atom remains formally positively charged. The thiolate anion can be formed by reaction with sodium carbonate, and zinc Sodium omadine is formed when zinc chloride is added.[10] The anion can act as either a monodentate or bidentate ligand and forms a 1:2 complex with a zinc(II) metal centre. Zinc Sodium omadine has been used since the 1930s though its preparation was not disclosed until a 1955 British patent[13] in which Sodium omadine was reacted directly with hydrated zinc sulfate in ethanol.[9] In its monomeric form, zinc Sodium omadine has two of the anions chelated to a zinc centre with a tetrahedral geometry. In the solid state, it forms a dimer in which each zinc centre adopts a trigonal bipyramidal geometry with two of the anions acting as bridging ligands coordinated through the oxygen atoms in the axial positions.[26] In solution, the dimers dissociate via scission of zinc-oxygen bonds to each bridging ligand. Further dissociation of the monomer into its constituents can occur and is undesirable as the complex is more potent in medical applications; for this reason, zinc carbonate can be added to formulations as it inhibits the monomer dissociation. Zinc Sodium omadine has a long history of use in medicated shampoos to treat dandruff and seborrhoeic dermatitis (dandruff can be considered a mild form of seborrheic dermatitis). It exhibits both antifungal and antimicrobial properties, inhibiting the Malassezia yeasts which promote these scalp conditions. The mechanisms by which this work are the subject of ongoing study. It can be used as an antibacterial agent against Staphylococcus and Streptococcus infections for conditions such as athlete's foot, eczema, psoriasis, and ringworm. It is known to be cytotoxic against Pityrosporum ovale, especially in combination with ketoconazole, which is the preferred formulation for seborrheic dermatitis.[11] Sodium omadine itself inhibits membrane transport processes in fungi. Paints used in external environments sometimes include zinc Sodium omadine as a preventive against algae and mildew. Sodium omadine zinc is an antibacterial and antifungal agent developed by scientists in the 1930's. Since then it has been used to treat seborrheic dermatitis of the scalp and other skin conditions such as eczema, athlete's foot, and vitiligo, as well as psoriasis. Because of its antifungal properties, it is commonly found in dandruff shampoo. Products containing Sodium omadine zinc are available today with and without prescription, and it is the main ingredient in many over-the-counter creams, lotions, soaps, and shampoos. It also has antibacterial properties and is effective against many pathogens from the Streptococcus and Staphylococcus genera. Sodium omadine zinc`s other medical applications include treatments of psoriasis, eczema, ringworm, fungus, athletes foot, dry skin, atopic dermatitis, tinea, and vitiligo. Its antifungal effect is thought to derive from its ability to disrupt membrane transport by blocking the proton pump that energizes the transport mechanism. Stability: At room temperature in the dark, Sodium omadine is stable in the pH range 4.5 to 9.5. At 100°C it is stable for at least 120 hours, at 150°C 29 % of the substance has decomposed within 48 hours. In the light or in contact with weak oxidizing agents Sodium omadine is converted to the disulfide, 2,2-pyridyl-N-oxide disulfide. With stronger oxidizing agents or in alkaline solution (pH > 9.5) the substance is converted via a number of intermediates to the sulfonic acid; the reaction with reducing agents yields thiopyridine (Olin Corporation 1989f). Independent of the exposure route, Sodium omadine is of low toxicity. The typical symptom of intoxication in rats, mice and rabbits given single or multiple doses of the substance is reversible paralysis of the rear extremities. This effect is not seen in monkeys or dogs. In both these species effects on the pupillary reflex and photophobia were observed. Irreversible eye damage, however, has been seen only in species which have a tapetum lucidum, for example, the dog. Sodium omadine is readily absorbed from the gastrointestinal tract and through the intact skin. The substance is excreted rapidly in the form of urinary metabolites. Applied to rabbits, the substance causes slight irritation of the skin and eyes. Brief contact with aqueous solutions containing less than 1 % Sodium omadine produced no effects in animals or man; sensitization could not be demonstrated. Reproductive toxicity is not observed, either after dermal application to rats or rabbits or after oral administration to rats. Embryotoxicity develops in rats but not in rabbits after maternally toxic doses of Sodium omadine. Genotoxic effects of Sodium omadine could not be demonstrated in the Salmonella mutagenicity test, in the HPRT (hypoxanthine guanine phosphoribosyl transferase) test or in the test for DNA repair in rat hepatocytes. However, because the substance is cytotoxic, only low concentrations could be tested. Negative results were also obtained in vivo in the micronucleus test. Sodium omadine is not carcinogenic either after dermal application to mice or after oral administration to rats. There are no reports of toxic effects of single exposures of persons to Sodium omadine. Reproductive toxicity, genotoxicity and carcinogenicity of Sodium omadine in man have not been described. Sodium omadine zinc, or zinc Sodium omadine or zinc pyridinethione, is a coordination complex consisted of Sodium omadine ligands chelated to zinc (2+) ions via oxygen and sulfur centers. In the crystalline state, it exists as a centrosymmetric dimer. Due to its dynamic fungistatic and bacteriostatic properties, Sodium omadine zinc is used to treat dandruff and seborrheic dermatitis. Dandruff is a common scalp disease affecting >40% of the world's adult population, and may be caused by fungi such as Malassezia globosa and M. restricta 3. Sodium omadine zinc is commonly found as an active ingredient in OTC antidandruff topical treatments such as shampoos. It mediates its action by increasing the cellular levels of copper, and damaging iron-sulfur clusters of proteins essential for fungal metabolism and growth 1. Due to low solubility, Sodium omadine zinc released from the topical formulations is deposited and retained relatively well onto the target skin surfaces 2. Other uses of Sodium omadine zinc include additive in antifouling outdoor paints and algaecide. While its use has been approved in the early 1960's by the FDA 4, safety and effectiveness of Sodium omadine zinc has been reported for decades. It is not shown to have any significant estrogenic activity according to the in vivo and in vitro assays 4. Photodegradation in water A study of the photolysis rate of sodium omadine has been carried out. In a GLP study conducted according to US guideline US FDA Technical Assistance Document, Guideline 3.10 Photodegradation. 1987.) (5.1.3.001, EZPTF 7011-121) at a concentration of 10 mg/L, DT50for photolysis were determined to be <10 minutes at pH 5 and 7 and <15 minutes at pH 9. Degradants were not identified in this study. A further study of the aqueous photolysis rate of Sodium omadine has also been conducted (refer to Table 5.1.2). Study (5.1.3.003, EZPTF 7011-123) was conducted to determine the influence of concentration on photolysis rates. Photolysis was done in deionized water with zinc Sodium omadine concentrations of 0.1-1 μg/L, which are much closer to predicted environmental concentrations than those of the other two studies. Exposure to natural sunlight (42° N latitude) was done in quartz tubes at noon during the months of July through October. ZnPT was shown to have considerable absorptivity in the range of 290-400 nm, where photoactive solar radiation is available and photolysis in natural sunlight was very rapid. Measured photolysis half-lives ranged from 1.1 to 1.4 minutes in deionized water. Simultaneous exposure of the actinometer (o‑nitrobenzaldehyde) solutions allowed the calculation of photolysis disappearance quantum yields. Reproducibility at the very low concentrations used in this study required that several exposure experiments be run for each test compound and the results averaged. The quantum yield for ZnPT at 3.15 x 10-9M and 3.15 x 10-10M was 0.17 ± 0.06 (n = 4). This study also demonstrated that three metallic complexes of Sodium omadine (Zinc, Copper and Sodium) all exhibited the same photolysis rate at environmentally relevant concentrations. Photodegradation in air This point is regarded not to be relevant because: - the vapour pressure of NaPT is very low, resulting in negligible exposure to the atmosphere. - the calculation according to the Atkinson calculation method (5.1.1.001, ESPTF 7031-001) indicates a short half-life (53.8 hours) of sodium Sodium omadine in the atmosphere. Summary of degradation - Sodium Sodium omadine is hydrolytically stable. - Sodium Sodium omadine passes the ready biodegradability test according to OECD 301B and biodegradation is rapid in soil, water-sediment, and STP. The degradation profile is well identified passing through several transient degradants to a final somewhat persistent degradant 2‑pyridine sulphonic acid (PSA). - Photolysis is extremely rapid—again leading to the final somewhat persistent degradant 2‑pyridine sulphonic acid (PSA). - The final degradant, PSA, passes the ready biodegradability test according to OECD 301B. Sodium omadine is a fungistatic and antimicrobial derivative of aspergillic acid. Although the exact mechanism of action remains to be fully elucidated, Sodium omadine appears to interfere with membrane transport ultimately leading to a loss of metabolic control. Absorption Following oral ingestion, only the Sodium omadine moiety is absorbed. Less than 1% of administered zinc Sodium omadine is absorbed from the skin [L1758]. Radioabeled Zn Sodium omadine administered to rats, rabbits and monkeys, either orally or via intraperitoneal injection were absorbed into circulatin to extent of 80-90% [L1758].Inhibition of fungal growth by Sodium omadine zinc is linked to increased copper uptake and cellular levels of copper, which is demonstrated by decreased CTR1-lacZ expression and slightly increased CUP1-lacZ expression in affected microorganisms [A32162]. The coordination complex of Sodium omadine zinc dissociates, and Sodium omadine ligand forms a CuPT complex from available extracellular copper in the target organism. Sodium omadine acts as an ionophore, interacting nonspecifically with the plasma membrane to shuttle copper into the cell, and facilitates copper transport across intracellular membranes [A32162]. Copper may be shuttled into the mitochondria. Copper inactivates iron-sulfur (Fe-S) cluster-containing proteins via a mechanism similar to that described for copper-induced growth inhibition in bacteria [A32162]. Decreased activity of Fe-S proteins leads to inhibition of fungal metabolism and fungal growth. Sodium omadine zinc has been shown to slightly increase the levels of zinc [A32162]. Sodium omadine (or pyrithione zinc) is a coordination complex of zinc. It has fungistatic (that is, it inhibits the division of fungal cells) and bacteriostatic (inhibits bacterial cell division) properties and is used in the treatment of seborrhoeic dermatitis. Structure of the compound The pyrithione ligands, which are formally monoanions, are chelated to Zn2+ via oxygen and sulfur centers. In the crystalline state, Sodium omadine exists as a centrosymmetric dimer (see figure), where each zinc is bonded to two sulfur and three oxygen centers.[3] In solution, however, the dimers dissociate via scission of one Zn-O bond. This compound was first described in the 1930s. Pyrithione is the conjugate base derived from 2-mercaptopyridine-N-oxide (CAS# 1121-31-9), a derivative of pyridine-N-oxide. Uses Medical Sodium omadine can be used to treat dandruff and seborrhoeic dermatitis.[medical citation needed] It also has antibacterial properties and is effective against many pathogens from the Streptococcus and Staphylococcus genera.[medical citation needed] Its other medical applications include treatments of psoriasis, eczema, ringworm, fungus, athletes foot, dry skin, atopic dermatitis, tinea versicolor,[5] and vitiligo. In paint Due to its low solubility in water (8 ppm at neutral pH), Sodium omadine is suitable for use in outdoor paints and other products that provide protection against mildew and algae. It is an effective algaecide. It is chemically incompatible with paints relying on metal carboxylate curing agents. When used in latex paints with water containing high amount of iron, a sequestering agent that will preferentially bind the iron ions is needed. Its decomposition by ultraviolet light is slow, providing years of protection even against direct sunlight. In sponges Sodium omadine is also used as an antibacterial treatment for household sponges, most notably by the 3M Corporation.[6] In clothing A process to apply Sodium omadine to cotton with washable results was patented in the United States in 1984.[7] Sodium omadine is now used to prevent microbe growth in polyester.[8] Textiles with applied Sodium omadine protect against odor-causing microorganisms. Export of antimicrobial textiles reached US$497.4 million in 2015. Mechanism of action Its antifungal effect is thought to derive from its ability to disrupt membrane transport by blocking the proton pump that energizes the transport mechanism. Health effects Sodium omadine is approved for over-the-counter topical use in the United States as a tr
