Другие секторы

Sitric Acit
SYNONYMS 2-Hydroxy-1,2,3,propane-tricarboxylic acid monohydrate;Hydrous citric acid; 2-Hydroxytricarballylic acid monohydrate; Citric acid hydrate; Citric acid monohydrate; Acidum citricum monohydricum; CAS NO:5949-29-1
SİTRİK ASİT (ANHİDRAT/MONOHİDRAT)
SYNONYMS 2-Hydroxy-1,2,3,propane-tricarboxylic acid monohydrate;Hydrous citric acid; 2-Hydroxytricarballylic acid monohydrate; Citric acid hydrate; Citric acid monohydrate; Acidum citricum monohydricum; CAS NO:5949-29-1
SİTRİK ASİT (MONO HİDRAT)
Asitliği düzenleyici
Sitrik Asit Anhidrat
SYNONYMS 2-Hydroxy-1,2,3,propane-tricarboxylic acid monohydrate;Hydrous citric acid; 2-Hydroxytricarballylic acid monohydrate; Citric acid hydrate; Citric acid monohydrate; Acidum citricum monohydricum; CAS NO:5949-29-1
Sitrik Asit Monohidrat
SYNONYMS 2-Hydroxy-1,2,3,propane-tricarboxylic acid monohydrate;Hydrous citric acid; 2-Hydroxytricarballylic acid monohydrate; Citric acid hydrate; Citric acid monohydrate; Acidum citricum monohydricum; CAS NO:5949-29-1
Sitronella Yağı
CITRONELLA OIL ; citronella oil ; citronella essential oil; citronella herb oil; cymbopogon winterianus jowitt oil; essential oil obtained from the herbs of the plant, cymbopogon winterianus, gramineae CAS NO:8000-29-1
Siyah Çay Ekstraktı
Camellia Sinensis Leaf Extract; black camellia sinensis leaf extract; black tea leaf extract ; tea (black) extract natural; black tea extractive; black thea assamica leaf extract cas no:84650-60-2
Siyah Dut Ekstraktı
Morus nigra fruit extract ;extract of the fruit of the black mulberry, morus nigra l., moraceae; black mulberry extract cas no:90064-11-2
Siyah Sarımsak Ekstrakt
Allium Sativum Bulb Extract ;extract of the bulb of the garlic, allium sativum l., liliaceae; allium pekinense bulb extract; extract of the bulb of the garlic, allium sativum l., liliaceae; garlic extract cas no:8008-99-9
Siyah Üzüm Ekstrakt
Vitis Vinifera Extract ;vitis vinifera bud extract; extract of the buds of the grape, vitis vinifera l., vitaceae; red grape bud extract; red grapevine bud extract cas no: 84929-27-1
SLES %28 - 70
SYNONYMS Soudium POE(2) Lauryl Ether Sulfate;Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; CAS NO:3088-31-1, 68891-38-3, 3088-31-1
SLES : Laurylalcoolethersulphate de Na ( Laureth sulfate de sodium)
SYNONYMS Acetic acid, sodium salt; Acetic acid, sodium salt (1:1); Sodium Ethanoate; Acetate De Sodium; Natrium Aceticum CAS NO. 127-09-3
SLES 28 % -70 %
Soudium POE(2) Lauryl Ether Sulfate; Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; Sodium Dioxyethylenedodecyl Ether Sulfate; Sodium Lauryl Alcohol Diglycol Ether Sulfate; Sodium Lauryloxyethoxyethyl Sulfate; Sodiumlaurylglycolether Sulfate; Natrium-2-(2-dodecyloxyethoxy)ethylsulfat (German); Sulfato de sodio y 2-(2-dodeciloxietoxi)etilo (Spanish); Ssulfate de sodium et de 2-(2-dodécyloxyethoxy)éthyle (French) CAS NO : 3088-31-1, 68891-38-3, 3088-31-1
SLES 28% & %70
Soudium POE(2) Lauryl Ether Sulfate; Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; Sodium Dioxyethylenedodecyl Ether Sulfate; Sodium Lauryl Alcohol Diglycol Ether Sulfate; Sodium Lauryloxyethoxyethyl Sulfate; Sodiumlaurylglycolether Sulfate; Natrium-2-(2-dodecyloxyethoxy)ethylsulfat; Sulfato de sodio y 2-(2-dodeciloxietoxi)etilo; Ssulfate de sodium et de 2-(2-dodécyloxyethoxy)éthyle CAS NO:3088-31-1, 68891-38-3, 3088-31-1
SLS 93% (ЛАУРИЛСУЛЬФАТ НАТРИЯ 93%)
SLS 93% (лаурилсульфат натрия 93%) представляет собой анионное поверхностно-активное вещество и является типичным представителем поверхностно-активных веществ на основе сульфата.
SLS 93% (лаурилсульфат натрия 93%) обычно представляет собой кристаллический порошок от белого до светло-желтого цвета.
SLS 93% (лаурилсульфат натрия 93%) обладает хорошей эмульгирующей способностью, пенообразующей способностью и пенообразующими, инфильтрирующими, обеззараживающими и диспергирующими свойствами.

Номер CAS: 151-21-3
Молекулярная формула: C12H25NaO4S
Молекулярный вес: 288,38
Номер EINECS: 205-788-1

Синонимы: Натрия додецилсульфат, 151-21-3, НАТРИЯ ЛАУРИЛСУЛЬФАТ, Натрия додецилсульфат, Натрия лаурилсульфат, Натрия додецилсульфат, Нейтразим, Натрия n-додецилсульфат, Ириум, Монододециловый эфир серной кислоты, Додецилсульфат натрия, Додецил сульфат натрия, Додецил сульфат натрия, Натриевая соль, Антицерумен, Дупональ, Дупонол, Гардинол, Монододецилсульфат натрия, Дрефт, Акварекс метил, Дюпонол метил, Солсол иглы, Степанол метил, Дупонол вака, Степанол вак, Степанол вак, Дюпонол qx, Рихонол аф, Перландрол Л, Перланкрол Л, Сипекс sb, Сипекс сд, Стандапол ва-ак, Степанол ме сухой, Дюпонол Ме, Рихонол А, Рихонол С, Синтапон Л, Дупонол С, Мапрофикс ЛК, Стандапол ВАК, Степанол МЭ, Степанол ВА, Акипосал СДС, Карсонол SLS, Мапробикс НЭУ, Мапрофикс НЭУ, Мапрофикс ВАК, Акварекс МЭ, Дупанол ВАК, Дюпонол КК, Дюпонол ВА, Дюпонол WA сухой, Дюпонол WAQ, Эмпикол LPZ, Гексамол SLS, Меланол CL, Дупональ WAQE, Дупонол WAQE, Дупонол WAQM, Паста Sterling wa, Сульфат Конко WA, Сульфат Конко WN, Никколь SLS, Паста Orvus WA, Сипекс ОП, Сипекс СП, Сипекс УБ, Сипон ЛС, Сипон ПД, Сипон ВД, Моющее средство 66, Монтополь Ла Паста, Сипон LSB, Мапрофикс WAC-LA, Стерлинг WAQ-CH, Циклорил 21, Циклорил 31, Степанол ВА паста, Конко Сульфат ВАГ, Конко Сульфат WAN, Конко Сульфат WAS, Кволак EX-UB, Одирипон Al 95, натрия додецилсульфат, Авирол 118 конк, Циклорил 580, Циклорил 585N, Лауил сульфат натрия, Мапрофикс 563, Синнопон LS 95, Степанол Т 28, Лаурилсульфат натрия, Штейнаполь NLS 90, Эмпикол LS 30, Эмпикол LX 28, Лаурилсульфат натрия, Меланол CL 30, NALS, Ревопол НЛС 30, Стандапол вак специальный, Стандапол был 100, Синнопон ЛС 100, Степанол ВА-100, Карсонол СЛС Специальный, Стандапол 112 конц, Степанол МЕ Драй AW, Авирол 101, Эмерсал 6400, Моноген Y 100, Карсонол SLS Паста Б, натрий; додецилсульфат, Степанол метил сухой aw, Berol 452, Emal 10, EMAL O, Sipon LS 100, n-додецилсульфат натрия, монолаурилсульфат натрия, монододецил сульфат натрия, сульфат натриевого эфира, натриевая соль лаурилсульфата, Conco sulfate WA-1200, Conco sulfate WA-1245, Dehydag sulfate GL эмульсия, MFCD00036175, Эмульгатор No 104, Texapon k 12 p, CHEBI: 8984, P и G эмульгатор 104, Эфир лаурилсульфата натрия, SLS, лаурилсульфат натрия, NSC-402488, Texapon K 1296, NCI-C50191, натриевая соль лаурилсульфовой кислоты, додециловый спирт, сульфат водорода, натриевая соль, натриевая соль додецилсульфовой кислоты, DTXSID1026031, лаурилсульфат натрия, синтетический, Finasol osr2, Incronol SLS, Natriumlaurylsulfat, 368GB5141J, NCGC00091020-03, E487, Jordanol SL-300, Finasol osr (sub 2), додецилсульфат натрия, Monagen Y 100, Perklankrol ESD 60, Caswell No 779, Natrium laurylsulfuricum, 12738-53-3, 12765-21-8, 1334-67-4, Laurylsiran sodny [Чехия], Лаурилсульфат, натриевая соль, Дегидрагсульфат gl эмульсия, DTXCID906031, Дегидагсульфат GL эмульсия, Лаурилсиран содный, Родапон UB, Додецилсульфат натрия для электрофореза, перевернутый восклицательный знак Y98,5%, Лаурилсульфат натрия 30%, CAS-151-21-3, CCRIS 6272, Лаурилсульфат натрия, HSDB 1315, Лаурилсульфат натрия, стоматологический класс, EINECS 205-788-1, Химический код пестицидов EPA 079011, NSC 402488, CP 75424, Empicol, AI3-00356, UNII-368GB5141J, лаурилсульфат натрия [JAN: NF], лаурилсульфат натрия, додецилсульфат натрия, дедецилсульфат натрия, натрий-додецил-S-SDS, IPC-SDS, н-додецилсульфат натрия, лаурилсульфат натрия NF, SDS (20% раствор), монододецилсульфат натрия, натриевая соль лаурилсульфата, EC 205-788-1, натриевая соль додецилсульфата, SCHEMBL1102, лаурилсульфат натрия, SDS, додецилсульфат натрия (sds), монододециловый эфир серной кислоты натриевая соль (1:1), CHEMBL23393, додецилсульфат натрия (SDS), натриевая соль додецилсерной кислоты, HY-Y0316B, DBMJMQXJHONAFJ-UHFFFAOYSA-M, натриевая соль додециловой серной кислоты, лаурилсульфат натрия (JP17 / NF), ЛАУРИЛСУЛЬФАТ НАТРИЯ [II], ЛАУРИЛСУЛЬФАТ НАТРИЯ [MI], BCP30594, CS-B1770, HY-Y0316, ЛАУРИЛСУЛЬФАТ НАТРИЯ [FCC], ЛАУРИЛСУЛЬФАТ НАТРИЯ [JAN], Tox21_111059, Tox21_201614, Tox21_300149, BDBM50530482, ЛАУРИЛСУЛЬФАТ НАТРИЯ [МАРТ.], ЛАУРИЛСУЛЬФАТ НАТРИЯ [HSDB], НАТРИЙ.

SLS 93% (лаурилсульфат натрия 93%) в изобилии пенится и быстро биоразлагается, а по растворимости уступает только сульфату натрия полиоксиэтиленэфира жирного спирта (сокращенно AES).
SLS 93% (лаурилсульфат натрия 93%) не чувствителен к щелочи и жесткой воде, но его стабильность уступает общему сульфонату в кислых условиях и близка к AES.
SLS 93% (лаурилсульфат натрия 93%) не склонен превышать 95 °C при длительном нагревании, а его раздражение находится на среднем уровне среди поверхностно-активных веществ, с индексом раздражения 3,3 для 10% раствора, что выше, чем AES и ниже, чем у додецилбензолсульфоната натрия (сокращенно LAS).

В санитарно-гигиенических изделиях концентрация ограничена при использовании в качестве формовочного агента и соответствует национальным стандартам.
SLS 93% (лаурилсульфат натрия 93%) является основным компонентом моющего средства.
Лаурилсульфат натрия состоит из кристаллов белого или бледно-желтого цвета, хлопьев или порошка, имеющих гладкий на ощупь, мыльный, горький вкус и слабый запах жирных веществ.

SLS 93% (лаурилсульфат натрия 93%) легко растворяется в воде.
SLS 93% (лаурилсульфат натрия 93%) представляет собой разновидность анионного поверхностно-активного вещества, относится к типичному представителю сульфатного поверхностно-активного вещества, сокращенно AS SLS, также известному как AS, K12, сульфат кокосового масла натрия, лаурилсульфат натрия, пенообразователь, товар на рынке обычно представляет собой кристаллический порошок от белого до слегка желтого цвета, нетоксичный, слаборастворимый в спирте, нерастворимый, эфир, легко растворимый в воде, обладает хорошей совместимостью соединений с анионами и неионами, хорошей эмульгацией, пенообразованием, пенообразованием, проникновением, обеззараживанием и диспергирующими свойствами, богат пеной, быстро биоразлагается, но по степени растворимости в воде уступает полиоксиэтиленэфиру жирного спирта сульфата натрия (AES).

SLS 93% (лаурилсульфат натрия 93%) представляет собой органическую натриевую соль, которая представляет собой натриевую соль додецилгидросульфата.
SLS 93% (лаурилсульфат натрия 93%) играет роль моющего средства и денатуранта белка. Содержит додецилсульфат.
SLS 93% (лаурилсульфат натрия 93%), также пишется как Sodium Laureth Sulfate (SLES), когда речь идет об этоксилировании, является широко используемым синтетическим поверхностно-активным веществом во многих средствах личной гигиены и домашнего обихода.

SLS 93% (лаурилсульфат натрия 93%) является анионным поверхностно-активным веществом, что означает, что он обладает способностью снижать поверхностное натяжение между двумя веществами, позволяя им смешиваться более эффективно.
SLS 93% (лаурилсульфат натрия 93%) является широко используемым поверхностно-активным веществом и может содержаться во многих основных средствах личной гигиены, таких как шампуни, зубные пасты, ополаскиватели для полости рта, гель для душа, мыло, моющие средства и гель для душа.
SLS 93% (лаурилсульфат натрия 93%) может снизить поверхностное натяжение между ингредиентами.

SLS 93% (лаурилсульфат натрия 93%), общепринятое сокращение сульфата лаурилового эфира натрия (SLES), также называемого алкилэфирсульфатом натрия, представляет собой анионное моющее средство и поверхностно-активное вещество, содержащееся во многих средствах личной гигиены (мыло, шампуни, зубная паста и т. д.) и для промышленного использования.
SLS 93% (лаурилсульфат натрия 93%) - недорогой и очень эффективный пенообразователь.
SLS 93% (лаурилсульфат натрия 93%), лаурилсульфат аммония (ALS) и паретсульфат натрия — это поверхностно-активные вещества, которые используются во многих косметических продуктах из-за их очищающих и эмульгирующих свойств.

SLS 93% (лаурилсульфат натрия 93%) получают из пальмоядрового масла или кокосового масла.
В гербицидах SLS 93% (лаурилсульфат натрия 93%) используется в качестве поверхностно-активного вещества для улучшения поглощения гербицидных химикатов и сокращения времени, необходимого продукту для защиты от дождя, когда будет поглощено достаточное количество гербицидного агента.
SLS 93% (лаурилсульфат натрия 93%) - химическая формула CH3 (CH2) 11 (OCH2CH2) nOSO3Na.

Иногда в названии указывается число, представленное n, например, лаурет-2 сульфат.
SLS 93% (лаурилсульфат натрия 93%) неоднороден по количеству этоксильных групп, где n — среднее значение. Лаурет-3 сульфат является наиболее распространенным в коммерческих продуктах.
SLS 93% (лаурилсульфат натрия 93%) представляет собой анионное поверхностно-активное вещество, сокращенно K12. Растворимый в воде, обладает отличными эмульгирующими, пенообразующими, проникающими, обеззараживающими и диспергирующими свойствами, богатой и нежной пеной, хорошей совместимостью, хорошей устойчивостью к жесткой воде и быстрым биоразложением.

SLS 93% (лаурилсульфат натрия 93%) получают путем этоксилирования додецилового спирта, который производится промышленным способом из пальмоядрового или кокосового масла.
Полученный этоксилат превращается в половину эфира серной кислоты, который нейтрализуется превращением в натриевую соль.
Родственное поверхностно-активное вещество SLS 93% (лаурилсульфат натрия 93%) производится аналогичным образом, но без этапа этоксилирования.

SLS 93% (лаурилсульфат натрия 93%) и лаурилсульфат аммония (ALS) являются широко используемыми альтернативами SLES в потребительских товарах.
SLS 93% (лаурилсульфат натрия 93%) представляет собой анионное поверхностно-активное вещество, естественно полученное из кокосового и/или пальмоядрового масла.
SLS 93% (лаурилсульфат натрия 93%) обычно состоит из смеси алкилсульфатов натрия, в основном лаурила.

SLS 93% (лаурилсульфат натрия 93%) снижает поверхностное натяжение водных растворов и используется в качестве жирового эмульгатора, смачивателя и моющего средства в косметике, фармацевтических препаратах и зубных пастах.
SLS 93% (лаурилсульфат натрия 93%) также используется в кремах и пастах для правильного диспергирования ингредиентов и в качестве исследовательского инструмента в биохимии белка.
SLS 93% (лаурилсульфат натрия 93%) также обладает некоторой микробицидной активностью.

SLS 93% (лаурилсульфат натрия 93%) - это своего рода анионное поверхностно-активное вещество, совместимое с анионным и неионным, быстрая биоразлагаемость, моющие и диспергирующие свойства.
SLS 93% (лаурилсульфат натрия 93%) широко используется в зубной пасте, мыле, шампуне, стиральном порошке, пузырьках, средствах для мытья рук и косметике.
Также его можно использовать в качестве эмульгатора, антипирена, вспомогательного агента текстиля, гальванической добавки и т.д.

SLS 93% (лаурилсульфат натрия 93%) представляет собой синтетическое соединение, имеющее химическую формулу C12H25NaO4S.
SLS 93% (лаурилсульфат натрия 93%) представляет собой анионное поверхностно-активное вещество с сульфатной группой (SO4) на одном конце гидрофобной (водоотталкивающей) углеводородной цепи.
Такая структура позволяет ему взаимодействовать как с водой, так и с маслами, что делает его эффективным при удалении грязи и жира.

SLS 93% (лаурилсульфат натрия 93%) известен своими превосходными пенообразующими и очищающими способностями.
Вот почему он обычно встречается в таких продуктах, как шампуни и зубная паста, где для тщательной очистки часто требуется густая пена.
Некоторые люди могут испытывать раздражение кожи и глаз при использовании продуктов, содержащих SLS 93% (лаурилсульфат натрия 93%).

Это особенно актуально для людей с чувствительной кожей или уже существующими кожными заболеваниями.
Для решения этих проблем используются более мягкие поверхностно-активные вещества в составах «без SLS» или «для чувствительной кожи».
SLS 93% (лаурилсульфат натрия 93%) был подвергнут критике за его потенциальное воздействие на окружающую среду. Попадая в сточные воды, он может сохраняться и накапливаться в водных экосистемах.

Известно, что SLS 93% (лаурилсульфат натрия 93%) токсичен для водной флоры и фауны, что вызывает опасения по поводу его воздействия на окружающую среду.
В ответ на потребительский спрос на более мягкие и экологически чистые продукты многие компании начали использовать альтернативные поверхностно-активные вещества в своих рецептурах.
Эти альтернативы могут быть получены из натуральных источников, таких как кокосовое или пальмовое масло, и часто продаются как более экологически чистые и более мягкие для кожи.

SLS 93% (лаурилсульфат натрия 93%) обычно используется в процессе экстракции ДНК для разделения ДНК после денатурации белка.
SLS 93% (лаурилсульфат натрия 93%) часто ошибочно читается как додецилсульфонат натрия.
SLS 93% (лаурилсульфат натрия 93%) широко используется в качестве пенообразователя в зубной пасте, мыле, геле для душа, шампуне, моющем средстве и косметике.

93% средств личной гигиены и бытовой химии содержат лаурилсульфат натрия.
SLS 93% (лаурилсульфат натрия 93%) сокращенно SLS, а также известен как AS, K12, сульфат кокосового спирта и пенообразователь.
SLS 93% (лаурилсульфат натрия 93%) нетоксичен, слабо растворим в спирте, нерастворим в хлороформе и эфире, растворим в воде и обладает хорошей совместимостью с анионными и неионогенными комплексами.

Температура плавления: 204-207 °C (лит.)
Плотность: 1,03 г/мл при 20 °C
FEMA: 4437 | ЛАУРИЛСУЛЬФАТ НАТРИЯ
Температура вспышки: >100°C
температура хранения: 2-8°C
растворимость: H2O: 0,1 M, от прозрачного до почти прозрачного, от бесцветного до слегка желтого цвета
форма: порошок или кристаллы
Цвет: от белого до бледно-желтого
рН: 6-9 (10 г/л, H2O, 20°C)
Запах: Легкий жирный запах
Диапазон рН: 7,2
Растворимость в воде: около 150 г/л (20 ºC)
λmax: λ: 260 нм Amax: 0,3
λ: 280 нм Amax: 0,2
Мерк: 14,8636
BRN: 3599286
InChIKey: DBMJMQXJHONAFJ-UHFFFAOYSA-M
Протокол: 1.600

Растворы SLS 93% (лаурилсульфат натрия 93%) (pH 9,5–10,0) слабо коррозионны для низкоуглеродистой стали, меди, латуни, бронзы и алюминия.
SLS 93% (лаурилсульфат натрия 93%) представляет собой анионное поверхностно-активное вещество, используемое в широком спектре непарентеральных фармацевтических форм и косметических средств.
SLS 93% (лаурилсульфат натрия 93%) - это анионное поверхностно-активное вещество, используемое во многих чистящих и гигиенических средствах.

SLS 93% (лаурилсульфат натрия 93%) является распространенным компонентом многих бытовых чистящих средств, средств личной гигиены и косметических, фармацевтических и пищевых продуктов, а также промышленных и коммерческих чистящих средств и составов продуктов.
SLS 93% (лаурилсульфат натрия 93%) - это своего рода анионное поверхностно-активное вещество с отличными характеристиками.
SLS 93% (лаурилсульфат натрия 93%) обладает хорошими очищающими, эмульгирующими, смачивающими и пенообразующими свойствами.

SLS 93% (лаурилсульфат натрия 93%) легко растворяется в воде, совместим со многими поверхностно-активными веществами и стабилен в жесткой воде.
SLS 93% (лаурилсульфат натрия 93%) является биоразлагаемым продуктом с низким раздражением кожи и глаз.
SLS 93% (лаурилсульфат натрия 93%) притягивает как воду, так и масло, что помогает расщеплять жир и грязь, облегчая их смывание.

SLS 93% (лаурилсульфат натрия 93%) - способность создавать густую пену часто ценится в средствах личной гигиены, так как дает ощущение тщательной очистки.
Тем не менее, были некоторые разногласия вокруг SLS 93% (лаурилсульфат натрия 93%) и связанных с ним соединений.
Некоторые люди могут испытывать раздражение кожи или глаз при использовании продуктов, содержащих SLS 93% (лаурилсульфат натрия 93%), особенно если у них чувствительная кожа или аллергия.

Кроме того, были опасения по поводу воздействия на окружающую среду 93% SLS (лаурилсульфат натрия 93%), поскольку он может быть токсичным для водной флоры и фауны и может сохраняться в окружающей среде.
Как и другие поверхностно-активные вещества, SLS 93% (лаурилсульфат натрия 93%) является амфифильным.
Таким образом, SLS 93% (лаурилсульфат натрия 93%) мигрирует на поверхность жидкостей, где его выравнивание и агрегация с другими молекулами SLS снижает поверхностное натяжение.

Это позволяет легче распределять и перемешивать жидкость.
SLS 93% (лаурилсульфат натрия 93%) обладает мощной денатурирующей активностью белков и ингибирует инфекционность вирусов путем растворимости вирусной оболочки и/или денатурации оболочки и/или белков капсида.
SLS 93% (лаурилсульфат натрия 93%) эффективен при очистке, потому что в его молекулярной структуре есть как гидрофильные (водоотталкивающие), так и гидрофобные (водоотталкивающие) части.

Гидрофильный сульфатный конец взаимодействует с водой, в то время как гидрофобный углеводородный хвост связывается с маслом и смазкой.
Это двойное действие позволяет SLS 93% (лаурилсульфат натрия 93%) поднимать и удалять грязь и масла с поверхностей.
SLS 93% (лаурилсульфат натрия 93%) обычно встречается во многих средствах личной гигиены и косметических средствах из-за его способности создавать пенистую пену и эффективно удалять грязь и жир с кожи и волос.

SLS 93% (лаурилсульфат натрия 93%) используется в шампунях для очищения кожи головы и волос, в гелях для душа и мыле для очистки кожи, а также в зубной пасте для придания кремовой текстуры и удаления мусора с зубов.
SLS 93% (лаурилсульфат натрия 93%) обычно считается безопасным для использования в концентрациях, содержащихся в большинстве средств личной гигиены, поскольку они, как правило, низкие и значительно ниже уровней, которые могут причинить вред.
Однако некоторые люди могут быть более чувствительны к нему, испытывая раздражение кожи или слизистой оболочки.

Это привело к разработке линеек продуктов SLS 93% (лаурилсульфат натрия 93%) и сульфатов для людей с повышенной чувствительностью.
SLS 93% (лаурилсульфат натрия 93%) обычно производится путем сульфатации лаурилового спирта, который может быть получен из кокосового или пальмового масла.
В процессе производства SLS 93% (лаурилсульфат натрия 93%) может быть произведен в различных сортах, которые могут различаться по чистоте и примесям.

Фармацевтические или косметические сорта, как правило, имеют более высокую чистоту по сравнению с промышленными сортами.
SLS 93% (лаурилсульфат натрия 93%) играет важную роль в косметической химии, поскольку он является ключевым ингредиентом в рецептуре продуктов, требующих пенообразования и очищающих свойств.
Косметические химики и разработчики продуктов часто используют SLS для достижения желаемой текстуры, очищающей способности и внешнего вида в своих составах.

SLS 93% (лаурилсульфат натрия 93%) был предметом различных споров, часто связанных с его способностью вызывать раздражение кожи и глаз.
SLS 93% (лаурилсульфат натрия 93%) Важно отметить, что не все люди реагируют на SLS, и многие люди используют продукты, содержащие SLS, без проблем.
SLS 93% (лаурилсульфат натрия 93%) может быть указан как «лаурилсульфат натрия» или «лауретсульфат натрия», если используется этоксилирование (SLES).

SLS 93% (лаурилсульфат натрия 93%) является моющим и смачивающим агентом, эффективным как в щелочных, так и в кислых условиях.
В последние годы он нашел применение в аналитических электрофоретических методах: электрофорез в полиакриламидном геле SLS 93% (лаурилсульфат натрия 93%) является одним из наиболее широко используемых методов анализа белков; и лаурилсульфат натрия был использован для повышения селективности мицеллярной электрокинетической хроматографии (MEKC).
SLS 93% (лаурилсульфат натрия 93%) K12, лаурилсульфат натрия CAS 151-21-3, представляет собой синтетическое органическое соединение с формулой CH3(CH2)11SO4Na.

SLS 93% (лаурилсульфат натрия 93%) несовместим с сильными окислителями.
SLS 93% (лаурилсульфат натрия 93%) также несовместим с катионными материалами и с кислотами с pH ниже 2,5.
Основные соли, такие как SLS 93% (лаурилсульфат натрия 93%), как правило, растворимы в воде.

Полученные растворы содержат умеренные концентрации гидроксид-ионов и имеют рН более 7,0. Они реагируют как основания для нейтрализации кислот.
Эти нейтрализации выделяют тепло, но меньше или намного меньше, чем при нейтрализации оснований в группе реакционной способности 10 (Основания) и нейтрализации аминов.
Обычно они не вступают в реакцию ни как окислители, ни как восстановители, но такое поведение не исключено.

SLS 93% (лаурилсульфат натрия 93%) реагирует с катионными поверхностно-активными веществами, вызывая потерю активности даже в концентрациях, слишком низких, чтобы вызвать осадок.
В отличие от мыла, SLS 93% (лаурилсульфат натрия 93%) совместим с разбавленными кислотами и ионами кальция и магния.
SLS 93% (лаурилсульфат натрия 93%) несовместим с солями ионов поливалентных металлов, таких как алюминий, свинец, олово или цинк, и осаждается солями калия.

Подготовка:
SLS 93% (лаурилсульфат натрия 93%) может быть синтезирован реакцией додецилового спирта с газообразным триоксидом серы с последующей нейтрализацией гидроксидом натрия.
Приготовление SLS 93% (лаурилсульфат натрия 93%) включает в себя следующие этапы: Реакция проходит в вертикальном реакторе при температуре 32 °C.
Газообразный азот вводится через газоотводные отверстия с расходом 85,9 л/мин.

Лауриловый спирт добавляется со скоростью потока 58 г/мин при 82,7 кПа.
Жидкий триоксид серы подается в испаритель вторичного испарения с давлением 124,1 кПа, с расходом 0,9072 кг/ч и температурой вспышки 100 °C.

Сульфатированный продукт быстро охлаждают до 50 °С, выдерживают в течение 10-20 мин, затем нейтрализуют основанием в нейтрализационном котле под контролем 50 °С.
рН доводят до 7-8,5, а жидкий продукт высушивают распылением для получения твердого продукта.

Использует:
SLS 93% (лаурилсульфат натрия 93%) используется в качестве эмульгатора в различных пищевых продуктах.
SLS 93% (лаурилсульфат натрия 93%) используется для очистки и стерилизации медицинского оборудования, такого как хирургические инструменты.
SLS 93% (лаурилсульфат натрия 93%) иногда используется в кондиционерах для волос для улучшения текстуры волос и облегчения расчесывания после мытья головы.

Некоторые средства для удаления клея и растворители, используемые для удаления наклеек, этикеток и остатков клейкой ленты, могут содержать SLS, который помогает растворить и удалить клей.
SLS 93% (лаурилсульфат натрия 93%) используется в качестве добавок в анализе капиллярного электрофореза и обычно используется в виде молярного раствора.
SLS 93% (лаурилсульфат натрия 93%) также используется в других анализах, таких как анализ проточной колонны.

SLS 93% (лаурилсульфат натрия 93%) используется в качестве моющих и текстильных вспомогательных средств, в качестве пенообразователя для зубной пасты, средства пожаротушения шахты, эмульсионного эмульгатора полимеризации, чистящего средства для шерсти и т. Д
SLS 93% (лаурилсульфат натрия 93%) используется в качестве анионного активатора поверхности, эмульгатора и пенообразователя
SLS 93% (лаурилсульфат натрия 93%) обладает отличной способностью к обеззараживанию, эмульгированию и пенообразованию.

SLS 93% (лаурилсульфат натрия 93%) можно использовать в качестве моющих и текстильных вспомогательных средств.
SLS 93% (лаурилсульфат натрия 93%) также может использоваться в качестве анионных поверхностно-активных веществ, пенообразователей зубной пасты, шахтных огнетушителей и огнетушителей Chemicalbook.
Пенообразователь, эмульгатор эмульсионной полимеризации и диспергирующий агент, шампунь и другие косметические средства, моющее средство для шерсти, моющее средство для тонких шелковых и шерстяных тканей.

SLS 93% (лаурилсульфат натрия 93%) используется в качестве моющего средства и текстиля, пенообразователя зубной пасты, огнетушащей пены, эмульгатора эмульсионной полимеризации, фармацевтического эмульгирующего диспергатора, шампуня и др.
SLS 93% (лаурилсульфат натрия 93%) и SLES используются для создания эффекта пены, помогают удалить грязь и жир с волос и равномерно распределить продукт.
Они обеспечивают пенообразующие и очищающие свойства в гелях для душа, гелях для душа и кусковом мыле.

SLS 93% (лаурилсульфат натрия 93%) используется для создания пенистой текстуры и помогает вытеснить мусор с зубов.
SLS 93% (лаурилсульфат натрия 93%) часто содержится в жидком мыле для рук для эффективного очищения рук.
SLS 93% (лаурилсульфат натрия 93%) и SLES создают кремообразную пену, которая помогает при бритье.

Некоторые очищающие средства для лица используют эти соединения для снятия макияжа и очищения кожи.
SLS 93% (лаурилсульфат натрия 93%) помогает удалить жир и остатки пищи с посуды.
SLS 93% (лаурилсульфат натрия 93%) используется для разрушения и удаления пятен с одежды.

SLS 93% (лаурилсульфат натрия 93%) содержится в различных чистящих средствах, включая универсальные чистящие средства и чистящие средства для ванных комнат, которые помогают удалить грязь и копоть.
SLS 93% (лаурилсульфат натрия 93%) используется в различных промышленных процессах, таких как текстильная и бумажная промышленность, для помощи в диспергировании и удалении загрязняющих веществ и примесей.
SLS 93% (лаурилсульфат натрия 93%) используется в качестве эталонного стандарта в исследованиях и научных исследованиях.

SLS 93% (лаурилсульфат натрия 93%) часто используется в исследованиях, связанных с поверхностными и межфазными исследованиями.
SLS 93% (лаурилсульфат натрия 93%) используется в текстильной и кожевенной обработке для смачивания, эмульгирования и удаления загрязнений.
SLS 93% (лаурилсульфат натрия 93%) используется в рецептуре пестицидов и гербицидов для улучшения диспергирования и адгезии активных ингредиентов на растительных поверхностях.

Некоторые шампуни и средства для ухода за домашними животными содержат SLS 93% (лаурилсульфат натрия 93%) или SLES для очистки и вспенивания шерсти домашних животных.
SLS 93% (лаурилсульфат натрия 93%) используется в некоторых средствах для чистки автомобилей, включая мыло для мытья автомобилей и чистящие средства для салона.
Специализированные пены для пожаротушения могут содержать SLS 93% (лаурилсульфат натрия 93%), чтобы помочь потушить пожары жидкого топлива за счет образования защитной пленки на поверхности топлива.

SLS 93% (лаурилсульфат натрия 93%) используется в следующих продуктах: клеи и герметики, продукты для покрытий, шпатлевки, шпатлевки, штукатурки, пластилин, средства защиты растений и полимеры.
SLS 93% (лаурилсульфат натрия 93%) используется в следующих областях: строительно-монтажные работы, а также сельское, лесное и рыболовное хозяйство.
SLS 93% (лаурилсульфат натрия 93%) широко используется в пенообразователе зубной пасты, косметическом эмульгаторе, шампуне, средстве для ванн и других поверхностно-активных веществах для моющей косметики.

Также широко SLS 93% (лаурилсульфат натрия 93%) используется в фармацевтической промышленности, широко используется в фармацевтическом производстве эмульгаторов, моющих средств, диспергаторов, смачивателей, пенообразователей.
В качестве добавки к бетону, пенообразователя и воздухововлекающего агента в строительной отрасли.
SLS 93% (лаурилсульфат натрия 93%) также может использоваться в качестве выравнивающего агента и минерального флотационного агента в полиграфической и красильной промышленности.

SLS 93% (лаурилсульфат натрия 93%) используется в следующих продуктах: косметика и средства личной гигиены, моющие и чистящие средства, средства по уходу за воздухом, биоциды (например, дезинфицирующие средства, средства для борьбы с вредителями), продукты для покрытий, шпатлевки, шпатлевки, штукатурки, пластилин, полироли, воски и полимеры.
Выброс в окружающую среду 93% SLS (лаурилсульфат натрия 93%) может произойти при промышленном использовании: рецептуре смесей.

SLS 93% (лаурилсульфат натрия 93%) широко используется в жидких моющих средствах, таких как посуда, шампунь, пенная ванна, средство для мытья рук и т. Д.
SLS 93% (лаурилсульфат натрия 93%) можно использовать в стиральном порошке и моющем средстве для сильно загрязненных.
SLS 93% (лаурилсульфат натрия 93%) можно использовать для замены LAS, так что общая дозировка активного вещества снижается.

В текстильной, полиграфической и красильной, нефтяной и кожевенной промышленности используется в качестве смазки, красителя, очистителя, пенообразователя и обезжиривателя.
SLS 93% (лаурилсульфат натрия 93%) часто используется в моющих средствах и текстильной промышленности.
SLS 93% (лаурилсульфат натрия 93%) относится к анионному поверхностно-активному веществу.

SLS 93% (лаурилсульфат натрия 93%) растворим в воде, обладает хорошей совместимостью анионных и неионогенных комплексов, хорошей эмульгацией, пенообразованием, осмосом, обеззараживанием и диспергирующими свойствами, широко используется в зубной пасте, шампуне, моющем средстве, жидкой стирке, косметике и выпуске пластиковых форм, смазке и фармацевтике, производстве бумаги, строительных материалах, химической промышленности и т. Д.
SLS 93% (лаурилсульфат натрия 93%) также используется в лабораторных и исследовательских условиях в качестве стандартного эталонного соединения ��лагодаря своим хорошо известным свойствам.
SLS 93% (лаурилсульфат натрия 93%) используется в качестве модельного соединения в исследованиях, связанных с поверхностными и межфазными исследованиями.

SLS 93% (лаурилсульфат натрия 93%) используется в следующих продуктах: полимеры, лабораторные химикаты, фармацевтические препараты, а также моющие и чистящие средства.
Выброс в окружающую среду SLS 93% (лаурилсульфат натрия 93%) может происходить при промышленном использовании: в технологических добавках на промышленных объектах, при производстве изделий, в качестве промежуточного этапа в дальнейшем производстве другого вещества (использование промежуточных продуктов), в качестве технологической добавки и для производства термопластов.
Другие выбросы в окружающую среду 93% (лаурилсульфат натрия 93%) могут происходить при использовании внутри помещений (например, жидкости/моющие средства для машинной стирки, средства по уходу за автомобилем, краски и покрытия или клеи, ароматизаторы и освежители воздуха) и на открытом воздухе.

SLS 93% (лаурилсульфат натрия 93%) используется в различных продуктах, в том числе: Средства по уходу, такие как крем для бритья, бальзам для губ, дезинфицирующее средство для рук, средства для ухода за ногтями, средство для снятия макияжа, тональный крем, очищающие средства для лица, отшелушивающие средства и жидкое мыло для рук.
SLS 93% (лаурилсульфат натрия 93%) помогает сочетать ингредиенты на масляной и водной основе, обеспечивая однородное смешивание в таких продуктах, как заправки для салатов, соусы и напитки.
SLS 93% (лаурилсульфат натрия 93%) можно использовать в некоторых фармацевтических составах, например, в пероральных препаратах, где он помогает диспергировать активные ингредиенты для облегчения глотания.

SLS 93% (лаурилсульфат натрия 93%) используется в некоторых клеевых и герметизирующих продуктах для улучшения смачивающих и адгезионных свойств, что делает их более легкими в нанесении и более эффективными.
SLS 93% (лаурилсульфат натрия 93%) можно найти в некоторых сухих химических огнетушителях для тушения пожаров легковоспламеняющихся жидкостей.
SLS 93% (лаурилсульфат натрия 93%) используется в нефтегазовой промышленности в качестве ингредиента в буровых растворах для стабилизации бурового раствора и улучшения суспензии твердых частиц.

SLS 93% (лаурилсульфат натрия 93%) используется в пенах для пожаротушения, особенно тех, которые предназначены для тушения пожаров легковоспламеняющихся жидкостей.
SLS 93% (лаурилсульфат натрия 93%) помогает создать стабильное пенное одеяло, которое гасит огонь, отделяя его от кислорода.
SLS 93% (лаурилсульфат натрия 93%) может использоваться в пищевой промышленности для очистки и дезинфекции оборудования и поверхностей, контактирующих с пищевыми продуктами, благодаря его способности расщеплять жир и органические остатки.

SLS 93% (лаурилсульфат натрия 93%) - это эмульгатор и средство для взбивания, растворимость которого составляет 1 г в 10 мл воды.
SLS 93% (лаурилсульфат натрия 93%) функционирует как эмульгатор в яичных белках.
SLS 93% (лаурилсульфат натрия 93%) используется в качестве вспомогательного средства для взбивания в зефире и смеси для тортов ангельской еды.

SLS 93% (лаурилсульфат натрия 93%) также помогает растворять фумаровую кислоту.
SLS 93% (лаурилсульфат натрия 93%) используется в качестве эттингового агента, моющего средства, особенно в текстильной промышленности.
Электрофоретическое разделение белков и липидов. Ингредиент зубных паст.

SLS 93% (лаурилсульфат натрия 93%) обладает отличной моющей, эмульгирующей и пенообразующей способностью, может использоваться в качестве моющих и текстильных вспомогательных средств, а также используется в качестве анионного поверхностно-активного вещества, пенообразователя зубной пасты, шахтных огнетушащих веществ, пенообразователей для огнетушителей, эмульсионных эмульгаторов полимеризации, эмульгирующих и диспергирующих агентов для медицинского использования, шампуней и других косметических средств, моющее средство для шерсти, моющее средство для тонких тканей шелковистого класса и флотационное средство для обогащения металлов.
SLS 93% (лаурилсульфат натрия 93%) используется в качестве пенообразователя; эмульгаторы; и анионные поверхностно-активные вещества.

SLS 93% (лаурилсульфат натрия 93%) используется для тортов, напитков, белков, фруктов, фруктовых соков, пищевого масла и так далее.
SLS 93% (лаурилсульфат натрия 93%) используется в качестве поверхностно-активных веществ, моющих средств, пенообразователей, смачивающих агентов и так далее.
SLS 93% (лаурилсульфат натрия 93%) используется в качестве реагентов для ионспаривания в относительно низких концентрациях и дешевле, чем гептансульфонат натрия и пентансульфонат натрия при меньших требованиях.

SLS 93% (лаурилсульфат натрия 93%) используется в качестве сырья для модификации материалов.
SLS 93% (лаурилсульфат натрия 93%) используется в текстильной промышленности в качестве смачивающего агента, способствующего равномерному распределению красителей и химикатов во время процессов окрашивания и отделки.

Профиль безопасности:
Яд внутривенным и внутрибрюшинным путями.
Умеренно токсичен при проглатывании.
SLS 93% (лаурилсульфат натрия 93%) раздражает кожу человека.

Экспериментальный глаз и сильный раздражитель кожи.
Сообщается о мутационных данных.
При нагревании до разложения SLS 93% (лаурилсульфат натрия 93%) выделяет токсичные пары SO, и Na2O.

SLS 93% (лаурилсульфат натрия 93%) широко используется в косметике, а также в пероральных и местных фармацевтических составах.
SLS 93% (лаурилсульфат натрия 93%) является умеренно токсичным материалом с острыми токсическими эффектами, включая раздражение кожи, глаз, слизистых оболочек, верхних дыхательных путей и желудка.

Многократное, длительное воздействие разбавленных растворов может вызвать сухость и растрескивание кожи; Может развиться контактный дерматит.
Длительное вдыхание SLS 93% (лаурилсульфат натрия 93%) повредит легкие.

Возможна сенсибилизация легких, приводящая к гиперактивной дисфункции дыхательных путей и легочной аллергии.
Исследования на животных показали, что внутривенное введение вызывает выраженные токсические эффекты для легких, почек и печени.
Мутагенные испытания в бактериальных системах показали отрицательный результат.

SLS ПОРОШОК
ОПИСАНИЕ:
Порошок SLS часто используется в качестве пенообразователя во многих распространенных продуктах: средствах для ванн, шампунях, пенообразующих порошках и многом другом.
SLS Powder — это высокоактивный, высококачественный SLS-порошок лаурилсульфата натрия.


НОМЕР КАС: 151-21-3
EC-номер. : 205-788-1


Порошок SLS полезен в порошкообразных, таблетированных или смешанных жидких твердых поверхностях, а также в средствах для чистки ковров, порошкообразных пенных ваннах, чистящих средствах, чистящих и пенообразующих средствах. SLS также широко используется во многих текстильных и промышленных чистящих средствах, порошковых средствах для мытья рук.
Порошок SLS отлично подходит для использования в жидком мыле для рук.

Это безумное пенообразующее поверхностно-активное вещество, полученное естественным путем из кокосового или пальмоядрового масла, известно своим широким применением в производстве чистящих, моющих средств и косметики.

SLS Powder представляет собой алкилсульфат на основе природного насыщенного первичного жирного спирта с прямой цепью.
Примечательны его пенящиеся и очищающие свойства.
Порошок SLS характеризуется очень высоким содержанием активных веществ и очень низким содержанием неорганических солей и несульфатированных жирных спиртов.


Лаурилсульфат натрия — химическая добавка, используемая для увеличения пены и пены в туалетных товарах.
SLS – это сухой порошок, который используется в косметической промышленности во многих продуктах.


Порошок лаурилсульфата натрия, также известный как «SLS», представляет собой порошок анионного поверхностно-активного вещества, используемый в самых разных областях. Порошок лаурилсульфата натрия используется для изготовления эффективных чистящих средств для твердых поверхностей в коммерческих и промышленных целях, а также для чистящих средств на транспорте.
Порошок лаурилсульфата натрия представляет собой высококачественный порошок SLS с высоким уровнем активности и 90% активности +-
SLS можно использовать с другими анионогенными, неионогенными или амфотерными поверхностно-активными веществами.
Порошок лау��илсульфата натрия обладает высоким пенообразованием.



SLS или порошок лаурилсульфата натрия очень полезен при производстве широкого спектра продуктов личной гигиены.
Эти химикаты в основном используются в качестве эмульгатора, поверхностно-активного вещества, диспергатора, пенообразователя и смачивающего агента в отраслях очистки и личной гигиены.
Порошок SLS Подходит для тех средств личной гигиены, где требуются характеристики пены и повышение вязкости. Порошок SLS специально используется для перламутровых, непрозрачных или кремовых продуктов.


ПРЕИМУЩЕСТВА ПОРОШКА SLS:
Чистый и концентрированный SLS создает обильную, кремовую и роскошную пену, которая глубоко очистит ваше тело и волосы.
Порошок SLS повышает вязкость продуктов, делая их более густыми и кремовыми.
С его помощью вы сможете удалить макияж, а SLS-пудра сделает вашу кожу кристально чистой.


Порошок SLS предотвращает накопление масла на лице и предотвращает появление прыщей.
При добавлении в моющие средства порошок SLS способен удалить самые стойкие пятна с вашей одежды.
Его астрономической очищающей способности достаточно, чтобы сделать пол в вашем доме чистым и блестящим.

Спрей кристаллизованный гранулированный лаурилсульфат натрия на основе природного насыщенного первичного жирного спирта с прямой цепью.
Порошок SLS является чрезвычайно эффективным вспомогательным веществом на протяжении всего процесса таблетирования.
Порошок SLS является широко используемым ионным солюбилизатором и анионным эмульгатором с высоким содержанием ГЛБ.

Порошок SLS также подходит в качестве смачивающего агента или смазки.
Порошок SLS подходит для твердых, полутвердых лекарственных форм и пен.
Порошок SLS используется в биофармацевтическом производстве для растворения тел включений во время последующей переработки.