SODIUM O-PHENYLPHENATE ( Orthophénylphénate de sodium ) SOPP
SODIUM OXYMETHYLENE SULFOXYLATE N° CAS : 149-44-0 Nom INCI : SODIUM OXYMETHYLENE SULFOXYLATE Nom chimique : Sodium hydroxymethanesulphinate N° EINECS/ELINCS : 205-739-4 Ses fonctions (INCI) Agent réducteur : Modifie la nature chimique d'une autre substance en ajoutant de l'hydrogène ou en éliminant l'oxygène
SODIUM OXYMETHYLENE SULFOXYLATE
SODIUM PALMITATE N° CAS : 408-35-5 Origine(s) : Végétale, Synthétique Nom INCI : SODIUM PALMITATE N° EINECS/ELINCS : 206-988-1 Classification : Huile de Palme (Dérivé) Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM PALMITATE
SODIUM PALMITOYL SARCOSINATE N° CAS : 4028-10-8 Nom INCI : SODIUM PALMITOYL SARCOSINATE Nom chimique : Sodium N-methyl-N-(1-oxohexadecyl)aminoacetate N° EINECS/ELINCS : 223-705-7 Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM PALMITOYL SARCOSINATE
SODIUM P-CHLORO-M-CRESOL; N° CAS : 15733-22-9; Nom INCI : SODIUM P-CHLORO-M-CRESOL; Nom chimique : 3-Methyl-4-Chlorophenol, Sodium salt; N° EINECS/ELINCS : 239-825-8; Ses fonctions (INCI); Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes; Noms français : SODIUM-4-CHLORO-3-METHYLPHENOLATE; Noms anglais : P-CHLORO-M-CRESOL, SODIUM SALT; PHENOL, 4-CHLORO-3-METHYL-, SODIUM SALT; SODIUM 4-CHLORO-3-METHYLPHENOXIDE; SODIUM-4-CHLORO-M-CRESOLATE; Naatrium-p-kloro-m-kresolaat (et); Natrijev p-kloro-m-krezolat (hr); Natrio p-chlor-m-krezoliatas (lt); Natrium p-chlor-m-kresolat (de); natrium-4-chlor-3-methylfenolát (cs) ; Natrium-p-chloor-m-kresolaat (nl); natrium-p-chlor-m-cresolat (da); Natrium-p-kloori-m-kresolaatti (fi); Natrium-p-kloro-m-kresolat (sv); nátrium-4-chlór-3-metylfenolát (sk); Nátrium-p-klór-m-krezolát (hu); Nātrija p-hlor-m-krezolāts (lv); p-chloro-m-crésolate de sodium (fr); P-chloro-m-krezolan sodu (pl); p-Cloro-m-cresolato de sodio (es); p-Cloro-m-cresolato de sódio (pt); p-cloro-m-cresoloato di sodio (it); p-cloro-m-crezolat de sodiu (ro); P-Kloro-m-kresolat tas-sodju (mt); Sodium p-chloro-m-cresolate (no); π-χλωρο-μ-κρεσολικό νάτριο (el); Натриев p-хлоро-m-крезолат (bg). IUPAC names : sodium 4-chloro-3-methylbenzen-1-olate; sodium 4-chloro-3-methylphenolate; 15733-22-9 [RN]; 239-825-8 [EINECS]; 2-chloro-5-hydroxytoluene sodium salt; 4-Chloro-3-méthylphénolate de sodium [French] ; MFCD00053303; Natrium-4-chlor-3-methylphenolat [German] ; Phenol, 4-chloro-3-methyl-, sodium salt (1:1) ; SODIUM 4-CHLORO-3-METHYLBENZENOLATE; Sodium 4-chloro-3-methylphenolate; Sodium p-chloro-m-cresol; [15733-22-9]; 2-CHLORO-5-HYDROXYTOLUENESODIUMSALT; 3-Methyl-4-chlorophenol, sodium salt; 4-CHLORO-3-METHYLPHENOL SODIUM SALT; EINECS 239-825-8; p-Chloro-m-cresol sodium salt; p-Chloro-m-cresol, sodium salt; Phenol, 4-chloro-3-methyl-, sodium salt; Phenol,4-chloro-3-methyl-, sodium salt (1:1); SODIUM 4-CHLORO-3-METHYLBENZEN-1-OLATE; sodium 4-chloro-3-methyl-phenolate; Sodium 4-chloro-3-methylphenoxide; Sodium 4-chloro-m-cresolate; sodium p-chloro-m-cresolate
SODIUM PCA
SODIUM PCA Please consult your doctor or pharmacist or read the package insert. Cite this page APA Style Citation Sodium Pca / Cyclopentasiloxane - Uses, Side-Effects, Reviews, and Precautions - MLA Style Citation "Sodium Pca / Cyclopentasiloxane - Chicago Style Citation "Sodium Pca / Cyclopentasiloxane - Related Links Sodium Pca / Cyclopentasiloxane for skin conditioning Sodium Pca / Cyclopentasiloxane for hair conditioning More about Sodium Pca / Cyclopentasiloxane Uses Comments Consumer Survey - Sodium Pca / Cyclopentasiloxane The following are the results of an ongoing survey on TabletWise.com for Sodium Pca / Cyclopentasiloxane. These results only show the perceptions of the users of this website. Please make your medical decisions based on the advice of a doctor or a specialist. Uses, Efficiency and Side Effects The following are information on the usage, perceived efficiency and frequency of side effects offered by site visitors for Sodium Pca / Cyclopentasiloxane: Overdose of Sodium Pca / Cyclopentasiloxane Do not use more than prescribed dose. Consuming more of the drug will not improve your symptoms; on the contrary, it can cause poisoning or serious side effects. If you suspect that you or a relative has used an overdose of Sodium Pca / Cyclopentasiloxane, please visit your nearest hospital emergency department. To help doctors, bring necessary information such as a medicine box, bottle, or label. Do not give your medication to someone else, even if you know they have the same condition or they seem to have similar conditions. This can cause an overdose. For more information, consult your pharmacist or check the package insert. Storage of Sodium Pca / Cyclopentasiloxane Store medicines at room temperature, away from heat and light. Do not freeze medicines unless it is written on the package insert. Keep medicines out of the reach of children and pets. Do not pour medicines into the toilet or sink unless you are told to do so in the package insert. Drugs disposed in this way can pollute the nature. Please consult your pharmacist or doctor for more details on how to safely discard Sodium Pca / Cyclopentasiloxane. Expired Sodium Pca / Cyclopentasiloxane Taking a single dose of expired Sodium Pca / Cyclopentasiloxane is likely to cause an adverse event. Consult your family doctor or pharmacist for appropriate advice or if you feel unwell. Expired drugs will not be effective in treating conditions on your prescription. In order to stay safe, it is very important not to use expired medications. If you have a chronic illness that requires constant medication, such as heart disease, seizures, and life-threatening allergies, it is even more important to stay in touch with your GP so that you can replace expired medications immediately. Dosage Information Is this drug or product addictive or addictive? Many drugs are not marketed as addictive or abusive. Often ministries categorize drugs into controlled and non-addictive drugs. For example, this classification is H and X in India and II and V in the USA. Please check the box to make sure the drug belongs to such a special classification. Finally, do not try to self-medicate and increase your body's dependence without the advice of a doctor. Can I stop using this product immediately or do I get rid of it gradually? Some drugs should be tapered or their use should not be stopped suddenly to avoid withdrawal effects. Consult your doctor for recommendations specific to your body and health condition and other medications you can use. Other important information on Sodium Pca / Cyclopentasiloxane Forgetting to take a dose If you forget to take a dose, use it immediately. If your next dose is too close to your time, stop taking the missed dose and stick to your dosing schedule. Do not take extra doses to treat the missed dose. If you regularly forget your doses, set an alarm or ask a family member to remind you. Please consult your doctor to make changes to your dosing schedule or to make up for missed doses if you have recently forgotten too many doses. Before using this medicine, you should inform your doctor about the medicines you are currently using, the medicines you are using without a prescription (e.g. vitamins, herbal supplements, etc.), allergies, your past illnesses and your current health condition (e.g. pregnancy, upcoming surgery, etc.) inform. Certain health conditions can make you more susceptible to the side effects of the medication. Take the steps as directed by your doctor or consider what is written on the product. The dosage depends on your condition. If your condition persists or worsens, notify your doctor. Key issues to consult are listed below. Planning to get pregnant, pregnant or breastfeeding Please consult your doctor or pharmacist or refer to the package insert for this information. Hypersensitivity to Sodium Pca / Cyclopentasiloxane is a contraindication. In addition, Sodium Pca / Cyclopentasiloxane should not be used if you have the following conditions: Hypersensitivity Frequently Asked Questions Is it safe to drive or use heavy machinery while using this product? If you experience side effects such as drowsiness, dizziness, hypotension (low blood pressure) or headache while using Sodium Pca / Cyclopentasiloxane, it may not be safe to drive and / or use a construction machine. If the medication used causes drowsiness, dizziness or lowers your blood pressure, you should not drive. In addition, pharmacists advise patients not to drink alcohol with the drug, as alcohol intensifies side effects such as drowsiness. Please check for these effects on your body when using Sodium Pca / Cyclopentasiloxane. Always consult your doctor for advice specific to your body and health condition. Sodium Pca / Cyclopentasiloxane Medicine Sodium Pca / Cyclopentasiloxane Overview Uses Side effects Precautions Interactions Contraindications Overview Sodium Pca / Cyclopentasiloxane combination is used for Skin conditioning, Hair conditioning and other conditions. Detailed information on the use of Sodium Pca / Cyclopentasiloxane product, side effects, product comments, questions, interactions and precautions are as follows: uses Sodium Pca / Cyclopentasiloxane is used for the treatment, control, prevention, & improvement of the following diseases, conditions and symptoms: Skin conditioning Hair softening Further information: Uses Side effects The following is a list of possible side-effects that may occur in medicines that contain Sodium Pca / Cyclopentasiloxane. This is not an exhaustive list. These side effects are likely to occur, but do not always occur. Some of the side effects are rare but can be very serious. Be sure to consult your doctor if you observe any of the following side effects, especially those that do not go away even if you expect them to. Skin irritation Hives If you notice any side effects other than those listed below, consult your doctor for medical advice. You can also report side effects to your nearest health department official. Measures Limnanthes Alba (Meadowfoam) Seed Oil, Rosa Damascena Flower Water, Beeswax (Cera Alba), Pentylene Glycol, Corylus Avellana (Hazel) Seed Oil, Ormenis Multicaulis Flower Wax, Sodium PCA Carbonate Decahydrate, Limonene, Citrus Medica Lemonum (Lemon) Peel Oil, Osmanthus Fragrans Flower Extract, Anthemis Nobilis Flower Oil, Tocopherol, Citronellol, Geraniol, Citral. If you have oily skin, avoid the first line items in their products being oil. In this case, make sure that the moisturizing agents are glycerin, sodium PCA, hyaluronic acid or sodium PCA hyaluronate. Amino acid cocktail: It contains Sodium PCA and 8 types of amino acids found in the skin's own structure. It is very effective in the care