Применение ПОРОШКА SLS:

Порошок SLS используется в качестве пенообразователя в зубных пастах, кремах для бритья, порошковых шампунях и т. д.
В фармацевтической промышленности его используют для таблетирования.
Порошок SLS также используется в противопожарном оборудовании.

Порошок SLS широко используется в зубной пасте, шампунях и пенах для пожаротушения.
Лаурилсульфат натрия (SLS) используется в качестве моющего средства, пенообразователя и для повышения вязкости в продуктах личной гигиены.
Благодаря низкому содержанию соли порошок SLS полезен в составах, чувствительных к высоким уровням хлорида натрия.

Это один из самых раздражающих ингредиентов в средствах личной гигиены, который используется почти всеми производителями во всем мире.
Порошок SLS содержится в шампунях и других средствах личной гигиены. SLS используется в коммерческих целях для мытья полов, в качестве обезжиривателя двигателя и для мытья автомобилей. Лаурилсульфат аммония является наиболее сильным раздражителем, за ним следует лаурилсульфат натрия.




КАК РАБОТАЕТ ПОРОШОК SLS?:
Порошок SLS разрушает поверхностное натяжение воды и позволяет ей очищать грязь, пыль и сажу.
Порошок SLS действует как эмульгатор, загущая состав и выравнивая его текстуру.


КОНЦЕНТРАЦИЯ И РАСТВОРИМОСТЬ ПОРОШКА SLS:
Обычно порошок SLS используется в концентрации менее 1% в смываемых продуктах и более 1% в бытовых или промышленных продуктах.
В косметике концентрация должна быть около 0,01%-0,5%.
Порошок SLS частично растворим как в воде, так и в масле.


КАК ИСПОЛЬЗОВАТЬ ПОРОШОК SLS?:
Смешайте порошок SLS с другими поверхностно-активными веществами и добавьте смесь в нагретую водную фазу при температуре 70°.
Смешайте водную и масляную фазы при температуре 40°С и непрерывно помешивайте.
В конечную смесь добавьте активные ингредиенты и стабилизаторы.

ПРИМЕНЕНИЕ ПОРОШКА SLS:
Порошок SLS используется в средствах для стирки (таблетки, компактный порошок, сухие смеси).
Порошок SLS используется в бытовых чистящих средствах.
Порошок SLS используется при мойке легковых и грузовых автомобилей.

Порошок SLS используется в текстиле.
Порошок SLS внесен в список FIFRA в отношении интерактивных ингредиентов.



ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА ПОРОШКА SLS:

Название INCI - лаурилсульфат натрия
Молекулярная формула-NaSO4C12H25
Альтернативные названия: додецилсульфат натрия.
Чистота ингредиента - 98%.
Форма выпуска: Вещество
Торговое название: НАТРИЯ ЛАУРИЛСУЛЬФАТ ПОРОШОК EXTRA PURE
EC-номер. : 205-788-1
CAS-номер. : 151-21-3
Тип продукта : Поверхностно-активные вещества
Формула: C12H25NaSO4.
Физическое состояние: Твердое
Внешний вид: Кристаллический порошок.
Молекулярная масса: 288,38 г/моль.
Цвет : Белый.
Запах: слабый запах.
pH: 8,5 – 10
Концентрация раствора pH: 1 % (водный раствор)
Температура плавления: 204–207 °C.
Температура вспышки: > 100 °C
Температура самовоспламенения: 310,5 °C.
Воспламеняемость (твердое тело, газ): Вещество или смесь представляет собой легковоспламеняющееся твердое вещество подкатегории 1 Легковоспламеняющееся твердое вещество.
Давление пара: 0,002 гПа при 20°C.
Плотность: 0,37 г/см³
Растворимость: Вода: 130 г/л при 20°C. Растворим в воде.
Коэффициент распределения н-октанол/вода (Log Pow): 0,83 при 22°C.



ИНФОРМАЦИЯ ПО БЕЗОПАСНОСТИ ПОРОШКА SLS:
Меры первой помощи:
Описание мер первой помощи:
Общий совет:
Проконсультируйтесь с врачом.
Покажите этот паспорт безопасности лечащему врачу.
Выйдите из опасной зоны:

При вдыхании:
При вдыхании выведите пострадавшего на свежий воздух.
Если нет дыхания проведите искусственную вентиляцию легких.
Проконсультируйтесь с врачом.
При попадании на кожу:
Немедленно снять загрязненную одежду и обувь.
Смыть большим количеством воды с мылом.
Проконсультируйтесь с врачом.

При попадании в глаза:
Тщательно промойте большим количеством воды в течение не менее 15 минут и обратитесь к врачу.
Продолжайте промывать глаза во время транспортировки в больницу.

При проглатывании:
Не вызывает рвоту.
Никогда не давайте ничего перорально человеку, находящемуся без сознания.
Прополоскать рот водой.
Проконсультируйтесь с врачом.

Противопожарные меры:
Средства пожаротушения:
Подходящие средства пожаротушения:
Используйте водяной спрей, спиртостойкую пену, сухие химикаты или углекислый газ.
Особые опасности, исходящие от вещества или смеси
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород

Совет пожарным:
При необходимости наденьте автономный дыхательный аппарат для тушения пожара.
Меры при случайном высвобождении:
Меры личной безопасности, защитное снаряжение и действия в чрезвычайных ситуациях
Используйте средства индивидуальной защиты.

Избегайте вдыхания паров, тумана или газа.
Эвакуируйте персонал в безопасные места.

Экологические меры предосторожности:
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Необходимо избегать попадания в окружающую среду.

Методы и материалы для локализации и очистки:
Промочить инертным абсорбирующим материалом и утилизировать как опасные отходы.
Хранить в подходящих закрытых контейнерах для утилизации.

Обращение и хранение:
Меры предосторожности для безопасного обращения:
Избегайте вдыхания паров или тумана.

Условия безопасного хранения, включая любые несовместимости:
Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.
Открытые контейнеры необходимо тщательно закрыть и хранить в вертикальном положении во избежание утечки.
Класс хранения (TRGS 510): 8А: Горючие, коррозионно-активные опасные материалы.

Контроль воздействия / личная защита:
Параметры управления:
Компоненты с параметрами контроля рабочего места
Не содержит веществ с предельно допустимыми значениями профессионального воздействия.
Средства контроля воздействия:
Соответствующие технические средства контроля:
Обращайтесь в соответствии с правилами промышленной гигиены и техники безопасности.
Мойте руки перед перерывами и в конце рабочего дня.

Средства индивидуальной защиты:
Защита глаз/лица:
Плотно прилегающие защитные очки.
Лицевой щиток (минимум 8 дюймов).
Используйте средства защиты глаз, протестированные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или EN 166 (ЕС).

Защита кожи:
Работайте в перчатках.
Перчатки необходимо проверять перед использованием.
Используйте подходящие перчатки
технику снятия (не касаясь внешней поверхности перчатки), чтобы избежать попадания продукта на кожу.
Утилизируйте загрязненные перчатки после использования в соответствии с действующим законодательством и надлежащей лабораторной практикой.
Вымойте и высушите руки.

Полный контакт:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Протестированный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Всплеск контакта
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Протестированный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Его не следует истолковывать как разрешение на какой-либо конкретный сценарий использования.

Защита тела:
Полный костюм защиты от химикатов. Тип защитного средства необходимо выбирать в зависимости от концентрации и количества опасного вещества на конкретном рабочем месте.
Защита органов дыхания:
Если оценка риска показывает, что воздухоочистительные респираторы уместны, используйте полнолицевой респиратор с многоцелевыми комбинированными (США) или респираторными картриджами типа ABEK (EN 14387) в качестве резерва для инженерных средств контроля.

Если респиратор является единственным средством защиты, используйте респиратор, закрывающий все лицо.
Используйте респираторы и их компоненты, протестированные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или CEN (ЕС).
Контроль воздействия на окружающую среду
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Необходимо избегать попадания в окружающую среду.

Стабильность и химическая активность:
Химическая стабильность:
Стабилен при рекомендуемых условиях хранения.
Несовместимые материалы:
Сильные окислители:
Опасные продукты разложения:
Опасные продукты разложения образуются в условиях пожара.
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород.

Утилизация отходов:
Методы переработки отходов:
Продукт:
Предложите решения для излишков и неперерабатываемых отходов лицензированной компании по утилизации.
Обратитесь в лицензированную профессиональную службу по утилизации отходов, чтобы избавиться от этого материала.
Загрязненная упаковка:
Утилизируйте как неиспользованный продукт.








СИНОНИМЫ ПОРОШКА SLS:

Кокосульфат натрия (SCS)
Лауретсульфат натрия (SLeS)
Лаурилсульфоацетат натрия (SLSa)