of mature skin. It helps the skin to be nourished and restructured. Bifida Ferment Lysate: It is an antiaging active with proven effectiveness. It prevents the damage of UV light on DNA. It helps to repair wrinkles by helping to repair DNA. 50ml Content: Sodium PCA: Protects against dryness by allowing the skin to retain more moisture. It is a natural and important moisturizing agent that is also found in the skin structure. Content: Amino acid cocktail: It contains Sodium PCA and 8 types of amino acids found in the skin's own structure. It is very effective in the care of mature skin. It helps the skin to be nourished and restructured. Glycine Soybean Seed Extract: Increases the strength of the skin with protein, glycoprotein and polysaccharides obtained from soy, renews the skin and revitalizes the skin cells. It helps prevent premature aging effects caused by UV rays and DNA damage on the skin. UVA / UVB Protection Factor: It contains a protection factor of 15 SPF. 50ml Hyaluronic acid, one of the most effective moisture retainers, has a water holding capacity of 1000 times its own weight. It has a tightening effect. It increases the elasticity of the skin. It ensures the transmission of moisture to all cells in the skin. Provides moisturization for a long time on the skin. These products, which plump the skin and provide moisture for a long time, are suitable for day and night use. It also ensures that the skin is smooth and even toned. Active Ingredients / Active Ingredients Sodium PCA, Sodium hyaluronate, Panthenol 10 x 2 ml Sodium PCA Messages Overview(active tab) Safety Resources What Is It? In cosmetics and personal care products, Sodium PCA (pyrrolidonecarboxylic acid) is used mostly in the formulation of hair conditioners and moisturizers. The sodium PCA salt of Sodium PCA, Sodium PCA, can be found in these products, as well as in shampoos, hair sprays, permanent waves, skin fresheners and other hair and skin care products. Why is it used in cosmetics and personal care products? Sodium PCA and Sodium PCA increase the water content of the top layers of the skin by drawing moisture from the surrounding air. They also enhance the appearance and feel of hair, by increasing hair body, suppleness, or sheen, or by improving the texture of hair that has been damaged physically or by chemical treatment. Abstract Sodium PCA pyrrolidone carboxylic acid is the sodium PCA salts of 2 pyrrolidone 5 carboxylate, It is one of the major Natural Moisturing factor (NMF) found in human skin. It is documented that sodium PCA pyrrolidone carboxylic acid (Na- Sodium PCA) is used in hair care & skin care products with great effectivity as it is water extracting skin component. As Na- Sodium PCA is the Natural Moisturizing Agent, it gives suppleness, humectancy & moisturizing property. It is being water soluble, therefore an oil in water (O/W) cream base decided to develop. Three formulae were developed in laboratory incorporating 2.5% & 5% of Na- Sodium PCA &7.5% glycerine. Three cream prepared were further studied for its stability with reference to effect of temp. i.e. at Room Temp.-24-28°c,at oven 50°c, & at refrigerator 90°c, change in colour, odour, pH, globules size & viscosity. It was further decided to study the performance evaluation. Details Sodium PCA stands for Pyrrolidone Carboxylic Acid and though it might not sound like it, it is a thing that can be found naturally in our skin. The sodium PCA salt form of Sodium PCA is an important skin-identical ingredient and great natural moisturizer that helps the skin to hold onto water and stay nicely hydrated. Description: Sodium PCA is the sodium PCA salt of pyroglutamic acid which is an uncommon amino acid found naturally in many proteins. Concentration: 50% (dissolved in water). GMO-free, gluten-free. Colorless to pale yellow clear liquid, soluble in water, pH 6.8-7.4. CAS: 28874-51-3 INCI Name: Sodium PCA (sodium L-pyroglutamate) Benefits: Occurs naturally in human skin and is responsible for binding moisture to the cells Highly water-absorbent, holding several time its weight in water, which makes it an excellent humectant Well-know as skin-penetration enhancer Stronger hydrating agent than the traditional compounds like glycerin or propylene glycol Good for hair care as it reduces static electricity. Use: Add as is to the water phase of the formulas, typical use level 1 - 10% in emulsions. For external use only. Applications: All kinds of skin care products such as creams, gels, lotions, hair care products, color cosmetics. Country of Origin: USA Raw material source: The original amino acid proline is obtained mainly from fruits and coconut oil. Manufacture: A fermentation process of sugars and starches is then used in order to create Sodium PCA from proline. Animal Testing: Not animal tested GMO: GMO-free but not certified Vegan: Does not contain any animal-derived components SODIUM PCA SODIUM PCA is classified as : Antistatic Hair conditioning Humectant Skin conditioning CAS Number 28874-51-3 EINECS/ELINCS No: 249-277-1 COSING REF No: 79910 Chem/IUPAC Name: Sodium PCA 5-oxo-2-pyrrolidinecarboxylate Sodium PCA is the sodium PCA salt of pyroglutamic acid (also known as Sodium PCA). Sodium PCA is a naturally occurring component of human skin and a part of the "natural moisturizing factors" (NMF) that maintain a healthy epidermis. Sodium PCA is very hygroscopic, attracting moisture from the air. It imparts a moist feeling to hair and skin. Sodium PCA applied to the skin is absorbed to a limited extent. It is non-comedogenic, nonirritating to the eye and skin -- even at concentrations up to 50%, and does not contribute to phototoxicity or sensitization. It is rapidly biodegradable. Soluble in water and ethanol and insoluble in oils, it is used for its powerful humectant properties in many skin and hair care products including gels, creams, lotions, shampoos, conditioners, lipsticks and foundations. This Sodium PCA is sourced from all-natural, vegetable-based ingredients; it contains no animal-based ingredients of any kind. INCI: Sodium PCA INCI: Sodium PCA 50% pH-value 6,8-7,4% Dosage: 0,5 - 10% Sodium PCA is a kind of natural moisturizing factor(NMF). It becomes an important additive ingredient in skin-care and hair-care cosmetics in the recent years. It has stronger hydrating power than that of glycerin, sorbitol and propanediol. What is Sodium PCA? Jun 08, 2019 Sodium PCA levels in the skin are highest during childhood. As time progresses, these levels can drop significantly. Using skin care products containing Sodium PCA can help increase these levels as you age. Sodium PCA also contains antioxidants that fight free radicals that can age the skin. It also contains vitamins D and E, which can aid in skin rejuvenation. This powerful moisturizer is made from many herbs, but sodium PCA from each herb is used to do different things. For example, Sodium PCA from herbs and vegetables can be used as an emollient. When Sodium PCA is derived from coconut oil, it is used as an emulsifier. Sodium PCA found in cherry or seaweed can replenish moisture inside the skin. Sodium PCA can also be used in certain types of lotions that protect the skin from excessive sunlight. This ingredient not only draws moisture into the skin but can also help keep it in. This makes it best suited for all skincare products. When sodium PCA is used in soaps, it can help the skin in many ways. It works with the natural Sodium PCA found in the skin to create a healthier and renewed skin. Sodium PCA used in shampoos and conditioners helps to retain water in the hair shaft. It can also add shine and bounce to hair. When the hair is very dry, static can build up, causing difficult-to-manage, flying hair. Sodium PCA keeps enough moisture in the hair to eliminate frizzy and dry hair. In small quantities, the use of sodium PCA is not considered harmful. It is considered to be mildly toxic, but is sometimes used with nitrosamine, which is thought to be a toxin. There were no known skin or eye irritations associated with the use of Sodium PCA. Effects of lactic acid and sodium PCA pyrrolidone carboxylic acid on the irritated skin reaction induced by sodium PCA lauryl sulphate patch testing of normal persons and atopic dermatitis patients Background: Natural moisturizing factors such as sodium PCA pyrrolidone carboxylic acid and lactic acid may play an important role in increasing the moisture retention of isolated stratum corneum and reducing the incidence of dry and flaky skin in vivo. Although the precise mechanism of surfactant irritancy is not fully understood, it has been suggested that barrier dysfunction of stratum corneum by surfactants results in skin changes such as scaling, erythema, and even fissuring. Objective: We evaluated the effect of sodium PCA pyrrolidone carboxylic acid(Na Sodium PCA) and lactic acid(LA) with several non-invasive measuring methods in the irritated skin reaction induced by sodium PCA lauryl sulphate (SLS) in normal persons and atopic dermatitis patients. Methods: After skin irritation for 24 hours with patch test of 1% SLS on five volar sites of right forearm, we applied nothing(A), 3% LA+3% Na Sodium PCA PCA(B), 3% LA(C), 3% Na Sodium PCA(D), and vehicle(E) twice a day respectively. Visual score, transepidermal water loss(TEWL), water holding capacity(WHC), and erythema index were measured at 30 min, 24hr, 48hr and 72hr after patch removal. Results: 1. After 72hr, the visual scores of B and C were significantly lower than that of A(control) in atopic dermatitis patients, and that of C in normal persons was significantly lower than that of A, D, and E. 2. TEWL values of B and C in both the normal (after 72hr) and atopic dermatitis group (after 48hr and 72hr) were significantly lower than that of A. 3. WHC values of B, C, D in both the normal and atopic dermatitis group were significantly higher than that of A after 48hr and 72hr. 4. After 72hr, erythema indices by Mexameter® of B, C, and D in both the normal and atopic dermatitis group were significantly lower than that of A and values of C were significantly lower than that of E. In the atopic dermatitis group, values of D were also significantly lower than that of E. 5. The mean visual score was significantly correlated with TEWL value and erythema index of Mexameter (r=0.58, r=0.64) and the TEWL value was significantly correlated with erythema index of Mexameter® (r=0.64). Conclusion: These results suggest that topical application of a moisturizing factor might improve the surfactant-induced disruption of permeability barrier with improvement of the water holding capacity of the stratum corneum. Sodium PCA Pyrrolidone Carboxylic Acid As Moisturizing Agent Abstract: Sodium PCA pyrrolidone carboxylic acid is the sodium PCA salts of 2 pyrrolidone 5 carboxylate, It is one of the major Natural Moisturing factor (NMF) found in human skin. It is documented that sodium PCA pyrrolidone carboxylic acid (Na- Sodium PCA) is used in hair care & skin care products with great effectivity as it is water extracting skin component. As Na- Sodium PCA is the Natural Moisturizing Agent, it gives suppleness, humectancy & moisturizing property .It is being water soluble,therefore an oil in water (O/W) cream base decided to develop. Three formulae were developed in laboratory incorporating 2.5% & 5% of Na- Sodium PCA &7.5% glycerine. Three cream prepared were further studied for its stability with reference to effect of temp.i.e. at Room Temp.- 24-280c,at oven 500c, & at refrigerator 900c, change in colour, odour, pH, globules size & viscosity.It was further decided to study the performance evaluation. Key Words: Na- Sodium PCA, NMF, Moisturizing Agent. 1. Introduction: By Kligman, “Moisturizer is defined as a topically applied substance or product that overcomes the signs& symptoms of dry skin”. Idson defined as ,”a Moisturizer,a substance that can favourably affect the feeling of dry skin ,by influencing the water content of stratum corneum” 1 . The approach to restoring water to dry skin has taken three different routes. 