Soda Ash
hydrated silica; silica, amorphous, precipitated and gel cas no : 112926-00-8
SODIUM ACETATE
SODIUM ACETATE, N° CAS : 127-09-3 - Acétate de sodium. Origine(s) : Synthétique. Autres langues : Acetato de sodio, Acetato di sodio, Natriumacetat. Nom INCI : SODIUM ACETATE, Nom chimique : Sodium acetate. N° EINECS/ELINCS : 204-823-8. Additif alimentaire : E262. Ses fonctions (INCI). Régulateur de pH : Stabilise le pH des cosmétiques. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit.sodyum asetat,Noms français : ACETATE DE SODIUM; Acétate de sodium; Acétate de sodium anhydre; SEL DE SODIUM DE L'ACIDE ACETIQUE; SODIUM, ACETATE DE. Noms anglais : ACETIC ACID, SODIUM SALT; ANHYDROUS SODIUM ACETATE. Sodium acetate; Sodium acetate anhydrous. Utilisation et sources d'émission: Additif alimentaire, catalyseur. Acetic acid, sodium salt (1:1). Translated names: Acetat de sodiu (ro); Acetato de sodio (es); Acetato de sódio (pt); Acetato di sodio (it); Acétate de sodium (fr); Aċetat tas-sodju (mt); Naatriumatsetaat (et); Natrijev acetat (hr) ; Natrio acetatas (lt); Natriumacetaat (nl); Natriumacetat (da); Natriumasetaatti (fi); Nátrium-acetát (hu); Nātrija acetāts (lv); Octan sodný (cs); Octan sodu (pl); Sodium acetate (no); Οξικό νάτριο (el); Натриев ацетат (bg); Acetic acid sodium salt; NAAC; Sodium Acetate; Sodium Acetate ; SODIUM ACETATE ANHYDROUS; sodium;acetate; Everagent T014; Sodium acetate hydrate; Sodium acetate [ACD/IUPAC Name] [Wiki]; 127-09-3 [RN]; 204-823-8 [EINECS]; 232-148-9 [EINECS]; 3595639 [Beilstein]; 4-01-00-00715 [Beilstein]; Acétate de sodium [French] ; Acetic acid sodium salt; ACETIC ACID, SODIUM SALT; Acetic acid, sodium salt (1:1) ; anhydrous sodium acetate; ethanoic acid sodium salt; MFCD00012459 [MDL number]; Natrium aceticum [Latin]; Natriumacetat [German] ; Natriumazetat [German]; Octan sodny [Czech]; sodii acetas; Sodium ethanoate; acetate sodium; Acetatebuffer; acetic acid sodium; AGN-PC-04FAVB; MFCD00137248 [MDL number]; Natrium aceticum; Natriumazetat; Sodium acetate trihydrate; Sodium acetate,anhydrous; 乙酸钠 [Chinese
SODIUM ACETATE ANHYDROUS
cas no 7758-16-9 SAPP; disodium dihydrogen pyrophosphate; disodium pyrophosphate; Polyphosphoric acids, sodium salts; Pyrophosphoric acid, disodium salt; Diphosphoric acid, sodium salt (1:2);
SODIUM ACETATE TRIHYDRATE
Sodium Acetate Trihydrate Sodium acetate trihydrate, NaCH3COO, also abbreviated NaOAc, is the sodium salt of acetic acid. This colorless deliquescent salt has a wide range of uses. Applications of Sodium Acetate Trihydrate Biotechnological Sodium acetate trihydrate is used as the carbon source for culturing bacteria. Sodium acetate trihydrate is also useful for increasing yields of DNA isolation by ethanol precipitation. Industrial Sodium acetate trihydrate is used in the textile industry to neutralize sulfuric acid waste streams and also as a photoresist while using aniline dyes. It is also a pickling agent in chrome tanning and helps to impede vulcanization of chloroprene in synthetic rubber production. In processing cotton for disposable cotton pads, Sodium acetate trihydrate is used to eliminate the buildup of static electricity. Concrete longevity Sodium acetate trihydrate is used to mitigate water damage to concrete by acting as a concrete sealant, while also being environmentally benign and cheaper than the commonly used epoxy alternative for sealing concrete against water permeation. Food Sodium acetate trihydrate may be added to food as a seasoning, sometimes in the form of sodium diacetate, a one-to-one complex of Sodium acetate trihydrate and acetic acid, given the E-number E262. It is often used to give potato chips a salt and vinegar flavor. Sodium acetate trihydrate (anhydrous) is widely used as a shelf-life extending agent, pH control agent. It is safe to eat at low concentration. Buffer solution A solution of Sodium acetate trihydrate (a basic salt of acetic acid) and acetic acid can act as a buffer to keep a relatively constant pH level. This is useful especially in biochemical applications where reactions are pH-dependent in a mildly acidic range (pH 4–6). Heating pad A hand warmer containing a supersaturated solution of Sodium acetate trihydrate which releases heat upon crystallization Sodium acetate trihydrate is also used in heating pads, hand warmers, and hot ice. Sodium acetate trihydrate crystals melt at 136.4 °F/58 °C (to 137.12 °F/58.4 °C), dissolving in their water of crystallization. When they are heated past the melting point and subsequently allowed to cool, the aqueous solution becomes supersaturated. This solution is capable of cooling to room temperature without forming crystals. By pressing on a metal disc within the heating pad, a nucleation center is formed, causing the solution to crystallize back into solid Sodium acetate trihydrate. The bond-forming process of crystallization is exothermic. The latent heat of fusion is about 264–289 kJ/kg. Unlike some types of heat packs, such as those dependent upon irreversible chemical reactions, a Sodium acetate trihydrate heat pack can be easily reused by immersing the pack in boiling water for a few minutes, until the crystals are completely dissolved, and allowing the pack to slowly cool to room temperature. Preparation A crystal of Sodium acetate trihydrate (length 1.7 centimetres) For laboratory use, Sodium acetate trihydrate is inexpensive and usually purchased instead of being synthesized. It is sometimes produced in a laboratory experiment by the reaction of acetic acid, commonly in the 5–8% solution known as vinegar, with sodium carbonate ("washing soda"), sodium bicarbonate ("baking soda"), or sodium hydroxide ("lye", or "caustic soda"). Any of these reactions produce Sodium acetate trihydrate and water. When a sodium and carbonate ion-containing compound is used as the reactant, the carbonate anion from sodium bicarbonate or carbonate, reacts with hydrogen from the carboxyl group (-COOH) in acetic acid, forming carbonic acid. Carbonic acid readily decomposes under normal conditions into gaseous carbon dioxide and water. This is the reaction taking place in the well-known "volcano" that occurs when the household products, baking soda and vinegar, are combined. CH3COOH + NaHCO3 → CH3COONa + H2CO3H2CO3 → CO2 + H2O Industrially, Sodium acetate trihydrate is prepared by reacting acetic acid with sodium hydroxide using water as the solvent. CH3COOH + NaOH → CH3COONa + H2O Reactions Sodium acetate trihydrate can be used to form an ester with an alkyl halide such as bromoethane: CH3COONa + BrCH2CH3 → CH3COOCH2CH3 + NaBr Sodium acetate trihydrate undergoes decarboxylation to form methane (CH4) under forcing conditions (pyrolysis in the presence of sodium hydroxide): CH3COONa + NaOH → CH4 + Na2CO3 Calcium oxide is the typical catalyst used for this reaction. Caesium salts also catalyze this reaction. Properties of Sodium Acetate Trihydrate Chemical formula C2H3NaO2 Molar mass 82.034 g·mol−1 Appearance White deliquescent powder Odor Vinegar (acetic acid) odor when heated to decomposition Density 1.528 g/cm3 (20 °C, anhydrous) 1.45 g/cm3 (20 °C, Sodium Acetate Trihydrate) Melting point 58 °C (136 °F; 331 K) (Sodium Acetate Trihydrate) Boiling point 122 °C (252 °F; 395 K) (Sodium Acetate Trihydrate) decomposes Solubility in water Trihydrate: 32.9 g/100 mL (-10 °C) 36.2 g/100 mL (0 °C) 46.4 g/100 mL (20 °C) 82 g/100 mL (50 °C) Solubility Soluble in alcohol, hydrazine, SO2 Solubility in methanol 16 g/100 g (15 °C) 16.55 g/100 g (67.7 °C) Solubility in ethanol Trihydrate: 5.3 g/100 mL Solubility in acetone 0.5 g/kg (15 °C) Acidity (pKa) 24 (20 °C) 4.75 CH3COOH Basicity (pKb) 9.25 Magnetic susceptibility (χ) −37.6·10−6 cm3/mol Refractive index (nD) 1.464 Sodium Acetate Trihydrate is a moderately water soluble crystalline Sodium source that decomposes to Sodium oxide on heating. It is generally immediately available in most volumes. All metallic acetates are inorganic salts containing a metal cation and the acetate anion, a univalent (-1 charge) polyatomic ion composed of two carbon atoms ionically bound to three hydrogen and two oxygen atoms (Symbol: CH3COO) for a total formula weight of 59.05. Acetates are excellent precursors for production of ultra high purity compounds, catalysts, and nanoscale materials. We also produce Sodium Acetate Trihydrate Solution. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia)and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. Sodium Acetate Trihydrate is chemically designated CH3COONa, a hygroscopic powder very soluble in water. Sodium acetate Trihydrate could be used as additives in food, industry, concrete manufacture, heating pads and in buffer solutions. Medically, sodium acetate is important component as an electrolyte replenisher when given intravenously. Sodium Acetate Trihydrate is mainly indicated to correct sodium levels in hyponatremic patients. It can be used also in metabolic acidosis and for urine alkalinization. In water, liberates 42.25% available acetic acid; it is bound compound of Sodium acetate trihydrate and acetic acid. Injection, USP 40 mEq is indicated as a source of sodium, for addition to large volume intravenous fluids to prevent or correct hyponatremia in patients with restricted or no oral intake. It is also useful as an additive for preparing specific intravenous fluid formulas when the needs of the patient cannot be met by standard electrolyte or nutrient solutions. Sodium acetate trihydrate and other bicarbonate precursors are alkalinising agents, and can be used to correct metabolic acidosis, or for alkalinisation of the urine. Sodium acetate trihydrate Anhydrous is the anhydrous, sodium salt form of acetic acid. Sodium acetate trihydrate anhydrous disassociates in water to form sodium ions (Na+) and acetate ions. Sodium is the principal cation of the extracellular fluid and plays a large part in fluid and electrolyte replacement therapies. Sodium acetate trihydrate anhydrous is used as an electrolyte replenisher in isosmotic solution for parenteral replacement of acute losses of extracellular fluid without disturbing normal electrolyte balance. In liver, Sodium acetate trihydrate is being metabolized into bicarbonate. To form bicarbonate, acetate is slowly hydrolyzed to carbon dioxide and water, which are then converted to bicarbonate by the addition of a hydrogen ion. The technical grade is prepared synthetically by reacting sodium carbonate with acetic acid. Special grades are produced by reacting anhydrous Sodium acetate trihydrate and acetic acid. There are several commercial grades of Sodium acetate trihydrate. Anhydrous 99.0% purity is available as technical, USP and photo grade. Photo grade has a more narrow particle size distribution and the particle density is greater and more uniform. Sodium acetate trihydrate 60% is available as technical, NF, and Food Chemicals Codex. In the form of clean fine crystals, this trihydrate contains about 40% water of crystallization. Residues of Sodium acetate trihydrate are exempted from the requirement of a tolerance when used as a buffer in accordance with good agricultural practices as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops or to raw agricultural commodities after harvest. This action promulgates standards of performance for equipment leaks of Volatile Organic Compounds (VOC) in the Synthetic Organic Chemical Manufacturing Industry (SOCMI). The intended effect of these standards is to require all newly constructed, modified, and reconstructed SOCMI process units to use the best demonstrated system of continuous emission reduction for equipment leaks of VOC, considering costs, non air quality health and environmental impact and energy requirements. Sodium acetate trihydrate is produced, as an intermediate or a final product, by process units covered under this subpart. Residues of Sodium acetate trihydrate are exempted from the requirement of a tolerance when used as a buffer in accordance with good agricultural practices as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops or to raw agricultural commodities after harvest. The Approved Drug Products with Therapeutic Equivalence Evaluations List identifies currently marketed prescription drug products, incl Sodium acetate trihydrate, approved on the basis of safety and effectiveness by FDA under sections 505 and 507 of the Federal Food, Drug, and Cosmetic Act. Substances migrating to food from cotton and cotton fabrics used in dry food packaging that are generally recognised as safe for their intended use include Sodium acetate trihydrate. Sodium acetate trihydrate used as a general purpose food additivin animal drugs, feeds, and related products is generally recognized as safe when used in accordance with good manufacturing or feeding practice. Systemically administered acetate has been shown to cause motor impairment, an effect which is blocked by the adenosine receptor blocker, 8-phenyltheophylline. The effects of Sodium acetate trihydrate were investigated using intracellualr recording techniques in rat hippocampal dentate granule cells, and were compared to the actions of ethanol and adenosine individually and in conjunction with 8-phenyltheophylline. Acetate hyperpolarized the membrane of 0.4-0.8 mM. The amplitude and duration of the postspike train after hyperpolarization were increased by acetate when the cell was repolarized to the control resting membrane potential. Comparable results were seen in voltage clamp. Acetate also decreased spike frequency adaptation. The effects of acetate were mimicked by adenosine (50 uM) and ethanol (20 mM). The ethanol effects occluded those produced by acetate. All of the effects of acetate, adenosine and ethanol could be inhibited with prior perfusion of 8-phenyltheophylline (1-10 uM). These data suggest that the actions of the major metabolite of ethanol, acetate, and adenosine may be mediated by adenosine receptor activation. Sodium acetate trihydrate was evaluated using the Chernoff/Kavlock in vivo teratology screen procedure. End points analyzed as part of this assay were maternal toxicity and early postnatal growth/viability of offspring. Thirty pregnant CD 1 mice were given 1000 mg/kg/day of Sodium acetate trihydrate by gavage on days 8-12 of gestation and allowed to deliver. Forty vehicle-treated animals were used as controls. Sodium acetate trihydrate induced no observable adverse effects in the dams or their offspring when compared with controls. Sodium acetate trihydrate, tested on rabbit eyes as 0.1 M solution adjusted to pH 7.0 to 7.5 and made 0.46 osmolar with sodium chloride or sucrose, caused no disturbance of the cornea, though applied continuously for 3 hr. Subchronic or Prechronic Exposure/ ...Groups of three to four rats survived for 14 days when given 1800 mg/kg body weight per day of free acid intragastrically or 4200 - 4800 mg/kg body weight of Sodium acetate trihydrate, but survived only three to five days on daily intra-gastric doses of 2400 mg/kg body weight of free acid. Animals lost weight and showed blistered paws and reddened noses before death at fourteen days. Chronic Exposure or Carcinogenicity/ Male rats given oral doses of 350 mg/kg body weight of Sodium acetate trihydrate three times weekly for 63 days, then 140 mg/kg body weight three times weekly for 72 days showed no signs of tumors after 135 days. APPLICATIONS of Sodium acetate trihydrate Crystallization grade Sodium acetate trihydrate for formulating screens or for optimization FEATURES of Sodium acetate trihydrate Sterile filtered solution Formulated in Type 1+ ultrapure water: 18.2 megaohm-cm resistivity at 25°C, < 5 ppb Total Organic Carbon, bacteria free (<1 Bacteria (CFU/ml)), pyrogen free (<0.03 Endotoxin (EU/ml)), RNase-free (< 0.01 ng/mL) and DNase-free (< 4 pg/µL) Sodium acetate trihydrate is another chemical, which may be prepared in shop-floor by reacting sodium hydroxide with acetic acid in cold water. Sodium acetate trihydrate Anhydrous is the anhydrous, sodium salt form of acetic acid. Sodium acetate trihydrate anhydrous disassociates in water to form sodium ions (Na+) and acetate ions. Sodium is the principal cation of the extracellular fluid and plays a large part in fluid and electrolyte replacement therapies. Sodium acetate trihydrate anhydrous is used as an electrolyte replenisher in isosmotic solution for parenteral replacement of acute losses of extracellular fluid without disturbing normal electrolyte balance. Sodium acetate trihydrate is chemically designated CH3COONa, a hygroscopic powder very soluble in water. Sodium acetate trihydrate could be used as additives in food, industry, concrete manufacture, heating pads and in buffer solutions. Medically, Sodium acetate trihydrate is important component as an electrolyte replenisher when given intravenously. It is mainly indicated to correct sodium levels in hyponatremic patients. It can be used also in metabolic acidosis and for urine alkalinization. Sodium acetate trihydrate is an organic sodium salt. It contains an acetate. Sodium acetate trihydrate (anhydrous) is widely used as a shelf-life extending agent, pH control agent. What is Sodium acetate trihydrate (anhydrous) (CH3COONa)? Acetic acid has been said to prevent bacteria cultivation and therefore has been used not only to add sour taste but to preserve food. Sodium acetate trihydrate is a food additive obtained by neutralization of acetic acid. When used as a food additive, Sodium acetate trihydrate can be indicated by its group name, substance name, or abbreviated name according to the purpose of use. What is a shelf-life extending agent? A sanitizer, antioxidant, and preservative are used to maintain the quality of food. As specified in the regulation in regard to food labeling, an antioxidant and preservative are indicated with the application name as “preservative, etc.” The use of many of these agents is restricted so they are not available to some food. A shelf-life extending agent, indicated only with its name (Sodium acetate trihydrate), functions like these agents, giving slightly moderate effects. It is highly safe and its use is not restricted. Sodium acetate trihydrate can prevent bacteria cultivation in a wide range of acidic region. It also functions as a buffer as well. When used to add sour taste to food, acetic acid is generally selected, but combination of Sodium acetate trihydrate and acetic acid can make the taste mild. Uses for Sodium acetate trihydrate Sodium acetate trihydrate is the sodium salt of acetic acid. It has the chemical formula C2H3O2Na and is also known as sodium ethanoate. It is an inexpensive chemical that has a wide range of uses, including as a food additive and pickling agent or a laboratory reagent. It is also the prime ingredient in portable, reusable, chemical-based heating packs. Food Additive Sodium acetate trihydrate is added to food to help prevent bacterial growth. As an acid, it acts as a neutralizing agent for basic or alkaline foods and can also act as a buffer to help maintain a specific pH. The sodium can also be used to enhance flavors. Unlike many food additives, Sodium acetate trihydrate has no known adverse effects. Pickling Agent Pickling is method of preserving food that not only stops or greatly slows down spoiling caused by microorganisms, but it is a food preservation method that can also enhance flavor. The use of Sodium acetate trihydrate in pickling is similar to its use as a more simple food additive, but picking uses Sodium acetate trihydrate in much greater quantities and for longer periods of time. Essentially, food to be pickled, such as a cucumber, is soaked in an acid solution. This imparts a very salty or sour taste. The salty taste comes from the sodium ions, and the sour taste comes from the acetate ions, the ion of acetic acid. Laboratory Use Sodium acetate trihydrate is a very common reagent used in molecular biology and biochemistry labs, among others. Colorado State University notes that researchers use it to extra DNA from cells. The positive sodium cations bind to the negative phosphate charges on the DNA, helping the DNA to condense. In the presence of ethanol, or similar alcohol, DNA forms a precipitate that can then be separated from the aqueous layer. Industrial Use Sodium acetate trihydrate neutralizes the very strong sulfuric acid found in waste streams. It can be used in certain photography processes, helping impart a particular pattern of coating on surfaces. On metallic surfaces, it can help remove impurities, stains, rust or scale and can also aid in the tanning process of leather, as well as cure chloroprene, a synthetic rubber product. Heating Pad Those chemical heating pads or hand warmers that you can find at the drug store consist of a supersaturated solution of Sodium acetate trihydrate in water. Manufacturers place a flat, notched, metal disc in the solution. Flexing or moving the disk releases a very small amount of crystals of Sodium acetate trihydrate that have adhered to the disk. These crystals then start a chain reaction of crystallization with the rest of the Sodium acetate trihydrate. This reaction occurs quickly, releasing a lot of energy stored in the Sodium acetate trihydrate crystal framework. When the Sodium acetate trihydrate molecules crystallize, forming a solid, heat is released. The pad is reusable as the Sodium acetate trihydrate can return to the supersaturated liquid state by soaking the heating pad in boiling water and then allowing it to slowly cool to room temperature. During the process, a small amount of Sodium acetate trihydrate crystals will reform on the notched ferrous disk, while the rest of the Sodium acetate trihydrate will exist in the supersaturated liquid state, ready to be reactivated. Sodium acetate trihydrate, CH3COONa, also abbreviated NaOAc, also sodium ethanoate, is the sodium salt of acetic acid. Its CAS NO is 127-09-3.This colourless salt has a wide range of uses. Sodium acetate trihydrate is a common chemical that has a wide variety of uses in several industries, including medical, food, textile, health and beauty,. It is the derivative of sodium from acetic acid. 1. Medical Use Sodium acetate trihydrate can serve as a form of sodium for intravenous use, when doctors need to prevent or manage hyponatremia, the condition of having low sodium in the blood. It is also used in certain combinations for use with renal dialysis. 2. Food Preparation Use Sodium acetate trihydrate can give salt and vinegar chips their flavor, while also acting as a preservative. The food industry also uses it to improve the flavor of meat and poultry. During food processing, Sodium acetate trihydrate also helps regulate some of the pH levels in certain food products. It has even been said to reduce the risk of hangover when added to alcoholic products. 3. Cosmetic Use In the health and beauty industry, Sodium acetate trihydrate is used to make soap and a variety of cosmetic products. This is due to its good buffering and neutralizing components. 4. It’s in the Water More recently, Sodium acetate trihydrate is being used for water treatment, as opposed to the less environmentally-friendly methanol. Sodium acetate trihydrate is used to reduce the damage water can potentially do to concrete by acting as a concrete sealant, while also being environmentally benign and cheaper than the epoxy alternative that is usually employed for sealing concrete against water permeation. 5. Textile Use The textile industry has a lot of use for Sodium acetate trihydrate as it is able to remove calcium salts, which then lengthens the life of the finished fabric. Sodium acetate trihydrate is also used in the textile industry to neutralize sulfuric acid waste streams, and as a photoresist while using aniline dyes. It is also a pickling agent in chrome tanning, and it helps to retard vulcanization of chloroprene in synthetic rubber production. In processing cotton for disposable cotton pads, Sodium acetate trihydrate is used to eliminate the buildup of static electricity. 6. Buffer solution As the conjugate base of acetic acid, a solution of Sodium acetate trihydrate and acetic acid can act as a buffer to keep a relatively constant pH. This is useful especially in biochemical applications where reactions are pH dependent in a mildly acidic range (pH 4-6). 7. Heating pad Sodium acetate trihydrate is also used in consumer heating pads or hand warmers and is also used in hot ice. Sodium acetate trihydrate trihydrate crystals melt at 58.4°C, (to 58°C ) dissolving in their water of crystallization. When they are heated past the melting point and subsequently allowed to cool, the aqueous solution becomes supersaturated. This solution is capable of cooling to room temperature without forming crystals. By clicking on a metal disc in the heating pad, a nucleation centre is formed which causes the solution to crystallize into solid Sodium acetate trihydrate trihydrate again. The bond-forming process of crystallization is exothermic. The latent heat of fusion is about 264–289 kJ/kg. Unlike some other types of heat packs that depend on irreversible chemical reactions, Sodium acetate trihydrate heat packs can be easily recharged by placing in boiling water for a few minutes until all crystals are dissolved; they can be reused many times. Sodium acetate trihydrate Solutions are moderate to highly concentrated liquid solutions of Sodium acetate trihydrate. They are an excellent source of Sodium acetate trihydrate for applications requiring solubilized materials. Acetates are excellent precursors for production of ultra high purity compounds and certain catalyst and nanoscale (nanoparticles and nanopowders) materials. Acetates are also proving useful in the field of solar energy technologies: in January 2013, researchers at the Harbin Institute of Technology's Shenzhen Graduate School found that inserting ultrathin film layers of lithium acetate vastly improved the performance Bulk Quantity Acetate Solution Packagingof polymer bulk-heterojunction solar cells. American Elements can prepare dissolved homogeneous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers. American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research, and in optic, laser, crystal and glass applications. We also produce Sodium acetate trihydrate Powder. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia)and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. Sodium acetate trihydrate Chemical Properties,Uses,Production Description of Sodium acetate trihydrate Sodium acetate trihydrate (CH3COONa) is the sodium salt of acetic acid. Sodium acetate trihydrate appears as a colorless deliquescent salt with a wide range of applications. In industry, it can be used in textile industry to neutralize sulfuric acid waste streams and as a photoresist upon using aniline dyes. In concrete industry, it can be used as a concrete sealant to mitigate the water damage. In food, it can be used as a seasoning. It can also be used as a buffer solution in lab. In addition, it is also used in heating pads, hand warmers and hot ice. For laboratory use, it can be produced by the reaction between acetate with the sodium carbonate, sodium bicarbonate and sodium hydroxide. In industry, it is prepared from the glacial acetic acid and sodium hydroxide. Chemical Properties of Sodium acetate trihydrate Anhydrous salt is a colorless crystalline solid; density 1.528 g/cm3; melts at 324°C; very soluble in water; moderately soluble in ethanol. The colorless crystalline trihydrate has a density 1.45 g/cm3; decomposes at 58°C; is very soluble in water; pH of 0.1M aqueous solution is 8.9; moderately soluble in ethanol, 5.3 g/100mL. Chemical Properties of Sodium acetate trihydrate Sodium acetate trihydrate, CH3COONa, also abbreviated NaOAc , also sodium ethanoate, is the sodium salt of acetic acid. This colourless salt has a wide range of uses. Chemical Properties Sodium acetate trihydrate is odorless or has a faint acetous odor. Sodium acetate trihydrate effloresces in warm, dry air. Physical properties of Sodium acetate trihydrate Anhydrous salt is a colorless crystalline solid; density 1.528 g/cm3; melts at 324°C; very soluble in water; moderately soluble in ethanol. The colorless crystalline trihydrate has a density 1.45 g/cm3; decomposes at 58°C; is very soluble in water; pH of 0.1M aqueous solution is 8.9; moderately soluble in ethanol, 5.3 g/100mL. Occurrence of Sodium acetate trihydrate Acetic acid or acetates are present in most plant and animal tissues in small, but detectable amounts Uses of Sodium acetate trihydrate Sodium acetate trihydrate is a source of acetic acid that is obtained as crystals or powder. it has a solubility of 1 g in 0.8 ml of water. Sodium acetate trihydrate, Anhydrous is a source of acetic acid obtained as a granular powder. it has a solubility of 1 g in 2 ml of water. Uses This colorless crystal, also known as sodium ethanoate or acetate of soda, was made by the reaction of acetic acid with sodium carbonate. It is soluble in water but less so in alcohol. Sodium acetate trihydrate was used as a pH modifier for toning baths. Uses Sodium acetate trihydrate is a mordant in dyeing. Other applications are in photography, as an additive to food, in purification of glucose, in preservation of meat, in tanning, and as a dehydrating agent. In analytical chemistry it is used to prepare buffer solution. Sodium acetate trihydrate can be used to preserve processed meats and it is often used in combination with other acid based preservatives like lactates and propionates. The typical inclusion level is 0.2 to 0.5%. Sodium acetate trihydrate is also used in salad dressings and ready-to-eat meals. Uses Used as buffers. Acidity regulation (buffering) Sodium acetate trihydrate mixed with acetic acid forms a pH buffer, which can be used to stabilise the pH of foods in the pH-range from 3 to 6. The table below gives indicative values of the composition needed to give a certain pH. The mixtures below can be diluted at least 10 times with minimum effect on pH, however, the stability decreases. Preparation of Sodium acetate trihydrate Sodium acetate trihydrate is prepared by reacting sodium hydroxide or sodium carbonate with acetic acid in aqueous solution. The solution is evaporated to obtain hydrated crystals of Sodium acetate trihydrate. NaOH + CH3COOH → CH3COONa + H2O Na2CO3 + CH3COOH → 2CH3COONa + CO2 + H2O Definition of Sodium acetate trihydrate A white solid prepared by the neutralization of ethanoic acid with either sodium carbonate or sodium hydroxide. Sodium ethanoate reacts with sulfuric acid to form sodium hydrogensulfate and ethanoic acid; with sodium hydroxide it gives rise to sodium carbonate and methane. Sodium ethanoate is used in the dyeing industry. Application of Sodium acetate trihydrate 2 - 1 - Industrial Sodium acetate trihydrate is used in the textile industry to neutralize sulfuric acid waste streams, and as a photoresist while using aniline dyes. It is also a pickling agent in chrome tanning, and it helps to retard vulcanization of chloroprene in synthetic rubber production. In processing cotton for disposable cotton pads, Sodium acetate trihydrate is used to eliminate the buildup of static electricity. 2 - 2 - Concrete longevity Sodium acetate trihydrate is used to reduce the damage water can potentially do to concrete by acting as a concrete sealant, while also being environmentally benign and cheaper than the epoxy alternative that is usually employed for sealing concrete against water permeation. 2 - 3 - Food Sodium acetate trihydrate may be added to foods as a seasoning. It may be used in the form of sodium diacetate — a 1:1 complex of Sodium acetate trihydrate and acetic acid, given the E-number E262. A frequent use is to impart a salt and vinegar flavor to potato chips. 2 - 4 - Buffer solution As the conjugate base of acetic acid, a solution of Sodium acetate trihydrate and acetic acid can act as a buffer to keep a relatively constant pH. 2 - 5 - Heating pad Sodium acetate trihydrate is also used in consumer heating pads or hand warmers and is also used in hot ice. Sodium acetate trihydrate trihydrate crystals melt at 58.4°C , (to 58°C ) dissolving in their water of crystallization. When they are heated to around 100°C, and subsequently allowed to cool, the aqueous solution becomes supersaturated. This solution is capable of cooling to room temperature with out forming crystals. Preparation of Sodium acetate trihydrate For laboratory use, Sodium acetate trihydrate is very inexpensive, and is usually purchased instead of being synthesized. It is sometimes produced in a laboratory experiment by the reaction of acetic acid (ethanoic acid) with sodium carbonate, sodium bicarbonate, or sodium hydroxide. These reactions produce aqueous Sodium acetate trihydrate and water. Carbon dioxide is produced in the reaction with sodium carbonate and bicarbonate, and it leaves the reaction vessel as a gas (unless the reaction vessel is pressurized). This is the well-known "volcano" reaction between baking soda (sodium bicarbonate) and vinegar. CH3COOH + NaHCO3 → CH3COONa + H2O + CO2 Industrially, Sodium acetate trihydrate is prepared from glacial acetic acid and sodium hydroxide. CH3COOH + NaOH → CH3COON
SODIUM ACIDPYROPHOSPHATE 28
SODIUM ACRYLATE/SODIUM ACRYLOYLDIMETHYL TAURATE COPOLYMER Nom INCI : SODIUM ACRYLATE/SODIUM ACRYLOYLDIMETHYL TAURATE COPOLYMER Classification : Polymère de synthèse Ses fonctions (INCI) Anti Agglomérant : Permet d'assurer la fluidité des particules solides et de limiter leur agglomération dans des produits cosmétiques en poudre ou en masse dure Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Opacifiant : Réduit la transparence ou la translucidité des cosmétiques Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM ACRYLATE/SODIUM ACRYLOYLDIMETHYL TAURATE COPOLYMER
SODIUM ACRYLATES COPOLYMER Nom INCI : SODIUM ACRYLATES COPOLYMER Classification : Polymère de synthèse Ses fonctions (INCI) Agent fixant : Permet la cohésion de différents ingrédients cosmétiques Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Opacifiant : Réduit la transparence ou la translucidité des cosmétiques Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM ACRYLATES COPOLYMER
SYNONYMS Sodium Polymannuronate; Algin; Manucol; Kelgin; Manutex; Minus; Halltex; Protanal; Kelgum; Kelcosol; Nouralgine; Tagat; CAS NO. 9005-38-3
SODIUM ALKYLBENZENE SULFONATE ( Benzènesulfonate de sodium (alkyle linéaire))
cas no 11138-49-1 Aluminum sodium oxide; Sodium aluminum oxide;
SODIUM ALLYL SULFONATE
Sodium Allyl Sulfonate This invention relates to a process for the preparation of sodium allyl sulfonate (AS) and sodium methallyl sulfonate (MAS) employing aqueous sodium sulfite solutions in an emulsion. Methallyl and Sodium allyl sulfonate are, along with other unsaturated sulfonates, important comonomers for the copolymerization with other unsaturated monomers, especially with acrylonitrile. In general, the reaction solutions are worked up, in order to obtain the sodium allyl sulfonate in the pure state, by evaporation of the solution, extraction of the Sodium allyl sulfonate with alcohol, and subsequent crystallization from alcohol to obtain the compound in the pure form. There is thus lacking in the prior art a process which makes possible the production of sodium allyl sulfonate by the reaction of allyl chloride in maximally concentrated Na2 SO3 solutions in a maximally short reaction time and with high selectivity and low energy consumption. This product is used as a brightener in nickel electroplating. Sodium allyl sulfonate is a clear colorless aqueous solution that contains approximately 10% sodium chloride in addition to the sodium allyl sulfonate. This product is used in the manufacture of acrylic fibres; it appears as a clear near colourless liquid. It is a clear colorless aqueous solution that contains approximately 10% sodium chloride in addition to the sodium allyl sulfonate. Description of Sodium allyl sulfonate Sodium allyl sulfonate is used as a basic brightener in nickel electroplating baths. It is also used as pharmaceutical intermediates. Chemical Properties of Sodium allyl sulfonate Appearance White Solid CAS Number 2495-39-8 Density 1.206 g/cm3 EINECS Number 219-676-5 IUPAC Name Sodium prop-2-ene-1-sulfonate InChI 1S/C3H6O3S.Na/c1-2-3-7(4,5)6;/h2H,1,3H2,(H,4,5,6);/q;+1/p-1 InChIKey DIKJULDDNQFCJG-UHFFFAOYSA-M Molar Mass 144.12 g/mol Molecular Formula C3H5NaO3S Solubility 4 g/100 ml About Sodium allyl sulfonate Sodium allyl sulfonate is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 100 to < 1 000 tonnes per annum. Sodium allyl sulfonate is used at industrial sites. Consumer Uses of Sodium allyl sulfonate ECHA has no public registered data indicating whether or in which chemical products the substance might be used. ECHA has no public registered data on the routes by which Sodium allyl sulfonate is most likely to be released to the environment. Article service life of Sodium allyl sulfonate ECHA has no public registered data on the routes by which Sodium allyl sulfonate is most likely to be released to the environment. ECHA has no public registered data indicating whether or into which articles the substance might have been processed. Widespread uses by professional workers of Sodium allyl sulfonate ECHA has no public registered data indicating whether or in which chemical products the substance might be used. ECHA has no public registered data on the types of manufacture using Sodium allyl sulfonate. ECHA has no public registered data on the routes by which Sodium allyl sulfonate is most likely to be released to the environment. Formulation or re-packing of Sodium allyl sulfonate ECHA has no public registered data indicating whether or in which chemical products the substance might be used. ECHA has no public registered data on the routes by which Sodium allyl sulfonate is most likely to be released to the environment. Uses at industrial sites of Sodium allyl sulfonate ECHA has no public registered data indicating whether or in which chemical products the substance might be used. Sodium allyl sulfonate is used for the manufacture of: chemicals. Release to the environment of Sodium allyl sulfonate can occur from industrial use: as an intermediate step in further manufacturing of another substance (use of intermediates). Manufacture of Sodium allyl sulfonate ECHA has no public registered data on the routes by which Sodium allyl sulfonate is most likely to be released to the environment. Applications of Sodium allyl sulfonate Hydrotropes are in Sodium allyl sulfonate use industrially and commercially in cleaning and personal care product formulations to Sodium allyl sulfonate allow more concentrated formulations of surfactants. About 29,000 metric tons are produced (i.e., manufactured and imported) annually in the US. Annual production (plus importation) in Europe and Australia is approximately 17,000 and 1,100 metric tons, respectively.Common products containing a Sodium allyl sulfonate hydrotropes include laundry detergents, surface cleaners, dishwashing detergents, liquid soaps, shampoos and conditioners. They are coupling agents, used at concentrations from 0.1-15% to stabilize the formula, modify viscosity and cloud-point, reduce phase separation in low temperatures, and limit foaming. Environmental Considerations Sodium allyl sulfonate Hydrotropes have a low bioaccumulation potential, as the octanol:water partition coefficient is <1.0. Studies have found hydrotopes to be very slightly volatile, with vapor pressures <2.0x10-5 Pa. They are aerobically biodegradable. Removal via the secondary wastewater treatment process of activated sludge is >94%. Acute toxicity studies on fish show an LC50 >400 mg active ingredient/L. For Daphnia, the EC50 is >318 mg a.i./L. The most sensitive species is green algae with EC50 values in the range of 230-236 mg a.i./ L and No Observed Effect Concentrations (NOEC) in the range of 31-75 mg a.i./L. The aquatic Predicted No Effect Concentration (PNEC) was found to be 0.23 mg a.i./L. The Predicted Environmental Concentration (PEC)/PNEC ratio has been determined to be < 1 and, therefore, hydrotropes in household laundry and cleaning products have been determined to not be an environmental concern.Aggregate Sodium allyl sulfonate Sodium allyl sulfonate exposures to consumers (direct and indirect dermal contact, ingestion, and inhalation) have been estimated to be 1.42 ug/Kg bw/day. Calcium xylene sulfonate and Sodium allyl sulfonate have been shown to cause temporary, slight eye irritation in animals. Studies Sodium allyl sulfonate have not found hydrotropes to be mutagenic, carcinogenic or have reproductive toxicity. Cumene (isopropylbenzene) is an organic compound that Sodium allyl sulfonate is based on an aromatic hydrocarbon with an aliphatic substitution. It is a constituent of crude oil and refined fuels. It is a flammable Sodium allyl sulfonate colorless liquid that has a boiling point of 152 °C. Nearly all the cumene that is produced as a pure compound Sodium allyl sulfonate on an industrial scale is converted to cumene hydroperoxide, which is an intermediate in the synthesis of other industrially important chemicals, primarily phenol and acetone. Commercial production of cumene is by Friedel-Crafts alkylation of benzene with propylene. Cumene producers account for approximately 20% of the global demand for benzene. The original Sodium allyl sulfonate route for manufacturing of cumene was by alkylation of benzene in the liquid phase using sulfuric acid as a catalyst, but because of the complicated neutralization and recycling steps required, together with corrosion problems, this process has been largely replaced. As an Sodium allyl sulfonate alternative, solid phosphoric acid (SPA) supported Sodium allyl sulfonate on alumina was used as the catalyst. Adenosine triphosphate (ATP) has been shown to be a hydrotrope able to prevent aggregation of proteins at normal physiologic concentrations and to be approximately an order of magnitude more effective than sodium xylene Sodium allyl sulfonate sulfonate in a classic hydrotrope assay. The hydrotrope activity of ATP was shown to be independent of its activity as an "energy currency" in cells. Recently, ATP Sodium allyl sulfonate function as biological hydrotope has been shown proteome-wide under near native conditions. Sodium allyl sulfonate CTFA Name Sodium allyl sulfonate SCS-40 CAS Number32073-22-6 Applications Detergent & Cleaners Tainolin SCS-40, dissolved in water can increase the solubility for low-soluble organic matter, lower down the cloud point of the aqueous formulated products, and reduce the viscousity of the aqueous products. The material Sodium allyl sulfonate also shows detergency.Sodium allyl sulfonate is a solubilizer, coupling agent and cloud point depressant used in heavy duty cleaners, wax strippers and dishwashing detergents, oil field and metal working applications. Sodium allyl sulfonate (conjugate base benzenesulfonate) is an organosulfur compound with the formula C6H6O3S. It is the simplest aromatic sulfonic acid. It forms white deliquescent sheet crystals or a white waxy solid that is soluble in water and ethanol, slightly soluble in benzene and insoluble in nonpolar solvents like diethyl ether. It is often stored in the form of alkali metal salts. Its aqueous solution is strongly acidic. Preparation of Sodium allyl sulfonate Sodium allyl sulfonate is prepared from the sulfonation of benzene using concentrated sulfuric acid: Aromatic sulfonation of benzene This conversion illustrates aromatic sulfonation, which has been called "one of the most important reactions in industrial organic chemistry". Reactions of Sodium allyl sulfonate Sodium allyl sulfonate exhibits the reactions typical of other aromatic sulfonic acids, forming sulfonamides, sulfonyl chloride, and esters. The sulfonation is reversed above 220 °C. Dehydration with phosphorus pentoxide gives Sodium allyl sulfonate anhydride ((C6H5SO2)2O). Conversion to the corresponding benzenesulfonyl chloride (C6H5SO2Cl) is effected with phosphorus pentachloride. It is a strong acid, being almost fully dissociated in water. Sodium allyl sulfonate and related compounds undergo desulfonation when heated in water near 200 °C. The temperature of desulfonation correlates with the ease of the sulfonation: C6H5SO3H + H2O → C6H6 + H2SO4 Because of that, sulfonic acids are usually used as a protecting group, or as a meta director in electrophilic aromatic substitution. The alkali metal salt of Sodium allyl sulfonate was once used in the industrial production of phenol. The process, sometimes called alkaline fusion, initially affords the phenoxide salt: C6H5SO3Na + 2 NaOH → C6H5ONa + Na2SO3 C6H5ONa + HCl → C6H5OH + NaCl The process has been largely displaced by the Hock process, which generates less waste. Uses of Sodium allyl sulfonate Sodium allyl sulfonate is commonly used as the active ingredient in laundry detergent used in clothes washing machines. Sodium allyl sulfonate is often used to convert to other specialty chemicals. A variety of pharmaceutical drugs are prepared as benzenesulfonate salts and are known as besilates (INN) or besylates (USAN). In a diluted form, it is also used as a polymer remover stripping agent. Sodium allyl sulfonate's use as a reagent in the manufacture of phenol, resorcinol, and other organic syntheses and as a catalyst could result in its release to the environment through various waste streams. Sodium allyl sulfonate is expected to have very high mobility in soil. Volatilization of Sodium allyl sulfonate is not expected from either moist or dry soils. In water, Sodium allyl sulfonate is expected to be essentially non-volatile. Adsorption to sediment, bioconcentration, and hydrolysis are not expected to be important fate processes in aquatic systems. Biodegradation of Sodium allyl sulfonate is likely to occur in both aquatic and soil media provided adequate acclimation by microorganisms occurs. Sodium allyl sulfonate will exist in both the vapor and particulate phases in the ambient atmosphere. If released to the atmosphere, it will degrade by reaction with photochemically produced hydroxyl radicals with an estimated half-life of approximately 29 days. Removal of Sodium allyl sulfonate from the atmosphere can occur though wet and dry deposition. Exposure to Sodium allyl sulfonate can occur through dermal contact, inhalation, and ingestion. Based on a recommended classification scheme, Sodium allyl sulfonate should have very high mobility in soil based on estimated Koc values ranging from 1.4 to 12. Biodegradation of Sodium allyl sulfonate is likely to occur in soil media provided adequate acclimation by microorganisms occurs. Volatilization of Sodium allyl sulfonate is not expected from either moist or dry soils based on an estimated vapor pressure of approximately 2.36X10-5 mm Hg at 25 °C and an estimated Henry's Law constant of 2.52X10-9 atm-cu m/mole. Decomposition of Sodium allyl sulfonate took 16 days by a soil microflora inoculum in mineral salts medium. Sodium benzenesulfonate had a 5-day theoretical BOD (at 20 °C) of 2.6, 74.5, and 38.8% in sewage seed, acclimated activated sludge seed, and by the Warburg technique with acclimated activated sludge, respectively. A biodegradation study using 100 mg/l Sodium allyl sulfonate, consumed 62, 58, and 344 ul oxygen in an endogenous control, Sodium allyl sulfonate adapted cells, and benzenesulonic acid and phenol adapted cells, respectviely, in 230 minutes. In a 2 week closed bottle study, with 100 mg/l Sodium allyl sulfonate and 30 mg/l sludge, Sodium allyl sulfonate gave a theoretical BOD of 87%. Sodium allyl sulfonate utilized 10.7 mg of TOC/g of mixed liquor volatile suspended solids per hour in acclimated activated sludge, indicating that the activated sludge possessed the necessary catabolic enzymes required for degradation. The sulfonated benzene structure appears to offer no real resistance to bacterial breakdown since BOD tests carried out on this structure in dilute solutions in river water result in considerable oxygen depletion. Sodium allyl sulfonate is resistant to chemical oxidation by KMnO4 and to biochemical oxidation under conditions of 5 day BOD determination. Under conditions of dichromate COD determination, oxidation of Sodium allyl sulfonate amounts to 94%. Sodium allyl sulfonate is deemed degradable by the Japanese MITI test. Sodium allyl sulfonate allowed visible growth of 12 of 14 species of phenol- utilizing bacteria after 5 days at 30 °C. Sodium allyl sulfonate degraded only about 4% after 13 months in aquifer slurries from both sulfate reducing and methanogenic sites. A study on oxidation of selected carcinogenic compounds (including sodium benzenesulfonate) by activated sludge found no significant oxidation for any compounds studied. The presence of a sulfonate grouping on benzene greatly reduces the susceptibility of Sodium allyl sulfonate to biological oxidation. Sodium allyl sulfonate was degraded with difficulty, if at all, in aniline-acclimated activated sludge.
SODIUM ALPHA OLEFIN SULFONATE
Sodıum Alpha Olefin Sulfonate Product Name: Sodıum Alpha Olefin Sulfonate Sodıum Alpha Olefin Sulfonate INCI Name: Sodium C14-16 Sodıum Alpha Olefin Sulfonate Sodıum Alpha Olefin Sulfonate CAS Number: 68439-57-6 Sodıum Alpha Olefin Sulfonate Product Form: Liquid Sodıum Alpha Olefin Sulfonate Product Use: Cosmetic use Sodıum Alpha Olefin Sulfonate Appearance, Physical State: Liquid Sodıum Alpha Olefin Sulfonate Vapor Pressure: 25 mm HG @ 25°C Sodıum Alpha Olefin Sulfonate Odor: Slight Sodıum Alpha Olefin Sulfonate Volatile Weight %: 56-64 Sodıum Alpha Olefin Sulfonate Taste: No data available Sodıum Alpha Olefin Sulfonate Evaporation Rate: Not available Sodıum Alpha Olefin Sulfonate Color: Amber to yellow Sodıum Alpha Olefin Sulfonate Flammability: May be combustible Sodıum Alpha Olefin Sulfonate Molecular Weight: No data available Sodıum Alpha Olefin Sulfonate Upper/lower Explosive Limit: No data available Sodıum Alpha Olefin Sulfonate pH (1% sol. in water) 7-9 Sodıum Alpha Olefin Sulfonate Solubility: Soluble in all proportions of Sodıum Alpha Olefin Sulfonate Boiling Point: >100°C (212°F) water Sodıum Alpha Olefin Sulfonate Melting Point: No data available Sodıum Alpha Olefin Sulfonate Flash Point: No data available Sodıum Alpha Olefin Sulfonate Specific Gravity: 1.05 (Water = 1) Sodıum Alpha Olefin Sulfonate Reactivity: Product is stable Sodıum Alpha Olefin Sulfonate Chemical Stability: Product is stable Sodıum Alpha Olefin Sulfonate Hazardous Polymerization: No data available Sodıum Alpha Olefin Sulfonate Conditions to Avoid: Avoid strong oxidizers Sodıum Alpha Olefin Sulfonate Incompatible Materials: Strong oxidizing agents Sodıum Alpha Olefin Sulfonate Molecular formula: R-CH=CH-(CH2)n-SO3Na, R=C14~16 Sodıum Alpha Olefin Sulfonate Characteristics: Sodıum Alpha Olefin Sulfonate has the following features: 100% biodegradability Good wetting, foaming, detergency, emulsifying property Little skin irritant Good calcium soap dispersion and anti-hard water performances Dissolves in water and rinsed easily Good Stability, good compatibility with other kinds of surfactants Sodıum Alpha Olefin Sulfonate Benefits: Mild primary surfactant with excellent cleansing and degreasing properties (but non-drying on skin & mucous membranes). Good wetting effect, foam booster, slight viscosity enhancer. Easily compatible with other surfactants including non-ionic, amphoteric or anionic co-surfactants. Can be used for making sulfate-free cleansing products . Sodıum Alpha Olefin Sulfonate Use: Sodıum Alpha Olefin Sulfonate mainly be used in mild detergent and products for baby, such as hand lotion, washing powder, complex soap, shampoo, bath lotion, facial cleaning cream, phosphorus free detergent. AOS can also be used as industrial detergents. Sodıum Alpha Olefin Sulfonate Use: Can be added to formulas as is. Recommended use level is 4-30% depending on desired foaming and cleansing effects. For external use only. Sodıum Alpha Olefin Sulfonate Applications: Body washes, shampoos, bubble baths, cleansing lotions, various personal care cleansing products. Sodıum Alpha Olefin Sulfonate Raw material source: Ethylene Sodıum Alpha Olefin Sulfonate Manufacture: Alpha olefin suflonate is a mixture of long chain sulfonate salts prepared by the sulfonation of alpha olefins. Alpha-olefin sulfonate are produced by oligomerization of ethylene and by Fischer-Tropsch synthesis followed by purification. Sodıum Alpha Olefin Sulfonate Animal Testing: Not animal tested Sodıum Alpha Olefin Sulfonate GMO: GMO free (does not contain plant-derived components) Sodıum Alpha Olefin Sulfonate Vegan: Does not contain animal-derived components Sodıum Alpha Olefin Sulfonate Storage: Powder and needle form products: store in a cool, dry place. Avoid moisture and heat.Liquid products: avoid press. Sodıum Alpha Olefin Sulfonate Packing: In 25 kg net craft-paper bags (powder). In 200 kg net plastic barrels (liquid). Sodıum Alpha Olefin Sulfonate Description: Mild anionic, high-foaming & well-emulsifying surfactant. Made primarily from coconut oils. Stable at a wide pH range and can therefore be used in acidic environments. pH: 8 (10% solution), 40% active substances. Yellowish liquid, slightly viscous, faint odor. What is Sodıum Alpha Olefin Sulfonate? It is a surface active raw material that is slightly yellow in color, has low water solubility and is used as a raw material in detergent, cosmetics and many other areas from active surface cleaning. Sodıum Alpha Olefin Sulfonate Chemical formula: CH3 (CH2) 10CH2 (OCH2CH2) nOSO3Na) Since it contains at least one carbon-carbon pair, it is used in the chemical industry, plastic material, artificial rubber, artificial textiles and detergent production. Stability in terms of chemical properties, Participating in oxidation reactions, Double bond joining reactions are seen and examined under 3 headings. When carbon oxide and hydrogen are added, primary alcohol is formed, and this feature is used in the production of plastic and detergents. Sodıum Alpha Olefin Sulfonate Production Technology Sodıum Alpha Olefin Sulfonate, produced using petrochemical technology, goes through steam kaking, Methanol-Olefins Process, Catalytic Cracking and Olefin Conversion. Today, highly energy efficient methods are used in catalytic methods. Sodıum Alpha Olefin Sulfonate Usage Areas It has a wide range of uses from liquid cleaning products to shampoos, from laundry detergents to active surface cleaners. It is also used in cosmetics, toothpaste and cream products due to its emulsifying feature. Provides foaming in liquid detergents and soaps, allowing oil, dirt and residues to dissolve and rise to the water surface. It is used in the production of fire fighting foams. It acts as an air entrainer in the area of ​​plaster usage. It is used as a foaming wall board. Our company, which uses the latest technology in the production of Sodıum Alpha Olefin Sulfonates, offers a quality and economical service that meets every need. Sodıum Alpha Olefin Sulfonate, or shortly Sodıum Alpha Olefin Sulfonate, is a surface chemical sold in the form of light yellowish powder. It separates oil, dirt and clay and is an excellent cleaner.Sodıum Alpha Olefin Sulfonate (Sodium C12-14 Olefin Sulfonate, Sodium C14-16 Olefin Sulfonate, Sodium C14-18 Olefin Sulfonate, Sodium C16-18 Olefin Sulfonate) are mixtures of long chain sulfonate salts prepared by the sulfonation of alpha olefins. The numbers indicate the average lengths of the carbon chains of the alpha olefins. In cosmetics and personal care products, Sodıum Alpha Olefin Sulfonate are used mainly in shampoos and bath and shower products.Sodıum Alpha Olefin Sulfonate clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away.Sodıum Alpha Olefin Sulfonate (AOS) is a formaldehyde free solution of sodium C14-C16 Sodıum Alpha Olefin Sulfonate preserved with MCI/MI. It can be used in variety of applications due to its excellent viscosity, hard water stability, detergency, foam characteristics, and pH stability over a broad pH range. AOS 40% is a milder surfactant compared to lauryl sulfates and is used in high performing sulfate-free, shampoos, body wash, hand soap and pet care formulations. It is highly effective in unloading undesirable liquids and particulates from gas producing wells and exhibits exceptional thermal stability up to 400° F. This product is readily biodegradable.Univar Solutions is here to serve your Sodıum Alpha Olefin Sulfonate needs. With more than 120 distribution centers, our private fleet, technical expertise, and professional staff, we provide you proven reliability and quality service at every touchpoint.Sodıum Alpha Olefin Sulfonate, Sodium C12-14 Olefin Sulfonate, Sodium C 14-18 Olefin Sulfonate, and Sodium C16-18 Olefin Sulfonate are the Sodium α-Olefin Sulfonates used in cosmetics as surfactant-cleansing agents. The highest concentration reportedly is 16% in shampoos and bath and shower products. These ingredients are a mixture of long-chain sulfonate salts prepared by sulfonation of α-olefins of various carbon chain lengths noted as subscripts. In the manufacture of these ingredients, delta and gamma sultones may be produced. Sodium α-Olefin Sulfonates are poorly absorbed through normal skin, but are significantly absorbed through damaged skin. Acute oral LD50 values were 1.3 2.4g/kg in rats and 2.5-4.3 g/kg in mice. Short-term toxicity studies using rats showed no consistent effects, even with exposures in the 0.5-1.0 g/kg range. Concentrations above 10% produced moderate ocular irritation and a concentration of 5% produced mild ocular irritation in rabbits. In reproductive and developmental toxicity studies, fetal abnormalities were noted, but only at doses that were maternally toxic. Genotoxicity data were mostly negative and oral and dermal carcinogenicity studies were negative. Various animal and clinical studies found irritation and sensitization. Sensitization was attributed to low level gamma sultone residues. Because gamma sultones are demonstrated sensitizers at very low levels, it was concluded that any product containing Sodium α-Olefin Sulfonates should have very little gamma sultone residues. The gamma sultone levels should not exceed 10 ppm for saturated (alkane) sultones, 1 ppm for chloro-sultones, and 0.1 ppm for unsaturated sultones. Sodium α-Olefin Sulfonates are otherwise considered safe for use in rinse-off products. Based on concerns about irritation, were Sodium α-Olefin Sulfonates to be used in leave-on products, it was concluded that concentrations should not exceed 2% for such uses.Sodium Alpha-Olefin Sulfonates (Sodium C12-14 Olefin Sulfonate, Sodium C14-16 Olefin Sulfonate, Sodium C14-18 Olefin Sulfonate, Sodium C16-18 Olefin Sulfonate) are mixtures of long chain sulfonate salts prepared by the sulfonation of alpha olefins. The numbers indicate the average lengths of the carbon chains of the alpha olefins. In cosmetics and personal care products, Sodium Alpha-Olefin Sulfonates are used mainly in shampoos and bath and shower products.
SODIUM ALUMINATE
SODIUM ALUMINATE Sodium aluminate is an inorganic chemical substance. The formula of the chemical component is NaAIO2. Overview The powder is white in color. Sodium aluminate, an odorless structure, is also known as aluminum. Sodium aluminate provides solution of caustic soda with aluminum hydroxide and boiling of this solution. Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications. Pure sodium aluminate (anhydrous) is a white crystalline solid having a formula variously given as NaAlO2, NaAl(OH)4 (hydrated),[2] Na2O·Al2O3, or Na2Al2O4. Commercial sodium aluminate is available as a solution or a solid. Other related compounds, sometimes called sodium aluminate, prepared by reaction of Na2O and Al2O3 are Na5AlO4 which contains discrete AlO45- anions, Na7Al3O8 and Na17Al5O16 which contain complex polymeric anions, and NaAl11O17, once mistakenly believed to be β-alumina, a phase of aluminium oxide. Sodium Aluminate is generally immediately available in most volumes. Aluminates are compounds with a negatively-charged alumina ion and a metallic oxide with various industrial applications such as water treatment and ceramics manufacturing. In December 2012, a team of researchers created a unique type of highly-reflective pigment composed of rare earth-doped cobalt aluminate that may have potential use as an energy-efficient exterior coating. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia)and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. Sodium Aluminate is most widely used in municipal drinking water and waste water treatment systems. As an alkali, Sodium Aluminate can work in applications where the addition of caustic is not desirable. It provides an economical source of highly reactive alumina. Liquid sodium aluminate (LSA) is becoming an increasingly popular choice for the removal of phosphorus in municipal and industrial wastewater plants. As discharge limits for nitrogen and phosphorus become more stringent, many plants are implementing both biological and chemical treatment systems for their reduction. However, both these treatment processes can deplete the available alkalinity and depress effluent pH below discharge limits. Sodium Aluminate Solutions Specs The manufacturing process utilizes only the finest available raw materials in the production of Sodium Aluminate Solutions, in which alumina tri-hydrate (ATH) is dissolved into sodium hydroxide and water. Proprietary stabilization techniques may also be used to prevent alumina from precipitating. Sodium Aluminate Solutions are strongly alkaline products that are available in three strengths: Molecular Weight: 81.97 g/mol Chemical formula: NaAlO2 Appearance: white powder (sometimes light-yellowish) hygroscopic/ when dissolved in water a colloidal black solution is formed Odor: odorless Density: 1.5 g/cm3 Melting point: 1,650 °C (3,000 °F; 1,920 K) Specific Gravity: 1.55 at 77 ° F (USCG, 1999) Boiling Point: 239 ° F at 760 mm Hg Solubility in water: highly soluble Solubility: Insoluble in alcohol[1] Refractive index (nD): 1.566 Hydrogen Bond Donor Count: 0 Hydrogen Bond Acceptor Count: 3 Rotatable Bond Count: 0 Exact Mass: 81.961137 g/mol Monoisotopic Mass: 81.961137 g/mol Topological Polar Surface Area: 34.1 A^2 Heavy Atom Count: 4 Formal Charge: 0 Complexity: 18.3 Isotope Atom Count: 0 Defined Atom Stereocenter Count: 0 Undefined Atom Stereocenter Count: 0 Defined Bond Stereocenter Count: 0 Undefined Bond Stereocenter Count: 0 Covalently-Bonded Unit Count: 2 STRUCTURE OF SODIUM ALUMINATE Anhydrous sodium aluminate, NaAlO2, contains a three-dimensional framework of corner linked AlO4 tetrahedra. The hydrated form NaAlO2·5/4H2O has layers of AlO4 tetrahedra joined into rings and the layers are held together by sodium ions and water molecules that hydrogen bond to O atoms in the AlO4 tetrahedra.[4] MANUFACTURING OF SODIUM ALUMINATE Sodium aluminate is manufactured by the dissolution of- aluminium hydroxide in a caustic soda (NaOH) solution. Aluminium hydroxide (gibbsite) can be dissolved in 20-25% aqueous NaOH solution at a temperature near the boiling point. The use of more concentrated NaOH solutions leads to a semi-solid product. The process must be carried out in steam-heated vessels of nickel or steel, and the aluminium hydroxide should be boiled with approximately 50% aqueous caustic soda until a pulp forms. The final mixture has to be poured into a tank and cooled; a solid mass containing about 70% NaAlO2 then forms. After being crushed, this product is dehydrated in a rotary oven. The resulting product contains 90% NaAlO2 and 1% water, together with 1% free NaOH. Reaction of aluminium metal and alkali Sodium aluminate is also formed by the action of sodium hydroxide on elemental aluminium which is an amphoteric metal. The reaction is highly exothermic once established and is accompanied by the rapid evolution of hydrogen gas. The reaction is sometimes written as: 2 Al + 2 NaOH + 2 H2O → 2 NaAlO2 + 3 H2 however the species produced in solution is likely to contain the [Al(OH)4]- ion or perhaps the [Al(H2O)2(OH)4]- ion.[5].This reaction has been proposed as a potential source of fuel for hydrogen powered cars. SODIUM ALUMINATE IN USAGE AREAS In water treatment it is used as an adjunct to water softening systems, as a coagulant aid to improve flocculation, and for removing dissolved silica and phosphates. In construction technology, sodium aluminate is employed to accelerate the solidification of concrete, mainly when working during frost. Sodium aluminate is also used in the paper industry, for fire brick production, alumina production and so forth. Sodium aluminate solutions are intermediates in the production of zeolites. Sodium aluminate is a technology product. Sodium aluminate can be added to the mortar mixture to provide faster cooling of the spilled concrete. I also prefer paper and fire resistance. Other uses and forms of use of sodium aluminate are as follows; Sodium aluminate is a substance used for a long time. In this regard, it is preferred to be used in all sector branches. The automotive industry is an important cleaning material. Used to clean parts such as piston, cylinder head, valve and turbine blades. Metal work, coating or welding prepared. Used for cleaning old stains or rust. It is used to clean and brighten the matted parts of the metal. Installation for installation in pipelines, glass decoration works, cleaning of metal surfaces, cleaning of metal molds, cleaning of materials cutting materials such as marble and granite, ceramic. SODIUM ALUMINATE HARM Sodium aluminate is among the non-harmful substances of any effect on human health. Although it does not cause harm with other substances it contains, it can be seen if the similarities of the problems arising in aluminum matter are slightly exposed when exposed directly. These; It may cause dizziness when the gas is in the air that may come into contact with other substances. If it comes in contact with the eye it may cause eye irritation. In such a case, the eye should thoroughly wash under constantly flowing water. When touching the skin directly, it causes irritation and slight burning in sensitive areas. Ingestion or contact with mouth may cause stomach ache. If you are exposed to such conditions, you should consult a doctor. It is also necessary to act carefully in the presence of sodium aluminate. Sodium aluminate is an important commercial inorganic chemical. Aluminum hydroxide is an important and accepted source of production. The pure anhydrous sodium aluminate is in the form of a white crystal and the molecular formula is NaAlO2, NaAl (OH) 4 (hydrate), [1] Na2O.Al2O3, or Na2Al2O4. The commercial sodium aluminate may be present in powdered or reconstituted form. The reaction of compound Na2O and Al2O3 at 1200 ° C occurs as the result. USE OF SODIUM ALUMINATE It is used as auxiliary coagulant to increase flocculation in helping to soften water in water pollution, and to be used for dissolved silica and phosphate. It is used in construction sector to make concrete harden faster. Sodium aluminate is also used in the paper industry as a paper chemistry, in the production of fire bricks, in the production of alumina and similar materials. Sodium aluminate solution is used for zeolite production. HAZARDS IDENTIFICATION OF SODIUM ALUMINATE GHS Classification GHS Hazard Statements Aggregated GHS information provided by 313 companies from 16 notifications to the ECHA C&L Inventory. Each notification may be associated with multiple companies. Reported as not meeting GHS hazard criteria by 2 of 313 companies. Of the 15 notification(s) provided by 311 of 313 companies with hazard statement code(s): H290 (62.38%): May be corrosive to metals [Warning Corrosive to Metals] H314 (98.71%): Causes severe skin burns and eye damage [Danger Skin corrosion/irritation] H318 (77.49%): Causes serious eye damage [Danger Serious eye damage/eye irritation] Information may vary between notifications depending on impurities, additives, and other factors. The percentage value in parenthesis indicates the notified classification ratio from companies that provide hazard codes. Only hazard codes with percentage values above 10% are shown. Health Hazard Material is caustic. Irritates skin, eyes, and gastrointestinal tract, causing redness of skin and eyes, burning sensation of mucous membranes. Fire Hazard Behavior in Fire: Containers may burst when exposed to heat. Not combustible. Skin, Eye, and Respiratory Irritations STRONG IRRITANT TO TISSUE. /Aluminum powder/ may cause minor irritation to lungs & eyes. /Aluminum powder, uncoated/ Safety and Hazard Properties Chemical Dangers The solution in water is a strong base. It reacts violently with acid and is corrosive to aluminium, tin and zinc. Reacts with ammonium salts. This generates fire hazard. FIRST AID MEASURES First Aid Get medical attention. EYES: Flush with water for 15 min., lifting lids occasionally. SKIN: Remove contaminated clothing and shoes. Flush with water and neutralize with weak vinegar. INGESTION: Dilute by drinking water or milk. Neutralize by drinking fruit juice. Do not induce vomiting. Inhalation First Aid : Fresh air, rest. Refer for medical attention. Skin First Aid: Remove contaminated clothes. Rinse skin with plenty of water or shower. Refer for medical attention . Eye First Aid: First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then refer for medical attention. Ingestion First Aid: Rinse mouth. Do NOT induce vomiting. Refer for medical attention . Fire Fighting Measures Fire Fighting Excerpt from ERG Guide 154 [Substances - Toxic and/or Corrosive (Non-Combustible)]: SMALL FIRE: Dry chemical, CO2 or water spray. LARGE FIRE: Dry chemical, CO2, alcohol-resistant foam or water spray. Move containers from fire area if you can do it without risk. Dike fire-control water for later disposal; do not scatter the material. FIRE INVOLVING TANKS OR CAR/TRAILER LOADS: Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. In case of fire in the surroundings, use appropriate extinguishing media. Accidental Release Measures Isolation and Evacuation Excerpt from ERG Guide 154 [Substances - Toxic and/or Corrosive (Non-Combustible)]: As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids. SPILL: Increase, in the downwind direction, as necessary, the isolation distance shown above. FIRE: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2016) Spillage Disposal Personal protection: particulate filter respirator adapted to the airborne concentration of the substance. Sweep spilled substance into covered containers. Wash away remainder with plenty of water. Cleanup Methods AQ WASTE SOLUTIONS CONTAINING SODIUM ALUMINATE ARE ACIDIFIED WITH SULFURIC ACID & TREATED WITH A WEAKLY BASIC CMPD (PH 7-11) TO IMPROVE PPT & FILTERABILITY OF ALUMINUM CMPD. Other Preventative Measures SRP: The scientific literature for the use of contact lenses in industry is conflicting. The benefit or detrimental effects of wearing contact lenses depend not only upon the substance, but also on factors including the form of the substance, characteristics and duration of the exposure, the uses of other eye protection equipment, and the hygiene of the lenses. However, there may be individual substances whose irritating or corrosive properties are such that the wearing of contact lenses would be harmful to the eye. In those specific cases, contact lenses should not be worn. In any event, the usual eye protection equipment should be worn even when contact lenses are in place. HANDLING AND STORAGE Nonfire Spill Response Excerpt from ERG Guide 154 [Substances - Toxic and/or Corrosive (Non-Combustible)]: ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. DO NOT GET WATER INSIDE CONTAINERS. (ERG, 2016) Safe Storage Separated from food and feedstuffs and acids. Dry. Exposure Control and Personal Protection Threshold Limit Values 8 hr Time Weighted Avg (TWA): 1 mg/cu m (Respirable fraction). /Aluminum metal and insoluble compounds/ Excursion Limit Recommendation: Excursions in worker exposure levels may exceed three times the TLV-TWA for no more than a total of 30 min during a work day, and under no circumstances should they exceed five times the TLV-TWA, provided that the TLV-TWA is not exceeded. /Aluminum metal and insoluble compounds/ A4: Not classifiable as a human carcinogen. /Aluminum metal and insoluble compounds/ Inhalation Risk Evaporation at 20°C is negligible; a harmful concentration of airborne particles can, however, be reached quickly when dispersed. Effects of Short Term Exposure The substance is corrosive to the eyes, skin and respiratory tract. Corrosive on ingestion. Medical observation is indicated. Acceptable Daily Intakes Recommended adult daily allowance for sodium at 1-2 g. /Sodium; from Table 1/ Exposure Prevention AVOID ALL CONTACT! IN ALL CASES CONSULT A DOCTOR! Inhalation Prevention Use local exhaust or breathing protection. Skin Prevention Protective gloves. Protective clothing. Eye Prevention Wear safety goggles, face shield or eye protection in combination with breathing protection.; Ingestion Prevention Do not eat, drink, or smoke during work. Protective Equipment and Clothing; Full, impervious chemical protective clothing and gloves, goggles, and approved respirator. (USCG, 1999) Stability and Reactivity; Air and Water Reactions Sodium aluminate will dissolve in water and produce a strong corrosive alkaline solution. May generate heat when water is added. Reactive Group; Bases, Strong; Water and Aqueous Solutions REACTIVITY PROFILE SODIUM ALUMINATE generates a strong base in water; reacts violently with acids and corrosive to metals. Not compatible with copper, tin, zinc, aluminum, acids, phosphorus, or chlorocarbons. Sodium aluminate - BC, REG, Comp of boiler water additive - 173.310; GRAS, Migr to food from paper and paperboard prods - 182.90 Sodium aluminate normally contains an excess of sodium hydroxide or soda ash to maintain a sufficiently high pH to prevent aluminum hydroxide precipitation prior to its addition ... as a coagulant /in municipal water treatment/. Sodium aluminate will dissolve in water and produce a strong corrosive alkaline solution. May generate heat when water is added. Health: TOXIC; inhalation, ingestion, or skin contact with material may cause severe injury or death. Contact with molten substance may cause severe burns to skin and eyes. Avoid any skin contact. Effects of contact or inhalation may be delayed. Fire may produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution. /Sodium aluminate, solid; Sodium aluminate, solution/ TOXIC AND/OR CORROSIVE (NON-COMBUSTIBLE)/ Fire or Explosion: Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes. Some are oxidizers and may ignite combustibles (wood, paper, oil, clothing, etc.). Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated. /Sodium aluminate, solid; Sodium aluminate, solution/ Sodium aluminate is considered to be a highly corrosive substance, but no acute toxicity data appear to have been developed for this substance. Albic and spodic soil horizons were sampled from old growth eastern white pine/mixed northern hardwoods sites in the Adirondacks, and an ochric soil horizon was sampled from the Appalachian Plateau of NY State. 9 Three horizon forest floo, 9 mineral soil (field moist equivalent of 12.0 oven dry albic, spodic, or ochric mineral soil) and 9 forest floor/mineral soil columns were leached with 60 ml of (a) 10 mM sodium aluminate (control), (b) 1.0 mM nitric acid in 10 mM sodium aluminate (pH 3), and (c) 1.0 mM sodium aluminate (pH 3) at the rate of 10 ml/h. The above procedure was repeated on each mineral soil without a forest floor, except leaching soln were 0.5 mM calcium nitrate or calcium sulfate, each in 10 mM sodium aluminate. Adding 2 and 0.5 cmol sub c (H+)/kg to forest floor and mineral soils, respectively, simulated snowmelt additions. Total aluminum concn in leachates from forest floor/albic or forest floor/ochric columns were greater than the sum of concn in leachates from the forest floor and mineral horizon when leached separately. This positive synergistic behavior of the forest floor-mineral horizon sequences was also observed in the forest floor-spodic horizon sequence when leached with control soln, but the synergism was negative for both labile and non-labile aluminum when leached with the acids. Sulfuric acid leached less aluminum from the spodic horizon than did nitric acid, regardless of the presence of a forest floor, but nitric acid, sulfuric acid , and control soln leached similar concn of aluminum from the albic and ochric horizons. The forest floor effects on the mineral soil leachates were attributed to effects of calcium, sulfate, nitrate, and dissolved organic C leached from the forest floor to the mineral horizon since forest floor removed nearly all added H+. Sodium aluminate was introduced to the paper industry over 40 years ago. Its acceptance as an excellent wet end additive grew extensively in Europe and the U.S. paper making operations. Sodium aluminate was found to be very effective when used in conjunction with other cationic sources, such as alum, to optimize and improve wet end paper machine operations. Simply stated, sodium aluminate is an alkaline form of aluminum which has been dissolved in caustic. Aluminum, because of its amphoteric nature, can be easily dissolved either in an acid or alkaline medium. Aluminum dissolved in sulfuric acid forms aluminum sulfate, or alum, and aluminum dissolved in caustic forms sodium aluminate. Sodium aluminate possesses an anionically charged alumina particle. Sodium aluminate performs two basic functions in the paper maker process. One of these is primarily a chemical function which is to furnish a portion of the alumina required for sizing. Second function is best considered a physical function of coagulation and retention. System conditions created by these two reactions and the reaction products are the basis for the benefits provided by sodium aluminate. Other benefits from sodium aluminate usage are: Improved strength and durability Cleaner machine system Reduced foam Reduced corrosion Sodium aluminate is a product obtained from the dissolution of aluminium hydroxide (gibbsite) in sodium hydroxide. IQE produces sodium aluminates in solution, in the form of a transparent liquid, within the ALNA series. The products of the ALNA series are an excellent source of reactive alumina in alkaline solution and this is the main reason for its use as a raw material in many industrial processes. A method for preparing sodium aluminate from basic aluminum sulfate (BAS) is presented. The process consists of two steps. In the first step, BAS was transformed into sodium dawsonite (NaAl∙(OH)2∙CO3) by treating BAS with sodium carbonate aqueous solution at various temperatures and times. The best experimental conditions for preparing sodium dawsonite were established. In the second step of this work, sodium aluminate was obtained by heating sodium dawsonite. In this case, several samples of sodium dawsonite were heated at different temperatures in the range of 600-1100°C for 30 minutes. Sodium dawsonite decomposed at 320°C with the evolution of carbon dioxide and water. At 500°C, a pattern corresponding to a transition alumina was observed by X-ray diffraction. The first traces of crystalline sodium aluminate could be detected in the solid heated at 800°C, whereas at 1000°C a mixture of sodium aluminate and alpha alumina was obtained. Thus, the scheme of phase evolution on progressive heating could be expressed as sodium dawsonite, amorphous, transition alumina (gamma/eta) and crystalline sodium aluminate. By this method, crystalline sodium aluminate could be obtained under mild conditions by heating sodium dawsonite at 900°C for 30 minutes. Introduction Sodium aluminate is an important commercial inorganic chemical. It has been used as an effective source of aluminium hydroxide for many applications. Pure sodium aluminate (anhydrous) is a white crystalline solid having a formula variously given as NaAlO2, Na2O Al2O3, or Na2Al2O4. The commercial importance of sodium aluminate is due to the versatility of its technological applications. In water treatment systems it is used as an adjunct to water softening systems, as a coagulant to remove suspended solids and some metals (Cr, Ba, Cu), and for removing dissolved silica. In construction technology, sodium aluminate is employed to accelerate the solidification of concrete, mainly when working during frosty periods [1-3]. It is also used in the paper industry, for refractory brick production and alumina production [4-5], etc. Furthermore, it is used as an intermediate in the production of zeolites for detergents, molecular sieves, adsorbents and catalysts [6-8]. Several methods for preparing solid sodium aluminate have been developed. In most methods, an aqueous sodium aluminate solution is prepared in a first step. Then, the sodium aluminate solution is dried in order to obtain the solid phase. A typical process for producing aqueous sodium aluminate is by dissolving aluminium hydroxides in a caustic soda solution [9]. In this case, a suspension of aluminum hydroxide with excess NaOH is prepared. Then, the suspension is passed through heated reaction tubes and the resulting sodium aluminate solution is spray dried. The product of this process is NaAlO2, NaAlO2∙1.5H2O or NaAlO2∙xH2O. In another process, sodium aluminate is prepared by solid state reaction of sodium hydroxide and subdivided aluminum hydrate, at a temperature above the melting point of the caustic soda but below 600°C [10]. It has been reported that sodium aluminate could be recovered from sodium dawsonite found in association with oil shales [11]. In this case, sodium aluminate was obtained by the reaction of homogeneously mixed sodium oxide and aluminum oxide, which were generated during thermal decomposition of sodium dawsonite. In the present work, the preparation of sodium aluminate was investigated using basic aluminum sulfate (BAS) as a precursor. This latter compound was obtained by homogeneous precipitation of aluminum sulfate aqueous solution using ammonium bisulfite as a precipitant, as reported elsewhere [12]. In the next step of the process, the preparation of sodium dawsonite was investigated by treating BAS with sodium carbonate aqueous solution. Finally, this latter compound was heated at different temperatures to determine the formation temperature of sodium aluminate. Experimental Procedure The basic aluminum sulfate used in this work was obtained by precipitation in homogeneous solution by heating an aqueous solution of aluminum sulfate and ammonium bisulfite. This latter solution was obtained by passing sulfur dioxide through an ammonium hydroxide solution until a solution pH 4 was obtained. The 1 M sodium carbonate solution was prepared from reactive grade sodium carbonate from J. T. Baker. To determine the thermal decomposition process and the crystallization temperature of sodium aluminate, several one gram samples of sodium dawsonite were heated at different temperatures in the range of 500-1100°C, for 30 minutes. After heating, the solids were characterized by X-ray diffractometry (XRD) and Fourier transform infrared (FTIR). The FTIR spectra of the samples heated at 800°C, 900°C and 1100°C are shown in Figure 12. In this case, sharp absorption peaks at 559 cm-1, 711 cm-1 and 883 cm-1 and the absorption peak corresponding to carbonate stretching band at 1450 cm-1 appear. As the temperature raises, the intensity of the absorptions peaks at 559 cm-1, 711 cm-1 and 1100 cm-1 increase in intensity, indicating that crystalline sodium aluminate begins to form at 800°C. Its important to notice that the sample heated at 1100°C exhibits sharp absorption peaks at 456 cm-1, 594 cm-1 and 649 cm-1 corresponding to alpha alumina, which could be produced by thermal decomposition of sodium aluminate at high temperature as reported by Zvezdinskaya et al. [23]. Conclusion Sodium aluminate was prepared by using basic aluminum sulfate as a raw material. In the first step of the process, sodium dawsonite was obtained by treating basic aluminum sulfate with sodium carbonate aqueous solution at 60°C for 4 hours. Higher heating temperatures gave rise to the formation of pseudoboehmite as well as sodium dawsonite in the sample. The crystallization of sodium dawsonite in the solid occurred through the formation of an amorphous basic aluminum carbonate as an intermediate compound. The dawsonite powder was formed by highly agglomerated acicular particles, whose size ranged from 0.1-0.2μm. In order to obtain sodium aluminate, sodium dawsonite was heated at different temperatures for 30 minutes and the phase transformation sequence was determined. Based on the XRD patterns of the solids obtained after heating sodium dawsonite at different temperatures, the phase sequence could be determined as sodium dawsonite, amorphous, transition alumina (gamma/eta) and crystalline sodium aluminate. By this method, crystalline sodium aluminate could be obtained by heating sodium dawsonite at 900°C for 30 minutes.
SODIUM ALUMINATE POWDER
cas no 12003-51-9 Aluminum sodium silicate (1:1:1); Silicic acid (H4SiO4), aluminum sodium salt (1:1:1); Sodium silicate, sulfuric acid, aluminum sulfate reaction product;
SODIUM ALUMINIUM SILICATE
SODIUM ARACHIDATE Nom INCI : SODIUM ARACHIDATE Nom chimique : Sodium eicosanoate Classification : Arachides Ses fonctions (INCI) Régulateur de pH : Stabilise le pH des cosmétiques Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM ARACHIDATE
SYNONYMS L-Ascorbic Acid Sodium Salt; Vitamin C Sodium Salt; Ascorbicin; Ascorbin; Monosodium Ascorbate; 3-oxo-L-gulofuranolactone sodium; Sodium Ascorbate; Sodium L-(+)-Ascorbate; Sodium L-Ascorbate; sodascorbate; CAS NO. 134-03-2
SODIUM ASCORBATE
ascorbic acid sodium salt; Vitamin C sodium salt; Vitamine C sodium salt; SODIUM ASCORBATE; N° CAS : 134-03-2 - Ascorbate de sodium; Nom INCI : SODIUM ASCORBATE. Nom chimique : Sodium ascorbate; N° EINECS/ELINCS : 205-126-1; Additif alimentaire : E301; Ses fonctions (INCI): Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité. Noms français : 3-OXO-L-GULOFURANOLACTONE SODIUM; ASCORBATE DE SODIUM; ASCORBIC ACID SODIUM SALT; L-ASCORBIC ACID, MONOSODIUM SALT; L-ASCORBIC SODIUM SALT; MONOSODIUM ASCORBATE; SEL DE SODIUM DE ;L'ACIDE ASCORBIQUE; SODIUM ASCORBATE; SODIUM L-ASCORBATE. Utilisation et sources d'émission: Additif alimentaire et agent anti-oxydant; Sodium ascorbate; L-Ascorbic acid, sodium salt (1:1). : sodium (2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olate; sodium 2-(1,2-dihydroxyethyl)-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olate (non-preferred name); (+)-Sodium L-ascorbate; (2R)-2-[(1S)-1,2-Dihydroxyéthyl]-4-hydroxy-5-oxo-2,5-dihydro-3-furanolate de sodium [French] [ACD/IUPAC Name]; (2R)-2-[(1S)-1,2-dihydroxyéthyl]-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olate de sodium; 134-03-2 [RN]; 205-126-1 [EINECS]; Adenex; ascorbate de sodium [French] ; ascorbato de sodio [Spanish] ; ASK-P 10KR; CI7671000; E301; L(+)-Ascorbic acid sodium salt; L-Ascorbic Acid Monosodium Salt; Natrium-(2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydro-3-furanolat [German] ; Natrium-(2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olat; S033EH8359; Sodium (2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydro-3-furanolate [ACD/IUPAC Name]; Sodium (2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olate (non-preferred name); sodium ascorbate; Vitamin C sodium salt ; Vitamine C sodium salt; Xitix; натрия аскорбат [Russian]; أسكوربات صوديوم ; 维生素C钠 [Chinese]; ()-Sodium L-ascorbate; 3-Oxo-L-gulofuranolactone sodium; Aminofenitrooxon ; ascorbate de sodium; ascorbate de sodium; natrii ascorbas; sodium ascorbate; ascorbic acid sodium salt; Ascorbic acid sodium salt (Vitamin C sodium salt); Ascorbicin; Ascorbin; Cebitate ; Cenolate; Iskia-C; L()-Ascorbic acid sodium salt; L(+)-Ascorbic acid sodium salt; Vitamin C sodium salt; (+)-Sodium L-ascorbate; L-Ascorbic Acid ? Monosodium Salt; L-Ascorbic acid sodium L-Ascorbic acid sodium salt; L-Ascorbic acid, monosodium salt; L-Ascorbic acid, sodium salt; monosodium ascorbate; Monosodium L-ascorbate; Natrascorb; Natri-C; natrii ascorbas; Phosphoric acid, 4-amino-3-methylphenyl dimethyl ester [ACD/Index Name]; Sodascorbate; Sodium L-Ascorbate; sodium;(2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2H-furan-3-olate; Sodiumascorbate; UNII:S033EH8359; UNII-S033EH8359; Vitamin C; VITAMIN C SODIUM; Vitamin- C sodium salt; Vitamin C, sodium salt
SODIUM ASCORBATE ( Ascorbate de sodium) Vitamine C sodium salt
SYNONYMS Sodium L-ascorbyl-2-phosphate (Sodium Ascorbyl Phosphate);L-Ascorbic acid 2-phosphate trisodium salt;Sodium ascorbyl monophosphate;Trisodium ascorbate-2-phosphate CAS NO:66170-10-3
SODIUM ASCORBYL PHOSPHATE
cas no 1302-78-9 Montmorillonite; Taylorite; Wilkinite; Alumino silicate; Sodium montmorillonite;
SODIUM BENTONITE
cas no 532-32-1 Benzoate of soda; Sodium salt of benzoic acid; Benzoan sodny; Benzoate de sodium; Benzoate sodium; Benzoesaeure (German); NA-SALZ (German); Sobenate; Sodium Benzoic Acid; Ucephan; Benzoan Sodny (Czech);
SODIUM BENZOATE
SYNONYMS Benzoate of soda; Sodium salt of benzoic acid; Benzoan sodny; Benzoate de sodium; Benzoate sodium CAS NO 532-32-1
SODIUM BICARBONATE
SODIUM BICARBONATE Sodium Bicarbonate is a strong alkali base used in green cleaning products. Often found in powder form, it's used in a wide range of industries, such as in cleaning and personal care products and as a fungicide, microbicide, herbicide, and pH adjuster. What Is Sodium Bicarbonate? Sodium Bicarbonate is a chemical compound with the molecular formula Na2CO3. It's commonly referred to as washing soda and is used in cleaning products, glass production, as a food additive, and more. Synonyms Sodium Bicarbonate may go by the following names: Washing soda Soda ash DiSodium Bicarbonate Calcined soda Carbonic acid disodium salt Solvay soda 497-19-8 Properties Sodium Bicarbonate is alkali with a high pH when in concentrated solutions. When it is added to water it breaks down into carbonic acid and sodium hydroxide (lye). Cleaning Uses Sodium Bicarbonate is used in several cleaning products, including green cleaning ones, due to its disinfectant properties and ability to cut through grease and soften water. You can find it in laundry detergents, automatic dishwashing detergents, all-purpose cleaners, glass cleaners, stain removers, countertop cleaners, sanitizing sprays, and bleach. To clean and disinfect with Sodium Bicarbonate, the Environmental Protection Agency (EPA) recommends using 2 ounces per gallon of water.1 This solution can be used to clean hard, non-porous surfaces, such as floors, walls, bathtubs, tile, and grout. Sodium Bicarbonate is considered an irritant at concentrations below 15 percent and caustic above 15 percent according to the EPA, so keep this in mind when mixing your cleaning solutions with it.1 Wear cleaning gloves and avoid getting it in your eyes or mouth. Other Uses In addition to its use in cleaning products, Sodium Bicarbonate is used in: Chemical manufacturing Food (e.g., anticaking agent) Glass manufacturing Personal care products (e.g., bubble bath, toothpaste, bath salts and soaks, and scrubs) Pulp and paper products Swimming pool maintenance (to adjust the pH) Therapeutic treatments (e.g., to treat dermatitides) Veterinary medicine treatments (e.g., to treat ringworm, cleanse the skin, and treat eczema) Product Brands Containing Sodium Bicarbonate To see if certain products contain Sodium Bicarbonate, try searching the U.S. Department of Health and Human Services Household Products Database, the Environmental Working Group's (EWG) Guide to Healthy Cleaning, the Good Guide, or the EWG's Skin Deep Cosmetic Database. If using the general term "Sodium Bicarbonate" doesn't generate a lot of results, try entering one of its synonyms. Regulation When Sodium Bicarbonate is used in personal care products, food, or drugs, it is monitored by the U.S. Food and Drug Administration (FDA). For other uses, such as pesticides and cleaning products, it is monitored by the EPA. Health and Safety The EPA considers Sodium Bicarbonate a safe pesticide and the FDA designates it as generally regarded as safe (GRAS). In the 2006 "Reregistration Eligibility Decision (R.E.D) for Sodium Bicarbonate; Weak Mineral Bases," the EPA notes that there are no known human health hazards when Sodium Bicarbonate is used according to EPA and FDA GRAS guidelines and that "no additional information is needed" to assess its safety.1 After seeking immediate medical attention, here are some home care, first-aid guidelines: Ingestion: Have the person drink a glass of water or milk unless otherwise advised by a health care provider. However, do not have them drink if they are having any of the serious symptoms such as vomiting, convulsions, or drowsiness and have difficulty swallowing. Do not have the person vomit unless to told to do so by a doctor or poison control center. Eye or skin contact: Flush with plenty of water for a minimum of 15 minutes. Inhalation: Move the person to fresh air. Environmental Effects According to the 2006 R.E.D document, the EPA considers Sodium Bicarbonate to be a naturally occurring chemical found in soil and water and doesn't expect any adverse effects on wildlife or water if low amounts are released into the environment. Therefore, it could be considered green.1 Source Most of the world's supply of Sodium Bicarbonate is derived from processing trona ore, which is mined in southwest Wyoming.2 Making Sodium Bicarbonate Interestingly enough, you can also make Sodium Bicarbonate from baking soda by baking it in the oven. Sodium Bicarbonate Jump to navigationJump to search Not to be confused with Sodium bicarbonate (baking soda), a similar compound. Sodium Bicarbonate Skeletal formula of Sodium Bicarbonate Sample of Sodium Bicarbonate Names IUPAC name Sodium Bicarbonate Other names Soda ash, washing soda, soda crystals, sodium trioxocarbonate Identifiers CAS Number 497-19-8 (anhydrous) check 5968-11-6 (monohydrate) ☒ 6132-02-1 (decahydrate) ☒ 3D model (JSmol) Interactive image ChEBI CHEBI:29377 check ChEMBL ChEMBL186314 check ChemSpider 9916 check ECHA InfoCard 100.007.127 Edit this at Wikidata EC Number 207-838-8 E number E500(i) (acidity regulators, ...) PubChem CID 10340 RTECS number VZ4050000 UNII 45P3261C7T check CompTox Dashboard (EPA) DTXSID1029621 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula Na2CO3 Molar mass 105.9888 g/mol (anhydrous) 286.1416 g/mol (decahydrate) Appearance White solid, hygroscopic Odor Odorless Density 2.54 g/cm3 (25 °C, anhydrous) 1.92 g/cm3 (856 °C) 2.25 g/cm3 (monohydrate)[1] 1.51 g/cm3 (heptahydrate) 1.46 g/cm3 (decahydrate)[2] Melting point 851 °C (1,564 °F; 1,124 K) (Anhydrous) 100 °C (212 °F; 373 K) decomposes (monohydrate) 33.5 °C (92.3 °F; 306.6 K) decomposes (heptahydrate) 34 °C (93 °F; 307 K) (decahydrate)[2][6] Solubility in water Anhydrous, g/100 mL: 7 (0 °C) 16.4 (15 °C) 34.07 (27.8 °C) 48.69 (34.8 °C) 48.1 (41.9 °C) 45.62 (60 °C) 43.6 (100 °C)[3] Solubility Soluble in aq. alkalis,[3] glycerol Slightly soluble in aq. alcohol Insoluble in CS2, acetone, alkyl acetates, alcohol, benzonitrile, liquid ammonia[4] Solubility in glycerine 98.3 g/100 g (155 °C)[4] Solubility in ethanediol 3.46 g/100 g (20 °C)[5] Solubility in dimethylformamide 0.5 g/kg[5] Acidity (pKa) 10.33 Magnetic susceptibility (χ) −4.1·10−5 cm3/mol[2] Refractive index (nD) 1.485 (anhydrous) 1.420 (monohydrate)[6] 1.405 (decahydrate) Viscosity 3.4 cP (887 °C)[5] Structure Crystal structure Monoclinic (γ-form, β-form, δ-form, anhydrous)[7] Orthorhombic (monohydrate, heptahydrate)[1][8] Space group C2/m, No. 12 (γ-form, anhydrous, 170 K) C2/m, No. 12 (β-form, anhydrous, 628 K) P21/n, No. 14 (δ-form, anhydrous, 110 K)[7] Pca21, No. 29 (monohydrate)[1] Pbca, No. 61 (heptahydrate)[8] Point group 2/m (γ-form, β-form, δ-form, anhydrous)[7] mm2 (monohydrate)[1] 2/m 2/m 2/m (heptahydrate)[8] Lattice constant a = 8.920(7) Å, b = 5.245(5) Å, c = 6.050(5) Å (γ-form, anhydrous, 295 K)[7] α = 90°, β = 101.35(8)°, γ = 90° Coordination geometry Octahedral (Na+, anhydrous) Thermochemistry Heat capacity (C) 112.3 J/mol·K[2] Std molar entropy (So298) 135 J/mol·K[2] Std enthalpy of formation (ΔfH⦵298) −1130.7 kJ/mol[2][5] Gibbs free energy (ΔfG˚) −1044.4 kJ/mol[2] Hazards Main hazards Irritant Safety data sheet MSDS GHS pictograms GHS07: Harmful[9] GHS Signal word Warning GHS hazard statements H319[9] GHS precautionary statements P305+351+338[9] NFPA 704 (fire diamond) [11] NFPA 704 four-colored diamond 010 Lethal dose or concentration (LD, LC): LD50 (median dose) 4090 mg/kg (rat, oral)[10] Related compounds Other anions Sodium bicarbonate Other cations Lithium carbonate Potassium carbonate Rubidium carbonate Caesium carbonate Related compounds Sodium sesquicarbonate Sodium percarbonate Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Sodium Bicarbonate, Na2CO3, (also known as washing soda, soda ash and soda crystals) is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, water-soluble salts that yield moderately alkaline solutions in water. Historically it was extracted from the ashes of plants growing in sodium-rich soils. Because the ashes of these sodium-rich plants were noticeably different from ashes of wood (once used to produce potash), Sodium Bicarbonate became known as "soda ash."[12] It is produced in large quantities from sodium chloride and limestone by the Solvay process. Contents 1 Hydrates 1.1 Washing soda 2 Applications 2.1 Glass manufacture 2.2 Water softening 2.3 Food additive and cooking 2.4 Inexpensive, weak base 2.5 Precursor to other compounds 2.6 Miscellaneous 3 Physical properties 4 Occurrence as natural mineral 5 Production 5.1 Mining 5.2 Barilla and kelp 5.3 Leblanc process 5.4 Solvay process 5.5 Hou's process 6 See also 7 References 8 Further reading 9 External links Hydrates Sodium Bicarbonate is obtained as three hydrates and as the anhydrous salt: Sodium Bicarbonate decahydrate (natron), Na2CO3·10H2O, which readily effloresces to form the monohydrate. Sodium Bicarbonate heptahydrate (not known in mineral form), Na2CO3·7H2O. Sodium Bicarbonate monohydrate (thermonatrite), Na2CO3·H2O. Also known as crystal carbonate. anhydrous Sodium Bicarbonate, also known as calcined soda, is formed by heating the hydrates. It is also formed when sodium hydrogen carbonate is heated (calcined) e.g. in the final step of the Solvay process. The decahydrate is formed from water solutions crystallizing in the temperature range -2.1 to +32.0 °C, the heptahydrate in the narrow range 32.0 to 35.4 °C and above this temperature the monohydrate forms.[13] In dry air the decahydrate and heptahydrate lose water to give the monohydrate. Other hydrates have been reported, e.g. with 2.5 units of water per Sodium Bicarbonate unit ("pentahemihydrate").[14] Washing soda Sodium Bicarbonate decahydrate (Na2CO3·10H2O), also known as washing soda, is the most common hydrate of Sodium Bicarbonate containing 10 molecules of water of crystallization. Soda ash is dissolved in water and crystallized to get washing soda. {\displaystyle {\ce {Na2CO3 + 10H2O -> Na2CO3.10H2O}}}{\displaystyle {\ce {Na2CO3 + 10H2O -> Na2CO3.10H2O}}} It is transparent crystalline solid. It is one of the few metal carbonates which are soluble in water. It is alkaline with a pH level of 11; it turns red litmus to blue. It has detergent properties or cleansing properties, because it can remove dirt and grease from dirty clothes, etc. It attacks dirt and grease to form water soluble products, which are then washed away on rinsing with water. Applications Some common applications of Sodium Bicarbonate (or washing soda) include: Sodium Bicarbonate (or washing soda) is used as a cleansing agent for domestic purposes like washing clothes. Sodium Bicarbonate is a component of many dry soap powders. It is used for removing temporary and permanent hardness of water.[15] (see water softening). It is used in the manufacture of glass, soap and paper. (see glass manufacture) It is used in the manufacture of sodium compounds like borax Glass manufacture Sodium Bicarbonate serves as a flux for silica, lowering the melting point of the mixture to something achievable without special materials. This "soda glass" is mildly water-soluble, so some calcium carbonate is added to the melt mixture to make the glass insoluble. Bottle and window glass (soda-lime glass) is made by melting such mixtures of Sodium Bicarbonate, calcium carbonate, and silica sand (silicon dioxide (SiO2)). When these materials are heated, the carbonates release carbon dioxide. In this way, Sodium Bicarbonate is a source of sodium oxide. Soda-lime glass has been the most common form of glass for centuries.[16] Water softening Water Hardness in United States Hard water contains dissolved compounds, usually calcium or magnesium compounds. Sodium Bicarbonate is used for removing temporary and permanent hardness of water.[15] As Sodium Bicarbonate is water-soluble and magnesium carbonate and calcium carbonate are insoluble, so it is used to soften water by removing Mg2+ and Ca2+. These ions form insoluble solid precipitates upon treatment with carbonate ions: {\displaystyle {\ce {Ca^2+ + CO3^2- -> CaCO3}}}{\displaystyle {\ce {Ca^2+ + CO3^2- -> CaCO3}}} {\displaystyle {\ce {Ca^2+(aq) + Na2CO3(aq) -> CaCO3(s) + 2Na+(aq)}}}{\displaystyle {\ce {Ca^2+(aq) + Na2CO3(aq) -> CaCO3(s) + 2Na+(aq)}}} Similarly, {\displaystyle {\ce {Mg^2+(aq) + Na2CO3(aq) -> MgCO3(s) + 2Na+(aq)}}}{\displaystyle {\ce {Mg^2+(aq) + Na2CO3(aq) -> MgCO3(s) + 2Na+(aq)}}} The water is softened because it no longer contains dissolved calcium ions and magnesium ions.[15] Food additive and cooking Sodium Bicarbonate is a food additive (E500) used as an acidity regulator, anticaking agent, raising agent, and stabilizer. It is one of the components of kansui (かん水), a solution of alkaline salts used to give ramen noodles their characteristic flavor and texture. It is used in the production of snus to stabilize the pH of the final product. Sodium Bicarbonate is used in the production of sherbet powder. The cooling and fizzing sensation results from the endothermic reaction between Sodium Bicarbonate and a weak acid, commonly citric acid, releasing carbon dioxide gas, which occurs when the sherbet is moistened by saliva. In China, it is used to replace lye-water in the crust of traditional Cantonese moon cakes, and in many other Chinese steamed buns and noodles. In cooking, it is sometimes used in place of sodium hydroxide for lyeing, especially with German pretzels and lye rolls. These dishes are treated with a solution of an alkaline substance to change the pH of the surface of the food and improve browning. Sodium Bicarbonate is corrosive to aluminum cookware, utensils and foil. [17] Inexpensive, weak base Sodium Bicarbonate is also used as a relatively strong base in various fields. As a common alkali, it is preferred in many chemical processes because it is cheaper than NaOH and far safer to handle. Its mildness especially recommends its use in domestic applications. For example, it is used as a pH regulator to maintain stable alkaline conditions necessary for the action of the majority of photographic film developing agents. It is also a common additive in swimming pools and aquarium water to maintain a desired pH and carbonate hardness (KH). In dyeing with fiber-reactive dyes, Sodium Bicarbonate (often under a name such as soda ash fixative or soda ash activator) is used to ensure proper chemical bonding of the dye with cellulose (plant) fibers, typically before dyeing (for tie dyes), mixed with the dye (for dye painting), or after dyeing (for immersion dyeing). It is also used in the froth flotation process to maintain a favourable pH as a float conditioner besides CaO and other mildly basic compounds. Precursor to other compounds Sodium bicarbonate (NaHCO3) or baking soda, also a component in fire extinguishers, is often generated from Sodium Bicarbonate. Although NaHCO3 is itself an intermediate product of the Solvay process, the heating needed to remove the ammonia that contaminates it decomposes some NaHCO3, making it more economic to react finished Na2CO3 with CO2: Na2CO3 + CO2 + H2O → 2NaHCO3 In a related reaction, Sodium Bicarbonate is used to make sodium bisulfite (NaHSO3), which is used for the "sulfite" method of separating lignin from cellulose. This reaction is exploited for removing sulfur dioxide from flue gases in power stations: Na2CO3 + SO2 + H2O → NaHCO3 + NaHSO3 This application has become more common, especially where stations have to meet stringent emission controls. Sodium Bicarbonate is used by the cotton industry to neutralize the sulfuric acid needed for acid delinting of fuzzy cottonseed. Miscellaneous Sodium Bicarbonate is used by the brick industry as a wetting agent to reduce the amount of water needed to extrude the clay. In casting, it is referred to as "bonding agent" and is used to allow wet alginate to adhere to gelled alginate. Sodium Bicarbonate is used in toothpastes, where it acts as a foaming agent and an abrasive, and to temporarily increase mouth pH. Sodium Bicarbonate is also used in the processing and tanning of animal hides.[citation needed] Physical properties The integral enthalpy of solution of Sodium Bicarbonate is −28.1 kJ/mol for a 10% w/w aqueous solution.[18] The Mohs hardness of Sodium Bicarbonate monohydrate is 1.3.[6] Occurrence as natural mineral Structure of monohydrate at 346 K. Sodium Bicarbonate is soluble in water, and can occur naturally in arid regions, especially in mineral deposits (evaporites) formed when seasonal lakes evaporate. Deposits of the mineral natron have been mined from dry lake bottoms in Egypt since ancient times, when natron was used in the preparation of mummies and in the early manufacture of glass. The anhydrous mineral form of Sodium Bicarbonate is quite rare and called natrite. Sodium Bicarbonate also erupts from Ol Doinyo Lengai, Tanzania's unique volcano, and it is presumed to have erupted from other volcanoes in the past, but due to these minerals' instability at the earth's surface, are likely to be eroded. All three mineralogical forms of Sodium Bicarbonate, as well as trona, trisodium hydrogendicarbonate dihydrate, are also known from ultra-alkaline pegmatitic rocks, that occur for example in the Kola Peninsula in Russia. Extraterrestrially, known Sodium Bicarbonate is rare. Deposits have been identified as the source of bright spots on Ceres, interior material that has been brought to the surface.[19] While there are carbonates on Mars, and these are expected to include Sodium Bicarbonate,[20] deposits have yet to be confirmed, this absence is explained by some as being due to a global dominance of low pH in previously aqueous Martian soil.[21] Production Mining Trona, trisodium hydrogendicarbonate dihydrate (Na3HCO3CO3·2H2O), is mined in several areas of the US and provides nearly all the domestic consumption of Sodium Bicarbonate. Large natural deposits found in 1938, such as the one near Green River, Wyoming, have made mining more economical than industrial production in North America. There are important reserves of trona in Turkey; two million tons of soda ash have been extracted from the reserves near Ankara. It is also mined from some alkaline lakes such as Lake Magadi in Kenya by dredging. Hot saline springs continuously replenish salt in the lake so that, provided the rate of dredging is no greater than the replenishment rate, the source is fully sustainable.[citation needed] Barilla and kelp Several "halophyte" (salt-tolerant) plant species and seaweed species can be processed to yield an impure form of Sodium Bicarbonate, and these sources predominated in Europe and elsewhere until the early 19th century. The land plants (typically glassworts or saltworts) or the seaweed (typically Fucus species) were harvested, dried, and burned. The ashes were then "lixiviated" (washed with water) to form an alkali solution. This solution was boiled dry to create the final product, which was termed "soda ash"; this very old name refers derives from the Arabic word soda, in turn applied to salsola soda, one of the many species of seashore plants harvested for production. "Barilla" is a commercial term applied to an impure form of potash obtained from coastal plants or kelp.[22] The Sodium Bicarbonate concentration in soda ash varied very widely, from 2–3 percent for the seaweed-derived form ("kelp"), to 30 percent for the best barilla produced from saltwort plants in Spain. Plant and seaweed sources for soda ash, and also for the related alkali "potash", became increasingly inadequate by the end of the 18th century, and the search for commercially viable routes to synthesizing soda ash from salt and other chemicals intensified.[23] Leblanc process Main article: Leblanc process In 1792, the French chemist Nicolas Leblanc patented a process for producing Sodium Bicarbonate from salt, sulfuric acid, limestone, and coal. In the first step, sodium chloride is treated with sulfuric acid in the Mannheim process. This reaction produces sodium sulfate (salt cake) and hydrogen chloride: 2NaCl + H2SO4 → Na2SO4 + 2HCl The salt cake and crushed limestone (calcium carbonate) was reduced by heating with coal.[16] This conversion entails two parts. First is the carbothermic reaction whereby the coal, a source of carbon, reduces the sulfate to sulfide: Na2SO4 + 2C → Na2S + 2CO2 The second stage is the reaction to produce Sodium Bicarbonate and calcium sulfide: Na2S + CaCO3 → Na2CO3 + CaS This mixture is called black ash. The soda ash is extracted from the black ash with water. Evaporation of this extract yields solid Sodium Bicarbonate. This extraction process was termed lixiviation. The hydrochloric acid produced by the Leblanc process was a major source of air pollution, and the calcium sulfide byproduct also presented waste disposal issues. However, it remained the major production method for Sodium Bicarbonate until the late 1880s.[23][24] Solvay process Main article: Solvay process In 1861, the Belgian industrial chemist Ernest Solvay developed a method to make Sodium Bicarbonate by first reacting sodium chloride, ammonia, water, and carbon dioxide to generate sodium bicarbonate and ammonium chloride:[16] NaCl + NH3 + CO2 + H2O → NaHCO3 + NH4Cl The resulting sodium bicarbonate was then converted to Sodium Bicarbonate by heating it, releasing water and carbon dioxide: 2NaHCO3 → Na2CO3 + H2O + CO2 Meanwhile, the ammonia was regenerated from the ammonium chloride byproduct by treating it with the lime (calcium oxide) left over from carbon dioxide generation: 2NH4Cl + CaO → 2NH3 + CaCl2 + H2O The Solvay process recycles its ammonia. It consumes only brine and limestone, and calcium chloride is its only waste product. The process is substantially more economical than the Leblanc process, which generates two waste products, calcium sulfide and hydrogen chloride. The Solvay process quickly came to dominate Sodium Bicarbonate production worldwide. By 1900, 90% of Sodium Bicarbonate was produced by the Solvay process, and the last Leblanc process plant closed in the early 1920s.[16] The second step of the Solvay process, heating sodium bicarbonate, is used on a small scale by home cooks and in restaurants to make Sodium Bicarbonate for culinary purposes (including pretzels and alkali noodles). The method is appealing to such users because sodium bicarbonate is widely sold as baking soda, and the temperatures required (250 °F (121 °C) to 300 °F (149 °C)) to convert baking soda to Sodium Bicarbonate are readily achieved in conventional kitchen ovens.[25] Hou's process This process was developed by Chinese chemist Hou Debang in the 1930s. The earlier steam reforming byproduct carbon dioxide was pumped through a saturated solution of sodium chloride and ammonia to produce sodium bicarbonate by these reactions: CH4 + 2H2O → CO2 + 4H2 3H2 + N2 → 2NH3 NH3 + CO2 + H2O → NH4HCO3 NH4HCO3 + NaCl → NH4Cl + NaHCO3 The sodium bicarbonate was collected as a precipitate due to its low solubility and then heated up to approximately 80 °C (176 °F) or 95 °C (203 °F) to yield pure Sodium Bicarbonate similar to last step of the Solvay process. More sodium chloride is added to the remaining solution of ammonium and sodium chlorides; also, more ammonia is pumped at 30-40 °C to this solution. The solution temperature is then lowered to below 10 °C. Solubility of ammonium chloride is higher than that of sodium chloride at 30 °C and lower at 10 °C. Due to this temperature-dependent solubility difference and the common-ion effect, ammonium chloride is precipitated in a sodium chloride solution. The Chinese name of Hou's process, lianhe zhijian fa (联合制碱法), means "coupled manufacturing alkali method": Hou's process is coupled to the Haber process and offers better atom economy by eliminating the production of calcium chloride, since ammonia no longer needs to be regenerated. The byproduct ammonium chloride can be sold as a fertilizer. See also Natron Residual Sodium Bicarbonate index Sodium bicarbonate
SODIUM BICHROMATE
SYNONYMS sodium hydrogen fluoride; Sodium fluoride (Na(HF2)); CAS NO. 1333-83-1
SODIUM BIFLUORIDE
cas no 7681-38-1 sodium hydrosulfate; sodium bisulphate; sodium hydrogensulphate; sodium bisulfate; sodium hydrogen sulfate; sodium hydrogen sulphate; sodium hydro sulphate;
SODIUM BISULFITE 35%
SODIUM BISULFITE 35% Sodium bisulfite Sodium bisulfite Sodium bisulfite.png Ball-and-stick model of a bisulfite anion (left) and a sodium cation (right) Names IUPAC name Sodium hydrogen sulfite Other names E222, sodium bisulphite Identifiers CAS Number 7631-90-5 check 3D model (JSmol) Interactive image ChEBI CHEBI:26709 check ChEMBL ChEMBL1689285 ☒ ChemSpider 571016 check ECHA InfoCard 100.028.680 E number E222 (preservatives) PubChem CID 23665763 RTECS number VZ2000000 UNII TZX5469Z6I check CompTox Dashboard (EPA) DTXSID8034902 InChI[show] SMILES[show] Properties Chemical formula NaHSO3 Molar mass 104.061 g/mol Appearance White solid Odor Slight sulfurous odor Density 1.48 g/cm3 Melting point 150 °C (302 °F; 423 K) Boiling point 315 °C (599 °F; 588 K) Solubility in water 42 g/100 mL Refractive index (nD) 1.526 Hazards EU classification (DSD) (outdated) Harmful (Xn) R-phrases (outdated) R22 R31 S-phrases (outdated) (S2), S25, S46 NFPA 704 (fire diamond) NFPA 704 four-colored diamond 021 Flash point Non-flammable NIOSH (US health exposure limits): PEL (Permissible) none[1] REL (Recommended) TWA 5 mg/m3[1] IDLH (Immediate danger) N.D.[1] Related compounds Other anions Sodium sulfite Sodium metabisulfite Other cations Potassium bisulfite Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Sodium bisulfite (or sodium bisulphite, sodium hydrogen sulfite) is a chemical mixture with the approximate chemical formula NaHSO3. Sodium bisulfite in fact is not a real compound,[2] but a mixture of salts that dissolve in water to give solutions composed of sodium and bisulfite ions. It is a white solid with an odour of sulfur dioxide. Regardless of its ill-defined nature, "sodium bisulfite" is a food additive with E number E222. Synthesis Sodium bisulfite solutions can be prepared by treating a solution of suitable base, such as sodium hydroxide or sodium bicarbonate with sulfur dioxide. SO2 + NaOH → NaHSO3 SO2 + NaHCO3 → NaHSO3 + CO2 Attempts to crystallise the product yield sodium disulfite, Na2S2O5.[3] Reactivity and uses Further information: bisulfite A tank containing 25% sodium bisulfite at a water treatment plant in Sunnyvale, California. Sodium bisulfite is a common industrial reducing agent, as it readily reacts with dissolved oxygen: 2 NaHSO3 + O2 → 2 NaHSO4 It is usually added to large piping systems to prevent oxidative corrosion. In biochemical engineering applications, it is helpful to maintain anaerobic conditions within a reactor. It is used for preserving food and beverages. See also Sodium metabisulfite Calcium bisulfite Potassium bisulfite Croscarmellose sodium Sulfurous acid Formula: NaHO3S/NaHSO3 Molecular mass: 104.06 Boiling point: 104°C Melting point: <-5°C Relative density (water = 1): 1.34 Vapour pressure, kPa at 20°C: 2.4 Viscosity: 3.64 mPa*s at 20°C Product Identification Product Name: Sodium Bisulfite Chemical Formula: NaHSO3 CAS Number: 007631-90-5 Other Designations: Sodium Bisulfite Solution, Sodium Hydrogen Sulfite Solution. General Use: Food and pharmaceutical preservative, waste water dechlorination agent, laboratory reagent, reducing agent, dietary supplement, and color preservative APPLICATIONS - Dechlorination in municipal wastewater, pulp & paper, power, and textile water treatment plants - Oxygen scavenger - Boiler water treatment - Preservative in photo developer process - Food additive - Flue gas desulfurization - Mild reducing agent in organic synthesis - Efficiently remove traces or excess amounts of bromine, iodine, osmate esters, chromium trioxide, and potassium permanganate - Surfactant production CHEMICAL COMPOSITION Sodium Bisulfite, wt% 38.0 - 42.0 Sodium Sulfate, wt% ≤ 3.5% Iron, (Fe ppm) ≤ 15 pH 3.6 – 4.6 Physical State; Appearance COLOURLESS-TO-YELLOW LIQUID WITH CHARACTERISTIC ODOUR. Molecular Weight 104.06 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Hydrogen Bond Donor Count 1 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count 4 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass 103.954409 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass 103.954409 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area 79.6 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count 5 Computed by PubChem Formal Charge 0 Computed by PubChem Complexity 33.9 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count 0 Computed by PubChem Defined Atom Stereocenter Count 0 Computed by PubChem Undefined Atom Stereocenter Count 0 Computed by PubChem Defined Bond Stereocenter Count 0 Computed by PubChem Undefined Bond Stereocenter Count 0 Computed by PubChem Covalently-Bonded Unit Count 2 Computed by PubChem Compound Is Canonicalized Yes Properties Related Categories Chemical Synthesis, Essential Chemicals, Inorganic Salts, Research Essentials, Salts, Sodium, Sodium Salts, Synthetic Reagents Less... Quality Level 200 grade ACS reagent assay ≥58.5% (SO2) form powder or crystals impurities ≤0.005% insolubles pH 4.3 (10 g/L) anion traces chloride (Cl-): ≤0.02% Show More (13) Description General description The aqueous solutions of sodium bisulfite are acidic in nature. Degradation of sodium bisulfite with acid forms sulfur dioxide gas.[4] Application Sodium bisulfite (NaHSO3) has been used as a reagent to compose the immunoprecipitation (IP) buffer to chemically modify DNA[2] and to synthesize arsenolipids (AsL).[3] It can also be used as a reagent during the synthesis of 5,6-dihydrouracil-6-sulfonate.[1] Sodium Bisulfite is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. Sulfites are a preservative many people are sensitive to that can severely aggravate asthma. Their use on fresh fruits and vegetables is banned in the United States, but sulfites are present in other foods. What is sodium bisulfite used for? Sodium Bisulfite is a white, crystalline solid with a slight odor of rotten eggs. It is often in a liquid solution. It is used in making paper and leather, as a food preservative and in dye and chemical production What is the difference between sodium bisulfite and sodium bisulfate? 4 Answers. In short, bisulphate and bisulphite are not interchangeable, but bisulphite and metabisulphite are. It's reversible in aqueous solution. The assumption that 30 mg of metabisulphite contain the same amount of sulphite as 30 mg of bisulphite is OK, the error is small, about 10 %. Is sodium bisulfite an oxidizer? SODIUM BISULFITE is a reducing agent. Emits highly toxic gaseous sulfur dioxide gas when heated to decomposition or on contact with mineral acids.
SODIUM BROMATE
Bromic acid sodium salt; Bromate de sodium; SODIUM BROMATE, N° CAS : 7789-38-0, Nom INCI : SODIUM BROMATE, Nom chimique : Sodium bromate, N° EINECS/ELINCS : 232-160-4. Ses fonctions (INCI). Agent Oxydant : Modifie la nature chimique d'une autre substance en ajoutant de l'oxygène ou en éliminant l'hydrogène. Noms français : Bromate de sodium; SODIUM, BROMATE DE. Noms anglais : BROMIC ACID, SODIUM SALT; Sodium bromate. Utilisation et sources d'émission: Agent oxydant; Sodium bromate; Bromic acid, sodium salt (1:1). : Bromic acid, sodium salt; NaBrO3; Natriumbromat Sodium bromate. sodium;bromate; Sodium bromate ; 232-160-4 [EINECS]; 7789-38-0 [RN]; Bromate de sodium [French] ; Bromic acid sodium salt; Natriumbromat [German] ; [7789-38-0]; 38869-75-9 [RN]; 38869-76-0 [RN]; 99% (metals basis); sodyumbromat; sodyum bromat; Bromate de sodium [French]; Bromic acid (acd/name 4.0) ; BROMIC ACID, SODIUM SALT; Dyetone; EINECS 232-160-4; NaBrO3; Sodium bromate Msynth; Sodium bromic acid; sodium;bromate; 溴酸钠 [Chinese]
SODIUM BROMIDE
SYNONYMS Sedoneural; Bromide salt of sodium; CAS: 7647-15-6
SODIUM BUTYLPARABEN
SODIUM BUTYROYL HYALURONATE N° CAS : 942471-70-7 Nom INCI : SODIUM BUTYROYL HYALURONATE Ses fonctions (INCI) Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau Agent d'entretien de la peau : Maintient la peau en bon état
SODIUM BUTYROYL HYALURONATE
Benzènesulfonate de sodium (alkyle linéaire); SODIUM ALKYLBENZENE SULFONATE; N° CAS : 68411-30-3; Nom INCI : SODIUM ALKYLBENZENE SULFONATE. Classification : Tensioactif anionique. Ses fonctions (INCI). Tensioactif : ; Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Benzènesulfonate de sodium (alkyle linéaire); Noms anglais :ALKYL(C10-C13)BENZENESULFONIC ACID, SODIUM SALT; BENZENESULFONIC ACID, C10-13-ALKYL DERIVS., SODIUM SALTS; Benzenesulfonic acid, linear alkyl, sodium salt; Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts. : 0110 N-ALKYLBENZOLSULFONSÄURE, NA-SALZ C10-13; Alkylbenzene sulphonate sodium salt; Benzene sulfonic acid, C10-C13 alkyl derivatives, sodium salt; benzenesulfonic acid; Benzenesulfonic acid C10-C13- alkyl derivs sodium salts; benzenesulfonic acid, 4-C10-13-sec-alkylderivs, sodium salt; Benzenesulfonic acid, C1-13-alkyl derivs., sodium salts; Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts, Sodium dodecylbenzenesulfonate, NaLAS, LASNa C10-13, LAS Na Salt; Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts.; Benzenesulfonic acid, C10-C14-alkyl-, sodium salts; Benzenesulfonic acid,C10-13-alkyl derivs,sodium salts; Benzenesulphonic acid, C10-C13 alkyl derivs., sodium salts; DDBSS; LABSNa; LAS Na; LAS Na Salt; LASNa C10-13: Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts (270-115-0); Linear Alkyl benzene Sulphonic acid, sodium salt; N/A mixture of different structures; sodium 4-undecan-3-ylbenzenesulfonate; Sodium 4-undecylbenzenesulfonate; Sodium alkylbenzene sulfonate; Sodium Alkylbenzene Sulphonate; Sodium C10-13 linear alkyl benzene sulfonate; Sodium dodecylbenzene sulfonate; Sodium dodecylbenzenesulfonate; Sodium LAS; Sodium Linear Alkyl Benzene Sulfonate; Sodium, alkyl-(C10-C13)-benzenesulfonate; Sodiumalkyl (C10-13)benzenesulfonate; 270-115-0 [EINECS] 27636-75-5 [RN]; 4-Undécylbenzènesulfonate de sodium [French] [ACD/IUPAC Name]; 68411-30-3 [RN]; benzenesulfonic acid, 4-undecyl-, sodium salt; Benzenesulfonic acid, 4-undecyl-, sodium salt (1:1) [ACD/Index Name]; Natrium-4-undecylbenzolsulfonat [German] [ACD/IUPAC Name]; Sodium 4-undecylbenzenesulfonate [ACD/IUPAC Name]; Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts; SODIUM P-N-UNDECYLBENZENESULFONATESODIUM C10-13 ALKYL BENZENESULFONATE N° CAS : 68411-30-3 Origine(s) : Synthétique Nom INCI : SODIUM C10-13 ALKYL BENZENESULFONATE Nom chimique : Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts N° EINECS/ELINCS : 270-115-0 Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation; Noms français : Benzènesulfonate de sodium (alkyle linéaire) Noms anglais : ALKYL(C10-C13)BENZENESULFONIC ACID, SODIUM SALT BENZENESULFONIC ACID, C10-13-ALKYL DERIVS., SODIUM SALTS Benzenesulfonic acid, linear alkyl, sodium salt Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts EC Inventory, 0110 N-ALKYLBENZOLSULFONSÄURE, NA-SALZ C10-13 Alkylbenzene sulphonate sodium salt Benzene sulfonic acid, C10-C13 alkyl derivatives, sodium salt benzenesulfonic acid Benzenesulfonic acid C10-C13- alkyl derivs sodium salts benzenesulfonic acid, 4-C10-13-sec-alkylderivs, sodium salt Benzenesulfonic acid, C1-13-alkyl derivs., sodium salts Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts, Sodium dodecylbenzenesulfonate, NaLAS, LASNa C10-13, LAS Na Salt Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts. Benzenesulfonic acid, C10-C14-alkyl-, sodium salts Benzenesulfonic acid,C10-13-alkyl derivs,sodium salts Benzenesulphonic acid, C10-C13 alkyl derivs., sodium salts DDBSS LABSNa LAS Na LAS Na Salt LASNa C10-13: Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts (270-115-0) Linear Alkyl benzene Sulphonic acid, sodium salt N/A mixture of different structures sodium 4-undecan-3-ylbenzenesulfonate Sodium 4-undecylbenzenesulfonate Sodium alkylbenzene sulfonate Sodium Alkylbenzene Sulphonate Sodium C10-13 linear alkyl benzene sulfonate Sodium dodecylbenzene sulfonate Sodium dodecylbenzenesulfonate Sodium LAS Sodium Linear Alkyl Benzene Sulfonate Sodium, alkyl-(C10-C13)-benzenesulfonate Sodiumalkyl (C10-13)benzenesulfonate; 270-115-0 [EINECS] 27636-75-5 [RN] 4-Undécylbenzènesulfonate de sodium [French] [ACD/IUPAC Name] 68411-30-3 [RN] benzenesulfonic acid, 4-undecyl-, sodium salt Benzenesulfonic acid, 4-undecyl-, sodium salt (1:1) [ACD/Index Name] Natrium-4-undecylbenzolsulfonat [German] [ACD/IUPAC Name] Sodium 4-undecylbenzenesulfonate [ACD/IUPAC Name] Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts SODIUM P-N-UNDECYLBENZENESULFONATE
SODIUM C10-13 ALKYL BENZENESULFONATE
SODIUM C10-16 PARETH-2 SULFATE; N° CAS : 68585-34-2; Nom INCI : SODIUM C10-16 PARETH-2 SULFATE; Classification : Sulfate, Composé éthoxylé. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Sel sodique du sulfate d'alkyle (C10-C16) éthoxylé. Noms anglais : (C10-C16) ALCOHOL ETHOXYLATE, SULFATED, SODIUM SALT; (C10-C16) ALKYL ETHOXYLATE SULFURIC ACID, SODIUM SALT; (C10-C16) ALKYLETHOXYLATE SULFURIC ACID, SODIUM SALT; (C10-C16)ALKYL(ALCOHOL)ETHOXYLATE SULFURIC ACID, SODIUM SALT; C10-C16 ALKYL (ALCOHOL) ETHOXYLATE SULFURIC ACID SODIUM SALT; POLY(OXY-1,2-ETHANEDIYL), .ALPHA.-SULFO-.OMEGA.-HYDROXY-, C10-16-ALKYL ETHERS, SODIUM SALTS; SDA 15-067-04. Alcohols, C10-16, ethoxylated, sulfates, sodium salts. : .alpha.-Alkyl (C10-16) .omega.-hydroxypoly (oxyethylene) sulfate, sodium salt; 2-(2-dodecyloxyethoxy)ethyl sulphate; 2-[bis(2-hydroxyethyl)amino]ethan-1-ol; 4-(tridecan-3-yl)benzene-1-sulfonic acid; 2-[bis(2-hydroxyethyl)amino]ethanol; 4-tridecan-3-ylbenzenesulfonic acid; Alcohols, C10-14, ethoxylated, sulfates, sodium salts; Alcohols, C10-16, ethoxylated, sulfates, sodium salts CAS information ; alkyl C10-16 ether sulfate, sodium salt; Alkyl ether sulfate C10-16, sodium salt; linear alkybenzene sulphonic acid; Poly(oxy-1,2-ethanediyl), .alpha.-sulfo-.omega.-hydroxy-, C10-16-alkyl ethers, sodium salts; Poly(oxy-1,2-ethanediyl), a-sulfo-w-hydroxy-, C10-16-alkyl ethers, sodium salts; Polyethylene glycol mono-C10-16-alkyl ether sulfate sodium; Sel sodique du sulfate d'alkyle (C10-C16) éthoxylé; sodium 2-(2-dodecyloxyethoxy)ethyl sulphate; Sodium alkyl(C10-C16)ether sulphate; sodium alkylether sulphate; Sodium Laureth Sulfate; sodium lauryl ether sulfate; sodium lauryl ether sulphate; SODIUM LAURYL ETHOXYSULPHATE
SODIUM C10-16 PARETH-2 SULFATE
SODIUM C12-13 ALKYL SULFATE N° CAS : 91783-23-2 Nom INCI : SODIUM C12-13 ALKYL SULFATE N° EINECS/ELINCS : 295-101-1 Classification : Sulfate Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-13 ALKYL SULFATE
SODIUM C12-13 PARETH SULFATE Nom INCI : SODIUM C12-13 PARETH SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-13 PARETH SULFATE
SODIUM C12-13 PARETH-12 CARBOXYLATE N° CAS : 68908-98-5 Nom INCI : SODIUM C12-13 PARETH-12 CARBOXYLATE Classification : Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-13 PARETH-12 CARBOXYLATE
SODIUM C12-14 OLEFIN SULFONATE, N° CAS : 85536-12-5. Nom INCI : SODIUM C12-14 OLEFIN SULFONATE. N° EINECS/ELINCS : 287-492-2. Ses fonctions (INCI) : Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation; Sulfonic acids, C12-14-alkane hydroxy and C12-14-alkene, sodium salts
SODIUM C12-14 OLEFIN SULFONATE
SODIUM C12-15 ALKYL SULFATE, N° CAS : 68890-70-0, Nom INCI : SODIUM C12-15 ALKYL SULFATE, N° EINECS/ELINCS : 272-575-8. Classification : Sulfate. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-15 ALKYL SULFATE
Alcohols, C12-15, branched and linear,ethoxylated, sulfates, sodium salts; SODIUM C12-15 PARETH SULFATE, N° CAS : 91648-56-5, Nom INCI : SODIUM C12-15 PARETH SULFATE. N° EINECS/ELINCS : 293-918-8. Classification : Sulfate, Composé éthoxylé, Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-15 PARETH SULFATE
SODIUM C12-15 PARETH-12 CARBOXYLATE Nom INCI : SODIUM C12-15 PARETH-12 CARBOXYLATE Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-15 PARETH-12 CARBOXYLATE
SODIUM C12-18 ALKYL SULFATE, N° CAS : 68955-19-1, Nom INCI : SODIUM C12-18 ALKYL SULFATE, N° EINECS/ELINCS : 273-257-1. Classification : Sulfate. Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. ASCON 68955-19-1 Sulfuric acid, mono-C12-18 (even numbered)-alkyl esters, sodium salts; Colonial SCS ; FAS C12-18, Na; FETTALKOHOLSULFAT, NA-SALZ C12-18; sodium C12-18-alkyl sulfate; Sodium Coco Sulfate; sodium pentadecyl sulfate; sodium;pentadecyl sulfate; Sulfuric acid, C12-18-alkyl(even numbered) esters, sodium salts; Sulfuric acid, mono C12-18 alkyl esters, sodium salts; SULFURIC ACID, MONO-C12-18-ALKYLESTERS, SODIUM SALTS, SULPHURIC ACID, MONO-C12-18-ALKYL ESTERS, SODIUM SALTS
SODIUM C12-18 ALKYL SULFATE
SODIUM C13-15 PARETH-3 SULFATE, Nom INCI : SODIUM C13-15 PARETH-3 SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C13-15 PARETH-3 SULFATE
Sulfonic acids, C13-17-alkane, sodium salts; SODIUM C13-17 ALKANE SULFONATE, N° CAS : 93763-92-9, Nom INCI : SODIUM C13-17 ALKANE SULFONATE, N° EINECS/ELINCS : 297-913-1. Classification : Tensioactif anionique. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre, Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C13-17 ALKANE SULFONATE
SODIUM C14-16 OLEFIN SULFONATE, N° CAS : 68439-57-6. Origine(s) : Synthétique. Nom INCI : SODIUM C14-16 OLEFIN SULFONATE. N° EINECS/ELINCS : 270-407-8/931-534-0, Classification : Tensioactif anionique. Cet ingrédient est utilisé dans les cosmétiques en tant que tensioactif anionique, il produit une mousse abondante. Il peut causer des irritations mais est réputé plus doux qu'un Sodium Lauryl Sulfate par exemple. Il ne pause pas de problèmes environnementaux et est biodégradable.Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Acides sulfoniques, C14-C16 hydroxyalcane, C14-C16 alcène, sels de sodium ; ACIDES SULFONIQUES, C14-C16-HYDROXYALCANE, C14-C16 ALCENE, SELS DE SODIUM; Sels de sodium des acides sulfoniques hydroxy alcane C14-16 et alcène C14-16; SODIUM (C14-16) OLEFIN SULFONATE; SULFONIC ACIDS, C14-16 ALKANE HYDROXY AND C14-16 ALKENE, SODIUM SALTS; SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16-ALKENE, SODIUM SALTS. Noms anglais : SODIUM (C14-16) OLEFIN SULFONATE. Utilisation et sources d'émission: Fabrication de détergents; Sulfonic acids, C14-16-alkane hydroxy and C14-16-alkene, sodium salts. ; EC 270-407-8: SULPHONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16-ALKENE, SODIUM SALTS; Sodium alpha olefin (C14-16) sulphonate ; Sodium C14-16 Olefin sulfonate; Sulfonic acids, C14-16 (even numbered)-alkane hydroxy and C14-16 (even numbered)-alkene, sodium salts; SULPHONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16-ALKENE, SODIUM SALTS; (2E)-2-Hexadécène-1-sulfonate de sodium [French] ; 11067-19-9 [RN]; 234-286-5 [EINECS]; 2-Hexadecene-1-sulfonic acid, sodium salt, (2E)- (1:1) [ACD/Index Name]; Natrium-(2E)-2-hexadecen-1-sulfonat [German] [ACD/IUPAC Name]; Sodium (2E)-2-hexadecene-1-sulfonate [ACD/IUPAC Name]; SODIUM C16 OLEFIN SULFONATE ; 270-407-8 [EINECS]; 68439-57-6 [RN]; sodium (E)-hexadec-2-ene-1-sulfonate; sodium (E)-tetradec-2-ene-1-sulfonate; sodium 2-hexadecene-1-sulfonate; SODIUM C14-16 OLEFIN SULFONATE; SODIUM C14-18 OLEFIN SULFONATE; SODIUM C16-18 OLEFIN SULFONATE
SODIUM C14-16 OLEFIN SULFONATE
SODIUM C14-17 ALKYL SEC SULFONATE, N° CAS : 97489-15-1, Nom INCI : SODIUM C14-17 ALKYL SEC SULFONATE, N° EINECS/ELINCS : 307-055-2. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C14-17 ALKYL SEC SULFONATE
SODIUM C14-18 OLEFIN SULFONATE, Nom INCI : SODIUM C14-18 OLEFIN SULFONATE. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C14-18 OLEFIN SULFONATE
SODIUM CAPRATE, N° CAS : 1002-62-6, Nom INCI : SODIUM CAPRATE, N° EINECS/ELINCS : 213-688-4. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM CAPRATE
SODIUM CAPRYLATE, N° CAS : 1984-06-1, Nom INCI : SODIUM CAPRYLATE, Nom chimique : Sodium octanoate, N° EINECS/ELINCS : 217-850-5. Ses fonctions (INCI): Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM CAPRYLATE
SODIUM CAPRYLOAMPHOACETATE, Nom INCI : SODIUM CAPRYLOAMPHOACETATE. Nom chimique : Octanamide, N-[2-[N-(2-hydroxyethyl)-N-(carboxymethyl)amino]ethyl]-, sodium salt Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM CAPRYLOAMPHOACETATE
SODIUM CARBOMER N° CAS : 73298-57-4 Nom INCI : SODIUM CARBOMER Classification : Polymère de synthèse Ses fonctions (INCI) Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Gélifiant : Donne la consistance d'un gel à une préparation liquide Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM CARBOMER
SODIUM CARBOXYMETHYL STARCH, N° CAS : 9063-38-1 Nom INCI : SODIUM CARBOXYMETHYL STARCH Ses fonctions (INCI) Agent fixant : Permet la cohésion de différents ingrédients cosmétiques Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM CARBONATE(HEAVY)
SODIUM CARBONATE(HEAVY) Sodium Carbonate(Heavy) is a strong alkali base used in green cleaning products. Often found in powder form, it's used in a wide range of industries, such as in cleaning and personal care products and as a fungicide, microbicide, herbicide, and pH adjuster. What Is Sodium Carbonate(Heavy)? Sodium Carbonate(Heavy) is a chemical compound with the molecular formula Na2CO3. It's commonly referred to as washing soda and is used in cleaning products, glass production, as a food additive, and more. Synonyms Sodium Carbonate(Heavy) may go by the following names: Washing soda Soda ash DiSodium Carbonate(Heavy) Calcined soda Carbonic acid disodium salt Solvay soda 497-19-8 Properties Sodium Carbonate(Heavy) is alkali with a high pH when in concentrated solutions. When it is added to water it breaks down into carbonic acid and sodium hydroxide (lye). Cleaning Uses Sodium Carbonate(Heavy) is used in several cleaning products, including green cleaning ones, due to its disinfectant properties and ability to cut through grease and soften water. You can find it in laundry detergents, automatic dishwashing detergents, all-purpose cleaners, glass cleaners, stain removers, countertop cleaners, sanitizing sprays, and bleach. To clean and disinfect with Sodium Carbonate(Heavy), the Environmental Protection Agency (EPA) recommends using 2 ounces per gallon of water.1 This solution can be used to clean hard, non-porous surfaces, such as floors, walls, bathtubs, tile, and grout. Sodium Carbonate(Heavy) is considered an irritant at concentrations below 15 percent and caustic above 15 percent according to the EPA, so keep this in mind when mixing your cleaning solutions with it.1 Wear cleaning gloves and avoid getting it in your eyes or mouth. Other Uses In addition to its use in cleaning products, Sodium Carbonate(Heavy) is used in: Chemical manufacturing Food (e.g., anticaking agent) Glass manufacturing Personal care products (e.g., bubble bath, toothpaste, bath salts and soaks, and scrubs) Pulp and paper products Swimming pool maintenance (to adjust the pH) Therapeutic treatments (e.g., to treat dermatitides) Veterinary medicine treatments (e.g., to treat ringworm, cleanse the skin, and treat eczema) Product Brands Containing Sodium Carbonate(Heavy) To see if certain products contain Sodium Carbonate(Heavy), try searching the U.S. Department of Health and Human Services Household Products Database, the Environmental Working Group's (EWG) Guide to Healthy Cleaning, the Good Guide, or the EWG's Skin Deep Cosmetic Database. If using the general term "Sodium Carbonate(Heavy)" doesn't generate a lot of results, try entering one of its synonyms. Regulation When Sodium Carbonate(Heavy) is used in personal care products, food, or drugs, it is monitored by the U.S. Food and Drug Administration (FDA). For other uses, such as pesticides and cleaning products, it is monitored by the EPA. Health and Safety The EPA considers Sodium Carbonate(Heavy) a safe pesticide and the FDA designates it as generally regarded as safe (GRAS). In the 2006 "Reregistration Eligibility Decision (R.E.D) for Sodium Carbonate(Heavy); Weak Mineral Bases," the EPA notes that there are no known human health hazards when Sodium Carbonate(Heavy) is used according to EPA and FDA GRAS guidelines and that "no additional information is needed" to assess its safety.1 After seeking immediate medical attention, here are some home care, first-aid guidelines: Ingestion: Have the person drink a glass of water or milk unless otherwise advised by a health care provider. However, do not have them drink if they are having any of the serious symptoms such as vomiting, convulsions, or drowsiness and have difficulty swallowing. Do not have the person vomit unless to told to do so by a doctor or poison control center. Eye or skin contact: Flush with plenty of water for a minimum of 15 minutes. Inhalation: Move the person to fresh air. Environmental Effects According to the 2006 R.E.D document, the EPA considers Sodium Carbonate(Heavy) to be a naturally occurring chemical found in soil and water and doesn't expect any adverse effects on wildlife or water if low amounts are released into the environment. Therefore, it could be considered green.1 Source Most of the world's supply of Sodium Carbonate(Heavy) is derived from processing trona ore, which is mined in southwest Wyoming.2 Making Sodium Carbonate(Heavy) Interestingly enough, you can also make Sodium Carbonate(Heavy) from baking soda by baking it in the oven. Sodium Carbonate(Heavy) Jump to navigationJump to search Not to be confused with Sodium bicarbonate (baking soda), a similar compound. Sodium Carbonate(Heavy) Skeletal formula of Sodium Carbonate(Heavy) Sample of Sodium Carbonate(Heavy) Names IUPAC name Sodium Carbonate(Heavy) Other names Soda ash, washing soda, soda crystals, sodium trioxocarbonate Identifiers CAS Number 497-19-8 (anhydrous) check 5968-11-6 (monohydrate) ☒ 6132-02-1 (decahydrate) ☒ 3D model (JSmol) Interactive image ChEBI CHEBI:29377 check ChEMBL ChEMBL186314 check ChemSpider 9916 check ECHA InfoCard 100.007.127 Edit this at Wikidata EC Number 207-838-8 E number E500(i) (acidity regulators, ...) PubChem CID 10340 RTECS number VZ4050000 UNII 45P3261C7T check CompTox Dashboard (EPA) DTXSID1029621 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula Na2CO3 Molar mass 105.9888 g/mol (anhydrous) 286.1416 g/mol (decahydrate) Appearance White solid, hygroscopic Odor Odorless Density 2.54 g/cm3 (25 °C, anhydrous) 1.92 g/cm3 (856 °C) 2.25 g/cm3 (monohydrate)[1] 1.51 g/cm3 (heptahydrate) 1.46 g/cm3 (decahydrate)[2] Melting point 851 °C (1,564 °F; 1,124 K) (Anhydrous) 100 °C (212 °F; 373 K) decomposes (monohydrate) 33.5 °C (92.3 °F; 306.6 K) decomposes (heptahydrate) 34 °C (93 °F; 307 K) (decahydrate)[2][6] Solubility in water Anhydrous, g/100 mL: 7 (0 °C) 16.4 (15 °C) 34.07 (27.8 °C) 48.69 (34.8 °C) 48.1 (41.9 °C) 45.62 (60 °C) 43.6 (100 °C)[3] Solubility Soluble in aq. alkalis,[3] glycerol Slightly soluble in aq. alcohol Insoluble in CS2, acetone, alkyl acetates, alcohol, benzonitrile, liquid ammonia[4] Solubility in glycerine 98.3 g/100 g (155 °C)[4] Solubility in ethanediol 3.46 g/100 g (20 °C)[5] Solubility in dimethylformamide 0.5 g/kg[5] Acidity (pKa) 10.33 Magnetic susceptibility (χ) −4.1·10−5 cm3/mol[2] Refractive index (nD) 1.485 (anhydrous) 1.420 (monohydrate)[6] 1.405 (decahydrate) Viscosity 3.4 cP (887 °C)[5] Structure Crystal structure Monoclinic (γ-form, β-form, δ-form, anhydrous)[7] Orthorhombic (monohydrate, heptahydrate)[1][8] Space group C2/m, No. 12 (γ-form, anhydrous, 170 K) C2/m, No. 12 (β-form, anhydrous, 628 K) P21/n, No. 14 (δ-form, anhydrous, 110 K)[7] Pca21, No. 29 (monohydrate)[1] Pbca, No. 61 (heptahydrate)[8] Point group 2/m (γ-form, β-form, δ-form, anhydrous)[7] mm2 (monohydrate)[1] 2/m 2/m 2/m (heptahydrate)[8] Lattice constant a = 8.920(7) Å, b = 5.245(5) Å, c = 6.050(5) Å (γ-form, anhydrous, 295 K)[7] α = 90°, β = 101.35(8)°, γ = 90° Coordination geometry Octahedral (Na+, anhydrous) Thermochemistry Heat capacity (C) 112.3 J/mol·K[2] Std molar entropy (So298) 135 J/mol·K[2] Std enthalpy of formation (ΔfH⦵298) −1130.7 kJ/mol[2][5] Gibbs free energy (ΔfG˚) −1044.4 kJ/mol[2] Hazards Main hazards Irritant Safety data sheet MSDS GHS pictograms GHS07: Harmful[9] GHS Signal word Warning GHS hazard statements H319[9] GHS precautionary statements P305+351+338[9] NFPA 704 (fire diamond) [11] NFPA 704 four-colored diamond 010 Lethal dose or concentration (LD, LC): LD50 (median dose) 4090 mg/kg (rat, oral)[10] Related compounds Other anions Sodium bicarbonate Other cations Lithium carbonate Potassium carbonate Rubidium carbonate Caesium carbonate Related compounds Sodium sesquicarbonate Sodium percarbonate Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Sodium Carbonate(Heavy), Na2CO3, (also known as washing soda, soda ash and soda crystals) is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, water-soluble salts that yield moderately alkaline solutions in water. Historically it was extracted from the ashes of plants growing in sodium-rich soils. Because the ashes of these sodium-rich plants were noticeably different from ashes of wood (once used to produce potash), Sodium Carbonate(Heavy) became known as "soda ash."[12] It is produced in large quantities from sodium chloride and limestone by the Solvay process. Contents 1 Hydrates 1.1 Washing soda 2 Applications 2.1 Glass manufacture 2.2 Water softening 2.3 Food additive and cooking 2.4 Inexpensive, weak base 2.5 Precursor to other compounds 2.6 Miscellaneous 3 Physical properties 4 Occurrence as natural mineral 5 Production 5.1 Mining 5.2 Barilla and kelp 5.3 Leblanc process 5.4 Solvay process 5.5 Hou's process 6 See also 7 References 8 Further reading 9 External links Hydrates Sodium Carbonate(Heavy) is obtained as three hydrates and as the anhydrous salt: Sodium Carbonate(Heavy) decahydrate (natron), Na2CO3·10H2O, which readily effloresces to form the monohydrate. Sodium Carbonate(Heavy) heptahydrate (not known in mineral form), Na2CO3·7H2O. Sodium Carbonate(Heavy) monohydrate (thermonatrite), Na2CO3·H2O. Also known as crystal carbonate. anhydrous Sodium Carbonate(Heavy), also known as calcined soda, is formed by heating the hydrates. It is also formed when sodium hydrogen carbonate is heated (calcined) e.g. in the final step of the Solvay process. The decahydrate is formed from water solutions crystallizing in the temperature range -2.1 to +32.0 °C, the heptahydrate in the narrow range 32.0 to 35.4 °C and above this temperature the monohydrate forms.[13] In dry air the decahydrate and heptahydrate lose water to give the monohydrate. Other hydrates have been reported, e.g. with 2.5 units of water per Sodium Carbonate(Heavy) unit ("pentahemihydrate").[14] Washing soda Sodium Carbonate(Heavy) decahydrate (Na2CO3·10H2O), also known as washing soda, is the most common hydrate of Sodium Carbonate(Heavy) containing 10 molecules of water of crystallization. Soda ash is dissolved in water and crystallized to get washing soda. {\displaystyle {\ce {Na2CO3 + 10H2O -> Na2CO3.10H2O}}}{\displaystyle {\ce {Na2CO3 + 10H2O -> Na2CO3.10H2O}}} It is transparent crystalline solid. It is one of the few metal carbonates which are soluble in water. It is alkaline with a pH level of 11; it turns red litmus to blue. It has detergent properties or cleansing properties, because it can remove dirt and grease from dirty clothes, etc. It attacks dirt and grease to form water soluble products, which are then washed away on rinsing with water. Applications Some common applications of Sodium Carbonate(Heavy) (or washing soda) include: Sodium Carbonate(Heavy) (or washing soda) is used as a cleansing agent for domestic purposes like washing clothes. Sodium Carbonate(Heavy) is a component of many dry soap powders. It is used for removing temporary and permanent hardness of water.[15] (see water softening). It is used in the manufacture of glass, soap and paper. (see glass manufacture) It is used in the manufacture of sodium compounds like borax Glass manufacture Sodium Carbonate(Heavy) serves as a flux for silica, lowering the melting point of the mixture to something achievable without special materials. This "soda glass" is mildly water-soluble, so some calcium carbonate is added to the melt mixture to make the glass insoluble. Bottle and window glass (soda-lime glass) is made by melting such mixtures of Sodium Carbonate(Heavy), calcium carbonate, and silica sand (silicon dioxide (SiO2)). When these materials are heated, the carbonates release carbon dioxide. In this way, Sodium Carbonate(Heavy) is a source of sodium oxide. Soda-lime glass has been the most common form of glass for centuries.[16] Water softening Water Hardness in United States Hard water contains dissolved compounds, usually calcium or magnesium compounds. Sodium Carbonate(Heavy) is used for removing temporary and permanent hardness of water.[15] As Sodium Carbonate(Heavy) is water-soluble and magnesium carbonate and calcium carbonate are insoluble, so it is used to soften water by removing Mg2+ and Ca2+. These ions form insoluble solid precipitates upon treatment with carbonate ions: {\displaystyle {\ce {Ca^2+ + CO3^2- -> CaCO3}}}{\displaystyle {\ce {Ca^2+ + CO3^2- -> CaCO3}}} {\displaystyle {\ce {Ca^2+(aq) + Na2CO3(aq) -> CaCO3(s) + 2Na+(aq)}}}{\displaystyle {\ce {Ca^2+(aq) + Na2CO3(aq) -> CaCO3(s) + 2Na+(aq)}}} Similarly, {\displaystyle {\ce {Mg^2+(aq) + Na2CO3(aq) -> MgCO3(s) + 2Na+(aq)}}}{\displaystyle {\ce {Mg^2+(aq) + Na2CO3(aq) -> MgCO3(s) + 2Na+(aq)}}} The water is softened because it no longer contains dissolved calcium ions and magnesium ions.[15] Food additive and cooking Sodium Carbonate(Heavy) is a food additive (E500) used as an acidity regulator, anticaking agent, raising agent, and stabilizer. It is one of the components of kansui (かん水), a solution of alkaline salts used to give ramen noodles their characteristic flavor and texture. It is used in the production of snus to stabilize the pH of the final product. Sodium Carbonate(Heavy) is used in the production of sherbet powder. The cooling and fizzing sensation results from the endothermic reaction between Sodium Carbonate(Heavy) and a weak acid, commonly citric acid, releasing carbon dioxide gas, which occurs when the sherbet is moistened by saliva. In China, it is used to replace lye-water in the crust of traditional Cantonese moon cakes, and in many other Chinese steamed buns and noodles. In cooking, it is sometimes used in place of sodium hydroxide for lyeing, especially with German pretzels and lye rolls. These dishes are treated with a solution of an alkaline substance to change the pH of the surface of the food and improve browning. Sodium Carbonate(Heavy) is corrosive to aluminum cookware, utensils and foil. [17] Inexpensive, weak base Sodium Carbonate(Heavy) is also used as a relatively strong base in various fields. As a common alkali, it is preferred in many chemical processes because it is cheaper than NaOH and far safer to handle. Its mildness especially recommends its use in domestic applications. For example, it is used as a pH regulator to maintain stable alkaline conditions necessary for the action of the majority of photographic film developing agents. It is also a common additive in swimming pools and aquarium water to maintain a desired pH and carbonate hardness (KH). In dyeing with fiber-reactive dyes, Sodium Carbonate(Heavy) (often under a name such as soda ash fixative or soda ash activator) is used to ensure proper chemical bonding of the dye with cellulose (plant) fibers, typically before dyeing (for tie dyes), mixed with the dye (for dye painting), or after dyeing (for immersion dyeing). It is also used in the froth flotation process to maintain a favourable pH as a float conditioner besides CaO and other mildly basic compounds. Precursor to other compounds Sodium bicarbonate (NaHCO3) or baking soda, also a component in fire extinguishers, is often generated from Sodium Carbonate(Heavy). Although NaHCO3 is itself an intermediate product of the Solvay process, the heating needed to remove the ammonia that contaminates it decomposes some NaHCO3, making it more economic to react finished Na2CO3 with CO2: Na2CO3 + CO2 + H2O → 2NaHCO3 In a related reaction, Sodium Carbonate(Heavy) is used to make sodium bisulfite (NaHSO3), which is used for the "sulfite" method of separating lignin from cellulose. This reaction is exploited for removing sulfur dioxide from flue gases in power stations: Na2CO3 + SO2 + H2O → NaHCO3 + NaHSO3 This application has become more common, especially where stations have to meet stringent emission controls. Sodium Carbonate(Heavy) is used by the cotton industry to neutralize the sulfuric acid needed for acid delinting of fuzzy cottonseed. Miscellaneous Sodium Carbonate(Heavy) is used by the brick industry as a wetting agent to reduce the amount of water needed to extrude the clay. In casting, it is referred to as "bonding agent" and is used to allow wet alginate to adhere to gelled alginate. Sodium Carbonate(Heavy) is used in toothpastes, where it acts as a foaming agent and an abrasive, and to temporarily increase mouth pH. Sodium Carbonate(Heavy) is also used in the processing and tanning of animal hides.[citation needed] Physical properties The integral enthalpy of solution of Sodium Carbonate(Heavy) is −28.1 kJ/mol for a 10% w/w aqueous solution.[18] The Mohs hardness of Sodium Carbonate(Heavy) monohydrate is 1.3.[6] Occurrence as natural mineral Structure of monohydrate at 346 K. Sodium Carbonate(Heavy) is soluble in water, and can occur naturally in arid regions, especially in mineral deposits (evaporites) formed when seasonal lakes evaporate. Deposits of the mineral natron have been mined from dry lake bottoms in Egypt since ancient times, when natron was used in the preparation of mummies and in the early manufacture of glass. The anhydrous mineral form of Sodium Carbonate(Heavy) is quite rare and called natrite. Sodium Carbonate(Heavy) also erupts from Ol Doinyo Lengai, Tanzania's unique volcano, and it is presumed to have erupted from other volcanoes in the past, but due to these minerals' instability at the earth's surface, are likely to be eroded. All three mineralogical forms of Sodium Carbonate(Heavy), as well as trona, trisodium hydrogendicarbonate dihydrate, are also known from ultra-alkaline pegmatitic rocks, that occur for example in the Kola Peninsula in Russia. Extraterrestrially, known Sodium Carbonate(Heavy) is rare. Deposits have been identified as the source of bright spots on Ceres, interior material that has been brought to the surface.[19] While there are carbonates on Mars, and these are expected to include Sodium Carbonate(Heavy),[20] deposits have yet to be confirmed, this absence is explained by some as being due to a global dominance of low pH in previously aqueous Martian soil.[21] Production Mining Trona, trisodium hydrogendicarbonate dihydrate (Na3HCO3CO3·2H2O), is mined in several areas of the US and provides nearly all the domestic consumption of Sodium Carbonate(Heavy). Large natural deposits found in 1938, such as the one near Green River, Wyoming, have made mining more economical than industrial production in North America. There are important reserves of trona in Turkey; two million tons of soda ash have been extracted from the reserves near Ankara. It is also mined from some alkaline lakes such as Lake Magadi in Kenya by dredging. Hot saline springs continuously replenish salt in the lake so that, provided the rate of dredging is no greater than the replenishment rate, the source is fully sustainable.[citation needed] Barilla and kelp Several "halophyte" (salt-tolerant) plant species and seaweed species can be processed to yield an impure form of Sodium Carbonate(Heavy), and these sources predominated in Europe and elsewhere until the early 19th century. The land plants (typically glassworts or saltworts) or the seaweed (typically Fucus species) were harvested, dried, and burned. The ashes were then "lixiviated" (washed with water) to form an alkali solution. This solution was boiled dry to create the final product, which was termed "soda ash"; this very old name refers derives from the Arabic word soda, in turn applied to salsola soda, one of the many species of seashore plants harvested for production. "Barilla" is a commercial term applied to an impure form of potash obtained from coastal plants or kelp.[22] The Sodium Carbonate(Heavy) concentration in soda ash varied very widely, from 2–3 percent for the seaweed-derived form ("kelp"), to 30 percent for the best barilla produced from saltwort plants in Spain. Plant and seaweed sources for soda ash, and also for the related alkali "potash", became increasingly inadequate by the end of the 18th century, and the search for commercially viable routes to synthesizing soda ash from salt and other chemicals intensified.[23] Leblanc process Main article: Leblanc process In 1792, the French chemist Nicolas Leblanc patented a process for producing Sodium Carbonate(Heavy) from salt, sulfuric acid, limestone, and coal. In the first step, sodium chloride is treated with sulfuric acid in the Mannheim process. This reaction produces sodium sulfate (salt cake) and hydrogen chloride: 2NaCl + H2SO4 → Na2SO4 + 2HCl The salt cake and crushed limestone (calcium carbonate) was reduced by heating with coal.[16] This conversion entails two parts. First is the carbothermic reaction whereby the coal, a source of carbon, reduces the sulfate to sulfide: Na2SO4 + 2C → Na2S + 2CO2 The second stage is the reaction to produce Sodium Carbonate(Heavy) and calcium sulfide: Na2S + CaCO3 → Na2CO3 + CaS This mixture is called black ash. The soda ash is extracted from the black ash with water. Evaporation of this extract yields solid Sodium Carbonate(Heavy). This extraction process was termed lixiviation. The hydrochloric acid produced by the Leblanc process was a major source of air pollution, and the calcium sulfide byproduct also presented waste disposal issues. However, it remained the major production method for Sodium Carbonate(Heavy) until the late 1880s.[23][24] Solvay process Main article: Solvay process In 1861, the Belgian industrial chemist Ernest Solvay developed a method to make Sodium Carbonate(Heavy) by first reacting sodium chloride, ammonia, water, and carbon dioxide to generate sodium bicarbonate and ammonium chloride:[16] NaCl + NH3 + CO2 + H2O → NaHCO3 + NH4Cl The resulting sodium bicarbonate was then converted to Sodium Carbonate(Heavy) by heating it, releasing water and carbon dioxide: 2NaHCO3 → Na2CO3 + H2O + CO2 Meanwhile, the ammonia was regenerated from the ammonium chloride byproduct by treating it with the lime (calcium oxide) left over from carbon dioxide generation: 2NH4Cl + CaO → 2NH3 + CaCl2 + H2O The Solvay process recycles its ammonia. It consumes only brine and limestone, and calcium chloride is its only waste product. The process is substantially more economical than the Leblanc process, which generates two waste products, calcium sulfide and hydrogen chloride. The Solvay process quickly came to dominate Sodium Carbonate(Heavy) production worldwide. By 1900, 90% of Sodium Carbonate(Heavy) was produced by the Solvay process, and the last Leblanc process plant closed in the early 1920s.[16] The second step of the Solvay process, heating sodium bicarbonate, is used on a small scale by home cooks and in restaurants to make Sodium Carbonate(Heavy) for culinary purposes (including pretzels and alkali noodles). The method is appealing to such users because sodium bicarbonate is widely sold as baking soda, and the temperatures required (250 °F (121 °C) to 300 °F (149 °C)) to convert baking soda to Sodium Carbonate(Heavy) are readily achieved in conventional kitchen ovens.[25] Hou's process This process was developed by Chinese chemist Hou Debang in the 1930s. The earlier steam reforming byproduct carbon dioxide was pumped through a saturated solution of sodium chloride and ammonia to produce sodium bicarbonate by these reactions: CH4 + 2H2O → CO2 + 4H2 3H2 + N2 → 2NH3 NH3 + CO2 + H2O → NH4HCO3 NH4HCO3 + NaCl → NH4Cl + NaHCO3 The sodium bicarbonate was collected as a precipitate due to its low solubility and then heated up to approximately 80 °C (176 °F) or 95 °C (203 °F) to yield pure Sodium Carbonate(Heavy) similar to last step of the Solvay process. More sodium chloride is added to the remaining solution of ammonium and sodium chlorides; also, more ammonia is pumped at 30-40 °C to this solution. The solution temperature is then lowered to below 10 °C. Solubility of ammonium chloride is higher than that of sodium chloride at 30 °C and lower at 10 °C. Due to this temperature-dependent solubility difference and the common-ion effect, ammonium chloride is precipitated in a sodium chloride solution. The Chinese name of Hou's process, lianhe zhijian fa (联合制碱法), means "coupled manufacturing alkali method": Hou's process is coupled to the Haber process and offers better atom economy by eliminating the production of calcium chloride, since ammonia no longer needs to be regenerated. The byproduct ammonium chloride can be sold as a fertilizer. See also Natron Residual Sodium Carbonate(Heavy) index Sodium bicarbonate
SODIUM CARBOXYMETHYL STARCH
SODIUM CASEINATE, N° CAS : 9005-46-3, Nom INCI : SODIUM CASEINATE. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent d'entretien de la peau : Maintient la peau en bon état
SODIUM CASEINATE
sodium,heptadecyl sulfate; Hexadecylsulfuric Acid; Sodium Salt SODIUM CETYL STEARYL SULFATE cas no: 59186-41-3
SODIUM CASEINATE
CAS number: 9005-46-3
EC number: 618-419-8