1.Occulsion 2.Humectancy 3.Restoration of deficient materials which may be combined. The first approach,occlusion consists in reducing the rate of transepidermal water loss through old or damaged skin or in protecting otherwise healthy skin from the effect of a severely drying environment. The second approach to the moisturizing problem is the use of humectants to attract water from the atmosphere, so supplementing the skin’s water content. The third & perhaps the most valuable approach to moisturization of skin is to determine the precise mechanism of the natural moisturization process to assess what has gone wrong with it in the case of dry skin & to replace any materials in which such research has shown damaged skin to be deficient2 . Moisturizer’s often contain lipids & humectants of low molecular weight, humectants such as urea ,glycerine, lactic acid, pyrrolidone carboxylic acid (Sodium PCA) and salts are absorb into the stratum cornium and their by attracting water, increase hydration3 1.1 Natural Moisturizing Factor(NMF) “A Group of water soluble hydrophilic substances known as the natural moisturizing factor (NMF)4 . Analysis of water soluble component of stratum cornium have indicated the presence of amino –acid lactic acid ,sugar and pyrolidone carboxylic acid.The latter material is found in relatively large concentration in cornified skin.It has recently been shown that salts of this material are extremely ,hygroscopic, dissolving in their own water of hydrations. At pH of stratum corneum (pH5) pyrolidone carboxylic acid exists almost exclusively in the salt form. There result suggest that this material may represent one of the important natural Moisturizing agent for skin5 . Laden and spitzer proved that significant quantities of Na-2-pyrrolidone -5 carboxylate exist in the stratum.This compound is now commercially available for use in cosmetics6 . 1.2 Composition of NMF Amino acids 40% Sodium PCA(Pyrrolidone carboxylic acid) 12% Lactates 12% Urea 7% NH3,Uric acid, glucosamine, creatinine 1.5% Citrates 0.5% Na 5%, k 4%, Ca 1.5 %, Mg 1.5% , Po4 0.5% 18.5 % Sucrore, Organic acid, Peptides, Other aterials 8.5% 1.3 Pyrrolidone Carboxylic Acid(Sodium PCA) ;(C5H7N03) Molecular wt 129.11 7 1.4 Sodium PCA pyrrolidone carboxylic acid (NA- Sodium PCA);(C5H6NNa03) Molecular wt 151.1 8 Na- Sodium PCA is one of the major natural moisturizing factors(NME) found in human skin. It is the sodium PCA salts of 2 Pyrrolidone-5-Carboxylate(Na- Sodium PCA) is manufactured by dehydration of glutanic acid and forms as odourless solid. Sodium PCA -2 Pyrrolidone-5-Carboxylate has been Patented as a humactant at concentration of 2 % or higher. Water absorption ability of Sodium PCA Pyrrolidone Carboxylate9 Compound %Moisture intake(31%RH) %Moisture intake(58%RH) Pyrrolidone Carboxylic Acid <1 <1 Sodium PCA Pyrrolidone Carboxylic Acid 20 61 Glycerine 13 35 1.5 Uses of Sodium PCA Pyrrolidone Carboxylate in Cosmetics 10 1) Sodium PCA -2-pyrrolidone-5-carboxylate is an important humectants component of NMF. 2) It is used in moisturizing dry flacky skin. 3) It demonstrates excellent hygroscopc & humectants effect & these properties have been achieved with a salt form. 4) Skin & hair care products,suncare,make-up,product are among the major application for Na- Sodium PCA. 5) It moisturizes &protects skin from wind,cold. S.Bhise/Int.J.ChemTech Res.2013,5(4) 1450 2. Materials & Methods Three O/W formulation were developed in laboratory incorporating glycerine & sodium PCA pyrrolidone carboxylic acid(Na- Sodium PCA). 2.1 Formulation Notation A- Base formulation with 7.5% glycerine. B- Formulation with 2.5% Na- Sodium PCA. C- Formulation with 5.0% Na- Sodium PCA. 2.2 Stability study for Finished Product. All the three samples prepared were subjected to accelerated test conditions & were kept at room temp 24-28 0c,in oven at 50 0c & in refrigerator at 5-8 0c. Stability studies were carried out by accelerated stability test for 40 days. 2.3 Performance Evaluation Ten volunteers were persuaded & then selected. Two cream samples were given to each volunteer one is control i.e. sample- A (7.5% glycerine)& other is sample-C(5% Na- Sodium PCA).Cream was applied twice a day on 3 cm.area of forehand.Sample A on right forehand &sample C on left forehand. sked to see & compaire the effect of sample A & C after two hours upto 30 days. 3. Results & Discussion 1) Result of colour change indicate that at room temp.& at 50 0c the degree of colour change was inversely proportional to the concentration of sodium PCA, on refrigeration there was no change in colour Summary The medical and biological literature was reviewed with stress laid on the role of pyrrolidone carboxylic acid (Sodium PCA) and its sodium PCA salt (Na Sodium PCA) in skin, its metabolism, its functions. The paper also includes a summary of 8 years of evaluation work carried out in our Laboratory on creams and lotions containing Sodium PCA-Na Sodium PCA which were assessed by biophysical (impedance measurement, alpha relaxation) and clinical methods. It is now definitely demonstrated that Sodium PCA is an hydrating agent and that all the cosmetic preparations containing at least 2% of the Sodium PCA-Na Sodium PCA salt system improve the condition of dry skin at short or long term provided an adequate vehicle is used (e.g. aqueous solutions are ineffective). The mecanism of action is discussed with reference to metabolism and physiological role of Sodium PCA in stratum corneum. Pyroglutamic acid (also known as Sodium PCA, 5-oxoproline, pidolic acid, or pyroglutamate for its basic form) exists as two distinct enantiomers: (2R) or D and (2S) or L. L-form is a metabolite in the glutathione cycle that is converted to glutamate by 5-oxoprolinase. L-Pyroglutamic acid is produced in the skin through the arginine-citrulline-ornitine-glutamic pathway. The free acid is not hygroscopic; however, the sodium PCA salts of this acid are more hygroscopic than glycerine. Therefore, formulation of this acid is suggested as a defense against dehydration, for skin conditions involving desquamation. Hydromol Cream (main component of that is sodium PCA pyrrolidone carboxylate (L form)) is a soft cream which moisturises the skin. Hydromol Cream contains a naturally occurring moisturising agent as well as oils, which prevent moisture loss from the skin. This helps to relieve itch, lubricate and soften the skin. Hydromol Cream is used to treat any condition in which dry skin is a feature such as eczema, ichthyosis (hereditary dry skin) and senile pruritus (itching that may occur in old age). L-Pyroglutamic acid is present in living cells has been reported from archaebacteria to humans, and its occurrence in living cells has been known for over a century. Despite its almost ubiquitous presence, the role of pyroglutamic acid in living cells is poorly understood. Pyroglutamic acid is found as an N-terminal modification in many neuronal peptides and hormones that also include the accumulating peptides in Alzheimer’s disease and familial dementia. The modification is also observed in proteins that include many antibodies, some enzymes and structural proteins. yrrolidone carboxylic acid (Sodium PCA), the primary constituent of the natural moisturizing factor (NMF),1 including its derivatives – such as simple2 and novel3 esters as well as sugar complexes4 – is the subject of great interest and research regarding its capacity to moisturize the stratum corneum via topical application. Creams and lotions containing the sodium PCA salt of Sodium PCA are widely reported to aid in hydrating the skin and ameliorating dry flaky skin conditions.5,6 In addition, the zinc salt of L-pyrrolidone carboxylate is a longtime cosmetic ingredient due to antimicrobial and astringent qualities. This column briefly addresses the role of Sodium PCA in skin health.7 Dry skin In a comprehensive literature review from 1981, Clar and Fourtanier reported conclusive evidence that Sodium PCA acts as a hydrating agent and that all the cosmetic formulations with a minimum of 2% Sodium PCA and Sodium PCA salt that they tested in their own 8-year study enhanced dry skin in short- and long-term conditions given suitable vehicles (no aqueous solutions).6 In a 2014 clinical study of 64 healthy white women with either normal or cosmetic dry skin, Feng et al. noted that tape stripped samples of stratum corneum revealed significantly lower ratios of free amino acids to protein and Sodium PCA to protein. This was associated with decreased hydration levels compared with normal skin. The investigators concluded that lower NMF levels across the depth of the stratum corneum and reduced cohesivity characterize cosmetic dry skin and that these clinical endpoints merit attention in evaluating the usefulness of treatments for dry skin.8 In 2016, Wei et al. reported on their assessment of the barrier function, hydration, and dryness of the lower leg skin of 25 female patients during the winter and then in the subsequent summer. They found that Sodium PCA levels were significantly greater during the summer, as were keratins. Hydration was also higher during the summer, while transepidermal water loss and visual dryness grades were substantially lower.9 Atopic dermatitis A 2014 clinical study by Brandt et al. in patients with skin prone to developing atopic dermatitis (AD) revealed that a body wash composed of the filaggrin metabolites arginine and Sodium PCA was well tolerated and diminished pruritus. Patients reported liking the product and suggested that it improved their quality of life.10 Later that year, Jung et al. characterized the relationship of Sodium PCA levels, and other factors, with the clinical severity of AD. Specifically, in a study of 73 subjects (21 with mild AD, 21 with moderate to severe AD, 13 with X-linked ichthyosis as a negative control for filaggrin gene mutation, and 18 healthy controls), the investigators assessed transepidermal water loss, stratum corneum hydration, and skin surface pH. They found that Sodium PCA levels and caspase-14 were lower in inflammatory lesions compared with nonlesional skin in subjects with AD. These levels also were associated with clinical AD severity as measured by eczema area and severity index scores as well as skin barrier function.11 Sodium PCA Pyrrolidone Carboxylic Acid CAS No.: 28874-51-3 EINECS.: 249-277-1 Moisturizer agent Appearance: Light yellow liquid Sodium PCA Pyrrolidone Carboxylic Acid, Sodium Pca QUICK LINKS Alkyl Polyglucosides Amino Acid Surfactants Cosmetic Additives Glyphosate surfactant Quick Details CAS No.: 28874-51-3 Other Names: Sodium Pca, Sodium L-pyroglutamate Appearance: Pale yellow lyophilized mass Description Sodium PCA is a kind of natural moisturizing factor. It becomes an important additive ingredient in skin-care and hair-care cosmetics in recent years. The stronger hydrating is power than that of glycerin, sorbitol and propanediol and non-poisonous, non-irritant, and non-allergic. Mainly used in cream cosmetics, solutions, shampoo, etc., but also in place of glycerin for toothpaste, ointment drugs, tobacco, leather, coatings for wetting agents, and chemical fiber dyeing auxiliaries, softeners, antistatic agent, Is also biochemical reagents. Cosmetic insulation agent Sodium PCA Department of natural moisturizing factor is one of the important ingredients, high moisture absorption, and non-toxic, non-stimulating, good stability, is the modern skincare ideal natural make-up health care products, can skin and hair with wetting, Softness, elasticity, and gloss, and antistatic property. Skin whitening agent Sodium PCA is an excellent skin whitening agent, the inhibition of tyrosine oxidase activity can prevent the "melanoid" in the skin deposition so that the skin white. Horny softening agent Sodium PCA can do keratin softening agent, the skin "psoriasis" have a good therapeutic effect. It is mainly used in cream cosmetics, solutions, shampoo, etc., also used in glycerin for toothpaste, ointment drugs, tobacco, leather, paint as wetting agents, and chemical fiber dyeing auxiliaries, softeners, Anti-static agent, is also biochemical reagents. Recommendatory volumes of usage in creams:2%~8% Recommendatory volumes of usage in creams:1%~3% Specification