Sodium caseinate is a compound derived from casein, a protein present in the milk of mammals.
Casein is the dominant protein in cow’s milk and responsible for its opaque, white appearance.
sodium caseinate’s an integral component of many milk-based products like ice cream and cheese.
Casein proteins can be separated from milk and used independently as a supplement or additive to thicken, texturize, and stabilize various food products.
Sodium caseinate can be used as a protein supplement and to alter the texture and stability of various products, such as baked goods, cheeses, ice cream, medications, and soap.

How sodium caseinate’s made
The terms casein and sodium caseinate are often used interchangeably, but they differ slightly on a chemical level.
Sodium caseinate is a compound that forms when casein proteins are chemically extracted from skim milk.

First, the solid casein-containing curds are separated from the whey, which is the liquid part of milk.
This can be done by adding specialized enzymes or an acidic substance — like lemon juice or vinegar — to the milk.
Once the curds have been separated from the whey, they’re treated with a basic substance called sodium hydroxide before being dried into a powder.

The resulting sodium caseinate powder can then be used in a variety of foods, including:
-protein powder
-coffee creamer
-cheese
-ice cream
-cheese-flavored snacks
-margarine
-cereal bars
-processed meats
-chocolate
-bread

What is Sodium Caseinate?
Sodium caseinates primary purpose is as an emulsifier.
The emulsification of sodium casein is mainly contributed to casein.
This is because casein is a protein, the molecules of that have both hydrophilic and hydrophobic groups, which can be attracted to water and fatty substances to achieve emulsification.

What is Sodium caseinate Made of?
Sodium casein is composed of protein, fat, calcium, sodium, lactose and others.

How is Sodium Caseinate made?
Like calcium caseinate, Sodium caseinate is produced by treating casein curd with an alkaline substance, here it is sodium hydroxide.
The insoluble casein is converted into a soluble form in this way.

How to Produce Casein?
Generally, casein is made from skim milk by two methods, precipitation by acid or coagulation by rennet, one is acid casein, another is rennet casein.

Applications:
-Cream liqueurs
-Nutritional beverages
-Processed cheese and spreads
-Soups
-Whipping agent
-Non-dairy creamer
-Processed meat

Description of Sodium caseinate:
Sodium caseinate is a kind of water soluble emulsifier.
Sodium caseinate has the function of stabilizing, strengthening protein, thickening, foaming etc.
Sodium caseinate is also a protein nutrition fortifier.
Sodium caseinate has also been used in bread, biscuits, and other cereals.
Like casein, sodium caseinate is a high quality protein source.

Sodium caseinate is made from milk protein and is hydrolyzed and absorbed to participate in the normal metabolism of the body.
There is no definite chemical structure for sodium caseinate.
In electrophoretic analysis, there are at least 20 different kinds of protein components.
The main components are a mixture of alpha casein, beta casein and kappa casein (rather than simple proteins).

Sodium Caseinate can be used in Food, Beverage, Pharmaceutical, Health & Personal care products, Agriculture/Animal Feed/Poultry.
Sodium Caseinate is used as food emulsifier and thickening agent in bread, biscuits, candy, cakes, ice cream, yogurt drinks, and margarine, gravy, fast food, meat and seafood products.
Sodium caseinate is the biochemical name for casein, which is a type of protein found in the milk from all mammals.
Casein, which is Latin for “cheese,” is a major component of commercial cheese and its principle source of protein.
Some people are allergic to sodium caseinate, and it has been linked to some human diseases, mainly autism and gastrointestinal problems.

Sodium caseinate is a compound derived from casein, the main protein in milk.
sodium caseinate’s commonly used as a food additive because of its diverse nutritional and functional properties.
sodium caseinate’s used in nutrition supplements and processed foods like cheese, ice cream, bread, and cured meats, as well as in various cosmetic and personal care products.

Sodium caseinate, the sodium salt of casein (a milk protein), is a multi-functional food additive, and together with calcium caseinate, they’re dairy protein commonly used as an emulsifier, thickener or stabilizer in food.
Sodium caseinate improves the properties of food during processing and storage, as well as provides nutrition, taste and smell.

The following are the simple manufacturing process:
1. Acid Casein
The fresh milk, after the process of skimmed and pasteurized, then add acid (lactic acid, acetic acid, hydrochloric acid or sulfuric acid) and adjust the pH to 4.6 to make the casein micelles lose their charge and solidify & precipitate. Then followed by neutralization and drying.

2. Rennet Casein
Made from skim milk, then add rennetase to form a coagulated precipitate.

This ingredient has the following features:
-Good emulsifying properties
-Good water solubility
-Good whipping properties
-Low flavour profile
-Good nutritional value
-Good retort stabilty

This ingredient can be used in the following applications:
-Whipped toppings
-Coffee whiteners
-Cream liqueurs
-Nutritional products
-Wet blend ingredient for susceptible population
-Not intended for use as a Dry Blend ingredient for infants
Synergy
Sodium caseinate itself is a high molecular weight protein that has a certain viscosity in an aqueous solution.
The combined uses with some thickeners, such as carrageenan, guar gum, and CMC can greatly improve its thickening and suspension stability.
The synergistic effect with carrageenan is the best, in addition to increasing the viscosity, it can also improve the emulsifying ability.

Heat Stable
Sodium caseinates emulsion can be sterilized at 120 ℃ for a long time without destroying its stability and functionality.

What’re the applications of Sodium Caseinate?
With Sodium caseinates emulsification, foaming, thickening, hydration, gelling and other properties, plus it is a protein, sodium caseinate is widely used in food, cosmetics and pharmaceutical industries.

Food
Sodium caseinates uses of food grade are more wider than casein due to the water-soluble property.
The common applications are in ice cream, meat products, bread, cereal products and etc.
Let’s see Sodium caseinates functions and suggested uses in food categories.

Sausage
Sodium caseinate can make fat distribution evenly, enhance the stickiness of the meat.
The common usage: 0.2-0.5%.

Ice cream
Ice cream contains a certain amount of fat and non-fat milk solids.
The common usage of sodium caseinate is 0.2-0.3%.
Sodium caseinate is added as/to:

There are several types of caseinates, but sodium caseinate is usually preferred because it’s the most water-soluble, meaning that it readily mixes with other substances.
Sodium caseinate is a food additive and nutritional supplement derived from the milk protein casein.

A variety of uses
Sodium caseinate is an ingredient with many broad and useful applications in the food, cosmetic, and personal care industries.

Nutrition supplements
Casein comprises approximately 80% of the protein in cow’s milk, while whey accounts for the remaining 20%.
Sodium caseinate is a popular protein choice in supplements like protein powders, snack bars, and meal replacements because it provides a rich source of high quality and complete protein.

Proteins are considered complete if they contain all nine essential amino acids that your body needs to stay healthy.
Research suggests that casein can promote the growth and repair of muscle tissue, which makes it a popular protein supplement choice among athletes and weight lifters.
Due to Sodium caseinates favorable amino acid profile, sodium caseinate is also frequently used as a protein source in infant formulas.

Food additive
In addition to being a great source of protein, sodium caseinate has many functional attributes that make it a popular additive in the food industry.
For example, sodium caseinate has a high capacity for water absorption, meaning it can be used to modify the texture of foods like dough and commercially prepared baked goods .
sodium caseinate’s also frequently used as an emulsifier to keep fats and oils suspended in products like processed and cured meats.
Sodium caseinate’s unique melting properties also make it useful for producing natural and processed cheeses, while its foaming properties make it an ideal additive in products like whipped toppings and ice cream.

Other applications
Although sodium caseinate’s usually added to food, sodium caseinate is also used to change the texture and chemical stability of a variety of other products like pharmaceutical drugs, soap, makeup, and personal care products.

An emulsifying stabilizer, which can avoid the shrinking and deforming caused by the low milk solids content.
Reduce lactose content in the formulation, prevent lactose from crystallizing during freezing and storage of the finished product.

Bakery
Sodium caseinate combines with gluten protein to improve the stability and gas retention of the gluten network, enhance the dough’s elasticity and toughness.
In addition, sodium caseinate can also interact with amylose, thereby soften and extend the shelf life of bread.

Coffee Mate
Sodium caseinate is the main ingredient of coffee mate or non-dairy cream due to its three characteristics:

With a high protein content.
A strong emulsifying effect with fat and it can prevent the agglomeration and accumulation of fat.
Increasing the viscosity and mouthfeel of coffee mate, making the product taste more delicious.

Food supplement
Due to Sodium caseinates high protein content, Sodium caseinate can be combined with cereal products to produce high-protein cereal products, elderly foods, infant foods and diabetic foods.
In addition, sodium caseinate can also be added to dairy products such as margarine, chocolate, whipped toppings, desserts, and cheese as an emulsifier and foaming agent to increase the viscosity of the aqueous phase, stabilize the emulsification system, increase the viscosity of bubbles, and prevent fat balls.

Cosmetics
Per the “European Commission database for information on cosmetic substances and ingredients”, sodium caseinate acts as an antistatic, hair conditioning, and skin conditioning agent in cosmetic and personal care products.

CHARACTERISTIC of Sodium caseinate:
White to yellowish colour, free flowing powder, typical milk taste and smell without foreign odour.

APPLICATIONS of Sodium caseinate:
Food supplements (baby food and sports nutrition), coffee creamers, drinks and dietetic products, meat industry, processed and hard cheese.

BENEFITS of Sodium caseinate:
Improvement of nutrition features, high emulsification, gelling properties (good viscosity), enrich products with organic amino-acids, foaming capability, water and fat absorbability.

Casein has a wide variety of uses, from being a major component of cheese, to use as a food additive.
The most common form of casein is sodium caseinate.
In milk, casein undergoes phase separation to form colloidal casein micelles, a type of secreted biomolecular condensate.
These highly purified caseinate proteins have a good nutritional value and excellent functional properties (emulsion, thickening).

Dietetics :
- Clinical nutrition
- Slimming and nutritional foods

Food industries :
- Meat processing
- Meat, ready-cooked dishes
- Dairy products
- Coffee whiteners

The enzyme trypsin can hydrolyze off a phosphorus-containing peptone.
The commercial product also known as casein is used in adhesives, binders, protective coatings, and other products.
The purified material is a water-insoluble white powder.
While Sodium caseinate is also insoluble in neutral salt solutions, Sodium caseinate is readily dispersible in dilute alkalies and in salt solutions such as those of sodium oxalate and sodium acetate.

Definition of Sodium caseinate:
Though commonly regarded as the principal protein in milk (approximately 3%), casein is actually a colloidal aggregate composed of several identifiable proteins together with phosphorus and calcium.
Sodium caseinate occurs in milk as a heterogeneous complex called calcium caseinate, which can be fractionated by a number of methods.
Sodium caseinate can be precipitated with acid at p H 4.7 or with the enzyme rennet (rennin).
The product of the latter method is called paracasein, the term being applied to any of the casein fractions involved, i.e., α, β, κ, etc.
Sodium Caseinates are protein products mainly used in the food-, sports- and diet- industries because of their various functional properties.

Product information
Sodium caseinates are produced from fresh skimmed milk.
With Neutralization the curds from the skim milk acid coagulation are made soluble.
After that, the protein contained in the curd is rendered functional and soluble.
Finally an alkali containing sodium (sodium hydroxide or soda) is added.
After that the dehydration (drying) is the last step.

Spray dried Sodium caseinates are known for their highly viscosity and emulsifying properties.
That’s why they are often applied in ready meals, sausages, coffee creamers and other dairy products.

Extruded sodium caseinates are neutralized in an extruder.
The dry matter of the final product is close to 94%.
In the next step the extruded sodium caseinates are grounded.
This allows to get a desired particle size. The product is often applied in coffee creamer and delicatessen.

Applications of Sodium caseinate:
-Ready-to-eat-meals
-Dairy products
-Dietetics
-Meat processing (for example sausages)
-Sports nutrition
-Coffee whiteners
-Product’s advantages

Sodium caseinate has Emulsifier and thickening qualities
Sodium caseinate has Texturizing properties
Sodium caseinate has a low viscosity

Sodium caseinate is made from casein which is the main protein present in milk which is used as an excellent food additive and for industrial purposes as it contains high protein & nutritional value.
In food industry Sodium caseinate is used to improve the quality of products.
Sodium caseinate is totally safe for consumption as it is announced as unrestricted food additive by FAO and WHO, so, used in all kinds of food products such as meat products, roasted food, artificial cream, coffee partner, baby food, cheese, various cake and candies, beverages, medicine for daily uses and many more.

Useful in a wide variety of applications, our Sodium Caseinate provides excellent functionality, helping to deliver texture in your products and provides whitening and a clean, milky flavour to beverages.
A spray dried protein powder made from premium quality acid casein.
Adds texture to your products by thickening and stabilising; adds thickness and opacity to sauces.

Highly functional for creamers, providing opacity and helping enhance foam structure.
Has a bland milky flavour making Sodium caseinate ideal for use in flavour sensitive formulations and high protein beverages.

Applications:
-Bakery
-Yogurt & ice cream
-Confectionery & chocolate
-Beverages

Chemical Properties
White to cream colored powder

Uses:
Sodium Caseinate is the sodium salt of casein, a milk protein.
Sodium caseinate is used as a protein source and for its functional properties such as water binding, emulsification, whitening, and whipping.
Sodium caseinate is used in coffee whiteners, nondairy whipped toppings, processed meat, and desserts.
Casein is the phosphoprotein of fresh milk; the rennin-coagulated product is sometimes called paracasein.
British nomenclature terms the casein of fresh milk caseinogen and the coagulated product casein.

As Sodium caseinate exists in milk it is probably a salt of calcium.
Casein is not coagulated by heat.
Sodium caseinate is precipitated by acids and by rennin, a proteolytic enzyme obtained from the stomach of calves. Casein is a conjugated protein belonging to the group of phosphoproteins.

Sodium caseinate is obtained from casein, a protein found in mammal's milk.
Sodium caseinate is rich in protein and is usually used as a protein supplement and food additive.

Uses Of Sodium Caseinate
-Protein supplement - This sodium caseinate powder can be used as a protein powder because it provides a rich source of high quality protein.
Sodium caseinate contains 90 per cent protein.
This essential nutrient is required for the body for building and repairing muscle tissues, improving bone health and boosting metabolism.
As sodium caseinate is high in protein, it would make an excellent protein supplement choice among athletes and people involved in strength training .

-Food additive - In the food industry, sodium caseinate is used as a food additive.
Sodium caseinate can be used to change the texture and stabilise many kinds of food products such as ice cream, cheese, coffee creamer, cereal bars, chocolate, bread, margarine, cheese-flavoured snacks and processed meats.

What Is Sodium Caseinate And How Its Made?
Milk is curdled by adding specialised enzymes or an acidic substance such as lemon juice or vinegar to it.
After which, the solid curds are separated from the whey, which is the liquid part of the milk.
Once the curd has been separated, they are treated with an alkali called sodium hydroxide, and are then dried and formed into a powder.

Sodium caseinate is called sodium caseinate, which is extracted from casein and contains 90 per cent protein.
Casein and sodium caseinate are almost the same products and can be used in the same manner, but they vary on a chemical level.
A high quality milk protein product, manufactured from fresh pasteurised skimmed milk through acid precipitation of the casein followed by neutralisation and drying.

Sodium Caseinate uses as follows:
In Food
Sodium Caseinate can be used as nutritional suppliments, thickener, emulsifier and texture stabilizer in food such as in bread, biscuits, candy, cakes, ice cream, yogurt drinks, and margarine, gravy, fast food, meat and seafood products.
In sausage, Sodium caseinate can be used to make fat distribution uniform, and enhance the adhesion property of meat. The dosage in sausage is 0.2%-0.3%.
In the fish cake, Sodium caseinate can improve the elasticity.

In ice cream, the use of sodium caseinate helps to the bubble of products stable and to prevent sugar condensation and contraction.
In bread Sodium caseinate is used to achieve enhancement.
In bread, biscuit and noodles, the dosage is 0.2%-0.5%; in foreign pastry, doughnut and chocolate, Sodium caseinate is 0.59%-5.0% while in cream milk beverages, it is 0.2%-0.39%.
In addition, gellan gum can also be used in dairy products and egg products.

In Beverage
Sodium Caseinate can be used as nutritional suppliments, thickener, emulsifier and texture stabilizer in beverage.

In Pharmaceutical
Sodium Caseinate can be used as intermediate in Pharmaceutical.

In Health and Personal care
Sodium Caseinate can be used in cosmetic and personal care products.

CHEMICAL PARAMETERS:
Protein (as is %): ≥ 87,0 (92,5% in dry matter)
Fat (%): ≤ 2,0
Moisture (%): ≤ 6,0
Ash (%): ≤ 4,5
pH: ≤ 7,0
Insolubility (ml): ≤ 1,0
Lactose (%): ≥ 0,5
Purity (disc): A, A/B

MICROBIOLOGICAL PARAMETERS:
Total Plate Count /g: ≤2 000
Coliforms/0,1g: absent
E- Coli /0,1 g: absent
Salmonella /25 g: absent
Antibiotics: absent
Yeast /g: ≤ 50
Mould /g: ≤ 50

SYNONYMS:
CASEIN SODIUM
CASEIN SODIUM MILK
CASEIN SODIUM SALT
casein,sodiumcomplex
Caseins,sodiumcomplexes
sodiumcasein
luodanbaisuanna
ldbsn
sodiumcomplex
NUTROSE
SODIUM CASEINATE
SODIUM CASEINATE FOOD GRADE
CASEIN FROM BOVINE MILK SODIUM
CaseinHydrolysate(Technical)(AcidHydrolysed)
Sodium caseinate, pract.
casein sodium salt from bovine milk
Casein Sodium from Milk
Casein Na salt
Casein SodiuM
Nutrose 〔Casein Sodium〕
Sodium caseite
Sodium Caseinate,>90%
Sodium caseinate USP/BP/EP
Sodium cascinate
SODIUM CETEARYL SULFATE
Sulfuric acid, C16-18-alkyl esters, sodium salts; SODIUM CETEARYL SULFATE, N° CAS : 59186-41-3. Origine(s) : Végétale, Synthétique. Nom INCI : SODIUM CETEARYL SULFATE. Classification : Sulfate, Tensioactif anionique. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide.Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM CETYL SULFATE
cas no 7775-09-9 Soda Chlorate; Chloric acid, sodium salt; chlorax; Chlorsaure (German); Natrium Chloraat (Dutch); Natrium Chlorat (German); Sodio (Clorato Di) (Italian); Sodium (Chlorate De) (French); Chlorate of Soda;
SODIUM CHLORATE
cas no 7758-19-2 Chlorous Acid, Sodium Salt; Chlorite (sodium salt); Natriumchlorit (German); Clorito de sodio (Spanish); Chlorite de sodium (French);
SODIUM CHLORIDE PHARMA
SODIUM CHLORIDE PHARMA What is it? Sodium chloride Pharma (NaCl) is the chemical name for salt. Sodium chloride Pharma occurs naturally as the mineral halite. Commercially, it is obtained by the solar evaporation of salt water, or by mining. It is a component of Sodium chloride Pharma injections USP, and has production uses in pharmaceutical processing.[1] Sodium chloride Pharma has uses a channeling agent, and as an osmotic agent in the cores of controlled-release tablets. It also is used to help modify drug release, and to adjust porosity in tablet coatings. It can adjust drug release from gels and emulsions, and adjust the thickness of solutions by altering the ionic attributes of a formulation.[1] Sodium chloride Pharma is widely used in a variety of pharmaceutical products to produce isotonic solutions. It is used in normal nasal saline sprays, in intravenous lock flush solutions, and in eye washes or solutions. Sodium chloride Pharma tablets are also available to replace salt lost through excess sweating to help prevent muscle cramps. Sodium chloride Pharma solution may also be used to dilute medications for nebulization and inhalation.[2] As an excipient, Sodium chloride Pharma may be regarded as nontoxic and nonirritant. However, toxic effects following the oral ingestion of 0.5–1.0 g per kilogram of body weight in adults may occur.[1] Abstract Sodium chloride Pharma ceutical applications must fulfill high purity requirements, as excipients or active pharmaceutical ingredients (API). In addition to the chemical purity, bacteriological limits must also be observed. The requirements are defined in pharmacopoeias (BP, Ch.P., JP, Ph.Eur., USP, KP, Ph.Rus.) and individually specified in quality agreements between salt producers and pharmaceutical companies. Solar salts and rock salts cannot be used directly as pharmaceutical salt due to their insufficient purity and/or increased microbial content. The required purity can only be achieved by crystallizing vacuum salt. For this purpose, the methods single effect, multiple effect, MVR and recrystallization are available. The first three technologies require additionally the removal of mother liquor from the crystals by washing with purified water, usually per production campaign. The recrystallization process doesn’t require additional washing due to the low sulfate concentration in the process brine loop. The sulfate requirements for pharmaceutical salt will be automatically fulfilled. Generally, high bromide and potassium contents in the crude salt or in the crude brine make the production of pharmaceutical salt difficult or even impossible. Several case studies from Europe, Asia and Africa confirm the recrystallization process as suitable for the production of pharmaceutical salt. The production of API Sodium chloride Pharma requires compliance with GMP standards (FDA, EU-GMP). Pharmaceutical salt with extreme low sulfate limits, like in China, needs additional sulfate removal from the raw brine and/or double crystallization. Since anticaking agents or free-flow additives may not be used for pharmaceutical salt, special measures are required to prevent caking of the salt. Granulation can be an additional process step. One possible application for granulation is the production of dry dialysis concentrates, where only the pharmaceutical grade vacuum salt is granulated or in mixture with other salts required for the dialysis. The preparation of pharmaceutical grade brine requires removal of undesirable ions, such as calcium, magnesium, and sulfate. This can be achieved by chemical precipitation, ion exchange and/or nanofiltration. The main applications of pharmaceutical sodium chloride are hemodialysis and peritoneal dialysis. Further applications include IV (intravenous) solutions, oral rehydration salts and extraction of biological heparin. Due to the worldwide growing demand, this market segment might be of increasing interest for salt producers. Pharmaceutical grade sodium chloride is required for dialysis solutions (hemodialysis, peritoneal dialysis, hemofiltration), intravenous (IV) injections, oral rehydration salts, channeling agents, osmotic agents, cleansing solutions, pharmaceutical formulations, nutrition (enteral, parenteral), extraction of biological heparin, and non-medical applications (corrosion testing, cosmetics, etc.). Dialysis application dominates with a 50% share the global market due to the worldwide mounting kidney failure. The worldwide increasing wealth also drives the pharmaceutical grade Sodium chloride Pharma market as spending in the healthcare sector are increasing. Dialysis is used as replacement for lost kidney functions, cleaning the blood from waste products through artificial means. Renal dialysis is vital to a growing number of patients around the world and the only alternative for many people, because kidney transplantation is precluded due to a shortage of donor organs. Sodium chloride is the major component of dry and liquid hemodialysis concentrates, as well as peritoneal dialysis solutions. The second key application of pharmaceutical grade Sodium chloride Pharma are IV solutions. These solutions have a wide range of applications which include regulation of blood pressure, hydration, electrolyte balance, medication and nutrition delivery, flushing, cleaning out IV lines and feed tubes, wound cleaning, renal dialysis and plasma collection. Urological and gynecological surgeries, and knee and hip replacements, may require up to 30 liters of solution for each treatment. Sodium chloride Pharma 0.9% injection bags are currently in shortage in the U.S. [1]. Most often, diarrhea kills children and elder people by dehydration. In order to replace the lost liquid, it is essential to feed extra drinks as soon as diarrhea starts. Oral rehydration therapy with oral rehydration salt (ORS) solutions is a cheap, simple and effective way to treat dehydration caused by diarrhea. It has substantially contributed to the dramatic global reduction in mortality from diarrheal disease. ORS is the name of a balanced glucose-electrolyte mixture, where each sachet with 20.5 grams contains 2.6 grams Sodium chloride Pharma, 13.5 grams anhydrous glucose, 1.5 grams potassium chloride and 2.9 grams tri Sodium chloride Pharma citrate, dihydrate [2]. Global pharmaceutical grade Sodium chloride Pharma consumption is estimated to reach 690 kt by 2019 [3]. The market is continuously growing, with North-America as the leading consumer, followed by the Asia-Pacific region and Europe. U.S., Germany and Japan are also among the world’s largest consumers. The Asia-Pacific region with China, India, Indonesia, Vietnam, etc. is the fastest growing market across the world, followed by North-America and Europe. By 2021, an annual growth rate of approximately 6% of the worldwide dialysis patients is expected. The overall pharmaceutical grade Sodium chloride Pharma market will continue to grow with a compound annual growth rate (CAGR) of more than 5% in terms of volume. It is estimated to reach 1,000 kt by 2025, making the Asia-Pacific region, Africa, South-America, Eastern Europe, and the Russian Commonwealth particularly attractive for new capacities or capacity expansion. At present, only around 30 companies out of hundreds of salt producers worldwide produce pharmaceutical grade Sodium chloride Pharma. One reason for this is that pharmaceutical grade Sodium chloride Pharma is a salt specialty with a market share of less than 1% of the total global salt demand. The major part goes to applications in the chemical industry, road de-icing, human and animal nutrition and water treatment. In addition, pharmaceutical salt is only suitable in the form of vacuum salt, and specific measures in production, quality monitoring and documentation are necessary. Extra certifications and qualifications are also required. Pharmaceutical grade Sodium chloride Pharma is required in injections; hemodialysis, peritoneal dialysis, & hemofiltration solutions, oral rehydration salts (ORS), channeling agents/ osmotic agent, mechanical cleansing solutions, and others (dietary formulations and infant formulations). The report covers qualitative aspect and detailed volume (kilotons) and value ($Million) forecasts along with its applications and region. This study aims at estimating the global market for 2013 and to project the expected demand of the same by 2019. This market research study provides a detailed qualitative and quantitative analysis of the global pharmaceutical grade Sodium chloride Pharma market. It provides a comprehensive review of key market drivers, restraints, opportunities, winning imperatives, challenges, and key issues in the market. The market is segmented and projected for important regions, such as Asia-Pacific, Europe, North America and Rest of the World, which are further segmented for key countries in each region. This research report categorizes the global pharmaceutical grade Sodium chloride Pharma market on the basis of applications and region along with forecasting volume, value, and trends in each of the markets. On the basis of application: Pharmaceutical grade Sodium chloride Pharma is characterized on the basis of applications that include injections, hemodialysis, peritoneal dialysis, & hemofiltration solutions, oral rehydration salts (ORS), channeling agents/ osmotic agent, mechanical cleansing solutions, and others (dietary formulations and infant formulations). These applications are described in detail in this report. On the basis of region: Regional level segmentation is done for Pharmaceutical grade Sodium chloride Pharma that includes North America, Asia-Pacific, Europe and Rest of the World and further for key countries in each region that include U.S., China, Japan, India, Germany, France, and Belgium. South America, Africa and Middle East are collectively considered in Rest of the World. The pharmaceutical grade Sodium chloride Pharma market is estimated to witness a CAGR of 6.9% between 2014 and 2019 in terms of volume, and the consumption is anticipated to reach 690 KT by 2019. The report on ‘Pharmaceutical grade Sodium chloride Pharma market’ considers study by its applications. Pharmaceutical grade Sodium chloride Pharma finds its application in injections, dialysis, oral rehydration salts (ORS), pharmaceutical formulations, mechanical cleansing solutions, and others (dietary formulations and infant formulations). The market is estimated to increase significantly in Asia-Pacific due to the increasing awareness and increased spending of the region in the healthcare sector. The growing dialysis and IV solutions applications are projected to register descent CAGRs in terms of volume, during the forecast period (2014- Growing awareness, increased spending in the healthcare sector and excessive availability and accessibility makes Asia-Pacific an attractive market for capacity expansion. Asia-Pacific is the fastest growing market across the world, followed by North America and Europe. With the aforementioned opportunities, the overall pharmaceutical grade Sodium chloride Pharma market remains attractive for coming years. The key participants in this market are AkzoNobel [Sanal Pharma] (The Netherlands), K+S AG (Germany), Dominion Salt (New Zealand), Salinen Austria AG (Austria), Cargill Incorporated (U.S.), Sudsalz (Germany), Cheetham Salt (Australia) and Hub Salt (Pakistan). This report follows both top-down and bottom-up approaches to estimate and forecast the global market size. Sodium chloride Pharma, ACS, USP-EP-JP Hawkins carries high purity, pharmaceutical grade Sodium chloride Pharma. We also carry pharmaceutical grade Sodium chloride Pharma in bulk and in multiple packaging options. Appearance: White Crystals Molecular Weight: 58.44 Chemical Formula: NaCl CAS #: 7647-14-5 Solubility: 36g/100ml water at 20°C Storage Conditions: Store in tight containers at 15-30ºC Sodium chloride Pharma, ACS supplied by Hawkins, Inc. Pharmaceutical Group meets the standards of the American Chemical Society (ACS). Sodium chloride Pharma, USP-EP-JP: Sodium chloride Pharma, USP/EP/JP supplied by Hawkins, Inc. Pharmaceutical Group meets the standards of United States Pharmacopeia (USP), European Pharmacopeia (EP), and Japanese Pharmacopeia (JP) monograph standards below. Product Description Sodium chloride Pharma (Pharma Grade) is a white crystalline solid commonly known as common salt, table salt or halite, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of Sodium chloride Pharma and chloride ions. It is one of the most abundant minerals on Earth and an essential nutrient for many animals and plants. Pharmaceutical grade Sodium chloride Pharma or pharmaceutical salt is manufactured under appropriate GMP controls norm for pharmaceutical production it is a screened, granular, white crystalline Sodium chloride Pharma manufactured under stringent process control procedures. WE GUARANTEE CONTINOUS HIGH QUALITY Sodium chloride Pharma Pharmaceutical Quality are committed to purity our customers can rely on. Salt in its purest form and without additives plays an essential role in the pharmaceutical industry, in the manufacture medical and pharmaceutical products. Active Pharmaceutical Ingredients - API Comply with the monographs of all international pharmacopoeia Registered licenses for all main markets, including US DMF P Sodium chloride Pharma Pharmaceutical Quality - API quality P+ Sodium chloride Pharma Pharmaceutical Quality - API quality Dedicated manufacturing line and finishing area - FDA accepted Manufacturing based on GMP-ICH Q7 guidelines for API What is Sodium chloride Pharma? Sodium chloride Pharma (NaCl), also known as salt, is an essential compound our body uses to: absorb and transport nutrients maintain blood pressure maintain the right balance of fluid transmit nerve signals contract and relax muscles Salt is an inorganic compound, meaning it doesn’t come from living matter. It’s made when Na (Sodium chloride Pharma) and Cl (chloride) come together to form white, crystalline cubes. Your body needs salt to function, but too little or too much salt can be harmful to your health. While salt is frequently used for cooking, it can also be found as an ingredient in foods or cleansing solutions. In medical cases, your doctor or nurse will typically introduce Sodium chloride Pharma as an injection. Read on to see why and how salt plays an important role in your body. What’s the difference between salt and Sodium chloride Pharma? Despite the fact that many people use the words Sodium chloride Pharma and salt interchangeably, they are different. Sodium chloride Pharma is a mineral and a nutrient that’s naturally occurring. Unprocessed foods like fresh vegetables, legumes, and fruit can naturally have Sodium chloride Pharma. Baking soda has Sodium chloride Pharma too. But about 75 to 90 percent of the Sodium chloride Pharma we get comes from salt already added to our foods. The weight of salt is usually a combination of 40 percent Sodium chloride Pharma and 60 percent chloride. How can you use Sodium chloride Pharma? How is Sodium chloride Pharma used medically? When your doctor prescribes a treatment with salt, they’ll use the term Sodium chloride Pharma. Sodium chloride Pharma mixed with water creates a saline solution, which has a number of different medical purposes. Medical uses for a saline solution include: Name Use IV drips to treat dehydration and electrolyte imbalances; can be mixed with sugar Saline flush injections to flush a catheter or IV after medication is administered Nasal irrigation or nasal drops to clear congestion and reduce post nasal drip and keep the nasal cavity moist Cleaning wounds to wash and rinse the area for a clean environment Eye drops to treat eye redness, tearing, and dryness Sodium chloride Pharma inhalation to help create mucus so you can cough it out It’s important to consult a doctor and only use medical saline products (excluding over-the-counter products like contact solution) as prescribed. Different types of saline solutions will contain different ratios of Sodium chloride Pharma to water. Saline that’s used for different purposes may also have additional chemicals or compounds added in. How much salt should you eat? Although salt and Sodium chloride Pharma are different, salt is 40 percent Sodium chloride Pharma and we get most of our Sodium chloride Pharma intake from salt. Many companies and restaurants use salt to preserve, season, and flavor their food. Since one teaspoon of salt has about 2,300 milligrams (mg) of Sodium chloride Pharma, it’s easy to go over the daily value. According to the CDCTrusted Source, the average American eats over 3,400 mg each day. You can limit your Sodium chloride Pharma intake by eating unprocessed foods. You may also find it easier to manage your Sodium chloride Pharma intake by making more meals at home. The American Dietary Guidelines recommendTrusted Source that Americans consume less than 2,300 mg of Sodium chloride Pharma per day. Low- Sodium chloride Pharma diet Your doctor may suggest sticking to a low- Sodium chloride Pharma diet if you’re at risk for high blood pressure or heart disease. If you have heart disease, you should try to consume less than 2,000 mg of Sodium chloride Pharma per day, although the American Heart Association (AHA) recommends keeping it under 1,500 mg. Eliminating processed foods like sausages and ready-made meals may make maintaining this number easier. Top ten low- Sodium chloride Pharma frozen meals » What does your body use Sodium chloride Pharma for? Nutrient absorption and transportation Sodium chloride Pharma and chloride play an important role in your small intestine. Sodium chloride Pharma helps your body absorb: Maintaining resting energy Sodium chloride Pharma and potassium are electrolytes in the fluid outside and inside your cells. The balance between these particles contributes to how your cells maintain your body’s energy. It’s also how nerves send signals to the brain, your muscles contract, and your heart functions. Maintaining blood pressure and hydration Your kidneys, brain, and adrenal glands work together to regulate the amount of Sodium chloride Pharma in your body. Chemical signals stimulate the kidney to either hold on to water so it can be reabsorbed into the bloodstream or get rid of excess water through the urine. When there’s too much Sodium chloride Pharma in your bloodstream, your brain signals your kidneys to release more water into your blood circulation. This leads to an increase in blood volume and blood pressure. Decreasing your Sodium chloride Pharma intake can lead to less water being absorbed into the bloodstream. The result is a lower blood pressure. Side effects For the most part, Sodium chloride Pharma isn’t a health hazard, but in excessive amounts it can irritate your: Excess salt While Sodium chloride Pharma is essential, it’s also in large amounts of almost everything we eat. Eating too much salt is linked to: Too little Sodium chloride Pharma Sodium chloride Pharma deficiency is usually a sign of an underlying disorder. The name for this condition is hyponatremia. It can be due to: About 75 to 90 percent of our Sodium chloride Pharma intake comes from salt, or Sodium chloride Pharma. Salt provides an essential mineral (Sodium chloride Pharma) that our bodies use for functions such as maintaining blood pressure and absorbing nutrients. You can also use salt for seasoning foods, cleaning your household items, and addressing certain medical issues. The American Dietary Guidelines suggest you eat less than 2,300 mg of Sodium chloride Pharma per day. You can do this by eating less processed foods, like cold cuts and prepackaged foods, and cooking meals at home. What foods have the least amount of Sodium chloride Pharma? » Too much salt can lead to bigger health concerns like high blood pressure, heart disease, and kidney disease. Lowering your salt intake while increasing how much potassium you get can help lower your risk for those conditions. You should consult your doctor before adding more Sodium chloride Pharma to your diet. Most people exceed the recommended amount, but people who drink excessive amounts of water, have persistent diarrhea, or participate in long endurance events may have Sodium chloride Pharma deficiency. In these cases, good oral hydration may help. In more severe cases, a healthcare professional may need to provide intravenous (IV) saline solution to restore hydration and electrolytes. Sodium chloride Pharma Sodium chloride Pharma (NaCl), commonly known as salt, is one of the most abundant minerals on Earth and an essential nutrient for many animals and plants. It is naturally found in seawater and in underground rock formations. What is Sodium chloride Pharma? Sodium chloride Pharma is the chemical name for salt. Sodium chloride Pharma is an electrolyte that regulates the amount of water in your body. Sodium chloride Pharma also plays a part in nerve impulses and muscle contractions. Sodium chloride Pharma is used to treat or prevent Sodium chloride Pharma loss caused by dehydration, excessive sweating, or other causes. Sodium chloride Pharma may also be used for purposes not listed in this medication guide. Important Information You should not take Sodium chloride Pharma if you have ever had an allergic reaction to it, or if you have high Sodium chloride Pharma levels in your blood. Before you take Sodium chloride Pharma, tell your doctor if you have high blood pressure, kidney or liver disease, fluid retention (especially around your legs or your lungs), congestive heart failure, preeclampsia of pregnancy if you are on a low-salt diet, or if you are allergic to any foods or drugs. Tell your doctor if you are pregnant or breast-feeding. Stop using Sodium chloride Pharma and call your doctor at once if you have stomach pain, nausea and vomiting, or swelling in your hands or feet. Call your doctor if your symptoms do not improve, or if they get worse while using Sodium chloride Pharma. Before taking this medicine You should not take Sodium chloride Pharma if you have ever had an allergic reaction to it, or if you have high Sodium chloride Pharma levels in your blood. To make sure you can safely take Sodium chloride Pharma, tell your doctor if you have any of these other conditions: FDA pregnancy category C. It is not known whether Sodium chloride Pharma will harm an unborn baby. Tell your doctor if you are pregnant or plan to become pregnant while using this medication. It is not known whether Sodium chloride Pharma passes into breast milk or if it could harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby. How should I take Sodium chloride Pharma? Take exactly as prescribed by your doctor. Do not take in larger or smaller amounts or for longer than recommended. Follow the directions on your prescription label. Take Sodium chloride Pharma with a full glass (8 ounces) of water. Sodium chloride Pharma may be taken with or without food. To be sure this medication is helping your condition, your blood may need to be tested often. Visit your doctor regularly. Do not share this medication with another person, even if they have the same symptoms you have. Call your doctor if your symptoms do not improve, or if they get worse while using Sodium chloride Pharma. What should I avoid while taking Sodium chloride Pharma? Avoid becoming overheated or dehydrated during exercise and in hot weather. Follow your doctor's instructions about the type and amount of liquids you should drink. In some cases, drinking too much liquid can be as unsafe as not drinking enough. Sodium chloride Pharma side effects Get emergency medical help if you have any of these signs of an allergic reaction: hives; difficult breathing; swelling of your face, lips, tongue, or throat. Stop using Sodium chloride Pharma and call your doctor at once if you have a serious side effect such as: This is not a complete list of side effects and others may occur. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. See also: Sodium chloride Pharma side effects (in more detail) What other drugs will affect Sodium chloride Pharma? There may be other drugs that can interact with Sodium chloride Pharma. Tell your doctor about all medications you use. This includes prescription, over-the-counter, vitamin, and herbal products. Do not start a new medication without telling your doctor. See also: Sodium chloride Pharma drug interactions (in more detail) Further information Remember, keep this and all other medicines out of the reach of children, never share your medicines with others, and use this medication only for the indication prescribed. Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances. Sodium chloride Pharma (NaCl) What is Sodium chloride Pharma? Sodium chloride Pharma is an ionic compound in which the Sodium chloride Pharma and chloride ions are in the ratio of 1:1. It is commonly called table salt, common salt or halite (the mineral form of common salt). It is the salt which is mainly responsible for the salinity of seawater and for the extracellular fluid which is present in many multi-cellular organisms. It finds its application from household to industrial processes. Seawater is a major source of this salt. The chemical formula of Sodium chloride Pharma is NaCl. The Occurrence of Sodium chloride Pharma Mostly all the chemical compounds which consist of chlorine or Sodium chloride Pharma is usually derived from salts. It is distributed abundantly in nature. Salt is a major ingredient of the dissolved materials in seawater. Pure salt can be obtained from mineral halite. Sodium chloride Pharma is obtained by mining the deposits and brine solution is obtained by passing water into the deposits. Hence the salts get dissolved then the solution is pumped out. Evaporation of the sea water is one of the major processes used to obtain salt and is most widely followed in countries like India. The crystals obtained usually consists of impurities such as calcium sulfate, Sodium chloride Pharma sulfate etc. Pure crystals are obtained by dissolving the salts with little water and filtering the solution. Preparation of Sodium chloride Pharma However, Sodium chloride Pharma and chlorine respond together to generate a substance that is familiar to nearly everybody in the globe that is Sodium chloride Pharma, or table salt, or common salt. 2Na(s) + Cl2(g) → 2NaCl(s) Properties of Sodium chloride Pharma It is easily soluble in water and partially soluble or insoluble in other liquids. They are white crystals which do not have an odour but possess a taste. In its aqueous state NaCl acts as a good conductor of electricity due to the free movement of the ions. It has a melting point of 801°C and a boiling point of 1,413°C. Sodium chloride Pharma Crystal Structure Sodium chloride Pharma Crystal Structure Uses of Sodium chloride Pharma It is widely used in food industries as a food preservative and as a flavour enhancer. It is a major raw material in the industrial manufacturing of various chemicals such as Sodium chloride Pharma carbonate, Sodium chloride Pharma hydrogen carbonate etc. This salt is used in glass production. In cold countries, it is used to prevent the build-up of ice on roads, bridges etc which is important for safe driving conditions. Frequently Asked Questions – FAQs What is Sodium chloride Pharma used for? The basic compound used by our body to digest and transport nutrients is Sodium chloride Pharma ( NaCl), also known as salt. Preservation of blood pressure. Keeping the correct fluid balance. Why the formula of Sodium chloride Pharma is NaCl? If Sodium chloride Pharma atoms interact with chlorine atoms, Sodium chloride Pharma is formed. Sodium chloride Pharma will donate an electron (which is a negative-charged particle) to chlorine as this happens. The chemical formula for Sodium chloride Pharma is NaCl, indicating that there is precisely one chloride atom for every Sodium chloride Pharma atom present. Does Sodium chloride Pharma kill bacteria? Sodium chloride Pharma is not only used for a number of different things, but is a good antibacterial agent as well. An antibacterial agent is one that prevents bacteria from developing and multiplying. What is the primary composition of NaCl? Formula and structure: NaCl is the molecular formula of Sodium chloride Pharma and 58.44 g / mol is its molar mass. It is an ionic compound which consists of a chloride anion (Cl-) and a Sodium chloride Pharma cation (Na+).
SODIUM CHLORITE
SODIUM CHLORITE Sodium chlorite Jump to navigationJump to search Sodium chlorite Na+.svg Chlorition.png The sodium cation Space-filling model of the chlorite anion Sodium chlorite 450g.jpg Names IUPAC name Sodium chlorite Other names Chlorous acid, sodium salt Textone Identifiers CAS Number 7758-19-2 check 49658-21-1 (trihydrate) ☒ 3D model (JSmol) Interactive image ChEBI CHEBI:78667 ☒ ChemSpider 22860 check ECHA InfoCard 100.028.942 Edit this at Wikidata EC Number 231-836-6 KEGG C19523 ☒ PubChem CID 23668197 RTECS number VZ4800000 UNII G538EBV4VF check UN number 1496 CompTox Dashboard (EPA) DTXSID8021272 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula NaClO2 Molar mass 90.442 g/mol (anhydrous) 144.487 g/mol (trihydrate) Appearance white solid Odor odorless Density 2.468 g/cm3, solid Melting point anhydrous decomposes at 180–200 °C trihydrate decomposes at 38 °C Solubility in water 75.8 g/100 mL (25 °C) 122 g/100 mL (60 °C) Solubility slightly soluble in methanol, ethanol Acidity (pKa) 10-11 Structure Crystal structure monoclinic Thermochemistry Std enthalpy of formation (ΔfH⦵298) -307.0 kJ/mol Pharmacology ATC code D03AX11 (WHO) Hazards Safety data sheet SDS GHS pictograms GHS03: OxidizingGHS05: CorrosiveGHS06: ToxicGHS09: Environmental hazard GHS Signal word Danger GHS hazard statements H272, H301, H310, H330, H314, H318, H400 GHS precautionary statements P210, P220, P221, P260, P262, P264, P270, P271, P273, P280, P284, P301+330+331, P303+361+353, P305+351+338, P310, P361, P363, P370+378, P391, P403+233, P405, P501 Ingestion hazard Category 3 Inhalation hazard Category 2 Eye hazard Category 1 Skin hazard Category 1B NFPA 704 (fire diamond) NFPA 704 four-colored diamond 021OX Flash point Non-flammable Lethal dose or concentration (LD, LC): LD50 (median dose) 350 mg/kg (rat, oral) Related compounds Other anions Sodium chloride Sodium hypochlorite Sodium chlorate Sodium perchlorate Other cations Potassium chlorite Barium chlorite Related compounds Chlorine dioxide Chlorous acid Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Sodium chlorite (NaClO2) is a chemical compound used in the manufacturing of paper and as a disinfectant. Contents 1 Use 1.1 Chemical reagent 1.2 Acidified sodium chlorite 1.3 Use in public crises 2 Safety 3 Toxicity 4 Manufacture 5 General references 6 References 7 External links Use The main application of sodium chlorite is the generation of chlorine dioxide for bleaching and stripping of textiles, pulp, and paper. It is also used for disinfection of municipal water treatment plants after conversion to chlorine dioxide.[1]:2 An advantage in this application, as compared to the more commonly used chlorine, is that trihalomethanes (such as chloroform) are not produced from organic contaminants.[1]:25,33 Chlorine dioxide generated from sodium chlorite is approved by FDA under some conditions for disinfecting water used to wash fruits, vegetables, and poultry.[2][full citation needed] Sodium chlorite, NaClO2, sometimes in combination with zinc chloride, also finds application as a component in therapeutic rinses, mouthwashes,[3][4] toothpastes and gels, mouth sprays, as preservative in eye drops,[5] and in contact lens cleaning solution under the trade name Purite. It is also used for sanitizing air ducts and HVAC/R systems and animal containment areas (walls, floors, and other surfaces). Chemical reagent In organic synthesis, sodium chlorite is frequently used as a reagent in the Pinnick oxidation for the oxidation of aldehydes to carboxylic acids. The reaction is usually performed in monosodium phosphate buffered solution in the presence of a chlorine scavenger (usually 2-methyl-2-butene).[6] In 2005, sodium chlorite was used as an oxidizing agent to convert alkyl furans to the corresponding 4-oxo-2-alkenoic acids in a simple one pot synthesis.[7] Acidified sodium chlorite Mixing sodium chlorite solution with a weak food-grade acid solution (commonly citric acid), both stable, produces short-lived acidified sodium chlorite (ASC) which has potent decontaminating properties. Upon mixing the main active ingredient, chlorous acid is produced in equilibrium with chlorite anion. The proportion varies with pH, temperature, and other factors, ranging from approximately 5–35% chlorous acid with 65–95% chlorite; more acidic solutions result in a higher proportion of chlorous acid. Chlorous acid breaks down to chlorine dioxide which in turn breaks down to chlorite anion and ultimately chloride anion. ASC is used for sanitation of the hard surfaces which come in contact with food and as a wash or rinse for a variety of foods including red meat, poultry, seafood, fruits and vegetables. Because the oxo-chlorine compounds are unstable when properly prepared, there should be no measurable residue on food if treated appropriately.[8][9] ASC also is used as a teat dip for control of mastitis in dairy cattle.[10] Use in public crises The U.S. Army Natick Soldier Research, Development, and Engineering Center produced a portable "no power required" method of generating chlorine dioxide, known as ClO2, gas, described as one of the best biocides available for combating contaminants, which range from benign microbes and food pathogens to Category A Bioterror agents. In the weeks after the 9/11 attacks when anthrax was sent in letters to public officials, hazardous materials teams used ClO2 to decontaminate the Hart Senate Office Building, and the Brentwood Postal Facility.[11] In addressing the COVID-19 pandemic, the U.S. Environmental Protection Agency has posted a list of many disinfectants that meet its criteria for use in environmental measures against the causative coronavirus.[12][13] Some are based on sodium chlorite that is activated into chlorine dioxide, though differing formulations are used in each product. Many other products on the EPA list contain sodium hypochlorite, which is similar in name but should not be confused with sodium chlorite because they have very different modes of chemical action. Safety Sodium chlorite, like many oxidizing agents, should be protected from inadvertent contamination by organic materials to avoid the formation of an explosive mixture. The chemical is stable in pure form and does not explode on percussive impact, unless organic contaminants are present, such as on a greasy hammer striking the chemical on an anvil.[14] It also easily ignites by friction if combined with a reducing agent like powdered sugar, sulfur or red phosphorus. Toxicity Sodium chlorite is a strong oxidant and can therefore be expected to cause clinical symptoms similar to the well known sodium chlorate: methemoglobinemia, hemolysis, kidney failure.[15] A dose of 10-15 grams of sodium chlorate can be lethal.[16] Methemoglobemia had been demonstrated in rats and cats,[17] and recent studies by the EMEA have confirmed that the clinical symptomatology is very similar to the one caused by sodium chlorate in rats, mice, rabbits, and green monkeys.[18] There is only one human case in the medical literature of chlorite poisoning.[19] It seems to confirm that the toxicity is equal to sodium chlorate. From the analogy with sodium chlorate, even small amounts of about 1 gram can be expected to cause nausea, vomiting and even life-threatening hemolysis in glucose-6-phosphate dehydrogenase deficient persons. The EPA has set a maximum contaminant level of 1 milligram of chlorite per liter (1 mg/L) in drinking water.[20] Sellers of “Miracle Mineral Solution”, a mixture of sodium chlorite and citric acid also known as "MMS" that is promoted as a cure-all have been convicted, fined, or otherwise disciplined in multiple jurisdictions around the world. MMS products were variously referred to as snake oil and complete quackery. The U.S. Food and Drug Administration has issued multiple warnings against consuming MMS.[21] [22] [23][24] [25][26] [27][28][29] Manufacture The free acid, chlorous acid, HClO2, is only stable at low concentrations. Since it cannot be concentrated, it is not a commercial product. However, the corresponding sodium salt, sodium chlorite, NaClO2 is stable and inexpensive enough to be commercially available. The corresponding salts of heavy metals (Ag+, Hg+, Tl+, Pb2+, and also Cu2+ and NH4+) decompose explosively with heat or shock. Sodium chlorite is derived indirectly from sodium chlorate, NaClO3. First, sodium chlorate is reduced to chlorine dioxide, typically in a strong acid solution using reducing agents such as sodium sulfite, sulfur dioxide, or hydrochloric acid. This intermediate is then absorbed into a solution of aqueous sodium hydroxide where another reducing agent converts it to sodium chlorite. Even hydrogen peroxide can be used as the reducing agent, giving oxygen gas as its byproduct rather than other inorganic salts or materials that could contaminate the desired product.[30] Sodium Chlorite: Can It Be Used as Medicine? Chlorite vs. chloride Typical uses Health claims Alleged medical uses Safety and side effects Takeaway What’s sodium chlorite? Sodium chlorite — also referred to as chlorous acid, sodium salt textone, and Miracle Mineral Solution — is composed of sodium (Na), chlorine (Cl), and oxygen (O2). Many claims have been made for its use as a health supplement. However, the U.S. Food and Drug Administration (FDA)Trusted Source warns that it’s a dangerous, potentially life threatening chemical that should never be swallowed. It isn’t the same as sodium chloride Don’t confuse sodium chlorite with sodium chloride. Sodium chloride (NaCl) is also called table salt. Sodium chloride is used for many things, but it’s typically thought of as a seasoning and food preservative. Sodium chlorite (NaClO2) is typically found in an industrial setting as a bleach and a disinfectant. How’s sodium chlorite used? Sodium chlorite is marketed to both consumers and industries for various uses. Some consumer uses of sodium chlorite include: water treatment and purification surface cleaner for areas of food preparation antimicrobial treatment for food, especially seafood Larger concentrations of sodium chlorite are commonly used for industrial purposes, such as: bleaching and stripping of textiles, pulp, and paper sterilizing agent used in water treatment plants Are there any health benefits to sodium chlorite? Sodium chlorite has been promoted as a health supplement and a treatment for various illnesses, such as: common cold arthritis HIV malaria cancer hepatitis amyotrophic lateral sclerosis (ALS) While there are anecdotal reports from people who claim to have experienced medical relief by ingesting sodium chlorite solutions, there’s no reliable scientific evidence showing a benefit. The FDA issued a warning in 2019 to not drink sodium chlorite products, stating they are dangerous.Trusted Source Promoted health benefits Despite the lack of evidence supporting the use of sodium chlorite as a medication, some continue to support this chemical as a form of alternative medicine. Of these supporters, people with ALS — also known as Lou Gehrig’s disease — report the most positive benefits from sodium chlorite. ALS is a rare neurological disease that progressively leads to: muscle weakness impaired motor function muscle cramps slurred speech Eventually this condition can shut down vital parts of the body. Only about 10 percent of people with this condition live for longer than 10 years following diagnosis. People with ALS who use sodium chlorite report positive benefits, including: increased muscle activity clearer speech slowed rate of ALS progression improved flexibility improved motor functions, balance, and speed of movement Sodium chlorite received approval in the European Union as an “orphan drug” in the treatment of ALS. These drugs are usually used for rare conditions and don’t always require proven safety and effectiveness. A small number of studies have evaluated sodium chlorite in people with ALS, but the results are too preliminary to know if it’s beneficial. Is it safe to ingest sodium chlorite? Ingesting sodium chlorite as a form of alternative medicine for extended periods of time or in larger dosages is unsafe and can cause a variety of symptoms, including: fatigue diarrhea headache nausea excess saliva insomnia dehydration lowered blood pressure In addition to these symptoms, there are more serious health problems that healthcare providers warn may result from use of this chemical, such as: worsening of ALS skin burns nosebleeds hoarse throat coughing bronchitis shortness of breath In high concentrations, sodium chlorite is typically used as a bleach and a disinfectant. Sodium chlorite can be supplied either as a solid or a solution. Both forms are potentially dangerous and require a high degree of safety and skill during storage and handling. Sodium chlorite is a white flaky salt prepared at a concentration of 80%. It is extremely reactive and will explode in a violent reaction on contact with organic substances including basic items such as gloves and clothing, spillage control materials such as sawdust and cotton waste, or even oil and grease. Heat, friction or just impact can lead to an explosion, so the solid should be dissolved in water to form a solution as quickly as possible. In practice the dry form is simply too dangerous to transport, store and handle for normal WTP use, so liquid sodium chlorite is normally employed. Sodium chlorite is a highly corrosive liquid that requires careful handling to avoid damage to pipe work and equipment. Spillages of sodium chlorite must be washed away before they evaporate to leave the flammable dry residue. It has to be stored under temperature controlled conditions and is supplied at a concentration of 25–26% w/w, which gives the sodium chlorite optimum storage characteristics. At this concentration it still freezes at −15°C and is also explosive at relatively low temperatures and so should be maintained at below 40°C (Cowley, 1993). The solution is stable under neutral to slightly acidic conditions but will decay under more acidic conditions which can be prevented by adding a small amount of alkalinity (<10 mg CaCO3 L−1). However, it will also decay if the alkalinity buffers the solution above pH 8.0 (Eq. 32.6), so pH control during storage is an important consideration. Chlorate is present as an impurity in most sodium chlorite products with contamination levels usually 2–3% by weight of chlorite. [32.6] Chlorine dioxide has a relatively short half life and so is made up as required at a concentration of 1g L−1 if used in open systems or 10 g L−1 if used in enclosed pressurized systems. It is produced by reacting chlorine gas or a solution of chlorine with sodium chlorite in a glass mixing chamber which is filled with porcelain Raschig rings or Teflon® chips (Eq. 32.5). Stoichiometrically 0.5 kg of Cl2 and 1.34 kg NaClO2 are required to produce 1 kg of ClO2 (Fig. 32.1; Black and Veatch Corporation, 2010). Once prepared, ClO2 can be photo-chemically degraded in sunlight to form chlorate, chlorite, hydrogen peroxide, oxygen and chlorine, and so it must be stored and used in the dark. Similarly it is destroyed by UV light. Sign in to download full-size image Figure 32.1. Schematic diagram of the generation and use of chlorine dioxide using chlorine gas. Alternatively chlorine dioxide can be produced by reacting the sodium chlorite with hydrochloric acid. However, this process uses 1.25 times more NaClO2 than the chlorine reaction to produce the same weight of ClO2 (Eq. 32.7). Stoichiometrically 0.54 kg of HCl and 1.67 kg NaClO2 are required to produce 1 kg of ClO2, although in practice 50% more NaClO2 is required and possibly up to three times the amount of HCl may be needed to lower the pH sufficiently for the reaction to occur at pH ≤0.5 (Twort et al., 2000). [32.7] Generators are normally rented so when this is added to the cost of sodium chlorite, then chlorine dioxide disinfection is expensive, even taking into consideration that smaller doses are required compared to either chlorine or chloramines. Contact tank designs and the use of either injectors or diffusers are very similar to those used for chlorination (see Ch. 31, p. 580). However, care must be taken not to allow chlorine dioxide to escape to the atmosphere, so open pipes or channels should not be used at high ClO2 concentrations. Further details on the generation and use of chlorine dioxide are given in Gates (1998). General description The acidified solution of sodium chlorite has been tested for the antimicrobial action on the broiler carcasses. It was found to be effective in the reduction of natural bioburden in a prechill procedure..[3] Application Sodium chlorite may be used in the synthesis of chlorine dioxide[1] and as a hydroxylating agent for the hydroxylation of androstenedione (steroid).[2] Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Sodium chlorite (NaClO2) is a chemical compound used in the manufacturing of paper and as a disinfectant. Contents 1 Use 1.1 Chemical reagent 1.2 Acidified sodium chlorite 1.3 Use in public crises 2 Safety 3 Toxicity 4 Manufacture 5 General references 6 References 7 External links Use The main application of sodium chlorite is the generation of chlorine dioxide for bleaching and stripping of textiles, pulp, and paper. It is also used for disinfection of municipal water treatment plants after conversion to chlorine dioxide.[1]:2 An advantage in this application, as compared to the more commonly used chlorine, is that trihalomethanes (such as chloroform) are not produced from organic contaminants.[1]:25,33 Chlorine dioxide generated from sodium chlorite is approved by FDA under some conditions for disinfecting water used to wash fruits, vegetables, and poultry.[2][full citation needed] Sodium chlorite, NaClO2, sometimes in combination with zinc chloride, also finds application as a component in therapeutic rinses, mouthwashes,[3][4] toothpastes and gels, mouth sprays, as preservative in eye drops,[5] and in contact lens cleaning solution under the trade name Purite. It is also used for sanitizing air ducts and HVAC/R systems and animal containment areas (walls, floors, and other surfaces). Chemical reagent In organic synthesis, sodium chlorite is frequently used as a reagent in the Pinnick oxidation for the oxidation of aldehydes to carboxylic acids. The reaction is usually performed in monosodium phosphate buffered solution in the presence of a chlorine scavenger (usually 2-methyl-2-butene).[6] In 2005, sodium chlorite was used as an oxidizing agent to convert alkyl furans to the corresponding 4-oxo-2-alkenoic acids in a simple one pot synthesis.[7] Acidified sodium chlorite Mixing sodium chlorite solution with a weak food-grade acid solution (commonly citric acid), both stable, produces short-lived acidified sodium chlorite (ASC) which has potent decontaminating properties. Upon mixing the main active ingredient, chlorous acid is produced in equilibrium with chlorite anion. The proportion varies with pH, temperature, and other factors, ranging from approximately 5–35% chlorous acid with 65–95% chlorite; more acidic solutions result in a higher proportion of chlorous acid. Chlorous acid breaks down to chlorine dioxide which in turn breaks down to chlorite anion and ultimately chloride anion. ASC is used for sanitation of the hard surfaces which come in contact with food and as a wash or rinse for a variety of foods including red meat, poultry, seafood, fruits and vegetables. Because the oxo-chlorine compounds are unstable when properly prepared, there should be no measurable residue on food if treated appropriately.[8][9] ASC also is used as a teat dip for control of mastitis in dairy cattle.[10] Use in public crises The U.S. Army Natick Soldier Research, Development, and Engineering Center produced a portable "no power required" method of generating chlorine dioxide, known as ClO2, gas, described as one of the best biocides available for combating contaminants, which range from benign microbes and food pathogens to Category A Bioterror agents. In the weeks after the 9/11 attacks when anthrax was sent in letters to public officials, hazardous materials teams used ClO2 to decontaminate the Hart Senate Office Building, and the Brentwood Postal Facility.[11] In addressing the COVID-19 pandemic, the U.S. Environmental Protection Agency has posted a list of many disinfectants that meet its criteria for use in environmental measures against the causative coronavirus.[12][13] Some are based on sodium chlorite that is activated into chlorine dioxide, though differing formulations are used in each product. Many other products on the EPA list contain sodium hypochlorite, which is similar in name but should not be confused with sodium chlorite because they have very different modes of chemical action. Safety Sodium chlorite, like many oxidizing agents, should be protected from inadvertent contamination by organic materials to avoid the formation of an explosive mixture. The chemical is stable in pure form and does not explode on percussive impact, unless organic contaminants are present, such as on a greasy hammer striking the chemical on an anvil.[14] It also easily ignites by friction if combined with a reducing agent like powdered sugar, sulfur or red phosphorus. Toxicity Sodium chlorite is a strong oxidant and can therefore be expected to cause clinical symptoms similar to the well known sodium chlorate: methemoglobinemia, hemolysis, kidney failure.[15] A dose of 10-15 grams of sodium chlorate can be lethal.[16] Methemoglobemia had been demonstrated in rats and cats,[17] and recent studies by the EMEA have confirmed that the clinical symptomatology is very similar to the one caused by sodium chlorate in rats, mice, rabbits, and green monkeys.[18] There is only one human case in the medical literature of chlorite poisoning.[19] It seems to confirm that the toxicity is equal to sodium chlorate. From the analogy with sodium chlorate, even small amounts of about 1 gram can be expected to cause nausea, vomiting and even life-threatening hemolysis in glucose-6-phosphate dehydrogenase deficient persons. The EPA has set a maximum contaminant level of 1 milligram of chlorite per liter (1 mg/L) in drinking water.[20] Sellers of “Miracle Mineral Solution”, a mixture of sodium chlorite and citric acid also known as "MMS" that is promoted as a cure-all have been convicted, fined, or otherwise disciplined in multiple jurisdictions around the world. MMS products were variously referred to as snake oil and complete quackery. The U.S. Food and Drug Administration has issued multiple warnings against consuming MMS.[21] [22] [23][24] [25][26] [27][28][29] Manufacture The free acid, chlorous acid, HClO2, is only stable at low concentrations. Since it cannot be concentrated, it is not a commercial product. However, the corresponding sodium salt, sodium chlorite, NaClO2 is stable and inexpensive enough to be commercially available. The corresponding salts of heavy metals (Ag+, Hg+, Tl+, Pb2+, and also Cu2+ and NH4+) decompose explosively with heat or shock. Sodium chlorite is derived indirectly from sodium chlorate, NaClO3. First, sodium chlorate is reduced to chlorine dioxide, typically in a strong acid solution using reducing agents such as sodium sulfite, sulfur dioxide, or hydrochloric acid. This intermediate is then absorbed into a solution of aqueous sodium hydroxide where another reducing agent converts it to sodium chlorite. Even hydrogen peroxide can be used as the reducing agent, giving oxygen gas as its byproduct rather than other inorganic salts or materials that could contaminate the desired product.[30] Sodium Chlorite: Can It Be Used as Medicine? Chlorite vs. chloride Typical uses Health claims Alleged medical uses Safety and side effects Takeaway What’s sodium chlorite? Sodium chlorite — also referred to as chlorous acid, sodium salt textone, and Miracle Mineral Solution — is composed of sodium (Na), chlorine (Cl), and oxygen (O2). Many claims have been made for its use as a health supplement. However, the U.S. Food and Drug Administration (FDA)Trusted Source warns that it’s a dangerous, potentially life threatening chemical that should never be swallowed. It isn’t the same as sodium chloride Don’t confuse sodium chlorite with sodium chloride. Sodium chloride (NaCl) is also called table salt. Sodium chloride is used for many things, but it’s typically thought of as a seasoning and food preservative. Sodium chlorite (NaClO2) is typically found in an industrial setting as a bleach and a disinfectant. How’s sodium chlorite used? Sodium chlorite is marketed to both consumers and industries for various uses. Some consumer uses of sodium chlorite include: water treatment and purification surface cleaner for areas of food preparation antimicrobial treatment for food, especially seafood Larger concentrations of sodium chlorite are commonly used for industrial purposes, such as: bleaching and stripping of textiles, pulp, and paper sterilizing agent used in water treatment plants Are there any health benefits to sodium chlorite? Sodium chlorite has been promoted as a health supplement and a treatment for various illnesses, such as: common cold arthritis HIV malaria cancer hepatitis amyotrophic lateral sclerosis (ALS) While there are anecdotal reports from people who claim to have experienced medical relief by ingesting sodium chlorite solutions, there’s no reliable scientific evidence showing a benefit. The FDA issued a warning in 2019 to not drink sodium chlorite products, stating they are dangerous.Trusted Source Promoted health benefits Despite the lack of evidence supporting the use of sodium chlorite as a medication, some continue to support this chemical as a form of alternative medicine. Of these supporters, people with ALS — also known as Lou Gehrig’s disease — report the most positive benefits from sodium chlorite. ALS is a rare neurological disease that progressively leads to: muscle weakness impaired motor function muscle cramps slurred speech Eventually this condition can shut down vital parts of the body. Only about 10 percent of people with this condition live for longer than 10 years following diagnosis. People with ALS who use sodium chlorite report positive benefits, including: increased muscle activity clearer speech slowed rate of ALS progression improved flexibility improved motor functions, balance, and speed of movement Sodium chlorite received approval in the European Union as an “orphan drug” in the treatment of ALS. These drugs are usually used for rare conditions and don’t always require proven safety and effectiveness. A small number of studies have evaluated sodium chlorite in people with ALS, but the results are too preliminary to know if it’s beneficial. Is it safe to ingest sodium chlorite? Ingesting sodium chlorite as a form of alternative medicine for extended periods of time or in larger dosages is unsafe and can cause a variety of symptoms, including: fatigue diarrhea headache nausea excess saliva insomnia dehydration lowered blood pressure In addition to these symptoms, there are more serious health problems that healthcare providers warn may result from use of this chemical, such as: worsening of ALS skin burns nosebleeds hoarse throat coughing bronchitis shortness of breath In high concentrations, sodium chlorite is typically used as a bleach and a disinfectant. Sodium chlorite can be supplied either as a solid or a solution. Both forms are potentially dangerous and require a high degree of safety and skill during storage and handling. Sodium chlorite is a white flaky salt prepared at a concentration of 80%. It is extremely reactive and will explode in a violent reaction on contact with organic substances including basic items such as gloves and clothing, spillage control materials such as sawdust and cotton waste, or even oil and grease. Heat, friction or just impact can lead to an explosion, so the solid should be dissolved in water to form a solution as quickly as possible. In practice the dry form is simply too dangerous to transport, store and handle for normal WTP use, so liquid sodium chlorite is normally employed. Sodium chlorite is a highly corrosive liquid that requires careful handling to avoid damage to pipe work and equipment. Spillages of sodium chlorite must be washed away before they evaporate to leave the flammable dry residue. It has to be stored under temperature controlled conditions and is supplied at a concentration of 25–26% w/w, which gives the sodium chlorite optimum storage characteristics. At this concentration it still freezes at −15°C and is also explosive at relatively low temperatures and so should be maintained at below 40°C (Cowley, 1993). The solution is stable under neutral to slightly acidic conditions but will decay under more acidic conditions which can be prevented by adding a small amount of alkalinity (<10 mg CaCO3 L−1). However, it will also decay if the alkalinity buffers the solution above pH 8.0 (Eq. 32.6), so pH control during storage is an important consideration. Chlorate is present as an impurity in most sodium chlorite products with contamination levels usually 2–3% by weight of chlorite. [32.6] Chlorine dioxide has a relatively short half life and so is made up as required at a concentration of 1g L−1 if used in open systems or 10 g L−1 if used in enclosed pressurized systems. It is produced by reacting chlorine gas or a solution of chlorine with sodium chlorite in a glass mixing chamber which is filled with porcelain Raschig rings or Teflon® chips (Eq. 32.5). Stoichiometrically 0.5 kg of Cl2 and 1.34 kg NaClO2 are required to produce 1 kg of ClO2 (Fig. 32.1; Black and Veatch Corporation, 2010). Once prepared, ClO2 can be photo-chemically degraded in sunlight to form chlorate, chlorite, hydrogen peroxide, oxygen and chlorine, and so it must be stored and used in the dark. Similarly it is destroyed by UV light. Sign in to download full-size image Figure 32.1. Schematic diagram of the generation and use of chlorine dioxide using chlorine gas. Alternatively chlorine dioxide can be produced by reacting the sodium chlorite with hydrochloric acid. However, this process uses 1.25 times more NaClO2 than the chlorine reaction to produce the same weight of ClO2 (Eq. 32.7). Stoichiometrically 0.54 kg of HCl and 1.67 kg NaClO2 are required to produce 1 kg of ClO2, although in practice 50% more NaClO2 is required and possibly up to three times the amount of HCl may be needed to lower the pH sufficiently for the reaction to occur at pH ≤0.5 (Twort et al., 2000). [32.7] Generators are normally rented so when this is added to the cost of sodium chlorite, then chlorine dioxide disinfection is expensive, even taking into consideration that smaller doses are required compared to either chlorine or chloramines. Contact tank designs and the use of either injectors or diffusers are very similar to those used for chlorination (see Ch. 31, p. 580). However, care must be taken not to allow chlorine dioxide to escape to the atmosphere, so open pipes or channels should not be used at high ClO2 concentrations. Further details on the generation and use of chlorine dioxide are given in Gates (1998). General description The acidified solution of sodium chlorite has been tested for the antimicrobial action on the broiler carcasses. It was found to be effective in the reduction of natural bioburden in a prechill procedure..[3] Application Sodium chlorite may be used in the synthesis of chlorine dioxide[1] and as a hydroxylating agent for the hydroxylation of androstenedione (steroid).[2]
SODIUM CHLORITE 31%
SODIUM COCAMINOPROPIONATE N° CAS : 68608-68-4 / 8033-69-0 / 12676-68-4 Nom INCI : SODIUM COCAMINOPROPIONATE N° EINECS/ELINCS : 271-795-1 Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM CITRATE