SODIUM P-CHLORO-M-CRESOL ( sodium p-chloro-m-cresolate )
SODIUM P-CUMENESULPHONATE; N° CAS : 15763-76-5; Nom INCI : SODIUM P-CUMENESULPHONATE; Sodium cumenesulphonate; 15763-76-5 [RN]; 239-854-6 [EINECS]; 4-Isopropylbenzènesulfonate de sodium [French] ; Benzenesulfonic acid, 4-(1-methylethyl)-, sodium salt (1:1) ; Natrium-4-isopropylbenzolsulfonat [German] ; Sodium 4-isopropylbenzenesulfonate ; SODIUM P-CUMENESULFONATE; 4-(1-Methylethyl)benzenesulfonic acid sodium salt; Benzenesulfonic acid, 4-(1-methylethyl)-, sodium salt; CUMENESULFONICACIDSODIUMSALT ;EINECS 239-854-6; MFCD00137274; p-Cumenesulfonic acid sodium salt; SODIUM 4-(PROPAN-2-YL)BENZENE-1-SULFONATE; sodium 4-(propan-2-yl)benzenesulfonate; Sodium 4-propan-2-ylbenzenesulfonate; Sodium cumenesulfonate; sodium p-cumenesulphonate; Sodium4-propan-2-ylbenzenesulfonate; sodiumcumenesulfonate; Sodium p-cumenesulphonate; EC Inventory, ; CAS names; Benzenesulfonic acid, 4-(1-methylethyl)-, sodium salt (1:1). IUPAC names; sodium 4-(propan-2-yl)benzene-1-sulfonate ; sodium 4-isopropylbenzenesulfonate ; Sodium 4-isopropylbenzenesulphonatesodium 4-propan-2-ylbenzenesulfonate; Sodium Cumenesulfonate; sodium cumenesulphonate. Trade names; Na-Cumolsulfonat; Na-Cumosulfonat; Sodium cumene sulfonate
SODIUM P-CUMENESULPHONATE ( Sodium cumene )
SODIUM PERBORATE; N° CAS : 15120-21-5 / 7632-04-4 / 11138-47-9; Nom INCI : SODIUM PERBORATE; N° EINECS/ELINCS : 239-172-9 / 231-556-4 / 234-390-0; Classification : Règlementé; Ses fonctions (INCI); Agent d'hygiène buccale : Fournit des effets cosmétiques à la cavité buccale (nettoyage, désodorisation et protection); Agent Oxydant : Modifie la nature chimique d'une autre substance en ajoutant de l'oxygène ou en éliminant l'hydrogène; Perboric acid (H3BO2(O2)), monosodium salt trihydrate; perboric acid (H3BO2(O2)), monosodium salt trihydrate; sodium peroxoborate hexahydrate; perboric acid (H3BO2(O2)), monosodium salt trihydrate; sodium peroxoborate hexahydrate; Perboric acid (H3BO2(O2)), monosodium salt, trihydrate ; perboric acid (H3BO2(O2)), monosodium salt, trihydrate; sodium peroxoborate hexahydrate; perboric acid (H3BO2(O2)), monosodium salt, trihydrate; sodium peroxoborate hexahydrate ; Perboric acid (H3BO8), monosidum salt; perboric acid, sodium salt; Sodium perborate; sodium perborate; sodium peroxoborate; sodium perborate; sodium peroxoborate ; sodium perborate; sodium peroxoborate; sodium peroxoborate; sodium peroxoborate hexahydrate. Translated names : (peroksoboran) nadboran sodu (pl); acid perboric (H3BO2(O2)), sare monosodică, trihidrat (ro) ; acide perborique (H3BO2(O2)), sel de monosodium , trihydraté (fr); acide perborique (H3BO2(O2)), sel de monosodium trihydraté (fr); acido perborico (H3BO2(O2)), sale triidrato monosodico (it) ; aċidu perboriku (H3BO(O2)), melħ tal-monosodju, triidrat (mt); kyselina perboritá (H3BO2(O2)), monosodná sůl, trihydrát (cs); naatriumperboraat (et); natrijev perborat (sl); natrijev peroksoborat heksahidrat;perborna kiselina (H3BO2(O2)) ;mononatrijeva sol trihidrat (hr); natrijev peroksoborat heksahidrat;perborna kiselina (H3BO2(O2)) ;mononatrijeva sol trihidrat (hr); natrijev peroksoborat;natrijev perborate (hr); natrijev peroksoborat;natrijev perborate (hr); natrio peroksoboratas (lt); natriumperboraat (nl); natriumperboraatti (fi); natriumperborat (da); natriumperoxoborattrihydrat (sv); nátrium-perborát (hu); nātrija perborāts (lv); perboorhappe (H3BO2(O2)) mononaatriumsoola trihüdraat (et); perboorihappo, (H3BO2(O2)), mononatriumsuola, trihydraatti (fi); perboorzuur (H3BO2(O2)), mononatriumzout, trihydraat (nl); perborat de sodiu (ro); perborat tas-sodju (mt); perborate de sodium (fr); perborato de sodio (es); perborato de sódio (pt) ; perborato di sodio (it); perboritan sodný (cs); perborova kislina (H3BO2(O2)), mononatrijeva sol, trihidrat (sl); perborskābes (H3BO2(O2)), vienaizvietotā nātrija sāļa trihidrāts (lv); perborsyra (H3BO2(O2)), natriumsalt, trihydrat (sv); perborsyre (H3BO2(O2)), mononatriumsalt trihydrat (da); perborsyre (H3BO2(O2)), mononatriumsalt, trihydrat (no); Perborsäure (H3BO2(O2)), Mononatriumsalz-Trihydrat (de); perbórsav (H3BO2(O2)), mononátriumsó, trihidrát (hu); perbórsav (H3BO2(O2)), mononátriumsó-trihidrát (hu); peroksoborato rūgšties (H3BO2(O2)) mononatrio druska, trihidratas (lt); sól monosodowa kwasu nadborowego (H3BO2(O2)) trój-wodna (pl); sól monosodowa kwasu nadborowego (H3BO2(O2)) trójwodna (pl); tetrahydrogentetraoxodiperoxodiboritan disodný (sk); trihydrát monosodnej soli kyseliny trihydrogendioxodiperoxoboritej (H3BO2(O2)) (sk); ácido perbórico (H3BO2(O2)), sal de monosodio, trihidratada (es); ácido perbórico (H3BO2(O2)), sal monossódico, tri-hidratado (pt); άλας του υπερβορικού οξέος (H3BO2(O2)) με νάτριο, τριένυδρο (el); υπερβορικό νάτριο (el); натриев перборат (bg); перборна киселина (H3BO2(O2)), мононатриева сол трихидрат (bg); перборна киселина (H3BO2(O2)), мононатриева сол, трихидрат (bg); Perboric acid (H3BO2(O2)), monosodium salt ; IUPAC names: disodium;3,3,6,6-tetrahydroxy-1,2,4,5-tetraoxa-3,6-diboranuidacyclohexane; Sodium peroxometaborate ; trisodium [(dioxidoboranyl)oxy]olate
SODIUM PERBORATE ( perborate de sodium)
SYNONYMS Sodium Carbonate Peroxyhydrate; Carbonic acid disodium salt, compound with hydrogen peroxide(2:3); PCS; Sodium Carbonate Peroxide CAS NO. 15630-89-4
SODIUM PERIODATE
SYNONYMS Peroxydisulfuric acid, disodium salt; disodium peroxodisulfate; Sodium peroxydisulfate; CAS NO. 7775-27-1
SODIUM PERSULFATE
Sodium Persulfate (Sodyum Persülfat) IUPAC Name disodium;sulfonatooxy sulfate Sodium Persulfate (Sodyum Persülfat) InChI InChI=1S/2Na.H2O8S2/c;;1-9(2,3)7-8-10(4,5)6/h;;(H,1,2,3)(H,4,5,6)/q2*+1;/p-2 Sodium Persulfate (Sodyum Persülfat) InChI Key CHQMHPLRPQMAMX-UHFFFAOYSA-L Sodium Persulfate (Sodyum Persülfat) Canonical SMILES [O-]S(=O)(=O)OOS(=O)(=O)[O-].[Na+].[Na+] Sodium Persulfate (Sodyum Persülfat) Molecular Formula Na2S2O8 Sodium Persulfate (Sodyum Persülfat) CAS 7775-27-1 Sodium Persulfate (Sodyum Persülfat) Deprecated CAS 872981-99-2 Sodium Persulfate (Sodyum Persülfat) European Community (EC) Number 231-892-1 Sodium Persulfate (Sodyum Persülfat) ICSC Number 1136 Sodium Persulfate (Sodyum Persülfat) RTECS Number SE0525000 Sodium Persulfate (Sodyum Persülfat) UN Number 1505 Sodium Persulfate (Sodyum Persülfat) UNII J49FYF16JE Sodium Persulfate (Sodyum Persülfat) DSSTox Substance ID DTXSID4029698 Sodium Persulfate (Sodyum Persülfat) Solubility Solubility in water, g/100ml at 20 °C: 55.6 Sodium Persulfate (Sodyum Persülfat) Density 1.1 g/cm³ Sodium Persulfate (Sodyum Persülfat) Vapor Density 1.1 Sodium Persulfate (Sodyum Persülfat) Decomposition 180 °C Sodium Persulfate (Sodyum Persülfat) Molecular Weight 238.11 g/mol Sodium Persulfate (Sodyum Persülfat) Hydrogen Bond Donor Count 0 Sodium Persulfate (Sodyum Persülfat) Hydrogen Bond Acceptor Count 8 Sodium Persulfate (Sodyum Persülfat) Rotatable Bond Count 1 Sodium Persulfate (Sodyum Persülfat) Exact Mass 237.882998 g/mol Sodium Persulfate (Sodyum Persülfat) Monoisotopic Mass 237.882998 g/mol Sodium Persulfate (Sodyum Persülfat) Topological Polar Surface Area 150 Ų Sodium Persulfate (Sodyum Persülfat) Heavy Atom Count 12 Sodium Persulfate (Sodyum Persülfat) Formal Charge 0 Sodium Persulfate (Sodyum Persülfat) Complexity 206 Sodium Persulfate (Sodyum Persülfat) Isotope Atom Count 0 Sodium Persulfate (Sodyum Persülfat) Defined Atom Stereocenter Count 0 Sodium Persulfate (Sodyum Persülfat) Undefined Atom Stereocenter Count 0 Sodium Persulfate (Sodyum Persülfat) Defined Bond Stereocenter Count 0 Sodium Persulfate (Sodyum Persülfat) Undefined Bond Stereocenter Count 0 Sodium Persulfate (Sodyum Persülfat) Covalently-Bonded Unit Count 3 Sodium Persulfate (Sodyum Persülfat) Compound Is Canonicalized Yes Sodium Persulfate (Sodyum Persülfat) Industry Uses: Bleaching agents Intermediates Ion exchange agents Oxidizing/reducing agents Paint additives and coating additives not described by other categories Plasticizers Plating agents and surface treating agents Sodium Persulfate (Sodyum Persülfat) Consumer Uses: Electrical and electronic products Fuels and related products Metal products not covered elsewhere Paints and coatings Personal care products Plastic and rubber products not covered elsewhere Water treatment products Sodium Persulfate (Sodyum Persülfat) appears as a white crystalline solid. Very irritating to skin and eyes. May be toxic by skin absorption. Used as a bleaching agent.Sodium Persulfate (Sodyum Persülfat) appears as a white crystalline solid. Very irritating to skin and eyes. May be toxic by skin absorption. Used as a bleaching agent.Sodium Persulfate (Sodyum Persülfat) is the inorganic compound with the formula Na2S2O8. It is the sodium salt of peroxydisulfuric acid, H2S2O8, an oxidizing agent. It is a white solid that dissolves in water. It is almost non-hygroscopic and has good shelf-life.The standard redox potential of Sodium Persulfate (Sodyum Persülfat) into hydrogen sulfate is 2.1 V, which is higher than that of hydrogen peroxide (1.8 V) but lower than ozone (2.2 V).[4] The sulfate radical formed in situ has a standard electrode potential of 2.7 V.Sodium Persulfate (Sodyum Persülfat) is a specialized oxidizing agent in chemistry, classically in the Elbs persulfate oxidation and the Boyland–Sims oxidation reactions. It is also used in radical reactions; for example in a synthesis of diapocynin from apocynin where iron(II) sulfate is the radical initiator.Sodium Persulfate (Sodyum Persülfat) is a moderately water and acid soluble Sodium source for uses compatible with sulfates.Sodium Persulfate (Sodyum Persülfat) is generally immediately available in most volumes. Sodium Persulfate (Sodyum Persülfat) is mostly used as a bleaching agent and detergent component. Other uses include battery depolarizers, in the manufacture of dyestuffs, and in emulsion polymerization.Sodium Persulfate (Sodyum Persülfat) is a strongly oxidizing chemical used as a bleaching and oxidizing agent. Persulfate oxidation mechanisms are effective in degrading many volatile oxidizing chemicals (VOCs) including chlorinated ethenes (CEs), BTEXs and trichloroethanes. The compound is used as a promoter for polymerization reactions. Sodium Persulfate (Sodyum Persülfat) has also been used as a chemical oxidant to treat laboratory slurry reactors for the accumulation of surfactants.Sodium Persulfate (Sodyum Persülfat) is an inorganic chemical compound which appears as a white solid salt.Sodium Persulfate (Sodyum Persülfat) is the most used in the manufacture of pharmaceuticals, cosmetics, and printed circuit boards.Sodium Persulfate (Sodyum Persülfat) , also known as sodium peroxydisulfate is a white crystal or crystalline powder, odorless, tasteless. Formula is Na2S2O8, relative molecular mass is 238.13. Gradual decomposition at room temperature, heating or rapidly decompose in ethanol, decomposition to release oxygen and produce sodium pyrosulfate. Moisture and platinum black, silver, lead, iron, copper, magnesium, nickel, manganese and other metal ions or their alloys can promote the decomposition, it decomposes rapidly and emit hydrogen peroxide at high temperature (about 200 ℃). It is soluble in water (70.4 when 20 ℃).Sodium Persulfate (Sodyum Persülfat) has strong oxidizing. There is a strong irritation to the skin, prolonged contacting with the skin can cause allergies, should pay attention to it when operation. Rat oral LD50 is 895mg/kg. It should be Sealed storage. heat the ammonium persulfate and sodium hydroxide or sodium carbonate solution to remove carbon dioxide and ammonia to obtain Sodium Persulfate (Sodyum Persülfat) in the Laboratory.With strong oxidizing, Sodium Persulfate (Sodyum Persülfat) can be used as an g agent, which can oxidize Cr3 +, Mn2 + and so on to the corresponding compound of high oxidation state, when there is the presence of Ag +, which can promote the oxidation reaction. Due to its oxidizing properties, it can be used as a bleaching agent, metal surface treatment agent, chemical reagents, pharmaceutical raw materials, accelerator and initiator of battery and emulsion