SODIUM CITRATE Sodium citrate Monosodium citrate Disodium citrate Trisodium citrate The three forms of the salt are collectively known by the E number E331. Sodium citrates are used as acidity regulators in food and drinks, and also as emulsifiers for oils. They enable cheeses to melt without becoming greasy. Sodium citrate is used to prevent donated blood from clotting in storage. It is also used in a laboratory, before an operation, to determine whether a person's blood is too thick and might cause a blood clot, or if the blood is too thin to safely operate. SODIUM CITRATE Trisodium citrate dihydrate is a salt of citric acid Use a small amount to make a melty cheese sauce out of any cheese Add to spherification liquids to neutralize the pH when needed Commonly used as a sequestrant and pH buffer in food and beverages Cold/hot soluble, practically insoluble in ethanol (96%) earn and spend points. DESCRIPTION 100% Pure Food Grade Sodium Citrate Powder (e331) for use in spherification and molecular gastronomy. Sodium Citrate (E331) is the sodium salt of citric acid. Like citric acid, it has a sour taste. Like other salts, it also has a salty taste. It is commonly known as sour salt and is mainly used as a food additive, usually for flavor or as a preservative. It gives club soda both its sour and salty flavors. It reduces the acidity of foods, so it allows spherification with strongly acidic ingredients. Sodium citrate is also used as an antioxidant in food as well as a sequestrant. It dissolves easily and acts instantaneously. OTHER DETAILS Dietary Attributes: Plant-Based, Non-GMO, Gluten-Free, Kosher (OU), Keto-friendly Ingredient List: Sodium Citrate Allergen(s): None Uses This medication is used to make the urine less acidic. Urine that is less acidic helps the kidneys get rid of uric acid, helping to prevent gout and certain types of kidney stones (urate). This medication can also prevent and treat certain metabolic problems (acidosis) caused by kidney disease. Citric acid and citrate salts (which contain potassium and sodium) belong to a class of drugs known as urinary alkalinizers. Because some conditions require you to limit your intake of potassium and sodium, your doctor's choice of product may depend on how much potassium and sodium you can take. How to use Sodium CITRATE & CITRIC Acid Shake the container well before each dose. Take this medication by mouth, usually 4 times a day or as directed by your doctor. To help prevent diarrhea and stomach upset, take each dose after a meal, and mix your prescribed dose of medication in a full glass (4 to 8 ounces or 120 to 240 milliliters) of cold water or juice just before taking, or take as directed by your doctor. Drink the entire mixture slowly. Ask your doctor or pharmacist for further instructions. The liquid form of this medication must be mixed with at least 4 ounces (120 milliliters) of water or juice before taking. Refrigerating the mixture before drinking may improve the taste. Drink more water or juice after taking this medication unless otherwise directed by your doctor. Dosage is based on your medical condition and response to treatment. Take this medication as prescribed. Do not increase your dose or take this more often without your doctor's approval. Use this medication regularly to get the most benefit from it. To help you remember, take it at the same times each day. While taking this medication, you may need to test the pH (acidity) of your urine using special paper. The pH will help determine the proper dose. Consult your doctor or pharmacist for more information. What is citric acid and sodium citrate? Citric acid and sodium citrate are both alkalinizing agents that make the urine less acidic. The combination of citric acid and sodium citrate is used to prevent gout or kidney stones, or metabolic acidosis in people with kidney problems. Citric acid and sodium citrate may also be used for other purposes not listed in this medication guide. Important Information You should not use this medication if you have kidney failure, severe heart damage (such as from a prior heart attack), Addison's disease (an adrenal gland disorder), high levels of potassium in your blood (hyperkalemia), or if you are severely dehydrated or have heat cramps. Before you take citric acid and sodium citrate, tell your doctor about all your medical conditions, especially kidney disease, heart disease, high blood pressure, a history of heart attack, urinary problems, swelling (edema), or chronic diarrhea (such as ulcerative colitis, Crohn's disease). Also tell your doctor about all other medications you use, including over-the-counter medications and household remedies. Citric acid and sodium citrate should be taken after meals to help prevent stomach or intestinal side effects. The liquid medicine should be mixed with water or juice. Drink plenty of liquids while you are taking citric acid and sodium citrate. Your treatment may include a special diet. You should become very familiar with the list of foods you should eat or avoid to help control your condition. Avoid using antacids without your doctor's advice, including household baking soda (sodium bicarbonate). Antacids that contain aluminum or sodium can interact with citric acid and sodium citrate, causing a serious electrolyte imbalance or aluminum toxicity. Avoid eating foods that are high in salt, or using extra table salt on your meals. To be sure citric acid and sodium citrate is helping your condition, your blood and urine may need to be tested often. Follow your doctor's instructions carefully and do not miss any scheduled appointments. Serious side effects of citric acid and sodium citrate include muscle twitching or cramps, swelling or weight gain, weakness, mood changes, rapid and shallow breathing, fast heart rate, restless feeling, black or bloody stools, severe diarrhea, or seizure (convulsions). Before taking this medicine You should not use this medication if you are allergic to it, or if you have: kidney failure; severe heart damage (such as from a prior heart attack); Addison's disease (an adrenal gland disorder); high levels of potassium in your blood (hyperkalemia); or if you are severely dehydrated or have heat cramps. How should I take citric acid and sodium citrate? Take this medication exactly as prescribed by your doctor. Do not take it in larger amounts or for longer than recommended. Follow the directions on your prescription label. Citric acid and sodium citrate should be taken after meals to help prevent stomach or intestinal side effects. You may also need to take the medicine at bedtime. Follow your doctor's instructions. Shake the oral solution (liquid) well just before you measure a dose. To be sure you get the correct dose, measure the liquid with a marked measuring spoon or medicine cup, not with a regular table spoon. If you do not have a dose-measuring device, ask your pharmacist for one. The liquid medicine should be mixed with at lease 4 ounces of water or juice. Drink this mixture slowly and then add a little more water to the same glass, swirl gently and drink right away. You may chill the mixed medicine to make it taste better, but do not allow it to freeze. Drink plenty of liquids while you are taking citric acid and sodium citrate. Your treatment may include a special diet. It is very important to follow the diet plan created for you by your doctor or nutrition counselor. You should become very familiar with the list of foods you should eat or avoid to help control your condition. To be sure citric acid and sodium citrate is helping your condition, your blood and urine may need to be tested often. Follow your doctor's instructions carefully and do not miss any scheduled appointments. Trisodium citrate dihydrate is a tribasic salt of citric acid. Trisodium citrate dihydrate is produced by complete neutralisation of citric acid with high purity sodium hydroxide or carbonate and subsequent crystallisation. Trisodium citrate dihydrate is widely used in foods, beverages and various technical applications mainly as buffering, sequestering or emulsifying agent.Sodium citrate dihydrate is the most widely used emulsifying salt in sliced processed cheese products. It is commonly used as a buffering agent in combination with citric acid to provide precise pH control required in many food and beverage applications.Trisodium citrate is often referred to as sodium citrate, though sodium citrate can refer to any of the three sodium salts of citric acid. Sodium citrate has a saline, mildly tart flavor. It is mildly basic and can be used along with citric acid to make biologically compatible buffers. Sodium citrate is primarily used as a food additive, usually for flavor or as a preservative. In certain varieties of club soda, sodium citrate is employed as a flavoring agent. Sodium citrate is a common ingredient in Bratwurst, and is also used to contribute a tart flavor in commercial, ready-to- drink beverages and drink mixes. It is found in gelatin mix, ice-cream, jams, sweets, milk powder, processed cheeses, carbonated beverages, and wine.Sodium Citrate is also used as an emulsifier for oils in the cheesemaking process. Sodium citrate allows cheese to melt without becoming greasy. Historically, sodium phosphate was used to keep water and fat droplets mixed when cheese is melted. Soy Products: Bakery Flavors,Table Top Product Dairy Confectionery, Fruits, Vegetables Meat, Seafood , Cereals, Snacks Desserts, Ice Cream Ready Meals, Instant Food, Fruit Preparations, Sweet Spreads Baby Food, Infant Formula Sauces, Dressings, Seasoning The main functions of citric acid and the citrates in foods and beverages can be summarized as follows: as a flavor adjunct, to improve taste as a pH control agent, e.g., for gelation control, buffering and preservative enhancement as a chelating agent to improve the action of antioxidants and prevent spoilage of foods such as seafood Beverages, Alcoholic Beverages, Carbonated Soft Drinks, Instant Drinks, Syrups, Juice Drinks, Tea and Coffee, Sports and Energy Drinks, Waters Within this market, citric acid or its salts perform several functions. The dominant application is for flavor enhancement. Many of the lemon, lime or citrus soft drinks available today use citric acid as a way of enhancing the tangy, zesty flavor consumers associate with these tropical fruit flavors. Additionally, citric acid can help provide consistency in acidity and flavor of fruit juices or fruit cordials. If used together with sodium citrate, it is possible for citric acid to help maintain the flavor of other types of soft drinks without adding to the tanginess. Sodium citrate can also provide a cool saline taste. Effervescent tablets and preparations: The reaction of citric acid and bicarbonate liberates carbon dioxide, which aids the dissolution of active ingredients and improves palatability. Effervescent systems are widely used in denture-cleaning products, as well as pain relief and vitamin tablets. Pharmaceutically active substances - many are supplied as their citrate salt. pH control: Citric acid, with sodium or potassium citrate, is an efficient buffering system used in a variety of pharmaceutical and cosmetic applications for improving stability and (where appropriate) enhancing the activity of preservatives. Flavor: The sharp, acid taste of citric acid (which is often used to enhance fruit flavors) can help mask the unpleasant, medicinal taste of pharmaceuticals. Antioxidant: The citrate ion is a powerful chelating agent for trace metal ions. Blood anticoagulant: The citrate ion will chelate calcium, thereby reducing the tendency for blood to clot. Diuretic - potassium citrate has diuretic properties. Clinical Nutrition Medical Devices OTC, Food Supplements Pharmaceutical Productscolor Cosmetics Deodorants, Fragrances Hair Care, Oral Care Skin Care Soap and Bath Products, Cleaners & Detergents, The major components of cleaning products are surfactants and builders. Other ingredients are added to provide a variety of functions, e.g., increasing cleaning performance for specific soils/surfaces, ensuring product stability, and supplying a unique identity to a product. Complex phosphates and sodium citrate are common sequestering builders. Builders enhance or maintain the cleaning efficiency of the surfactant. The primary function of builders is to reduce water hardness. This is done either by sequestration or chelation (holding hardness minerals in solution); by precipitation (forming an insoluble substance); or by ion exchange (trading electrically charged particles). Builders can also supply and maintain alkalinity, which assists cleaning, especially of acid soils; help keep removed soil from redepositing during washing, and emulsify oily and greasy soils. Dish Washing Industrial Cleaners, Laundry Care Surface Care. Trisodium citrate dihydrate occurs as white, granular crystals or as white, crystalline powder with a pleasant, salty taste. It is slightly deliquescent in moist air, freely soluble in water and practically insoluble in ethanol (96 %). Product Usage: Mainly used as food additive and preservative, The anticoagulant in blood transfusions, Used to relieve discomfort in urinary tract infections, Trisodium citrate dihydrate also works as buffering agent in food and acidity regulator as antacid, As a sequestrant - to improve the quality and stability of the food p6132-04-3roducts, As a emulsifier - to stabilize processed foods like cheese. Sodium citrate material is derived from the citric acid (sodium salts). This material is available in the colorless granular form or powdery form. This is fragrance free material and generously mixed with water, but not in the alcohol. Trisodium citrate dihydrate is not contain any food allergens and it is suitable for consumption by vegans and vegetarians. Trisodium citrate dihydrate adds enjoyable flavor in food items. It is widely used as dehydrate salt, but it provides remarkable gain in dry products where long shelf life is needed to store it. Sodium Citrate Dihydrate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. Sodium citrate. It is used as flavors, stabilizing agent, buffering agent, chelating agent, nutritional supplement of buttermilk, emulsifying agent and flavoring agent in food and beverage industry;it can be used as anti-blood clotting, apophlegmatisant and diuretics in phamaceutical industry;it can replace sodium tripolyphosphate as a non-toxic detergent additives in detergent industry;it can also be used in brewing, injection, photography drugs and electroplating etc. Contact us for more information. Sodium citrate is the sodium salt of citric acid. It is white, crystalline powder or white, granular crystals, slightly deliquescent in moist air, freely soluble in water, practically insoluble in alcohol. Like citric acid, it has a sour taste. From the medical point of view, it is used as alkalinizing agent. It works by neutralizing excess acid in the blood and urine. Trisodium citrate dihydrate has been indicated for the treatment of metabolic acidosis. Sodium citrate dihydrate (C6H5Na3O7•2H2O), also known as citric trisodium salt dihydrate, or trisodium citrate dehydrate is obtained from citric acid and is available in granular or powder form having a salty but pleasant taste. Sodium citrate dihydrate is odorless and freely soluble in water, marginally deliquescent in moist air, and insoluble in alcohol. Trisodium citrate dihydrate is prepared by completely neutralizing citric acid with high purity sodium hydroxide or carbonate followed by crystallization. Global Sodium Citrate Dihydrate Market: Overview: Trisodium citrate dihydrate is a non-toxic, neutral salt having low reactivity. Trisodium citrate dihydrate shows chemically stability when stored at ambient temperatures. Sodium citrate dihydrate is totally biodegradable and disposable with the regular waste or sewage. It is widely used in the food industry inpreservatives, and as a flavoring agent. According to the FDA Select Committee, sodium citrate are regarded as safe when used in normal quantities. In the pharmaceutical industry, it is used to resist changes in the pH. Sodium citrate dihydrate also finds its use as a buffering agent, alkalizing agent, emulsifying agent, or sequestering agent. Global Sodium Citrate Dihydrate Market: Segmentation: Global sodium citrate dihydrate market is segmented into types, forms, functions, applications, manufacturing methods, and region. Types of sodium citrate dehydrate can be segmented into monosodium citrate, disodium citrate, and trisodium citrate. The global sodium citrate dihydrate market can be segmented on the basis of form into granular and crystals. Functions include regulation of pH, chelating agent, buffering agent, flavor enhancer, and emulsifying agent. Application types include food and beverage industry, cleaners and detergents, industrial applications and healthcare industry. Global sodium citrate dihydrate market is also segmented on the basis of manufacturing methods. Region-wise, global sodium citrate dihydrate market is segmented into North America, Latin America, Europe, Asia-Pacific and MEA. Global Trisodium Citrate Dihydrate Market: Region-wise Outlook: The global sodium citrate dihydrate market is expected to witness a considerable growth in CAGR between 2015 and 2025. Owing to number of favorable conditions, the focus of the major chemical companies is gradually shifting towards the growing economies. China has graduated to become the largest base for producing chemicals worldwide in terms of capacity and output. Reason being the cost benefits over the western countries in terms of production of chemical products and a high demand within the country. Moreover, the licensing procedures are comparatively shorter and the construction costs being lower than in Europe. Global Trisodium Citrate Dihydrate Market: Drivers & Restraints: Seasonal factors for beverages and new detergent applications are the principal growth drivers for the global sodium citrate dihydrate market. Fluctuations in the raw materials prices hinders the steady growth of the global sodium citrate dihydrate market. Trisodium Citrate Dihydrate (TriSodium Citrate) is commonly used to improve exercise performance and as a food additive. Trisodium citrate dihydrate's naturally a strong source of antioxidants and typically used as a natural preservative. Some have also used the ingredient in beverages to increase acidity or to emulsify cheese during the aging process. This ingredient may be added to foods and beverages or smoothies and green drinks. It is a pure white powder and has no fillers or binders, additives or preservatives. Various sizes available for personal use and quantity discounts available on bulk- packed foods and food powders for commercial uses. Only the highest quality natural food and bulk ingredients are sourced through family-owned Prescribed For Life Nutrition. Thank you for shopping with us and please come again! BENEFITS: Promotes healthy circulation and blood flow, Balances the pH levels in the body, Odorless and tasteless, 100% food grade. We use only FDA GRAS rated ingredients(Generally Recognized as Safe) that are Non-GMO (Contains NO Genetically Modified Organisms). We have size options for individual use and in volume at wholesale pricing. Sodium citrate dihydrate with chemical formula C6H5Na3O7 - 2H2O is also known as citric trisodium salt dihydrate, or trisodium citrate dehydrate. Sodium citrate dihydrate is obtained from the reaction of citric acid, high purity sodium hydroxide or carbonate followed by crystallization. Sodium citrate dihydrate is characterised as odorless and freely soluble in water, marginally deliquescent in moist air, and insoluble in alcohol. Sodium citrate dihydrate is a non-toxic, neutral salt having low reactivity. Trisodium citrate dihydrate shows chemical stability when stored at ambient temperatures. Sodium citrate dihydrate is totally biodegradable and disposable with regular waste or sewage. Globally increasing demand from the end-use industries is expected to be the key growth driver for sodium citrate dehydrate during the period of study. Geographically, Asia-Pacific dominated trisodium citrate dihydrate market driven in terms of production and consumption driven by higher demand into major end-user industry in the region. Asia-Pacific was followed by North America and Europe as second and third largest market for sodium citrate dihydrate market. Asia Pacific is projected to have fastest growth, owing to increasing consumption into its increasing industrial base demanding higher sodium citrate dihydrate. Sodium citrate, (molecular formula: Na3C6H5O7 • 2H2O) has molecular weight of 294.1, is a colorless crystal or white crystalline powder product; it is odorless, salty taste, and cool.It will lose its crystal water at 150 °C and will be decomposed at even higher temperature. It also has slight deliquescence in wet air and has weathering property upon hot air. It is soluble in water and glycerol, but insoluble in alcohol and some other organic solvents. Sodium citrate has no toxic effect, and has pH adjusting capability as well as having a good stability, and therefore can be used in the food industry. Sodium citrate has the greatest demand when being used as a food additive; As food additives, it is mainly used as flavoring agents, buffers, emulsifiers, bulking agents, stabilizers and preservatives; in addition, combination between sodium citrate and citric acid can be used in a variety of jams, jelly,Sodium citrate is currently the most important citrate. Trisodium citrate dihydrate is produced by two steps: first starch food is fermented to generate citric acid; secondly, citric acid is neutralized by alkali to generate the final products. Sodium citrate has the following excellent performance: Safe and nontoxic properties; Since the basic raw material for the preparation of sodium citrate mainly comes from the food, it is absolutely safe and reliable without causing harm to human health. The United Nations Food and Agriculture and the World Health Organization has no restriction in its daily intake, which means that this product can be considered as non- toxic food. It is biodegradable. After subjecting to the dilution of a large amount of water, sodium citrate is partially converted into citrate, which coexists with sodium citrate in the same system. Citrate is easy to subject to biological degradation at water by the action of oxygen, heat, light, bacteria and microbes. Its decomposition pathways are generally going through aconitic acid, itaconic acid, citraconic acid anhydride to be further converted to carbon dioxide and water.The ability of forming complex with metal ions. Sodium citrate has a good capability of forming complex with some metal ions such as Ca2+, Mg2+; for other ions such as Fe2+, it also has a good complex-forming ability. Excellent solubility, and the solubility increases with increasing temperature of water. It has a good capability for pH adjustment and a good buffering property. Sodium citrate is a weak acid-strong alkali salt; When combined with citrate, they can form a pH buffer with strong compatibility; therefore, this is very useful for some cases in which it is not suitable to have large change of pH value. In addition, sodium citrate also has excellent retardation performance and stability. juice, drinks, cold drinks, dairy products and pastries gelling agents, flavoring agents and nutritional supplements. During the process of clinically taking fresh blood, adding some amount of sterile sodium citrate can play a role in prevent blood clotting; this is exactly taking advantage of the features that calcium citrate can form soluble complexes with calcium ion; In the field of medicine, it is used for the in vitro anti-clotting drugs and anticoagulants drugs, phlegm drugs, and diuretics drugs during blood transfusions; Trisodium citrate dihydrate can also used for cyanide-free electroplating industry; also used as developer for photographic industry. It can be used as flavoring agents, buffering materials, emulsifiers, and stabilizer in the food industry. Moreover, it is also widely used in chemical, metallurgical industry, the absorption of sulfur dioxide exhaust with the absorption rate of 99% and regenerate liquid sulfur dioxide citrate for recycle application. Sodium citrate has a good water solubility and a excellent cheating capability with Ca2 +, Mg2 + and other metal ions; it is biodegradable and has a strong dispersing ability and anti-redeposition ability; Daily-applied chemical detergents use it as alternative to trimer sodium phosphate for production of non-phosphorus detergent and phosphate-free liquid detergent. Adding a certain amount sodium citrate to the detergent can significantly increase the cleaning ability of detergent cleaning. The large scale of application of sodium tripolyphosphate as a builder in detergents is an important discovery in synthetic detergent industry. It is non-toxic without environmental pollution; it can also be acted as a buffer for the production of cosmetics.It can be used as Ph adjusting agents and emulsifying enhancers applied to jam, candy, jelly and ice cream; its combination with citric acid has an effect of alleviating tour; it also has effects on forming complex with metal ions. China rules that it can be applied to various types of food with appropriate usage according to the absolute necessity. It can be used as a food additive, as complex agent and buffering agent in electroplating industry; at the field of pharmaceutical industry, it is used for the manufacturing of anti-clotting drugs; and used as the detergent additives in light industry. It is used as the analysis agents used for chromatography analysis and can also used for preparing bacterial culture medium; moreover, it can also be applied into pharmaceutical industry. The product can be used for the flavoring processing of food, as stabilizers, buffers and deputy complex-forming agents in non-toxic electroplating industry; at pharmaceutical industry, it is used as anti-clotting agent, phlegm drugs and diuretics drugs. It can also be used in brewing, injection, newspaper and movies medicines.An anticoagulant also used as a biological buff. Sodium citrate is chiefly used as a food additive, usually for flavor or as a preservative. Anticoagulant for collection of blood. In photography; as sequestering agent to remove trace metals; as emulsifier, acidulant and sequestrant in foods.Sodium Citrate, Dihydrate, a conjugate base of a weak acid, can perform as a biological buffering agent because it resists changes in pH. Citric acid is one of a series of compounds responsible for the physiological oxidation of fats, carbohydrates and proteins to carbon dioxide and water. Trisodium Citrate Dihydrate is often used to prepare sodium citrate buffer for antigen retrieval of tissue samples. The citrate solution is designed to break protein cross-links; thus, unmasking antigens and epitopes in formalin-fixed and paraffin embedded tissue sections, resulting in enhancing staining intensity of antibodies. Trisodium citrate dihydrate has anticoagulant activity and as a calcium chelator, it forms complexes that disrupt the tendency of blood to clot. Molecular Weight of sodium citrate: 258.07 g/mol Hydrogen Bond Donor Count of sodium citrate: 1 Hydrogen Bond Acceptor Count of sodium citrate: 7 Rotatable Bond Count of sodium citrate: 2 Exact Mass of sodium citrate: 257.972835 g/mol Monoisotopic Mass of sodium citrate: 257.972835 g/mol Topological Polar Surface Area of sodium citrate: 141 Ų Heavy Atom Count of sodium citrate: 16 Formal Charge of sodium citrate: 0 Complexity of sodium citrate: 211 Isotope Atom Count of sodium citrate: 0 Defined Atom Stereocenter Count of sodium citrate: 0 Undefined Atom Stereocenter Count of sodium citrate: 0 Defined Bond Stereocenter Count of sodium citrate: 0 Undefined Bond Stereocenter Count of sodium citrate: 0 Covalently-Bonded Unit Count of sodium citrate: 4 Compound of sodium citrate is Canonicalized?: Yes
SODIUM COCAMINOPROPIONATE
SODIUM COCETH SULFATE Origine(s) : Végétale, Synthétique Nom INCI : SODIUM COCETH SULFATE Classification : Sulfate, Composé éthoxylé, Tensioactif anionique À SAVOIRLe sodium Coceth Sulfate est un tensioactif anionique équivalent au Sodium Laureth Sulfate. On le retrouve principalement dans certains démaquillant et produits de bain. Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCETH SULFATE
SODIUM COCETH-30 SULFATE N° CAS : 68891-38-3 Nom INCI : SODIUM COCETH-30 SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCETH-30 SULFATE
SODIUM COCO SULFOACETATE Nom INCI : SODIUM COCO SULFOACETATE Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCO SULFOACETATE
SODIUM COCOA BUTTERATE Beurre de cacao saponifié Nom INCI : SODIUM COCOA BUTTERATE Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCOA BUTTERATE
SODIUM COCOAMPHOACETATE; N° CAS : 90387-76-1; Nom INCI : SODIUM COCOAMPHOACETATE; N° EINECS/ELINCS : 291-352-6/931-291-0. Classification : Tensioactif amphotère. Le sodium cocoamphoacetate est un tensioactif de type amphotère dérivé de l'huile de coco. Il est autorisé en bio. Glycine, N-(2-aminoethyl)-N-(2-hydroxyethyl)-, N-coco acyl derivs., monosodium salts
SODIUM COCOAMPHOACETATE
disodium; 2-chloroacetate;2-(4,5-dihydroimidazol-1-yl)ethanol;hydroxide; glycine, N-(2-aminoethyl)-N-(2-hydroxyethyl)-, N-coco-acyl derivatives, monosodium salts cas no: 68608-65-1
SODIUM COCOAMPHOPROPIONATE
SYNONYMS Dodecyl sodium sulfate, Dodecyl sulfate sodium salt, Lauryl sulfate sodium salt, SDS, Sodium dodecyl sulfate, Sodium lauryl sulfate CAS NO:151-21-3
SODIUM COCO-SULFATE
cas no 90170-45-9 l-Alanine; N-coco-acyl derivatives, sodium salts; Sodium N-Cocoyl-L-Alaninate; L-Alanine, N-coco acyl derivs., sodium salts;
SODIUM COCOYL ALANINATE
cas no 68187-32-6 Sodium N-Cocoyl L-Glutamate; N-Kokos-acylderivate glutamic acid, natriumsalze (German); N-coco acil derivados ácido L-glutámico, sales sódicas; (Spanish); N-acyles de coco acide L-glutamique, sels sodiques (French);
SODIUM COCOYL GLUTAMATE
Sodium cocoyl glutamate; Sodium cocoanutylglutamate cas no: 68187-32-6
SODIUM COCOYL GLUTAMINATE
cas no 29923-31-7 N-(1-Oxododecyl)-L-glicinic acid monosodium salt; N-Lauroyl-L-glicinic acid monosodium salt; Sodium N-dodecanoylglycinate; Sodium lauroyl glycinate; Monosodium N-lauroyl-L-glycinate;
SODIUM COCOYL GLYCINATE
SODIUM COCOYL GLYCINATE; N° CAS : 90387-74-9; Nom INCI : SODIUM COCOYL GLYCINATE; Nom chimique : Glycine, N-coco acyl derivs., sodium salts; N° EINECS/ELINCS : 291-350-5; Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent d'entretien de la peau : Maintient la peau en bon état
SODIUM COCOYL ISETHIONATE (SCI)
SODIUM COCOYL SARCOSINATE; Glycine, N-methyl-, N-coco acyl derivs, sodium salts; N° CAS : 61791-59-1, Nom INCI : SODIUM COCOYL SARCOSINATE; N° EINECS/ELINCS : 263-193-2 ; Classification : Tensioactif anionique; Ses fonctions (INCI); Agent nettoyant : Aide à garder une surface propre; Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance; Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCOYL SARCOSINATE
SODIUM COCOYL TAURATE N° CAS : 86089-05-6 Nom INCI : SODIUM COCOYL TAURATE N° EINECS/ELINCS : 289-173-3 Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCOYL TAURATE
cas no 28348-53-0 Sodium o-cumenesulfonate; Sodium 2-isopropylbenzenesulfonate; Eltesol SC 40; Benzenesulfonic acid, (1-methylethyl)-, sodium salt; Sodium Cumene Sulphonate 40;
SODIUM CUMENE SULFONATE
cumenesulfonic acid sodium salt; Sodium cumenesulphonate; SODIUM CUMENESULFONATE, N° CAS : 32073-22-6 / 28348-53-0, Nom INCI : SODIUM CUMENESULFONATE, N° EINECS/ELINCS : 250-913-5 / 248-983-7. Ses fonctions (INCI); Hydrotrope : Augmente la solubilité d'une substance qui est peu soluble dans l'eau.Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Cumène sulfonate de sodium. Noms anglais : BENZENE, (1-METHYLETHYL)-, MONOSULFO DERIV., SODIUM SALT; CUMENESULFONIC ACID, SODIUM SALT; SODIUM CUMENE SULFONATE; 250-913-5 [EINECS]; 2-Isopropylbenzènesulfonate de sodium [French]; 32073-22-6 [RN]; Benzene, (1-methylethyl)-, monosulfo deriv., sodium salt; Benzenesulfonic acid, (1-methylethyl)-, sodium salt; benzenesulfonic acid, 2-(1-methylethyl)-, sodium salt; Benzenesulfonic acid, 2-(1-methylethyl)-, sodium salt (1:1) ; Natrium-2-isopropylbenzolsulfonat [German] ; sodium 2-(1-methylethyl)benzenesulfonate; sodium 2-(propan-2-yl)benzenesulfonate; Sodium 2-isopropylbenzenesulfonate [ACD/IUPAC Name];Sodium cumenesulphonate; SODIUM O-CUMENESULFONATE; (1-Methylethyl)benzenesulfonic acid sodium salt; CUMENE MONOSULPHO DERIVATIVE SODIUM SALT; cumene, monosulpho derivative, sodium salt; cumenesulfonic acid sodium salt; Sodium 2-(propan-2-yl) benzene sulfonate; SODIUM 2-(PROPAN-2-YL)BENZENE-1-SULFONATE; sodium 2-propan-2-ylbenzenesulfonate; Sodium 4-propan-2-ylbenzenesulfonate; Sodium cumene sulfonate; Sodium cumenesulfonate; Sodium isopropylbenzenesulfonate; SODIUM MONO-ISOPROPYLBENZENESULFONATE; Sodium-4-(1 methyl ethyl) benzene sulfonate. 250-913-5 [EINECS]; 2-Isopropylbenzènesulfonate de sodium [French] ; 32073-22-6 [RN] ; Benzene, (1-methylethyl)-, monosulfo deriv., sodium salt; Benzenesulfonic acid, (1-methylethyl)-, sodium salt; benzenesulfonic acid, 2-(1-methylethyl)-, sodium salt; Benzenesulfonic acid, 2-(1-methylethyl)-, sodium salt (1:1) [ACD/Index Name]; Natrium-2-isopropylbenzolsulfonat [German]; sodium 2-(1-methylethyl)benzenesulfonate; sodium 2-(propan-2-yl)benzenesulfonate Sodium 2-isopropylbenzenesulfonate [ACD/IUPAC Name]; Sodium cumenesulphonate; SODIUM O-CUMENESULFONATE; (1-Methylethyl)benzenesulfonic acid sodium salt; [32073-22-6] 71407-44-8 [RN]; CUMENE MONOSULPHO DERIVATIVE SODIUM SALT; cumene, monosulpho derivative, sodium salt; cumenesulfonic acid sodium salt; Sodium 2-(propan-2-yl) benzene sulfonate; SODIUM 2-(PROPAN-2-YL)BENZENE-1-SULFONATE; sodium 2-propan-2-ylbenzenesulfonate; Sodium 4-propan-2-ylbenzenesulfonate; Sodium cumene sulfonate; Sodium cumenesulfonate; Sodium isopropylbenzenesulfonate; SODIUM MONO-ISOPROPYLBENZENESULFONATE; Sodium-4-(1 methyl ethyl) benzene sulfonate; Sodium o-cumenesulfonate ; Sodium 2-isopropylbenzenesulfonate; Benzenesulfonic acid, (1-methylethyl)-, sodium salt; Sodium o-cumenesulfonate; Sodium 2-isopropylbenzenesulfonate; Benzenesulfonic acid, (1-methylethyl)-, sodium salt; 15763-77-6; Sodium o-cumenesulphonate; o-Cumenesulfonic acid, sodium salt; Sodium 2-isopropylbenzenesulphonate; o-Cumenesulphonic acid, sodium salt; SODIUM CUMENE SULFONATE; Benzenesulfonic acid, 2-(1-methylethyl)-, sodium salt (1:1); Sodium 2-(propan-2-yl) benzene sulfonate; Sodium-4-(1 methyl ethyl) benzene sulfonate; Benzene, (1-methylethyl)-, monosulfo deriv., sodium salt; Benzenesulfonic acid,(1-methylethyl)-, sodium salt (1:1) 71407-44-8
SODIUM CYANIDE
SODIUM CYANIDE (Sodyum Siyanür, SODIUM CYANIDE) Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is a poisonous compound with the formula NaCN. It is a white, water-soluble solid. Cyanide has a high affinity for metals, which leads to the high toxicity of this salt. Its main application, in gold mining, also exploits its high reactivity toward metals. It is a moderately strong base. When treated with acid, it forms the toxic gas hydrogen cyanide: NaCN + H2SO4 → HCN + NaHSO4 Contents 1 Production and chemical properties of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 2 Applications of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 2.1 Cyanide mining of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 2.1.1 Sodium gold cyanide 2.2 Chemical feedstock of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 2.3 Niche uses of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 2.4 Homicide of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 3 Toxicity of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Production and chemical properties of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is produced by treating hydrogen cyanide with sodium hydroxide:[4] HCN + NaOH → NaCN + H2O Worldwide production was estimated at 500,000 tons in the year 2006. Formerly it was prepared by the Castner process involving the reaction of sodium amide with carbon at elevated temperatures. NaNH2 + C → NaCN + H2 The structure of solid NaCN is related to that of sodium chloride.[5] The anions and cations are each six-coordinate. Potassium cyanide (KCN) adopts a similar structure. Each Na+ forms pi-bonds to two CN− groups as well as two "bent" Na---CN and two "bent" Na---NC links.[6] Because the salt is derived from a weak acid, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) readily reverts to HCN by hydrolysis; the moist solid emits small amounts of hydrogen cyanide, which smells like bitter almonds (not everyone can smell it—the ability thereof is due to a genetic trait[7]). Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) reacts rapidly with strong acids to release hydrogen cyanide. This dangerous process represents a significant risk associated with cyanide salts. It is detoxified most efficiently with hydrogen peroxide (H2O2) to produce sodium cyanate (NaOCN) and water:[4] NaCN + H2O2 → NaOCN + H2O Applications of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Cyanide mining See also: Cyanide process Sodium gold cyanide Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is used mainly to extract gold and other precious metals in mining industry. This application exploits the high affinity of gold(I) for cyanide, which induces gold metal to oxidize and dissolve in the presence of air (oxygen) and water, producing the salt sodium gold cyanide (or gold Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)) and sodium hydroxide: 4 Au + 8 NaCN + O2 + 2 H2O → 4 Na[Au(CN)2] + 4 NaOH A similar process uses potassium cyanide (KCN, a close relative of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)) to produce potassium gold cyanide (KAu(CN)2). Few other methods exist for this extraction process. Chemical feedstock of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Several commercially significant chemical compounds are derived from cyanide, including cyanuric chloride, cyanogen chloride, and many nitriles. In organic synthesis, cyanide, which is classified as a strong nucleophile, is used to prepare nitriles, which occur widely in many chemicals, including pharmaceuticals. Illustrative is the synthesis of benzyl cyanide by the reaction of benzyl chloride and Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE).[8] Niche uses of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Being highly toxic, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is used to kill or stun rapidly such as in widely illegal cyanide fishing and in collecting jars used by entomologists. Homicide of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) In 1986, Stella Nickell murdered her husband Bruce Nickell with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). In order to disguise her being responsible for the murder, she placed several bottles of Excedrin tainted with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) on store shelves near her home in Tacoma, WA. Susan Snow, a bank manager living nearby in the same town, died several days later from taking some of the tainted Excedrin. In 1991, Joseph Meling, a resident of Tumwater, WA, copied Nickell's idea, this time tainting capsules of Sudafed on store shelves near his home to murder his wife and disguise the incident as a mass murder. Meling had forged life insurance in his wife's name totaling $700,000. Meling's wife Jennifer Meling survived the poisoning attempt but two other residents of Tumwater died after taking the tainted Sudafed. Toxicity of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Main article: Cyanide poisoning Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE), like other soluble cyanide salts, is among the most rapidly acting of all known poisons. NaCN is a potent inhibitor of respiration, acting on mitochondrial cytochrome oxidase and hence blocking electron transport. This results in decreased oxidative metabolism and oxygen utilization. Lactic acidosis then occurs as a consequence of anaerobic metabolism. An oral dosage as small as 200–300 mg can be fatal. Aqueous solutions of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) are slightly hydrolyzed (Kh= 2.5X10-5) at ordinary temperatures to produce hydrogen cyanide. When heated in a dry carbon dioxide atmosphere, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) fuses without much decomposition. Thermal dissociation of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) has been studied in an atm of helium at 600-1050 °C and in an atm of nitrogen at 1050-1255 °C. It has been shown that vapor phase over melt contains decomposition products. As estimated in rats given 30 mg Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) intraperitoneally over a period of 8 days, 80 percent of the total cyanide is excreted in the urine in the form of thiocyanate. The effects of carotid body chemoreceptor stimulation by Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) on respiration and phrenic nerve activity were studied in intact and vagotomized rabbits. In intact animals an intracarotid injection of 30 ug of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) resulted in an elevation of phrenic nerve activity and a rapid onset of respiratory excitation associated with an increase in respiratory rate and the response was markedly potentiated after vagotomy. The change in respiratory rate was primarily due to a decrease in expiration time in intact animals, whereas it resulted from a pronounced decrease in inspiration time in vagotomized animals. Apparently, a suppressive effect of the vagus nerve on carotid body chemoreceptor reflex occurred. An induction of a continuous increase in phrenic nerve activity accompanied by apneustic respiration by intracarotid dopamine was another evidence to support the /observation/. The major detoxification pathway for cyanide in many species is a biotransformation to the less toxic thiocyanate. Hepatic thiosulfate: cyanide sulfurtransferase (rhodanese) is the principal enzyme demonstrating in vitro catalytic activity. Despite the assumed importance of the hepatic enzyme for cyanide detoxification in vivo, the effects of liver damage (surgical or chemical) on cyanide lethality in animals have not been examined previously. Male CD-1 mice pretreated with carbon tetrachloride (CCl4, 1 mg/kg, ip 24 hr prior to the administration of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). In other experiments carbon tetrachloride was given in the same doses at both 48 hr and 24 hr prior to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). Hepatotoxicity was documented by elevated serum glutamic pyruvic transaminase (SGPT) activity, by histologic evaluation of the extent of cellular necrosis, by electron microscopy of the mitochondrial fraction, and by the increased duration of zoxazolamine-induced paralysis. Lethality was not changed by carbon tetrachloride pretreatments when Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) was given alone in doses of 4 or 6 mg/kg or at a dose of 10.7 mg/kg following sodium thiosulfate (sodium sulfide, 1 g/kg, ip). A small but statistically ... protective effect was exhibited by CCl4 when Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) was given at a dose of 16 mg/kg following the administration of sodium sulfide. Rhodanese activity as measured in mitochrondrial preparations fractionated from the livers of mice pretreated with carbon tetrachloride was not different from that in animals given the corn oil vehicle even through electron micrographs showed extensive mitochondrial damage. No difference in cyanide lethality was evident between sham-operated mice and partially (2/3) hepatectomized mice at 24 hr post-surgery. An intact healthy liver does not appear to be essential for cyanide detoxification in mice whether or not thiosulfate is also given. Because rhodanese activity was slightly but ... higher in mitochondria lysed by Triton X-100 than in intact mitochondria, the mitochondrial membrane may constitute a barrier to sodium sulfide. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) releases hydrogen cyanide gas, a highly toxic chemical asphyxiant that interferes with the body’s ability to use oxygen. Exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can be rapidly fatal. It has whole-body (systemic) effects, particularly affecting those organ systems most sensitive to low oxygen levels: the central nervous system (brain), the cardiovascular system (heart and blood vessels), and the pulmonary system (lungs). Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is used commercially for fumigation, electroplating, extracting gold and silver from ores, and chemical manufacturing. Hydrogen cyanide gas released by Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) has a distinctive bitter almond odor (others describe a musty “old sneakers smell”), but a large proportion of people cannot detect it; the odor does not provide adequate warning of hazardous concentrations. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is odorless when dry. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is shipped as pellets or briquettes. It absorbs water from air (is hygroscopic or deliquescent). Super toxic; probable oral lethal dose in humans is less than 5 mg/kg or a taste (less than 7 drops) for a 70 kg (150 lb.) person. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is poisonous and may be fatal if inhaled, swallowed or absorbed through the skin. Contact with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) may cause burns to skin and eyes. Individuals with chronic diseases of the kidneys, respiratory tract, skin, or thyroid are at greater risk of developing toxic cyanide effects. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is not combustible itself, but contact with acids releases highly flammable hydrogen cyanide gas. Fire may produce irritating or poisonous gases. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) reacts violently with strong oxidants such as nitrates, chlorates, nitric acid, and peroxides, causing an explosion hazard. Upper and lower explosive (flammable) limits in air are not available for Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). Cyanide is usually found joined with other chemicals to form compounds. Examples of simple cyanide compounds are hydrogen cyanide, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) and potassium cyanide. Certain bacteria, fungi, and algae can produce cyanide, and cyanide is found in a number of foods and plants. In certain plant foods, including almonds, millet sprouts, lima beans, soy, spinach, bamboo shoots, and cassava roots (which are a major source of food in tropical countries), cyanides occur naturally as part of sugars or other naturally-occurring compounds. However, the edible parts of plants that are eaten in the United States, including tapioca which is made from cassava roots, contain relatively low amounts of cyanide. Hydrogen cyanide is a colorless gas with a faint, bitter, almondlike odor. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) and potassium cyanide are both white solids with a bitter, almond-like odor in damp air. Cyanide and hydrogen cyanide are used in electroplating, metallurgy, organic chemicals production, photographic developing, manufacture of plastics, fumigation of ships, and some mining processes. Hydrogen cyanide gas produced from Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) mixes well with air; explosive mixtures are easily formed. Warning: Heart palpitations may occur within minutes after exposure. Caution is advised. Effects may be delayed. Signs and Symptoms of Acute Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Exposure: Signs and symptoms of acute exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) may include hypertension (high blood pressure) and tachycardia (rapid heart rate), followed by hypotension (low blood pressure) and bradycardia (slow heart rate). Cardiac arrhythmias and other cardiac abnormalities are common. Cyanosis (blue tint to the skin and mucous membranes) and cherry-red or bloody mucous membranes may occur. Tachypnea (rapid respiratory rate) may be followed by respiratory depression. Pulmonary edema and lung hemorrhage may also occur. Headache, vertigo (dizziness), agitation, and giddiness may be followed by combative behavior, dilated and unreactive pupils, convulsions, paralysis, and coma. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is irritating to the skin and mucous membranes. Lacrimation (tearing) and a burning sensation of the mouth and throat are common. Increased salivation, nausea, and vomiting are often seen. Emergency Life-Support Procedures: Acute exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) may require decontamination and life support for the victims. All exposed persons should be transported to a health care facility as quickly as possible. Emergency personnel should wear protective clothing appropriate to the type and degree of contamination. Air-purifying or supplied-air respiratory equipment should also be worn as necessary. Rescue vehicles should carry supplies such as plastic sheeting and disposable plastic bags to assist in preventing spread of contamination. Inhalation Exposure: 1. Move victims to fresh air. Emergency personnel should avoid self-exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). 2. Evaluate vital signs including pulse and respiratory rate, and note any trauma. If no pulse is detected, provide CPR. If not breathing, provide artificial respiration. IMMEDIATELY begin administering 100% oxygen to all victims. Monitor victims for respiratory distress.Warning: To prevent self-poisoning, avoid mouth-to-mouth breathing; use a forced-oxygen mask. Direct oral contact with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)-contaminated persons or their gastric contents may result in self-poisoning. 3. RUSH to a health care facility! 4. Obtain authorization and/or further instructions from the local hospital for administration of an antidote or performance of other invasive procedures. Dermal/Eye Exposure: 1. Remove victims from exposure. Emergency personnel should avoid self- exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). 2. Evaluate vital signs including pulse and respiratory rate, and note any trauma. If no pulse is detected, provide CPR. If not breathing, provide artificial respiration. IMMEDIATELY begin administering 100% oxygen to all victims. Monitor victims for respiratory distress.Warning: To prevent self-poisoning, avoid mouth-to-mouth breathing; use a forced-oxygen mask. Direct oral contact with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)-contaminated persons or their gastric contents may result in self-poisoning. 3. RUSH to a health care facility! 4. Remove contaminated clothing as soon as possible. 5. If eye exposure has occurred, eyes must be flushed with lukewarm water for at least 15 minutes. 6. Wash exposed skin areas twice with soap and water. 7. Obtain authorization and/or further instructions from the local hospital for administration of an antidote or performance of other invasive procedures. Ingestion Exposure: 1. Evaluate vital signs including pulse and respiratory rate, and note any trauma. If no pulse is detected, provide CPR. If not breathing, provide artificial respiration. IMMEDIATELY begin administering 100% oxygen to all victims. Monitor victims for respiratory distress.Warning: To prevent self-poisoning, avoid mouth-to-mouth breathing; use a forced-oxygen mask. Direct oral contact with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)-contaminated persons or their gastric contents may result in self-poisoning. 2. RUSH to a health care facility! 3. DO NOT induce vomiting. Ipecac is not recommended for ingestion of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). 4. Obtain authorization and/or further instructions from the local hospital for administration of an antidote or performance of other invasive procedures. 5. Activated charcoal may be administered if victims are conscious and alert. Use 15 to 30 g (1/2 to 1 oz) for children, 50 to 100 g (1-3/4 to 3-1/2 oz) for adults, with 125 to 250 mL (1/2 to 1 cup) of water. 6. Promote excretion by administering a saline cathartic or sorbitol to conscious and alert victims. Children require 15 to 30 g (1/2 to 1 oz) of cathartic; 50 to 100 g (1-3/4 to 3-1/2 oz) is recommended for adults. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is non-combustible. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) releases highly flammable and toxic hydrogen cyanide gas on contact with acids or water. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is a poor candidate for incineration. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is an extremely hazardous substance (EHS) subject to reporting requirements when stored in amounts in excess of its threshold planning quantity (TPQ) of 100 lbs. Manufacturers and processors of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) are required to conduct chemical fate and terrestrial effects tests under TSCA section 4. Acute systemic toxicity of hydrogen cyanide, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE), and potassium cyanide by instillation into the inferior conjunctival sac was investigated in rabbits. Methods of Dissemination Indoor Air: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can be released into indoor air as fine droplets, liquid spray (aerosol), or fine particles. Water: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can be used to contaminate water. Food: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can be used to contaminate food. Outdoor Air: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can be released into outdoor air as fine droplets, liquid spray (aerosol), or fine particles. Agricultural: If Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is released as fine droplets, liquid spray (aerosol), or fine particles, it has the potential to contaminate agricultural products. ROUTES OF EXPOSURE: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can affect the body through ingestion, inhalation, skin contact, or eye contact. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can affect the body through ingestion, inhalation, skin contact, or eye contact. The effects of tribuyltin and Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) on hemolysis in human erythrocytes are described. Tributyltin has a sharp cut take off concentration for induction of hemolysis. A 5 uM concentration of tributyltin induces hemolysis and 1 uM or less does not in erythrocyte suspensions with lysis are sigmoidal indicating a complex molecular mechanism leading to lysis. Ten mM Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) plus 1 uM tributyltin does not stimulate hemolysis rates above levels observed with 10 mM Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) alone. Five nM Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) plus hemolytic concentrations of tributyltin stimulates hemolysis rates synergistically compared with either cyanide or tributyltin alone. Ultrastructurally, hemolytic concentrations of tribuyltin can be visualized in the electron microscope by osmium staining during fixation as electron dense spheres penetrating the lipid bilayer of the erythrocyte plasma membrane. Ten mM Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) plus 25 uM tributyltin increases slightly the size of osmiophilic structures in erythrocyte membranes compared with those spheres seen in cells exposed to 25 uM tribuyltin alone. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is the only compound tested that stimulates tributyltin induced hemolysis. CHEMICAL DANGERS: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is water-reactive. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) decomposes on contact with acids, acid salts, water, moisture, and carbon dioxide, producing highly toxic, flammable hydrogen cyanide gas. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) solution in water is a strong base; it reacts violently with acid and is corrosive. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is incompatible with strong oxidants. Carbon dioxide from the air is sufficiently acidic to liberate toxic hydrogen cyanide gas on contact with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). EXPLOSION HAZARDS: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) reacts violently with strong oxidants such as nitrates, chlorates, nitric acid, and peroxides, causing an explosion hazard. Upper and lower explosive (flammable) limits in air are not available for Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). Containers may explode when heated or if they are contaminated with water. FIRE FIGHTING INFORMATION: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is non-combustible. The agent itself does not burn. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) releases highly flammable and toxic hydrogen cyanide gas on contact with acids or water. Fire will produce irritating, corrosive, and/or toxic gases. Hydrogen cyanide gas produced from Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) mixes well with air; explosive mixtures are easily formed. TIME COURSE: Effects occur rapidly following exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). Inhalation exposure to hydrogen cyanide gas released from Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) produces symptoms within seconds to minutes; death may occur within minutes. What is Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)? The term cyanide is clearly understood in the public consciousness to be almost synonymous with poison itself. This is largely because of its use as lethal suicide pill (L-pill) in World War 2, most notably with the suicide of Nazi army officer Erwin Rommel. The cyanide used in the L-pill was potassium cyanide but the properties of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) are nearly identical. An inorganic and very innocent looking white solid with deadly properties, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) (NaCN) can be fatal at amounts as little as 5% of a teaspoon. It is produced from the equally dangerous gas hydrogen cyanide (HCN) in a simple process with sodium hydroxide. Why would a company want so much of it? Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is used industrially across the globe, most frequently in the mining of gold. Although most of us have the traditional imagery of a 19th-century gold miner panning for nuggets, this isn’t the industrial method used today. After mining and milling, the crude rock mixture is turned into a fine powder and added to a solution of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). The gold forms strong bonds with cyanide molecules and can then be separated from the rest of the minerals because it is then soluble in water. It then reacts with zinc and turns back into a solid. Finally is smelted to isolate the gold and cast into bars. How dangerous is it? As with the very similar potassium cyanide used in the L-pill, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is extremely toxic to humans. Although there are risks with skin absorption, the biggest risk is ingestion. Inhaling or swallowing Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) blocks oxygen transport causing serious medical problems and ultimately death. Gold Extraction Process Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) has been used in the extraction of gold from ore for over a century. Today it is still considered the most efficient extraction method – with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) used in the leaching process in most gold mining operations. Solid Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is produced to form a white crystalline briquette or ‘cyanoid’. Liquid Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is delivered to mine sites via purpose-built isotanks that are suitable for road or rail transport. In inorganic cyanides, the cyanide group is present as the anion CN−. Salts such as Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) and potassium cyanide are highly toxic.[2] Hydrocyanic acid, also known as hydrogen cyanide, or HCN, is a highly volatile liquid that is produced on a large scale industrially. It is obtained by acidification of cyanide salts.
SODIUM CYCLAMATE
Sodium cyclohexanesulfamate; Cyclohexanesulfamic acid monosodium salt; Assugrin; Asugryn; Cyclohexylsulfamic acid monosodium salt; Hachi-sugar; Ibiosuc; Sodium cyclohexyl amidosulfate; Sodium cyclohexyl sulfamate; Sodium cyclohexylsulfamidate; Sodium N-cyclohexylsulfamate; N-Cyclohexylsulphamic acid sodium salt; Sodium sucaryl; Suessette; Suestamin; N-Cyklohexylsulfamat sodny; Natraiumcyclohexylamidosulfat; Other RN: 53170-91-5, 61373-78-2 cas no: 139-05-9
SODIUM DECYL SULFATE ( Sulfate de sodium et de décyle)
SODIUM DEHYDROACETATE, N° CAS : 4418-26-2 - Déhydroacétate de sodium. sodium dehydracetate; Sodium dehydroacetate; Origine(s) : Synthétique. Autre langue : Dihidroacetato sódico, Nom INCI : SODIUM DEHYDROACETATE. Nom chimique : Sodium 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethanolate; N° EINECS/ELINCS : 224-580-1 Additif alimentaire : E266. Le déhydroacétate de sodium est un conservateur utilisé dans les cosmétiques pour ses propriétés antimicrobiennes. Même si l'ingrédient semble poser peu de problèmes pour la santé, notez toutefois que sa concentration est limitée (voir ci-dessous) et qu'il est interdit dans les produits en spray de type aérosol. Il est autorisé en Bio.Ses fonctions (INCI) Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques. Classification : Règlementé, Conservateur. Sodium 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethanolate; sodium 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethonolate; sodium 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethonolate; sodium dehydracetate; sodium dehydracetate; Sodium dehydroacetate. Translated names: 1-(3,4-dihidro-6-metil-2,4-dioxo-2H-piran-3-iliden)etanolato de sodio (es); 1-(3,4-dihydro-6-méthyl-2,4-dioxo-2H-pyranne-3-ylidène)éthanolate de sodium (fr); 1-(3,4-diidro-6-metil-2,4-diosso-2H-piran-3-iliden)etanolato di sodio (it); 1-(3,4-diidro-6-metil-2,4-dioxo-2H-pirano-3-ilideno)etanolato de sódio (pt); 1-(3,4-διυδρο-6-μεθυλο-2,4-διοξο-2H-πυραν-3-υλιδεν)αιθυλικό νάτριο (el); 3-acetyl-6-methyltetrahydropyran-2,4-dion, sodná sůl (cs); 3-acetylo-6-metylo-4-okso-4H-piran-2-olan sodu (pl); dehidracetato de sódio (pt); dehidracetato sódico (es); dehydracetová kyselina, sodná sůl (cs); dehydrooctan sodu (pl); deidracetato di sodio (it); déhydroacétate de sodium (fr); Naatrium-1-(3,4-dihüdro-6-metüül-2,4-diokso-2H-püraan-3-ülideen)etonolaat (et); Naatriumdehüdroatsetaat (et); natrijev 1-(3,4-dihidro-6-metil-2,4-diokso-2H-piran-3-iliden)etonolat (hr); natrijev 1-(3,4-dihidro-6-metil-2,4-diokso-2H-piran-3-iliden)etanolat (sl); natrijev dehidracetat (hr); natrijev dehidroacetat (sl) ; natrio 1-(3,4-dihidro-6-metil-2,4-diokso-2H-piran-3-iliden)etanoliatas (lt); natrio dehidracetatas (lt); natrium dehydracetaat (nl); natrium dehydracetat (da); natrium-1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylideen)ethanolaat (nl); natrium-1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-yliden)ethanolat (da); natrium-1-(3,4-dihydro-6-metyl-2,4-diokso-2H-pyran-3-yliden)etanolat (no); natrium-1-(3,4-dihydro-6-metyl-2,4-dioxo-2H-pyran-3-yliden)etanolat (sv); natriumdehydracetat (no); Natriumdehydroasetaatti (fi); nátrium-1-(3,4-dihidro-6-metil-2,4-dioxo-2H-pirán-3-Ilidén)-etanolát (hu); nátrium-3-acetyl-4-oxo-6-metyl-4H-pyrán-2-olát (sk); nátrium-dehidracetát (hu); nātrija 1-(3,4-dihidro-6-metil-2,4-diokso-2H-pirān-3-ilidēn)etonolāts (lv); nātrija dehidracetāts (lv) ; sodiu 1-(3,4-dihidro-6-metil-2,4-dioxo-2H-piran-3-iliden)etonolat (ro); sodiu dehidracetat (ro); δεϋδροξικό νάτριο (el); натриев дехидрацетат (bg); натриев-1-(3,4-дихидро-6-метил-2,4-диоксо-2H-пиран-3-илиден)eтанолат (bg) CAS names 2H-Pyran-2,4(3H)-dione, 3-acetyl-6-methyl-, ion(1-), sodium (1:1) 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethanolate sodium sodium (1E)-1-(6-methyl-2,4-dioxopyran-3-ylidene)ethanolate sodium 1-(3,4-dihydro-6methyl-2,4-dioxo-2H-pyran-3ylidene)ethanolate sodium 1-(6-methyl-2,4-dioxo-2H-pyran-3(4H)-ylidene)ethanolate sodium 1-(6-methyl-2,4-dioxo-pyran-3-ylidene)ethanolate sodium 3-acetyl-6-methylpyran-3-ide-2,4-dione Sodium dehydracetate, Dehydroacetic acid sodium salt, 3-(1-Hydroxyethylidene)-6-methyl-2H-pyran-2,4(3H)-dione sodium salt; 1-(6-Méthyl-2,4-dioxo-2H-pyran-3(4H)-ylidène)éthanolate de sodium [French] [ACD/IUPAC Name] 224-580-1 [EINECS] 2H-Pyran-2,4(3H)-dione, 3-(1-hydroxyethylidene)-6-methyl-, sodium salt (1:1) [ACD/Index Name] 4418-26-2 [RN] Natrium-1-(6-methyl-2,4-dioxo-2H-pyran-3(4H)-yliden)ethanolat [German] [ACD/IUPAC Name] Sodium 1-(6-methyl-2,4-dioxo-2H-pyran-3(4H)-ylidene)ethanolate [ACD/IUPAC Name] Sodium dehydroacetate Sodium 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethanolate
SODIUM DEHYDROACETATE ( Déhydroacétate de sodium)
cas no 7789-12-0 Dichromic acid disodium aalt dihydrate; Sodium dichromate dihydrate; Disodium dichromate dihydrate; Sodium dichromate; Natriumdichromat (German); Dicromato de sodio (Spanish); Dichromate de sodium (French); Sodio (dicromato di) (Italian);
SODIUM DIETHYLHEXYL SULFOSUCCINATE
SODIUM DILAURETH-7 CITRATE, Nom INCI : SODIUM DILAURETH-7 CITRATE. Classification : Composé éthoxylé. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM DILAURETH-7 CITRATE
cas no 128-04-1 Sodium dimethyldithiocarbamate; Carbam-S; SDDC; Dimethyldithiocarbamate sodium salt; Dimethyldithiocarbamic acid sodium salt; Methyl namate; N,N-Dimethyldithiocarbamate sodium salt; N,N-Dimethyldithiocarbamic acid sodium salt; Sodam; Sodium N,N-dimethyldithiocarbamate; Sodium dimethyl dithiocarbamate; Sodium dimethylaminecarbodithioate; Sodium dimethylaminocarbodithioate; Sodium dimethylcarbamodithioate; Sodium dimethyldithiocarbamate; Thiostop N;
SODIUM DIMETHYLDITHIOCARBAMATE
SODIUM DIMETHYLDITHIOCARBAMATE Dimethyldithiocarbamate Chemical structure of the dimethyldithiocarbamate anion Dimethyldithiocarbamate is the organosulfur anion with the formula (CH3)2NCS2−. It is one of the simplest organic dithiocarbamate. Uses It is a component of various pesticides and rubber chemicals in the form of its salts sodium dimethyldithiocarbamate, and potassium dimethyldithiocarbamate) as well as its complexes zinc dimethyldithiocarbamate, ferric dimethyldithiocarbamate, and nickel bis(dimethyldithiocarbamate). Oxidation gives thiram. Properties Related Categories Building Blocks, Chemical Synthesis, Organic Building Blocks, Sulfur Compounds, Thiocarbonyl Compounds Molecular Weight of Sodium dimethyldithiocarbamate: 143.21 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Sodium dimethyldithiocarbamate: 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Sodium dimethyldithiocarbamate: 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Sodium dimethyldithiocarbamate: 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of Sodium dimethyldithiocarbamate: 142.983936 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Sodium dimethyldithiocarbamate: 142.983936 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Sodium dimethyldithiocarbamate: 36.3 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Sodium dimethyldithiocarbamate: 7 Computed by PubChem Formal Charge of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Complexity of Sodium dimethyldithiocarbamate: 64 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Defined Atom Stereocenter Count of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Undefined Atom Stereocenter Count of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Defined Bond Stereocenter Count of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Undefined Bond Stereocenter Count of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Covalently-Bonded Unit Count of Sodium dimethyldithiocarbamate: 2 Computed by PubChem Compound of Sodium dimethyldithiocarbamate Is Canonicalized Yes Sodium dimethyldithiocarbamate act as materials preservatives for fuels, metalworking fluids, paints, coatings, adhesives, cloth, and paper/paperboard; they act as antifoulants/slimicides in a variety of liquids including industrial/commercial cooling water, air washer water, sugar mill pulp/process water, marine heat exchangers, gas/oil recovery fluid, industrial wastewater treatment systems, industrial water purification systems, reverse osmosis water systems, and pasteurizer cooling water. Their main uses are as antifoulants in industrial cooling and air washer water systems, as well as pulp and paper mills and gas/oil drilling muds. Product description SDDC (Sodium Dimethyldithiocarbamate) is a yellowish aqueous solution and is used in the following applications: Biocide for paper mills, sugar mills, water treatment, leather industry Heavy metal scavenger Applications/uses Water treatment industrial . Sodium dimethyldithiocarbamate, is used to aid the precipitation of metals in industrial wastewater treatment and pretreatment systems. When used appropriately it can effectively enhance the removal of some difficult to treat pollutants, without impacting the environment or POTW operations. However, sodium dimethyldithiocarbamate is toxic to aquatic life and can combine to form, or break down to, a number of other toxic chemicals, including thiram (an EPA registered fungicide) and other thiurams, other dithiocarbamates, carbon disulfide, and dimethylamine. Thiram is known to be toxic to aquatic life at the following levels: LC50 less than 10 :g/l (parts per billion) including some less than 1 :g/l for several varieties of catfish, carp, rainbow trout, daphnia, and harlequinfish; LC50 between 10 and 100 ug/l in other studies Occurence(s)/Use(s) Herbicide, biocide (cutting oils and aqueous systems), coagulant, vulcanizing agent, chelating agent; water treatment (precipitate heavy metal ions); stops polymerization of synthetic latexes in rubber Sodium dimethyldithiocarbamate Agent Name Sodium dimethyldithiocarbamate CAS Number 128-04-1 Formula C3-H6-N-S2.Na Major Category Pesticides Sodium dimethyldithiocarbamate formula graphical representation Synonyms Aceto SDD 40; Alcobam NM; Amersep MP 3R; Brogdex 555; Carbam S; Carbam-S; DDC; DMDK; Diaprosim AB 13; Dibam; Dibam A; Dimethyldithiocarbamate sodium salt; Dimethyldithiocarbamic acid, sodium salt; Diram; MSL; MSL (carbamate); MetalPlex 143; Methyl namate; N,N-Dimethyldithiocarbamate sodium salt; N,N-Dimethyldithiocarbamic acid, sodium salt; Nalmet A 1; Nocceler S; SDDC; Sanceler S; Sdmdtc; Sharstop 204; Sodam; Sodium N,N-dimethyldithiocarbamate; Sodium dimethyl dithiocarbamate; Sodium dimethylaminecarbodithioate; Sodium dimethylaminocarbodithioate; Sodium dimethylcarbamodithioate; Sta-Fresh 615; Steriseal liquid #40; Thiostop N; Vinditat; Vinstop; Vulnopol NM; Wing Stop B; Carbamic acid, dimethyldithio-, sodium salt; [ChemIDplus] Category Dithiocarbamates (Pesticide) Description 40% aqueous solution: Yellow liquid; [HSDB] Off-white to cream colored flakes; [MSDSonline] Sources/Uses Used as a disinfectant, corrosion inhibitor, coagulant, vulcanizing agent, chelating agent, fungicide, and biocide (paints, cutting oils, water treatment, leather tanning, and paper manufacturing); [HSDB] Comments May cause irritation; [MSDSonline] Several of the dialkyldithiocarbamates are known skin sensitizers.
SODIUM DIOCTYL SULFOSUCCINATE
Sodium dodecylbenzene sulfonate. Utilisation et sources d'émission: Agent nettoyant, agent dispersant; Sodium dodecylbenzenesulfonate. CAS names; Benzenesulfonic acid, dodecyl-, sodium salt (1:1); SODIUM DODECYLBENZENESULFONATE, N° CAS : 25155-30-0, Nom INCI : SODIUM DODECYLBENZENESULFONATE, Nom chimique : Sodium dodecylbenzenesulphonate. N° EINECS/ELINCS : 246-680-4. Classification : Tensioactif anionique. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile).Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : BENZENESULFONIC ACID, DODECYL-, SODIUM SALT; DODECYL BENZENE SULFONATE DE SODIUM; DODECYL BENZENESULFONIC ACID, SODIUM SALT; DODECYLBENZENE SULFONATE DE SODIUM; DODECYLBENZENESULFONATE DE SODIUM; DODECYLBENZENESULFONIC ACID SODIUM SALT; Dodécylbenzènesulfonate de sodium; Sel de sodium de l'acide dodécylbenzènesulfonique; SEL SODIQUE DE L'ACIDE DODECYLBENZENESULFONIQUE; SODIUM DODECYL BENZENE SULFONATE; Sodium dodecylbenzene sulfonate; Sodium dodecylbenzenesulfonate; SODIUM LAURYLBENZENESULFONATE; SODIUM, DODECYL BENZENE SULFONATE DE ; SODIUM, DODECYLBENZENE SULFONATE DE; SODIUM, DODECYLBENZENESULFONATE DE. Noms anglais : Sodium dodecylbenzene sulfonate. Utilisation et sources d'émission: Agent nettoyant, agent dispersant; Sodium dodecylbenzenesulfonate. CAS names; Benzenesulfonic acid, dodecyl-, sodium salt (1:1); : alkylarylsulphonates; Benzenesulfonic acid, dodecyl-, sodium salt; Dodecene-1 LAS (JIS K 3363-1990) ; Dodecylbenzene sulfonic acid, sodium salt; DUBAROL; sodium 2-dodecylbenzene-1-sulfonate; SODIUM 2-DODECYLBENZENESULFONATE; Sodium 4-dodecylbenzenesulfonate; Sodium dodecyl benzene sulfonate; sodium dodecyl benzenesulfonate; sodium dodecylbenzenesufonate; Sodium Dodecylbenzenesulfonate (Sodium Alkylbenzenesulfonate C10-C13); Sodium dodecylbenzenesulphonate; Sodiumdodecylbenzenesulfonate; Tetrapropylenbenzenesulfonic acid sodium salt ; Trade names: Alkyl(C12)benzenesulfonic acid, sodium salt; Dodecylbenzene sodium sulfonate; dodecylbenzenesulfonic acid, sodium salt; Na-C12 LAS; SDBS; Sodium Dodecyl Benzene Sulphonate; sodium dodecylbenzene sulphonate; Sodium laurylbenzenesulfonate; sodium linear C12 Alkylbenzene sulfonate; Sodium 4-dodecylbenzenesulfonate [ACD/IUPAC Name] ; 218-654-2 [EINECS]; 25155-30-0 [RN]; 4171051; 4-Dodécylbenzènesulfonate de sodium [French] ; 4-Dodecylbenzenesulfonic acid, sodium salt; benzenesulfonic acid, 4-dodecyl-, sodium salt ; Benzenesulfonic acid, 4-dodecyl-, sodium salt (1:1) [ACD/Index Name]; DB6825000; MFCD00011508; Natrium-4-dodecylbenzolsulfonat [German] [ACD/IUPAC Name]; SDBS; sodium 4-dodecylbenzenesulphonate; sodium dodecyl benzenesulfonate; sodium dodecylbenzenesulfonate; sodium para-dodecylbenzene sulfonate; SODIUM P-DODECYLBENZENESULFONATE ; 11067-82-6 [RN]; 4-(2-dodecyl)benzene sulfonate sodium salt; Benzenesulfonic acid,4-dodecyl-, sodium salt (1:1); Dodecyl benzenesulfonic acid, sodium salt; DODECYLBENZENESODIUMSULFONATE; EINECS 218-654-2; P-DODECYLBENZENESULFONIC ACID, SODIUM SALT; sodium 4-dodecylbenzene-1-sulfonate; sodium 4-laurylbenzenesulfonate
SODIUM DODECYL SULFATE
CAS Number: 151-21-3
IUPAC name: Sodium dodecyl sulfate
Chemical formula: C12H25NaSO4
Molar mass: 288.372 g
EC Number: 205-788-1

Sodium dodecyl sulfate (SDS) or Sodium dodecyl sulfate (SLS), sometimes written sodium laurilsulfate, is an organic compound with the formula CH3(CH2)11OSO3Na.
Sodium dodecyl sulfate is an anionic surfactant used in many cleaning and hygiene products.
This compound is the sodium salt of the 12-carbon an organosulfate.
Sodium dodecyl sulfates hydrocarbon tail combined with a polar "headgroup" give the compound amphiphilic properties and so make it useful as a detergent.
Sodium dodecyl sulfate is also component of mixtures produced from inexpensive coconut and palm oils.
Sodium dodecyl sulfate is a common component of many domestic cleaning, personal hygiene and cosmetic, pharmaceutical,
and food products, as well as of industrial and commercial cleaning and product formulations.

Physicochemical properties
The critical micelle concentration (CMC) in water at 25 °C is 8.2 mM, and the aggregation number at this concentration is usually considered to be about 62.
The micelle ionization fraction (α) is around 0.3 (or 30%).

Applications
Cleaning and hygiene
Sodium dodecyl sulfate is mainly used in detergents for laundry with many cleaning applications.
Sodium dodecyl sulfate is a highly effective surfactant and is used in any task requiring the removal of oily stains and residues. For example, it is found in higher concentrations with industrial products including engine degreasers, floor cleaners, and car exterior cleaners.

Sodium dodecyl sulfate is a component in hand soap, toothpastes, shampoos, shaving creams, and bubble bath formulations, for its ability to create a foam (lather), for its surfactant properties, and in part for its thickening effect.

Food additive
Sodium dodecyl sulfate, appearing as its synonym Sodium dodecyl sulfate (SLS), is considered a generally recognized as safe (GRAS) ingredient for food use according to the USFDA (21 CFR 172.822).


Sodium dodecyl sulfate is used as an emulsifying agent and whipping aid.
As an emulsifier in or with egg whites the United States Code of Federal Regulations require that it must not exceed 1,000 parts per million (0.1%) in egg white solids or 125 parts per million (0.0125%) in frozen or liquid egg whites and as a whipping agent for the preparation of marshmallows it must not exceed 0.5% of the weight of gelatine.
SLS is reported to temporarily diminish perception of sweetness.

Laboratory applications
Sodium dodecyl sulfate is used in cleaning procedures, and is commonly used as a component for lysing cells during RNA extraction and/or DNA extraction, and for denaturing proteins in preparation for electrophoresis in the Sodium dodecyl sulfate-PAGE technique.


Denaturation of a protein using Sodium dodecyl sulfate
In the case of Sodium dodecyl sulfate-PAGE, the compound works by disrupting non-covalent bonds in the proteins, and so denaturing them, i.e. causing the protein molecules to lose their native conformations and shapes.

By binding to proteins at a ratio of one Sodium dodecyl sulfate molecule per 2 amino acid residues, the negatively charged detergent provides all proteins with a similar net negative charge and therefore a similar charge-to-mass ratio.
In this way, the difference in mobility of the polypeptide chains in the gel can be attributed solely to their length as opposed to both their native charge and shape.

Sodium dodecyl sulfate is possible to make separation based on the size of the polypeptide chain to simplify the analysis of protein molecules, this can be achieved by denaturing proteins with the detergent Sodium dodecyl sulfate.

Pharma applications
Sodium dodecyl sulfate is a widely used in the pharmaceutical field as an ionic solubilizer and emulsifier that is suitable for applications in liquid dispersions, solutions, emulsions and micro emulsions, tablets, foams and semi-solids such as creams, lotions and gels.

Additionally, SLS aids in tablet wettability, as well as lubrication during manufacturing. Brand names of pharma-grade SLS include Kolliphor SLS and Kolliphor SLS Fine.

Miscellaneous applications
SLS is used in an improved technique for preparing brain tissues for study by optical microscopy.
The technique, which has been branded as CLARSodium dodecyl sulfate, was the work of Karl Deisseroth and coworkers at Stanford University, and involves infusion of the organ with an acrylamide solution to bind the macromolecules of the organ (proteins, nucleic acids, etc.), followed by thermal polymerization to form a "brain–hydrogel" (a mesh interspersed throughout the tissue to fix the macromolecules and other structures in space), and then by lipid removal using Sodium dodecyl sulfate to eliminate light scattering with minimal protein loss, rendering the tissue quasi-transparent.

Along with sodium dodecylbenzene sulfonate and Triton X-100, aqueous solutions of Sodium dodecyl sulfate are popular for dispersing or suspending nanotubes, such as carbon nanotubes.

Niche uses
SLS has been proposed as a potentially effective topical microbicide, for intravaginal use, to inhibit and possibly prevent infection by various enveloped and non-enveloped viruses such as the herpes simplex viruses, HIV, and the Semliki Forest virus.

Liquid membranes formed from Sodium dodecyl sulfate in water have been demonstrated to work as unusual particle separators.
The device acts as a reverse filter, allowing large particles to pass while capturing smaller particles.

Production
Sodium dodecyl sulfate is synthesized by treating lauryl alcohol with sulfur trioxide, oleum, or chlorosulfuric acid to produce hydrogen lauryl sulfate.
Lauryl alcohol can be used in pure form or as a mixtures of fatty alcohols.

When produced from these sources, "Sodium dodecyl sulfate" products are a mixture of various sodium alkyl sulfates with Sodium dodecyl sulfate being the main component.
For instance, Sodium dodecyl sulfate is a component, along with other chain-length amphiphiles, when produced from coconut oil, and is known as sodium coco sulfate (SCS).

Sodium dodecyl sulfate is available commercially in powder, pellet, and other forms (each differing in rates of dissolution), as well as in aqueous solutions of varying concentrations.

Safety
Sodium dodecyl sulfate is not carcinogenic.
Like all detergents, Sodium dodecyl sulfate removes oils from the skin, and can cause skin and eye irritation.
Sodium dodecyl sulfate has been shown to irritate the skin of the face, with prolonged and constant exposure (more than an hour) in young adults.
Sodium dodecyl sulfate may worsen skin problems in individuals with chronic skin hypersensitivity, with some people being affected more than others.

Oral concerns
The low cost of Sodium dodecyl sulfate, its lack of impact on taste, its potential impact on volatile sulfur compounds (VSCs), which contribute to malodorous breath, and its desirable action as a foaming agent have led to the use of Sodium dodecyl sulfate in the formulations of toothpastes.

A series of small crossover studies (25–34 patients) have supported the efficacy of SLS in the reduction of VSCs, and its related positive impact on breath malodor, although these studies have been generally noted to reflect technical challenges in the control of study design variables.

While primary sources from the group of Irma Rantanen at University of Turku, Finland conclude an impact on dry mouth (xerostomia) from SLS-containing pastes, a 2011 Cochrane review of these studies, and of the more general area, concludes that there "is no strong evidence… that any topical therapy is effective for relieving the symptom of dry mouth".

A safety concern has been raised on the basis of several studies regarding the effect of toothpaste Sodium dodecyl sulfate on aphthous ulcers, commonly referred to as canker or white sores.
A consensus regarding practice (or change in practice) has not appeared as a result of the studies.

As Lippert notes, of 2013, "very few… marketed toothpastes contain a surfactant other than Sodium dodecyl sulfate," and leading manufacturers continue to formulate their produce with Sodium dodecyl sulfate.

Appearance: White or cream-colored crystals, flakes, or powder
Odor: Faint odor of fatty substances
Density: 1.01 g/cm3
Melting point: 206 °c
Hydrogen Bond Donor Count: 0
Hydrogen Bond Acceptor Count: 4
Rotatable Bond Count: 12
Exact Mass: 288.13712473
Monoisotopic Mass: 288.13712473
Topological Polar Surface Area: 74.8 Ų
Heavy Atom Count: 18
Complexity: 249
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 0
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 0
Undefined Bond Stereocenter Count: 0
Covalently-Bonded Unit Count: 2
Compound Is Canonicalized: Yes

About Sodium dodecyl sulfate
Sodium dodecyl sulfate is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 10 000 to < 100 000 tonnes per annum.

Sodium dodecyl sulfate is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses of Sodium dodecyl sulfate
Sodium dodecyl sulfate is used in the following products: washing & cleaning products, coating products, plant protection products, adhesives and sealants, fillers, putties, plasters, modelling clay, air care products, polishes and waxes and cosmetics and personal care products.

Other release to the environment of Sodium dodecyl sulfate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use, outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials) and indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment).

Article service life of Sodium dodecyl sulfate
Other release to the environment of Sodium dodecyl sulfate is likely to occur from: indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment) and outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials). Sodium dodecyl sulfate can be found in complex articles, with no release intended: vehicles and machinery, mechanical appliances and electrical/electronic products (e.g. computers, cameras, lamps, refrigerators, washing machines). Sodium dodecyl sulfate can be found in products with material based on: plastic (e.g. food packaging and storage, toys, mobile phones) and paper (e.g. tissues, feminine hygiene products, nappies, books, magazines, wallpaper).

Widespread uses by professional workers
Sodium dodecyl sulfate is used in the following products: adhesives and sealants, coating products, fillers, putties, plasters, modelling clay, plant protection products and polymers.
Sodium dodecyl sulfate is used in the following areas: building & construction work and agriculture, forestry and fishing.

Other release to the environment of Sodium dodecyl sulfate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.

Formulation or re-packing of Sodium dodecyl sulfate
Sodium dodecyl sulfate is used in the following products: cosmetics and personal care products, washing & cleaning products, air care products, biocides (e.g. disinfectants, pest control products), coating products, fillers, putties, plasters, modelling clay, polishes and waxes and polymers.
Release to the environment of Sodium dodecyl sulfate can occur from industrial use: formulation of mixtures.

Uses of Sodium dodecyl sulfate at industrial sites
Sodium dodecyl sulfate is used in the following products: polymers, laboratory chemicals, biocides (e.g. disinfectants, pest control products), metal surface treatment products, pH regulators and water treatment products and washing & cleaning products.

Sodium dodecyl sulfate is used in the following areas: building & construction work.
Sodium dodecyl sulfate is used for the manufacture of: plastic products, chemicals and rubber products.

Release to the environment of Sodium dodecyl sulfate can occur from industrial use: in processing aids at industrial sites, in the production of articles, as an intermediate step in further manufacturing of another substance (use of intermediates), as processing aid and for thermoplastic manufacture.

Other release to the environment of Sodium dodecyl sulfate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.

Sodium dodecyl sulfate (SLS) is an anionic surfactant naturally derived from coconut and/or palm kernel oil.
Sodium dodecyl sulfate usually consists of a mixture of sodium alkyl sulfates, mainly the lauryl.

Sodium dodecyl sulfate lowers surface tension of aqueous solutions and is used as fat emulsifier, wetting agent, and detergent in cosmetics, pharmaceuticals and toothpastes.
Sodium dodecyl sulfate is also used in creams and pastes to properly disperse the ingredients and as research tool in protein biochemistry. SLS also has some microbicidal activity.

Sodium dodecyl sulfate is used as a surfactant in shampoos and toothpastes.
Sodium dodecyl sulfate also has microbicidal activities against both enveloped (Herpes simplex viruses, HIV-1, Semliki Forest virus) and nonenveloped (papillomaviruses, reovirus, rotavirus and poliovirus) viruses, although it has not been approved for this use.

Like other surfactants, Sodium dodecyl sulfate is amphiphilic.
Sodium dodecyl sulfate thus migrates to the surface of liquids, where its alignment and aggregation with other Sodium dodecyl sulfate molecules lowers the surface tension. This allows for easier spreading and mixing of the liquid.
Sodium dodecyl sulfate has potent protein denaturing activity and inhibits the infectivity of viruses by by solubilizing the viral envelope and/or by denaturing envelope and/or capsid proteins.

Sodium dodecyl sulfate is an organic sodium salt that is the sodium salt of dodecyl hydrogen sulfate. Sodium dodecyl sulfate has a role as a detergent and a protein denaturant.

Dodecyl sulfate, [sodium salt] appears as white to pale yellow paste or liquid with a mild odor.
Sinks and mixes with water. (USCG, 1999)

An anionic surfactant, usually a mixture of sodium alkyl sulfates, mainly the lauryl; lowers surface tension of aqueous solutions; used as fat emulsifier, wetting agent, detergent in cosmetics, pharmaceuticals and toothpastes; also as research tool in protein biochemistry.

Features of Sodium Dodecyl Sulfate (Lauryl):
Popular anionic detergent for a variety of protein methods Especially useful for denaturing polyacrylamide gel electrophoresis (SDS-PAGE)
Common component of cell lysis buffers

This lauryl-grade sodium dodecyl sulfate (SDS) is a popular anionic detergent for routine protein electrophoresis and cell lysis methods. The formulation is a mixture of several different alkyl sulfate chain lengths (C10 to C18).

Sodium dodecyl sulfate (sodium lauryl sulfate) also called SDS (= sodium dodecyl sulfate), is an anionic surfactant that is used as a detergent, eg. in detergents or toothpaste.
Sodium dodecyl sulfate is also used as a denaturant for proteins, and is mainly used in biochemistry and biotechnology.
The effect on proteins is based on breaking non-covalent bonds of the proteins and thus destroying their quaternary and tertiary structure.

Sodium Dodecyl Sulfate (SDS) is an anionic detergent that denatures secondary and nondisulfide-linked tertiary protein structure, shattering the native shape.
Sodium Dodecyl Sulfate provides a negative charge to each protein as a function of their size.

Accordingly, all of proteins have the same shape in the gel separation they are separated only for their size. Furthermore, Sodium Dodecyl Sulfate can be used to aid in lysing cell during DNA extraction.

Sodium Dodecyl Sulfate is what’s known as a “surfactant”.
This means it lowers the surface tension between ingredients, which is why it’s used as a cleansing and foaming agent.

Most concerns about Sodium Dodecyl Sulfate stem from the fact that it can be found in beauty and self-care products as well as in household cleaners.

Grooming products, such as shaving cream, lip balm, hand sanitizer, nail treatments, makeup remover, foundation, facial cleansers, exfoliants, and liquid hand soap

Hair products, such as shampoo, conditioner, hair dye, dandruff treatment, and styling gel

Dental care products, such as toothpaste, teeth whitening products, and mouthwash

Bath products, such as bath oils or salts, body wash, and bubble bath

Creams and lotions, such as hand cream, masks, anti-itch creams, hair-removal products, and sunscreen

Sodium Dodecyl Sulfate (SDS) is a surfactant, which basically means it has an effect on the surfaces it touches. It’s used in a variety of products such as food thickeners, toothpaste, and floor cleaners.

Uses of Sodium Dodecyl Sulfate
All the soaps and cleaning products that you use are a mix of water and oil.
But they don’t mix together on their own.

Instead, surfactants bring them together.
Soap's cleaning power comes from the bonded oil and water molecules rubbing against dirt and grease.

That is why so many products have surfactants in them.
They blend the ingredients that make cleaning happen.‌

Sodium lauryl sulfate is very easy and inexpensive to make, and it works well in many situations. You'll see it listed as an ingredient in common products found in the home and in the workplace. ‌

Personal Products. These include things like:

Body wash
Hand soap
Facial cleaner
Bubble bath
Toothpaste
Shampoo

Sodium Dodecyl Sulfate is also a foaming agent.
Many of these products use Sodium Dodecyl Sulfate to give a foaming action during the cleaning process.
If you have a foaming face wash or are working up a good lather with your shampoo, you're probably using something with SLS.‌

Sodium Dodecyl Sulfate’s ability to break down oil and grease lends itself well to industrial products.
You can find it in household cleaning products as well as engine cleaners and industrial-strength soaps. ‌

You may see Sodium Dodecyl Sulfate used in certain foods you eat, within limits approved by the FDA.
As a food additive, SLS can make marshmallows fluffier and dried egg products lighter.
Sodium Dodecyl Sulfate helps mix citrus and other acidic liquids with water to make fruit drinks.

Sodium Dodecyl Sulfate (SDS), also known as Sodium lauryl sulfate, is a widely used surfactant in cleaning products, cosmetics, and personal care products.
The sodiumclauryl sulfate formula is a highly effective anionic surfactant used to remove oily stains and residues.

Sodium Dodecyl Sulfate is found in high concentrations in industrial products, including engine degreasers, floor cleaners, and car wash products, where workplace protections can be implemented to avoid unsafe exposures.
Sodium Dodecyl Sulfate is also used in lower concentrations in household and personal care products such as cleaning products, toothpastes, shampoos, and shaving foams.

Sodium Dodecyl Sulfate has been an ingredient in shampoos since the 1930s.
Sodium Dodecyl Sulfate works as a surfactant, trapping oil and dirt in hair so it can rinse away with water.

Personal Care Products
An effective foaming agent, Sodium Dodecyl Sulfate can help create a rich lather in products like body and hand wash, facial cleansers and bubble.
Likewise, Sodium Dodecyl Sulfate helps create the foaming action in toothpaste and also helps remove food particles from teeth.

Cleaning Products
Sodium Dodecyl Sulfate is an effective surfactant used in household cleaning products to help remove oily stains and residues, such as food stains in carpets.
Because of its ability to break down oil and grease, Sodium Dodecyl Sulfate also is an ingredient in many industrial cleaning products, such as engine degreasers and industrial strength detergents.

Food Additive
As a food additive, Sodium Dodecyl Sulfate is used as an emulsifier or thickener.
For example, Sodium Dodecyl Sulfate helps make marshmallows and dried egg products light and fluffy.
Sodium Dodecyl Sulfate also helps acids mix better with liquids, for example in fruit juices and punches.

Sodium Dodecyl Sulfate is frequently used as a surfactant, or foaming agent.
Sodium Dodecyl Sulfate may also serve as an emulsifier, helping oil based and water based ingredients to stay mixed.
In many of our toothpastes SLS is used as a surfactant and helps to properly disperse the ingredients during brushing, and ensures easy rinsing and removal of debris (i.e. food particles).

Sodium Dodecyl Sulfate may be derived from either petroleum based or vegetable based sources.
The oils can be split into glycerin and the component fatty acids, one of which is lauric acid.
The lauric acid is isolated and then hydrogenated to form the lauryl alcohol.

Alternately, the whole oil can be esterified and then hydrogenated to form the fatty alcohols of which lauryl alcohol would be isolated by fractionation.
The lauryl alcohol is then combined with sulfur which then forms the salt, Sodium Dodecyl Sulfate.

Sodium Dodecyl Sulfate is a cleansing agent known for being too good at the job and potentially irritating the skin.
But, on the positive side, it can produce copious, creamy and luxurious foam compared to the more gentle and thus nowadays much more commonly used Sodium Dodecyl Sulfate.

In fact, SLS is so good at irritating the skin that it is very commonly used in dermatological studies just for that. It is a so-called "primary irritant", a substance that irritates the skin in one go (without prior sensitization) but doesn't do any other big harm (such as being carcinogenic or systematically toxic - those claims are not true).
Also, the formula can greatly influence the irritating potential of SLS, and mixing it with other cleaning agents makes it milder.

If it's not in a cleanser, it works as an emulsifier or even as a penetration enhancer for active materials.

Synonyms:
151-21-3
SODIUM LAURYL SULFATE
Sodium dodecylsulfate
Sodium lauryl sulphate
Sodium dodecyl sulphate
Dodecyl sodium sulfate
Neutrazyme
Sodium n-dodecyl sulfate
Irium
Dodecyl sulfate sodium salt
Dodecyl sulfate, sodium salt
Sulfuric acid monododecyl ester sodium salt
Anticerumen
Duponal
Duponol
Gardinol
Dreft
Aquarex methyl
Duponol methyl
Solsol needles
Stepanol methyl
Duponol waqa
Stepanol wac
Stepanol waq
Duponol qx
Richonol af
Perlandrol L
Perlankrol L
Sipex sb
Sipex sd
Standapol wa-ac
Stepanol me dry
Duponol Me
Richonol A
Richonol C
Sintapon L
Duponol C
Maprofix LK
Standapol WAQ
Stepanol ME
Stepanol WA
Akyposal SDS
Carsonol SLS
Maprobix NEU
Maprofix NEU
Maprofix WAC
Aquarex ME
Dupanol WAQ
Duponol QC
Duponol WA
Duponol WA dry
Duponol WAQ
Empicol LPZ
Hexamol SLS
Melanol CL
Duponal WAQE
Duponol WAQE
Duponol WAQM
Lanette Wax-S
Sterling wa paste
Conco sulfate WA
Conco sulfate WN
Nikkol SLS
Orvus WA Paste
Sipex OP
Sipex SP
Sipex UB
Sipon LS
Sipon PD
Sipon WD
Detergent 66
Montopol La Paste
Sipon LSB
Maprofix WAC-LA
Sterling WAQ-CH
Cycloryl 21
Cycloryl 31
Stepanol WA Paste
Conco Sulfate WAG
Conco Sulfate WAN
Conco Sulfate WAS
Quolac EX-UB
Odoripon Al 95
Avirol 118 conc
Cycloryl 580
Cycloryl 585N
Lauryl sulfate sodium salt
Lauyl sodium sulfate
Maprofix 563
Sinnopon LS 95
Stepanol T 28
Steinapol NLS 90
Empicol LS 30
Empicol LX 28
Lauryl sodium sulfate
Melanol CL 30
NALS
Rewopol NLS 30
Standapol waq special
Standapol was 100
Sinnopon LS 100
Stepanol WA-100
Carsonol SLS Special
Standapol 112 conc
Stepanol ME Dry AW
Avirol 101
Emersal 6400
Monogen Y 100
Carsonol SLS Paste B
sodium;dodecyl sulfate
Stepanol methyl dry aw
Berol 452
Emal 10
EMAL O
Sipon LS 100
n-Dodecyl sulfate sodium
Sodium monolauryl sulfate
Monododecyl sodium sulfate
Sodiumlauryl ether sulfate
Conco sulfate WA-1200
Conco sulfate WA-1245
Dehydag sulfate GL emulsion
Product no. 75
Product no. 161
MFCD00036175
Emulsifier no. 104
CHEBI:8984
UNII-368GB5141J
P and G Emulsifier 104
Sodium lauryl sulfate ether
Sodium Laurylsulfate
Sulfuric acid monododecyl ester sodium salt (1:1)
SLS
Texapon K 1296
NCI-C50191
Laurylsulfuric Acid Sodium Salt
Natriumalkyl(C8-C20)-sulfate
Dodecyl alcohol, hydrogen sulfate, sodium salt
Dodecylsulfuric Acid Sodium Salt
Finasol osr2
Incronol SLS
Natriumlaurylsulfat
368GB5141J
NSC-402488
NCGC00091020-03
E487
Jordanol SL-300
Finasol osr(sub 2)
Dodecyl sulfate sodium
Monagen Y 100
Perklankrol ESD 60
Caswell No. 779
Natrium laurylsulfuricum
DSSTox_CID_6031
DSSTox_RID_77989
Sodium monododecyl sulfate
DSSTox_GSID_26031
12738-53-3
12765-21-8
1334-67-4
Laurylsiran sodny [Czech]
Lauryl sulfate, sodium salt
Dehydrag sulfate gl emulsion
Dehydag sulphate GL emulsion
Laurylsiran sodny
Rhodapon UB
Sodium lauryl sulfate 30%
sodiumdodecylsulfate
CAS-151-21-3
CCRIS 6272
Lauryl sulfate sodium
HSDB 1315
Sodium lauryl sulfate, dental grade
EINECS 205-788-1
EPA Pesticide Chemical Code 079011
NSC 402488
CP 75424
Empicol
AI3-00356
Sodium lauryl sulfate [JAN:NF]
sodiumlauryl sulfate
Sodium laurilsulfate
sodium dodecylsulphate
Sodium dedecyl sulfate
Sodium-dodecyl-S-SDS
IPC-SDS
sodium n-dodecyl sulphate
Sodium Lauryl Sulfate NF
lauryl sulphate sodium salt
EC 205-788-1
dodecyl sulphate sodium salt
SCHEMBL1102
C12H25NaO4S
sodium dodecyl sulfate (sds)
CHEMBL23393
Sodium dodecyl sulfate, 99%
sodium dodecyl sulphate (sds)
sodium 2-dodecoxyethyl sulfate
Sodium dodecyl sulphate solution
DTXSID1026031
dodecyl sulfuric acid sodium salt
Dodecyl sulphuric acid sodium salt
Sodium lauryl sulfate (JP17/NF)
BCP30594
CS-B1770
Tox21_111059
Tox21_201614
Tox21_300149
BDBM50530482
AKOS015897278
AKOS025147308
Tox21_111059_1
DB00815
Dodecyl sulfuric acid ester sodium salt
NCGC00091020-01
NCGC00091020-02
NCGC00254225-01
NCGC00259163-01
NCGC00274082-01
AS-14730
M361
Lauryl Sulfate, Sodium Salt (25% Aq.)
D1403
FT-0603358
FT-0700721
I0352
S0588
D01045
F16341
S-4600
S-4601
Sodium dodecyl sulfate, 10% solution in water
SODIUM DODECYL SULFATE BIOTECH GRD 100G
Q422241
Sodium n-dodecyl sulfate, 98%, for electrophoresis
Sodium n-dodecyl sulfate (SDS), 20% aqueous solution
F0001-0539
Z169572898
SODIUM DODECYLBENZENESULFONATE ( Dodécylbenzènesulfonate de sodium )
SODIUM DODOXYNOL-40 SULFATE Nom INCI : SODIUM DODOXYNOL-40 SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM DODOXYNOL-40 SULFATE
cas no 6381-77-7 Isoascorbic acid, sodium salt; D-Araboascorbic acid, monosodium salt; D-erythro-Hex-2-enonic acid, gamma-lactone, monosodium salt; Erythorbic Acid Monosodium Salt; Monosodium erythorbate; Neo-cebitate; 2,3-Didehydro-3-O-sodio- D-erythro- hexono-1,4-Lactone; 2,3-Didehidro-3-O-sodio-D- eritro-hexono- 1,4-Lactona: 2,3-Didéhydro-3-O-sodio-D- érythro-hexono-1,4-Lactone; Sodium D-araboascorbate; sodium D-isoascorbate;