polymerization.Sodium Persulfate (Sodyum Persülfat) is used as a bleach, both standalone (particularly in hair cosmetics) and as a detergent component. It is a replacement for ammonium persulfate in etching mixtures for zinc and printed circuit boards, and is used for pickling of copper and some other metals. It is a source of free radicals, making it useful as an initiator for e.g. emulsion polymerization reactions and for accelerated curing of low formaldehyde adhesives. Sodium Persulfate (Sodyum Persülfat) is also used as a soil conditioner and in manufacture of dyestuffs, modification of starch, bleach activator, desizing agent for oxidative desizing, etc.Sodium Persulfate (Sodyum Persülfat) is a strong oxidizer and a severe irritant of skin, eyes, and respiratory system. It is almost non-hygroscopic and has particularly good ability to be stored for long time. It is easy and safe to handle. It is not combustible, but releases oxygen easily and assists combustion of other materials.Sodium Persulfate (Sodyum Persülfat) is a strong oxidizing agent. Reacts with many combustible materials and reducing agents, often vigorously enough to start fires or cause explosions. Decomposes gradually under ordinary conditions decomposition is promoted by moisture and heat. Decomposed by alcohol and silver ions.Sodium Persulfate (Sodyum Persülfat) is an oxidizing persulfate salt that is used as a detergent component, as an etchant in printed circuit boards, and as a radical initiator in polymerization reactions of styrene based monomers. Sodium Persulfate (Sodyum Persülfat) also has some application as a standalone bleach in cosmetics, particularly for hair.Sodium Persulfate (Sodyum Persülfat) is incompatible with acids, alkalis, halides, combustible materials, most metals and heavy metals, oxidizable materials, other oxidizers, reducing agents, cleaners, and organic or carbon containing compounds. Please see SDS for full safety and compatibility information.Sodium Persulfate (Sodyum Persülfat) is available in 55 pound bags. Contact us or ask your representative for further information.This is done by studying furfural’s interactions with Sodium Persulfate (Sodyum Persülfat) , which is added to hydraulic fracturing fluids as an oxidizing breaking agent. Sodium Persulfate (Sodyum Persülfat) is also used as a powerful disinfectant for the treatment of groundwater contamination.Once activated, Sodium Persulfate (Sodyum Persülfat) reacts to form sulfate radicals.The goal of this research is to determine the efficiency and optimal conditions necessary for employing Sodium Persulfate (Sodyum Persülfat) as a treatment option for furfural contamination and the identification of reaction byproducts.Sodium Persulfate (Sodyum Persülfat) is the inorganic compound with the formula Na2S2O8.Sodium Persulfate (Sodyum Persülfat) Market Segmentation by Types:Sodium Persulfate (Sodyum Persülfat) Powder,Sodium Persulfate (Sodyum Persülfat) Particles.Excerpt from ERG Guide 140 [Oxidizers]: These substances will accelerate burning when involved in a fire. Some may decompose explosively when heated or involved in a fire. May explode from heat or contamination. Some will react explosively with hydrocarbons (fuels). May ignite combustibles (wood, paper, oil, clothing, etc.). Containers may explode when heated. Runoff may create fire or explosion hazard.Excerpt from ERG Guide 140 [Oxidizers]: Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves. Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. Contaminated clothing may be a fire risk when dry. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. Keep victim calm and warm.Excerpt from ERG Guide 140 [Oxidizers]: SMALL FIRE: Use water. Do not use dry chemicals or foams. CO2 or Halon® may provide limited control. LARGE FIRE: Flood fire area with water from a distance. Do not move cargo or vehicle if cargo has been exposed to heat. Move containers from fire area if you can do it without risk. FIRE INVOLVING TANKS OR CAR/TRAILER LOADS: Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. ALWAYS stay away from tanks engulfed in fire. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn. Excerpt from ERG Guide 140 [Oxidizers]: As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids. LARGE SPILL: Consider initial downwind evacuation for at least 100 meters (330 feet). FIRE: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.Excerpt from ERG Guide 140 [Oxidizers]: Keep combustibles (wood, paper, oil, etc.) away from spilled material. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. Do not get water inside containers. SMALL DRY SPILL: With clean shovel, place material into clean, dry container and cover loosely; move containers from spill area. SMALL LIQUID SPILL: Use a non-combustible material like vermiculite or sand to soak up the product and place into a container for later disposal. LARGE SPILL: Dike far ahead of liquid spill for later disposal. Following product recovery, flush area with water.Repeated or prolonged contact may cause skin sensitization. Repeated or prolonged contact with skin may cause dermatitis. Repeated or prolonged inhalation may cause asthma. May cause a general allergic reaction, such as urticaria or shock.Excerpt from ERG Guide 140 [Oxidizers]: Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing will only provide limited protection.SODIUM PERSULFATE is a strong oxidizing agent. Reacts with many combustible materials and reducing agents, often vigorously enough to start fires or cause explosions [Handling Chemicals Safely 1980 p. 855]. Decomposes gradually under ordinary conditions decomposition is promoted by moisture and heat [Merck]. Decomposed by alcohol and silver ions . Sodium persulfate has strong oxidizing. There is a strong irritation to the skin, prolonged contacting with the skin can cause allergies, should pay attention to it when operation. Rat oral LD50 is 895mg/kg. It should be Sealed storage. heat the ammonium persulfate and sodium hydroxide or sodium carbonate solution to remove carbon dioxide and ammonia to obtain sodium persulfate in the Laboratory. Strong oxidants With strong oxidizing, Sodium persulfate can be used as an g agent, which can oxidize Cr3 +, Mn2 + and so on to the corresponding compound of high oxidation state, when there is the presence of Ag +, which can promote the oxidation reaction. Due to its oxidizing properties, it can be used as a bleaching agent, metal surface treatment agent, chemical reagents, pharmaceutical raw materials, accelerator and initiator of battery and emulsion polymerization. Uses Sodium persulfate is used as a bleach, both standalone (particularly in hair cosmetics) and as a detergent component. It is a replacement for ammonium persulfate in etching mixtures for zinc and printed circuit boards, and is used for pickling of copper and some other metals. It is a source of free radicals, making it useful as an initiator for e.g. emulsion polymerization reactions and for accelerated curing of low formaldehyde adhesives. Sodium persulfate is also used as a soil conditioner and in manufacture of dyestuffs, modification of starch, bleach activator, desizing agent for oxidative desizing, etc. For waste processing in the photographic industry, used as a soft metal surface corrosion agents of the printed circuit board and textile desizing agents, sulfur dyes colorformer. Preparation method 1. The electrolytic oxidation of the aqueous solution of ammonium sulfate is to obtain ammonium persulfate, and then metathesis reaction with sodium hydroxide, after the expulsion of the ammonia by-product, and then concentrated under reduced pressure, crystallization, drying, to obtain sodium sulfate. (NH4) 2S2O8 + 2NaOH → Na2S2O8 + 2NH3 + 2H2O. 2. Dithionic acid can be prepared by electrolysis of cold sulfuric acid won, which reacts with alkali and then obtain sodium sulfate. 2HSO4--2e → H2S2O8 H2S2O8 + 2NaOH → Na2S2O8 + 2H2O. storage Sodium persulfate is a strong oxidizer and a severe irritant of skin, eyes, and respiratory system. It is almost non-hygroscopic and has particularly good ability to be stored for long time. It is easy and safe to handle. It is not combustible, but releases oxygen easily and assists combustion of other materials. Conditions/ substances to avoid mixing persulfates with are: moisture, heat, flame, ignition sources, shock, friction, reducing agents, organic material, sodium peroxide, aluminum and powdered metals. Chemical Properties White, crystalline powder. Soluble in water; decomposed by alcohol; decomposes in moist air. Uses Bleaching and oxidizing agent; promoter for emulsion polymerization reactions. General Description A white crystalline solid. Very irritating to skin and eyes. May be toxic by skin absorption. Used as a bleaching agent. Air & Water Reactions Water soluble. Decomposes slowly in moist air. Reactivity Profile Sodium persulfate is a strong oxidizing agent. Reacts with many combustible materials and reducing agents, often vigorously enough to start fires or cause explosions [Handling Chemicals Safely 1980 p. 855]. Decomposes gradually under ordinary conditions decomposition is promoted by moisture and heat [Merck]. Decomposed by alcohol and silver ions [Merck]. Hazard By ingestion, strong irritant to tissue. Health Hazard Inhalation, ingestion or contact (skin, eyes) with vapors or substance may cause severe injury, burns or death. Fire may produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may cause pollution. Fire Hazard These substances will accelerate burning when involved in a fire. Some may decompose explosively when heated or involved in a fire. May explode from heat or contamination. Some will react explosively with hydrocarbons (fuels). May ignite combustibles (wood, paper, oil, clothing, etc.). Containers may explode when heated. Runoff may create fire or explosion hazard. Safety Profile Poison by intraperitoneal and intravenous routes. A powerful oxidizer; can cause fires. When heated to decomposition it emits toxic fumes of SOx and Na2O. See also SULFATES. Sodium persulfate Preparation Products And Raw materials Raw materials Ammonium persulfate Sodium hydroxide Preparation Products 2-(Bromomethyl)benzoic acid Maleic acid-allyl alcohol copolymer Physical and Chemical Properties Sodium persulfate, also known as sodium peroxydisulfate is a white crystal or crystalline powder, odorless, tasteless. Formula is Na2S2O8, relative molecular mass is 238.13. Gradual decomposition at room temperature, heating or rapidly decompose in ethanol, decomposition to release oxygen and produce sodium pyrosulfate. Moisture and platinum black, silver, lead, iron, copper, magnesium, nickel, manganese and other metal ions or their alloys can promote the decomposition, it decomposes rapidly and emit hydrogen peroxide at high temperature (about 200 ℃). It is soluble in water (70.4 when 20 ℃). Sodium Persulfate is a moderately water and acid soluble Sodium source for uses compatible with sulfates. Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles and deposited utilizing sputtering targets and evaporation materials for uses such as solar cells and fuel cells. Sodium Persulfate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. We also produce Sodium Sulfate Solution. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. Sodium Persulfate is a moderately water and acid soluble Sodium source for uses compatible with sulfates.Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. Sodium Persulfate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. We also produce Sodium Sulfate Solution. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards.Sodium Persulfate is a good replacement for Ammonium Persulfate for its compatibility with etch resist pens. Sodium Persulfate will not remove etch resist ink and like Ammonium Persulfate crystals, are used as an alternative to the traditional ferric chloride to produce a cleaner copper etchant solution. Mixed product must be stored in a vertical container.Stored liquid dairy manure is a hotspot for methane (CH4) emission, thus effective mitigation strategies are required. We assessed sodium persulfate (Na2S2O8), potassium permanganate (KMnO4), and sodium hypochlorite (NaOCl) for impacts on the abundance of microbial communities and CH4 production in liquid dairy manure. Liquid dairy manure treated with different rates (1, 3, 6, and 9 g or mL L−1 slurry) of these chemicals or their combinations were incubated under anoxic conditions at 22.5 ± 1.3°C for 120 d. Untreated and sodium 2‐bromoethanesulfonate (BES)‐treated manures were included as negative and positive controls, respectively, whereas sulfuric acid (H2SO4)‐treated manure was used as a reference. Quantitative real‐time polymerase chain reaction was used to quantify the abundances of bacteria and methanogens on Days 0, 60, and 120. Headspace CH4/CO2 ratios were used as a proxy to determine CH4 production. Unlike bacterial abundance, methanogen abundance and CH4/CO2 ratios varied with treatments. Addition of 1 to 9 g L−1 slurry of Na2S2O8 and KMnO4 reduced methanogen abundance (up to ∼28%) and peak CH4/CO2 ratios (up to 92‐fold). Except at the lowest rate, chemical combinations also reduced the abundance of methanogens (up to ∼17%) and CH4/CO2 ratios (up to ninefold), although no impacts were observed when 3% NaOCl was used alone. With slurry acidification, the ratios reduced up to twofold, whereas methanogen abundance was unaffected. Results suggest that Na2S2O8 and KMnO4 may offer alternative options to reduce CH4 emission from stored liquid dairy manure, but this warrants further assessment at larger scales for environmental impacts and characteristics of the treated manure.Sodium persulfate is an inorganic chemical compound which appears as a white solid salt. This oxidizing agent dissolves easily in water and is preserves well over time. UBA supplies many chemicals including sodium persulfate to various eastern Canadian and American companies. Their safe chemical distribution methods ensure prompt and secure delivery methods from their facilities to yours.Sodium persulfate supplied by UBA is available in 25kg bags. Automotive, specialty chemical manufacturers and the circuit board and electronics industries use this chemical in their manufacture or maintenance processes.To be more specific, sodium persulfate is the most used in the manufacture of pharmaceuticals, cosmetics, and printed circuit boards. As for the oxidizing properties of this chemical, it can be used in industrial processes or for dyes in the textile industry. Do not hesitate to contact UBA for your sodium persulfate wholesale requirements, even if your industry or application is not enlisted above.Sodium persulfate is a non-flammable, but it can release oxygen and play a role of combustion promoter. During storage, it must be stored in a dry, airtight container to avoid direct sunlight and near heat source. Do not contact with reduced substances such as organic matter and rust, a small amount of metal, in order to cause Sodium persulfate decomposition, explosion. Because damp Sodium persulfate and its aqueous solution have bleached and slightly corrosive effects, avoid direct contact with eyes, skin, and clothing during use.Environmental remediation agents: contaminated soil remediation, water treatment (wastewater purification); Waste gas treatment, oxidative degradation of harmful substances (e.g. mercury).Polymerization: the initiator of latex or acrylic monomer polymerization solution, vinyl acetate, vinyl chloride and other products, but also styrene, acrylonitrile, butadiene and other colloidal copolymerization initiator.Metal treatment: cleaning and pickling of metal surfaces (e.g., in semiconductor manufacturing: cleaning and etching of printed circuits). Activation of copper and aluminum surfaces.Used to speed up the processing of low concentration formalin adhesive.A modifier used in the production of starch and used as a desorption agent in the production of adhesives and coatings.Cosmetics: essential ingredient in bleaching formulations.Textiles: Depulsing agents and bleaches - especially for low temperature bleaching.Hair dye: It is one of the basic components of hair dye and plays a decolorizing role.Others: chemical synthesis; Disinfectant; Water treatment, purification and disinfection; Waste gas treatment; Oxidative degradation of hazardous substances (e.g. mercury); Paper (low temperature bleaching especially in pulping); Water-reducing agent for mixing suspected soil; In petroleum exploitation, used for fracturing fluid of oil well broken glue agent.Danger of sensitization of airways and skin; [MAK] Frequent skin rashes are reported in workers exposed to persulfates (S2O8). Rats inhaling 4-20 mg/m3 of ammonium persulfate 23.5 hours/day for 7 days show signs of lung inflammation and loss of body weight. The TLV is proposed to reduce irritation of skin, throat, and respiratory tract. [ACGIH] A skin, eye, and respiratory tract irritant; May cause skin sensitization, dermatitis, and asthma after prolonged contact; [ICSC] An irritant; May cause skin and respiratory sensitization after prolonged contact; [MSDSonline] See "Ammonium persulfate" and "Potassium persulfate."Application: Sodium persulfate is an oxidizing persulfate salt that is used as a detergent component, as an etchant in printed circuit boards, and as a radical initiator in polymerization reactions of styrene based monomers. Sodium persulfate also has some application as a standalone bleach in cosmetics, particularly for hair.Compatibility: Sodium persulfate is incompatible with acids, alkalis, halides, combustible materials, most metals and heavy metals, oxidizable materials, other oxidizers, reducing agents, cleaners, and organic or carbon containing compounds. Please see SDS for full safety and compatibility information.Packaging Options: Sodium persulfate is available in 55 pound bags. Contact us or ask your representative for further information.
SODIUM PETROLEUM SULPHONATE
SODIUM POLYACRYLATE N° CAS : 9003-04-7 / 25549-84-2 Nom INCI : SODIUM POLYACRYLATE Nom chimique : 2-Propenoic acid, homopolymer, sodium salt Classification : Polymère de synthèse Ses fonctions (INCI) Agent Absorbant : Absorbe l'eau (ou l'huile) sous forme dissoute ou en fines particules Agent fixant : Permet la cohésion de différents ingrédients cosmétiques Emollient : Adoucit et assouplit la peau Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Agent de fixation capillaire : Permet de contrôler le style du cheveu Agent d'entretien de la peau : Maintient la peau en bon état Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM POLYACRYLATE
SODIUM ACRYLATE; 7446-81-3; 2-Propenoic acid, sodium salt; sodium prop-2-enoate; Sodium polyacrylate cas no: 7446-81-3
SODIUM POLYASPARTATE
SODIUM POLYCARBOXYLATE N° CAS : 37199-81-8 Nom INCI : SODIUM POLYCARBOXYLATE Classification : Polymère de synthèse
SODIUM POLYCARBOXYLATE
SODIUM POLYGLUTAMATE N° CAS : 28829-38-1 Nom INCI : SODIUM POLYGLUTAMATE Compatible Bio (Référentiel COSMOS) Ses fonctions (INCI) Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau Agent d'entretien de la peau : Maintient la peau en bon état
SODIUM POLYGLUTAMATE
SODIUM POLYITACONATE N° CAS : 26099-89-8 Nom INCI : SODIUM POLYITACONATE Compatible Bio (Référentiel COSMOS) Ses fonctions (INCI) Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques
SODIUM POLYITACONATE
SODIUM POLYNAPHTHALENESULFONATE; N° CAS : 9084-06-4; Nom INCI : SODIUM POLYNAPHTHALENESULFONATE. Ses fonctions (INCI): Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion. Gélifiant : Donne la consistance d'un gel à une préparation liquide. Hydrotrope : Augmente la solubilité d'une substance qui est peu soluble dans l'eau. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation; Noms français : NAPHTHALENESULFONIC ACID, POLYMER WITH FORMALDEHYDE, SODIUM SALT; NAPHTHALENESULFONIC ACID-FORMALDEHYDE CONDENSATE SODIUM SALT; Sel de sodium du copolymère de l'acide naphthalènesulfonique et de la formaldéhyde; Utilisation et sources d'émission; Polymère et fabrication de cosmétiques; Naphthalenesulfonic acid, polymer with formaldehyde, sodium salt. IUPAC names: disodium;5-[(6-sulfonatonaphthalen-1-yl)methyl]naphthalene-2-sulfonate; Formaldehyde-naphthalenesulfonic acid condensate sodium salt; Formaldehyde-naphthalenesulfonic acid polymer sodium salt; Naphtalenesulfonic acid, polymer with formaldehyde, sodium salt; NAPHTHALENE SULFONIC ACID; Naphthalene sulfonic acid condensation product, Sodium salt; Naphthalenesulfonic acid polymer with formaldehyde sodium salt; naphthalenesulfonic acid, dimethyl-, polymer with formaldehyde and methylnaphthalenesulfonic acid, sodium salt; Napthalene sulphonic acid polymer with formaldehyde sodium salt; Sodium poly[(naphthaleneformaldehyde)sulfonate]; sodium salt of polynaphthalene sulphonic acid. Aromatic sulphonate; Dispers B-868; DISPERSING AGENT: NAPTHALENE SULPHONATE FORMALDE HYDE CONDENSATE . tetrasodium (3Z)-5-amino-4-oxo-6-[4-(2sulfonatooxyethylsulfonyl)phenyl] diazenyl-3-[[4-(2sulfonatooxyethylsulfonyl)phenyl]hydrazinylidene] naphthalene-2,7-disulfonate; Naphthalene sulphonic acid polymer with formaldehyde sodium salt; sodium salt of polymerized naphthalene sulfonate formaldehyde condensate; 2-naphthalenesulfonic acid, 5,5'-methylenebis-, disodium salt; 2-Naphthalenesulfonic acid, 5,5'-methylenebis-, sodium salt (1:2) [ACD/Index Name] ; 5,5'-Méthylènedi(2-naphtalènesulfonate) de disodium [French] ; 9084-06-4 [RN]; Dinatrium-5,5'-methylendi(2-naphthalinsulfonat) [German] ; disodium 5,5'-methanediyldinaphthalene-2-sulfonate Disodium 5,5'-methylenedi(2-naphthalenesulfonate); disodium 5,5'-methylenedinaphthalene-2-sulfonate; [9084-06-4]; DISODIUM 5-[(6-SULFONATONAPHTHALEN-1-YL)METHYL]NAPHTHALENE-2-SULFONATE; MFCD01324675; Sodium poly[(naphthaleneformaldehyde)sulfonate]
SODIUM POLYNAPHTHALENESULFONATE ( Sel de sodium du copolymère de l'acide naphthalènesulfonique et de la formaldéhyde )
SODIUM POLYPHOSPHATE Polyphosphoricacids,sodiumsalts Sodiumpolyphosphate,amorphous SODIUM HEXAMETAPHOSPHATE(TECH.GRADE) Sodium Hexa meta phophate SODIUM POLYPHOSPHATE EXTRA PURE SODIUM POLYPHOSPHATE, CRYSTALS, + 80 MES H, 96% SodiumHexametaphosphateFoodGrade&TechnicalGrade SodiumHexametaphosphateGlassy Polyphosphorsuren, Natriumsalze Sodium hexametaphosphate Calgon, Phosphate glass, water soluble, Polyphosphate sodium salt, Sodium polyphosphate Sodillm hexametaplhospllate CAS:68915-31-1
SODIUM POLYPHOSPHATE
SYNONYMS Rochelle salt; Seignette salt tetrahydrate; DL-2,3-Dihydroxybutanedioic acid, monopotassium monosodium salt, tetrahydrate; (R*,R*)-(+-)-2,3-Dihydroxybutanedioic acid, monopotassium monosodium salt, tetrahydrate; DL-Dihydroxysuccinic Acid, monopotassium monosodium salt, tetrahydrate; CAS NO. 304-59-6 (Anhydrous)6381-59-5 (Tetrahydrate)
SODIUM POTASSIUM TARTRATE
SYNONYMS Propanoic acid, sodium salt; Sodium dipropionate; CAS NO. 137-40-6
SODIUM PROPIONATE
SYNONYMS Paradept; Sodium propyl p-hydroxybenzoate; Sodium 4-Propoxycarbonylphenoxide; Natrium-4-propoxycarbonylphenoxid; 4-Propoxicarbonilfenoxido de sodio; 4-Propoxycarbonylphénolate de sodium; Solbrol P, Natriumsalz CAS NO. 35285-69-9
SODIUM PROPYL P-HYDROXYBENZOATE  (SODIUM PROPYLPARABEN)
SODIUM PROPYLPARABEN N° CAS : 35285-69-9 Origine(s) : Synthétique Nom INCI : SODIUM PROPYLPARABEN Nom chimique : Sodium 4-propoxycarbonylphenoxide N° EINECS/ELINCS : 252-488-1 Classification : Paraben, Perturbateur endocrinien suspecté, Règlementé, Conservateur Restriction en Europe : V/12 La concentration maximale autorisée dans les préparations cosmétiques prêtes à l'emploi est de : - 0,14 % (en acide) pour la somme des concentrations individuelles - 0,8 % (en acide) pour les mélanges de substances mentionnés aux numéros d'ordre 12 et 12 bis, la somme des concentrations individuelles en butylparabène et en propylparabène et leurs sels ne dépassant pas 0,14 % Ne pas utiliser dans les produits sans rinçage destinés à être appliqués sur la zone du siège des enfants de moins de trois ans. Libellé des conditions d'emploi et des avertissements : Pour les produits sans rinçage conçus pour les enfants de moins de trois ans: «Ne pas utiliser sur la zone du siège.» Ses fonctions (INCI) Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.
SODIUM PROPYLPARABENE
Sodium Propylparaben is a single long-chain paraben preservative for personal care products. Benefits Water soluble Sodium Propylparaben sodium propyl-4-hydroxybenzoate CAS: 35285-69-9 EC: 252-488-1 EC / List no.: 252-488-1 CAS no.: 35285-69-9 35285-69-9 Name: Sodium propyl p-hydroxybenzoate CAS: 35285-69-9 Molecular Formula: C10H11NaO3 Molecular Weight: 202.182 CAS 35285-69-9 35285-69-9 - Names and Identifiers Name: Sodium propyl p-hydroxybenzoate Synonyms Paradept Sodium propyl paraben Solbrol P, Natriumsalz 4-Hydroxybenzoic acid propyl ester sodium salt sodium 4-(propoxycarbonyl)phenolate Propyl 4-hydroxybenzoate sodium Propyl Paraben Sodium Chemical name: Sodium Propyl p-Hydroxybenzoate. INCI designation Sodium Propylparaben. Appearance: White powder Chemical and physical data pH: 9.5- 10.5 Water content: max. 5.0 % Assay by non aqueous titration: 99 - 104 % 4-Hydroxybenzoic acid, propyl ester, sodium salt Benzoic acid, 4-hydroxy-, propyl ester, sodium salt Benzoic acid, p-hydroxy-, propyl ester, sodium deriv. E217 Natrium propyl 4-hydroxybenzoat Parasept Propyl 4-hydroxybenzoate sodium salt Propyl p-hydroxybenzoate, sodium salt Propyl-4-hydroxybenzoat natriumsalz Propylparaben sodium Propylparaben, sodium salt Sodium 4-propoxycarbonylphenoxide EC Inventory Sodium 4-propoxycarbonylphenoxide sodium 4-propoxycarbonylphenoxide Sodium propyl hydroxybenzoate Sodium propylparaben Cosmetic Products Regulation, Annex V - Allowed Preservatives, Other CAS names Benzoic acid, 4-hydroxy-, propyl ester, sodium salt (1:1) IUPAC names Benzoic acid, 4-hydroxy-, propyl ester, sodium salt p-Hydroxybenzoesäure-n-propylester Natriumsalz propyl 4-hydroxybenzoate Propyl-4-hydroxybenzoat natrium sodium 4-(propoxycarbonyl)benzen-1-olate sodium 4-(propoxycarbonyl)phenolate Sodium 4-propoxycarbonylphenoxide sodium 4-propoxycarbonylphenoxide Sodium Propyl 4-Hydroxybenzoate Sodium propylparaben Sodium propylparabenSodium 4-propoxycarbonylphenoxide sodium;4-propoxycarbonylphenolate Uses Sodium Propylparaben is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. Sodium Propylparaben is suitable to preserve both rinse- off and leave-on formulations. Sodium Propylparaben is effective against bacteria, molds and yeast. The recommended use level of Sodium Propylparaben to preserve most product types is normally in the range of 0.1- 0.3 % based on the total weight of the finished product. The Paraben esters have many advantages as preservatives,like broad spectrum antimicrobial activity, effective at low use concentrations, compatible with a wide range of cosmetic ingredients, colourless, odourless, well documented toxicological and dermatological acceptability based on human experience (used in cosmetics, food and pharmaceuticals since 1930ies),p-Hydroxybenzoic Acid and a number of its estersoccur naturally in a variety of plants and animals, stable and effective over a wide pH- range, etc. The Sodium Parabens, like Sodium Propylparaben have several additional advantages: Sodium Propylparaben is highly soluble in cold water for ease of addition. No heating stage required for incorporation, thus saving energy and plant occupancy. Increased antimicrobial activity at alkaline pH. Applications Sodium Propyl paraben is designed for preservation of a wide range of cosmetics and toiletries. Sodium Propyl paraben is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. Sodium Propyl paraben is suitable to preserve both rinse- off and leave- on formulations. Formulations which are prone to bacteria contamination an additional antibacterial preservative, like DMDMH might be necessary to add as Sodium Propyl paraben provides a higher efficacy against fungi than against bacteria. Solubility: Water max. 50 % Incorporation Sodium Propylparaben is highly soluble in water and so easily incorporated into cosmetic formulations. It is important to note that, whilst the aqueous solubility in alkaline solution is high, if the pH of the formulated product is acidic the sodium salt reverts to the ester and the low solubility is regained. pH stability Sodium Propylparaben remains fully stable over a wide pH range from 3.0- 11.0. Aqueous solutions of Sodium Propylparaben are not longterm table at alkaline pH. Temperature stability The recommended maximum handling temperature is 80°C. Microbial activity Sodium Propylparaben has a broad spectrum of activity which includes the following common spoilage organisms. Microorganisms MIC level (%) Bacteria Pseudomonas aeruginosa 0.019 Staphylococcus aureus 0.045 Microorganisms MIC level (%) Yeasts Candida albicans 0.015 Molds Aspergillus niger 0.022 Storage instructions Sodium Propylparaben is stable in sealed original containers. Further information on handling, storage and dispatch is given in the EC safety data sheet. Technical Data Appearance: Powder Active substance (ca.): 100% INCI-Name: Sodium Propylparaben Applications :Sodium Propylparaben is a long chain paraben preservative for personal care products. It is suitable for the following products: Antiperspirants & Deodorants Wet Wipes Decorative Cosmetics Creams, Lotions Shampoos, Shower Gels, Liquid Soap Hair Conditioner Hair Styling Syndet, Bar Soap Sodium Propylparaben: Sodium Propylparaben by Clariant is used in shampoos, shower products, liquid soap, decorative cosmetics, syndet, bar soaps, wet wipes, hair conditioners, hair styling products, creams, lotions, antiperspirants and deodorants. Sodium Propylparaben acts as a preservative. Chemical Name: Sodium Propylparaben Synonyms: Sodium Propylparaben; Propyl 4-Hydroxybenzoate Sodium Salt; Propyl p-Hydroxybenzoate Sodium Salt; Propylparaben Sodium; Sodium 4-Propoxycarbonylphenoxide; Sodium Propyl 4-Hydroxybenzoate; Sodium Propyl p-Hydroxybenzoate; Sodium Propyl Paraben; Benzoic acid, 4-hydroxy-, propyl ester, sodium salt CAS Number: 35285-69-9 Alternate CAS #94-13-3 Molecular Formula: C₁₀H₁₁NaO₃ Appearance: White to Off-White Solid Melting Point: >170°C (dec.) Molecular Weight: 202.18 Storage: Hygroscopic, Refrigerator, under inert atmosphere Solubility: DMSO (Slightly), Methanol (Slightly) Stability: Hygroscopic Category Standards; Pharmaceutical/API Drug Impurities/Metabolites; Applications: Sodium Propylparaben is a preservative. Sodium Propylparaben is also an excipient used in various pharmaceutical formulations.
SODIUM PYRITHIONE ( Pyrithione de sodium ) Sodium omadine
cas no 3811-73-2 1-Hydroxypyridine-2-thione sodium salt;Sodium-2-pyridinethiol-1-oxide; Sodium omadine; 2-Mercaptopyridine-N-oxide, sodium salt; N-Hydroxy-2-pyridinethione, sodium salt; 2-Pyridinethiol-1-oxide, sodium salt; Mercaptopyridine-N-oxide sodium salt; 1-Hydroxy-2-pyridinethione sodium salt;
SODIUM PYRITHIONE 40%
SODIUM RAPESEEDATE N° CAS : 68440-17-5 - Huile de colza saponifiée Origine(s) : Végétale Nom INCI : SODIUM RAPESEEDATE N° EINECS/ELINCS : 270-440-8 Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM RAPESEEDATE
SODIUM SARCOSINATE; N° CAS : 4316-73-8; Nom INCI : SODIUM SARCOSINATE; Nom chimique : Sodium sarcosinate; N° EINECS/ELINCS : 224-338-5. Ses fonctions (INCI): Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Sodium sarcosinate; EC Inventory, . CAS names: Glycine, N-methyl-, sodium salt (1:1). IUPAC names: N-Methylglycine, sodium salt; sodium (methylamino)acetate; Sodium 2-(methylamino)acetate. Trade names: Glycine, N-methyl-, monosodium salt (9CI); Sarcosine sodium salt; Sarcosine, monosodium salt (8CI); Sarkosinnatrium; Sodium N-(methylamino)acetate; Sodium N-methylglycinate